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Abstract

We introduce the notion of width bounded geometric separator, develop the techniques for its existence
as well as algorithm, and apply it to obtain a 2O(

√
n) time exact algorithm for the disk covering problem,

which seeks to determine the minimal number of fixed size disks to cover n points on plane, and was
proven to be NP-complete [14]. Applying our separator to a class of NP-hard problems on disk graphs, we

also greatly improve the exact algorithm for maximum independent set problem on disk graph to 2O(
√

n)

from nO(
√

n) [4, 1]. For a constant a > 0 and a set of points Q on the plane, an a-wide separator is the
region between two parallel lines of distance a that partitions Q into Q1 (in the left side of the region), S
(inside the region), and Q2 (in the right side of the region). If the distance is at least one between every
two points in the set Q with n points, called 1-separated set, there is an a-wide separator that partitions
Q into Q1, S and Q2 such that |Q1|, |Q2| ≤ (2/3)n, and |S| ≤ 1.2126a

√
n. As the separator for grid

points gives sub-exponential time algorithm for the protein folding problem in the HP-model [15], the
separator for 1-separated set provides a tool for studying the protein folding problem in more realistic
model.

1. Introduction

The geometric separator has applications in many problems (e.g. [28, 8, 7, 36]). It plays an important role
when developing divide and conquer algorithm for geometric problems. Lipton and Tarjan [27] showed the
well known geometric separator for planar graphs. They proved every n vertices planar graph has at most√
8n vertices whose removal separates the graph into two disconnected parts of size at most 2

3n. Their 2
3 -

separator was improved to
√
6n by Djidjev [10],

√
5n by Gazit [16],

√
4.5n by Alon, Seymour and Thomas [5]

and 1.97
√
n by Djidjev and Venkatesan [11]. Spielman and Teng [38] showed a 3

4 -separator with size 1.82
√
n

for planar graphs. The separators for more general graphs were derived in [17, 6, 35]. Some other forms of
the geometric separators were studied by Miller, Teng, Thurston, and Vavasis [32, 33, 31] and Smith and
Wormald [37]. Assume each input point is covered by a regular geometric object such as circle, rectangle,
etc. If every point on the plane is covered by at most k objects, it is called k-thick. Some O(

√
k · n) size

separators and their algorithms were derived in [32, 33, 31, 37].
The planar graph separators were applied in deriving some 2O(

√
n)-time algorithms for certain NP-hard

problems on planar graph by Lipton, Tarjan [28], Ravi and Hunt [36]. Those problems include computing
the numbers of maximum independence set, minimum vertex covers and three-colorings of a planar graph,
and the number of satisfying truth assignments to a planar 3CNF formula [26]. In [37], their separators
were applied in deriving nO(

√
n)-time algorithms for some geometric problems such as the planar Traveling

Salesman and Steiner Tree problems on the plane. The separators were applied to parameterized independent
set problem for planar graph by Alber, Fernau and Niedermeier [2, 3] and disk graph by Alber and Fiala [4].
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We introduce the concept of width bounded separator. For a set of points Q on the plane, an a-wide
separator is the region between two parallel lines of distance a, which partitions the set Q into two balanced
subsets and measures its size with the number of points from Q in the strip region. Our width bounded
separator concept is geometrically natural, and can achieve much smaller constant c for its size upper bound
c
√
n than the previous approaches that we just mentioned above. Fu and Wang [15] developed a method

for deriving sharper upper bound separator for grid points via controlling the distance to the separator line.
They proved that for a set of n grid points on the plane, there is a separator that has ≤ 1.129

√
n points and

has ≤ 2
3n points on each side. It was used to obtain the first sub-exponential time algorithm for the protein

folding problem in the HP model. This paper not only generalizes the results of [15], but also substantially
improves the techniques in [15].

We would like to mention our new technical developments in this paper. 1) In order to apply the separator
to more general geometric problems with arbitrary input points other than grid points, we use weighted points
in Euclid space and the sum of weights to measure the quality of separator instead of counting the number
of points close to it. We introduce the local binding method to merge some nearby points into a grid point.
This method is combined with our separator in deriving a 2O(

√
n) time algorithm for the well-known disk

covering problem, which seeks to determine the minimal number of fixed size discs to cover n points on the
plane. To our knowledge, this is the first algorithm for the disk covering problem with running time bounded
by an exponential with a sublinear exponent. This method can also obtain 2O(

√
n) time algorithms for a class

of NP-hard problems on disk graph. For example, we greatly improve the exact algorithm for maximum
independent set problem on disk graph to 2O(

√
n) time from nO(

√
n) [4, 1]. 2) We will handle the case of high

dimension. In [15], it uses the angle ratio θ
π to characterize the probability for a point p to have distance

≤ a to a random line through a point o, where θ is the angle between the two lines through o that the point
p has distance = a to both of them. We develop a new area ratio method to replace the previous angle ratio
method [15] when deriving higher dimensional separator. 3) In order to study protein folding problem in
more general model than the grid model like HP model [25], we develop a similar separator theorem for a set
of points with distance at least 1 between any two of them, called 1-separated set, we establish the connection
between this problem and the famous fixed size discs packing problem. The discs packing problem on 2D
was well solved in the combinatorial geometry (see [39]). The 3D case, which is the Kepler conjecture, has a
very long proof (see [34, 21]). It is still a very elusive problem at higher dimensions. Our Theorem 15 shows
how the separator sizes depends on the packing density. 4) We develop a simple polynomial time algorithm
to find the width-bounded separator at fixed dimensional space. This is a starting point for the algorithms
finding width bounded geometric separator, and is enough for the applications to the exact algorithms for
some NP-complete geometric problems.

The paper spends section 3 to prove some existence theorems for width bounded separator. Section 4
gives polynomial time algorithm for finding width bounded separator. Section 5 describes the 2O(

√
n)-time

algorithm for disk covering problem and maximum independent set problem on disk graph by using the
results from sections 3 and 4 .

2. Overview of our methods

We describe our techniques in the 2-dimensional case. For a set of arbitrary points Q on the plane, we also
consider another set of grid points P on the plane. Each point p ∈ P is assigned a positive weight which is
used to measure the density for the points of set Q near p. A good separator line L partitions the set Q into
two balanced parts. Furthermore, it is also expected to have small a number of points from Q close it. This
will be measured by the sum of weights of the points of P close to L. This approach makes it more flexible
than counting the number of points of Q close to L. The point set Q has a center point (see Lemma 1) such
that every line through it has a balanced partition for Q. For a random line L through the center point, the
expected sum of weights of points P close to it is maximal when all points of P stay at the least circle with
center at o. Furthermore, the points of P with larger weights are closer to the center than the points with
smaller weights. When the number of different weights is small, it gives us an easy way to compute such an
expectation, which is used as the upper bound for the quality of the best separator.

Finding an a-wide separator is straightforward with O(n3)-time. Let each point p ∈ P be covered with
a insulation circle with radius a/2 and center at p. A good separator line L can be moved until it touches
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points of Q or is tangent to some insulation circles with radius a/2 and center at points of P . The movement
neither crosses any point of Q nor enters any new insulation circle of P . It does not change the balance
result and size measure of the separator. Trying all lines that pass through points of Q or are tangent to the
insulation circles with center at points of P , it can be done in O(n3) time.

For covering a set of points Q on the plane, the set P is a set of grid points that have points from Q close
to each of them. A grid point p’s is assigned weight i if there are 2i to 2i+1 points of Q on the 1 × 1 grid
square with p as the center. A balanced separator line for Q also has small sum of weights (O(

√
n)) for the

points of P near the line. This gives at most 2O(
√
n) ways to cover all points of Q close to the separator line

and decompose the problem into two problems Q1 and Q2 that can be covered independently. It makes the
total time to be 2O(

√
n).

3. Theory of width-bounded separators on the d-dimension

Throughout the section 3 we assume the dimensional number d is fixed. We will use the following well
known fact that can be easily derived from Helly theorem (see [18, 39]), and will be used to obtain our width
bounded separator.

Lemma 1. For an n-element set P in d-dimensional space, there is a point q with the property that any
half-space that does not contain q, covers at most d

d+1n elements of P . (Such a point q is called a centerpoint
of P ).

Definition 2. For two points p1, p2 in the d-dimensional Euclid space Rd, dist(p1, p2) is the Euclid distance
between p1 and p2. For a set A ⊆ Rd, dist(p1, A) = minq∈A dist(p1, q). For a > 0 and a set A of points on
d-dimensional space, if the distance between every two points is at least a, the set A is called a-separated.
For ε > 0 and a points set Q ⊆ Rd, an ε-net of Q is another points set P ⊆ Rd such that each point in Q has
distance ≤ ε to some point in P . We say P is a net of Q if P is an ε-net of Q for some constant ε > 0 (that
does not depend on the size of Q if it can be very large). A net set is usually an 1-separated set such as grid
points set. A weight function w : P → [0,∞) is often used to measure the points density of Q near each point
of P . Let f : Rd → R be continuous and piece-wise smooth function. Its surface L(f) = {v ∈ Rd|f(v) = 0}, a
d−1-dimensional manifold, characterizes a regular geometric shape such as ball, square, plane, etc. A hyper-
plane in Rd through a fixed point p0 ∈ Rd is defined by equation (p− p0) · v = 0, where v is normal vector of

the plane and “ .” is the regular inner product (u · v =
∑d

i=1 uivi for u = (u1, · · · , ud) and v = (v1, · · · , vd)).
Let F be a class of functions f : Rd → R, whose surfaces represent a class of simple geometric shapes. For
Q ⊆ Rd with net P ⊆ Rd, constant a > 0, and the weight function w : P → [0,∞), an a-wide-F -separator is
determined by the surface L(f) for some f ∈ F , which has two measurements for its quality of separation:

(1) balance(L(f), Q) = max(|Q1|,|Q2|)
|Q| , where Q1 = {q ∈ Q|f(q) < 0} and Q2 = {q ∈ Q|f(q) > 0}; and

(2)measure(L(f), P, a2 , w), where measure(A,P, x, w) =
∑

p∈P,dist(p,A)≤x w(p). In particular, an a-F -wide

separator is simply called an a-wide separator when F is the set of all linear functions f : Rd → R, whose
surface is a hyper plane. Sometimes, if f is fixed, we use balance(L,Q) and measure(L,P, a2 , w) to represent
balance(L(f), Q) and measure(L(f), P, a2 , w) respectively.

3.1. Volume, area, integrations and probability

We need some integrations for computing volume and surface area size at high dimensions. Some of the
materials can be found in standard calculus books. We will treat the case of any fixed dimension. The reader
is recommended to understand the cases d = 2 and 3 first. We use the standard polar transformation

xd = r cos θd−1;

xd−1 = r sin θd−1 cos θd−2;

· · · · · ·
x2 = r sin θd−1 sin θd−2 · · · sin θ2 cos θ1;
x1 = r sin θd−1 sin θd−2 · · · sin θ2 sin θ1.
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It is a smooth one-one and onto map from [0, R]× [0, π]× · · · × [0, π]× [0, 2π] to the d-dimensional ball
of radius R with center at the origin. The Jacobian form is

Jd(r, θd−1, · · · , θ1) =
∂(xd, xd−1, · · · , x1)

∂(r, θd−1, · · · , θ1)
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂xd
∂r

∂xd−1

∂r · · · ∂x1

∂r
∂xd
∂θd−1

∂xd−1

∂θd−1
· · · ∂x1

∂θd−1

· · ·
∂xd
∂θ1

∂xd−1

∂θ1
· · · ∂x1

∂θ1

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We can easily see the recursive equation that Jd(r, θd−1, · · · , θ1) = r·(sin θd−1)
d−2 ·Jd−1(r, θd−2, · · · , θ1) for

d > 2. This gives the explicit expression: Jd(r, θd−1, · · · , θ1) = rd−1 · (sin θd−1)
d−2 · (sin θd−2)

d−3 · · · (sin θ2).
Let Bd(R, o) be the d-dimensional ball of radius R and center o. The volume of d-dimensional ball of radius
R is

Vd(R) =

∫

Bd(R,o)

1dz =

∫ R

0

∫ π

0

· · ·
∫ π

0

∫ 2π

0

|Jd(r, θd−1, · · · , θ2, θ1)|drdθd−1
· · · dθ2dθ1 (1)

=











2(d+1)/2π(d−1)/2

1·3···(d−2)·d Rd if d is odd

2d/2πd/2

2·4···(d−2)·dR
d otherwise

(2)

Let the d-dimensional ball have the center at o. We also need the integration as follows:
∫

Bd(R,o)

1

dist(z, o)
dz =

∫ R

0

∫ π

0

· · ·
∫ π

0

∫ 2π

0

|Jd(r, θd−1, · · · , θ2, θ1)|
r

drdθd−1
· · · dθ2dθ1 =

d

(d− 1)R
Vd(R) (3)

Let Vd(r) = vd · rd, where vd is constant for fixed dimensional number d. In particular, v1 = 2, v2 = π

and v3 = 4π
3 . Define Ad(h,R) = {(x1, · · · , xd)|

∑d
i=1 x

2
i ≤ R2 and 0 ≤ x1 ≤ h}, which is a horizontal cross

section of d-dimensional half ball. The volume of Ad(h,R) at d-dimensional space is calculated by

Ud(h,R) =

∫ h

0

Vd−1(
√

R2 − x2
1) dx1

= vd−1

∫ h

0

(

√

R2 − x2
1

)d−1

dx1
(4)

The surface area size of 3D ball (4πR2) is the derivative of its volume ( 4
3πR

3). The boundary length of
circle (2πR) is the derivative of its area size (πR2). This fact can be extended to higher dimensional ball

and the cross section of ball. The surface area size of Bd(R, o) is Wd(R) = ∂Vd(R)
∂R = d · vd · Rd−1. The side

surface of Ad(h,R) is {(x1, · · · , xd)|
∑d

i=1 x
2
i = R2 and 0 ≤ x1 ≤ h}. Its area size is

Sd(h,R) =
∂Ud(h,R)

∂R
= (d− 1)vd−1R

∫ h

0

(

√

R2 − x2
1

)d−3

dx1

When R is fixed and h is small, we have Sd(h,R) = vd−1 · (d − 1) · Rd−2 · h + O(h2). For a parameter
a > 0, the probability that a d-dimensional point p to have a distance ≤ a to a random plane through origin
will be determined. This probability at dimension 3 was not well treated in [15].

Lemma 3. Let a > 0 be a constant. Let p and o be the two points on d-dimensional space, the probability
that p has distance ≤ a to a random plane through o is in [ hd·a

dist(p,o) − c0
dist2(p,o)

, hd·a
dist(p,o) + c0

dist2(p,o)
], where

hd = 2(d−1)vd−1

d·vd and co are constants for fixed d. In particular, h2 = 2
π and h3 = 1.

Proof: Let o be the origin (0, · · · , 0). The point p can be moved to an axis via rotation that does
not change the probability. Let’s assume the point p = (x1, 0, · · · , 0), where x1 = dist(p, o). For an unit
vector v = (v1, · · · , vd) with v1 ≥ 0 in d-dimensional space, the plane through the origin with normal
vector v is defined u · v = 0, where · represents the regular inner product between two vectors. The
distance between p to the plane is |p · v| = x1v1. If x1v1 ≤ a, it implies v1 ≤ a

x1
. The area size of

{(v1, · · · , vd)|
∑d

i=1 v
2
i = 1 and 0 ≤ v1 ≤ a

x1
} is Sd(

a
x1
, 1). The probability that p has distance ≤ a to a

random plane through the origin is
Sd( a

x1
,1)

1
2 ·Wd(1)

= hd · a
dist(p,o) +O( 1

dist2(p,o)
).
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3.2. Width Bounded Separator

Definition 4. The diameter of a region R is supp1,p2∈R dist(p1, p2). A (b, c)-partition of d-dimensional space
makes the space as the disjoint unions of regions P1, P2, · · · such that each Pi, called a regular region, has
volume equal to b and the diameter of each Pi is ≤ c. A (b, c)-regular point set A is a set of points on a
d-dimensional space with (b, c)-partition P1, P2, · · · such that each Pi contains at most one point from A.
For two regions A and B, if A ⊆ B (A ∩B 6= ∅), we say B contains (intersects resp.) A.

Lemma 5. Assume P1, P2, · · · form a (b, c)-partition on d-dimensional space. We have (i) every d-

dimensional ball of radius r intersects at most vd·(r+c)d
b regular regions; (ii) every d-dimensional ball of

radius r contains at least vd·(r−c)d
b regular regions; (iii) every d-dimensional ball of radius

(

nb
vd

)
1
d

+ c con-

tains at least n (b, c)-regular regions in it; and (vi) every d-dimensional ball of radius
(

nb
vd

)
1
d − c intersects

at most n (b, c)-regular regions.

Proof: (i) If a (b, c)-regular region Pi intersects a ball C of radius r at center o, the regular region Pi is
contained by the ball C ′ of radius r + c at the same center o. The number of regular regions contained by
C ′ is no more than the volume size of the ball C ′ divided by b. (ii) If a regular region Pi intersects a ball
C ′ of radius r − c at center o, Pi is contained in the ball C of radius r at the same center o. The number
of those regular regions intersecting C ′ is at least the volume size of the ball C ′ divided by b. (iii)Apply

r = ( bnvd )
1
d + c to (ii). (vi)Apply r = ( bnvd )

1
d − c to (i).

Definition 6. Let a > 0, p and o be two points in d-dimensional space. Define Prd(a, p0, p) to be the
probability that the point p has ≤ a perpendicular distance to a random hyper plane L through the point

p0. Define function fa,p,o(L) =







1 if p has distance ≤ a to the hyper plane L through o;

0 otherwise.

The expectation of function fa,p,o is E(fa,p,o) = Prd(a, o, p). Assume P = {p1, p2, · · · , pn} is a set of n
points in Rd and each pi has weight w(pi) ≥ 0. Define function Fa,P,o(L) =

∑

p∈P w(p)fa,p,o(L). We give
an upper bound for the expectation E(Fa,P,o) for Fa,P,o in the lemma below.

Lemma 7. Let a, b, c > 0 be constants and δ > 0 be a small constant. Assume that P1, P2, · · · form a (b, c)
partition in Rd. Let w1 > w2 > · · · > wk > 0 be positive weights, and P = {p1, · · · , pn} be the d-dimensional
(b, c)-regular points set in Rd. Let w be a mapping from P to {w1, · · · , wk} and nj be the number of points
p ∈ P with w(p) = wj. Let o be a fixed point in Rd (a center point). For a random hyper plane passing

through o, we have E(Fa,P,o) ≤ ( d·hd·vd(d−1)·b + δ) · a ·∑k
j=1 wj(r

d−1
j − rd−1

j−1 )+ c2
∑k−1

j=1 wj+1 · rd−2
j + c1 ·w1, where

(1) r0 = 0 and ri(i > 0) is the least radius such that Bd(ri, o) intersects at least
∑i

j=1 nj regular regions, (2)
c1 and c2 are constants for fixed d, and (3) hd and vd are constants defined in section 3.1.

Proof: Assume p = (x, y) is a point of P and L is a random plane passing through the center o = (x0, y0).
Let C be the ball of radius r and center o such that C covers all points in P . Let C ′ be the ball of radius
r′ = r + c and the same center o. It is easy to see every regular region with a point in P is inside C ′. The
probability that the point p has distance ≤ a to L is ≤ hd · a

dist(o,p) +
c0

dist(o,p)2 (by Lemma 3).

Let ε > 0 be a small constant which will be determined later. Select constant R0 to be large enough
such that for every point p with dist(o, p) ≥ R0,

1
dist(o,p′) +

c0
hd·a·dist(o,p′)2 < 1+ε

dist(o,p) for every point p′ with

dist(p′, p) ≤ c. Let P1 be the set of all points p in P such that dist(o, p) < R0. For each point p ∈ P1,

Prd(a, o, p) ≤ 1. For every point p ∈ P − P1, Prd(a, o, p) ≤ hd · a
dist(o,p) +

c0
dist(o,p)2 < hd·a(1+ε)

dist(o,p) .

E(Fa,P,o) = E(

n
∑

i=1

w(pi) · fa,pi,o) =
n
∑

i=1

w(pi) · E(fa,pi,o) =

k
∑

j=1

wj
∑

w(pi)=wj

E(fa,pi,o) (5)

=

k
∑

j=1

wj
∑

w(pi)=wj

Prd(a, o, pi) <

k
∑

j=1

wj
∑

w(pi)=wj

hd · a · (1 + ε)

b
· 1

dist(o, pi)
· b (6)
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It is easy to see that the contribution to E(Fa,P,o) from the points in P1 is≤ w1|P1| ≤ w1· vd(R0+c)
d

b = w1c1

(by Lemma 5), where c1 = vd(R0+c)
d

b . Next we only consider those points from P − P1. The sum (6) is
maximal when dist(p, o) ≤ dist(p′, o) implies w(p) ≥ w(p′). The ball C ′ is partitioned into k ring regions
such that the j-th area is between Bd(rj , o) and Bd(rj−1, o) and is mainly used to hold those points with
weight wj . Notice that each regular region has diameter ≤ c and holds at most one point in P . It is easy to
see that all points of {pi|w(pi) = wj} are located between Bd(rj , o) and Bd(rj−1− c, o) when (6) is maximal.

∑

w(pi)=wj

hd · a · (1 + ε)

b
· 1

dist(o, pi)
· b ≤ hd · a · (1 + ε)2

b

∫

Bd(rj ,o)−Bd(rj−1−c,o)

1

dist(o, z)
dz (7)

=
hd · a · (1 + ε)2

b

∫ rj

rj−1−c

∫ π

0

· · ·
∫ π

0

∫ 2π

0

Jd(r, θn−1, · · · , θ2, θ1)
r

drdθn−1
· · · dθ2dθ1 (8)

=
hd · a · (1 + ε)2

b
· d

(d− 1)
·
(

Vd(rj)

rj
− Vd(rj−1 − c)

rj−1 − c

)

(9)

<

(

d · hd · vd
(d− 1) · b + δ

)

· a · (rd−1
j − rd−1

j−1 ) +O(rd−2
j−1 ). (10)

Note: (8)→ (9)→ (10) follows from (3), and selecting ε small enough.

Lemma 8. Let o be a point on the plane, a, b, c > 0 be constants and ε, δ > 0 be small constants. Assume
that P1, P2, · · · form a (b, c) partition in Rd. The weights w1 > · · · > wk > 0 satisfy k ·maxki=1{wi} = O(nε).
Let P be a set of n weighted (b, c)-regular points in a d-dimensional plane with w(p) ∈ {w1, · · · , wk} for
each p ∈ P . Let nj be the number of points p ∈ P with w(p) = wj for j = 1, · · · , k. We have E(Fo,P,a) ≤
(kd ·( 1

b )
1
d +δ) ·a ·∑k

j=1 wj ·n
d−1
d

j +O(n
d−2
d +ε), where kd = d·hd

d−1 ·v
1
d

d . In particular, k2 = 4√
π
and k3 = 3

2

(

4π
3

)
1
3 .

Proof: Let rj be the least radius such that the ball of radius rj intersects at least
∑j

i=1 ni regular regions

(j = 1, · · · , k). By Lemma 5,

(

(
∑j

i=1
ni)b

vd

)
1
d

− c ≤ rj ≤
(

(
∑j

i=1
ni)b

vd

)
1
d

+ c for j = 1, · · · , k.

rd−1
j − rd−1

j−1 ≤





(

(
∑j

i=1 ni)b

vd

)
1
d

+ c





d−1

−





(

(
∑j−1

i=1 ni)b

vd

)
1
d

− c





d−1

(11)

=

(

b

vd

)
d−1
d

(

(

j
∑

i=1

ni)
d−1
d − (

j−1
∑

i=1

ni)
d−1
d

)

+O((

j
∑

i=1

ni)
d−2
d ) (12)

=

(

b

vd

)
d−1
d

n
d−1
d

j +O((

j
∑

i=1

ni)
d−2
d ) (13)

By Lemma 7, the lemma is proved.

Definition 9. Let a1, · · · , ad > 0 be positive constants. A (a1, · · · , ad)-grid regular partition divides the d-
dimensional space into disjoint union of a1×· · ·×ad rectangular regions. A (a1, · · · , ad)-grid regular point is
a corner point of a rectangular region. Under certain translation and rotation, each (a1, · · · , ad)-grid regular
point has coordinates (a1t1, · · · , adtd) for some integers t1, · · · , td.

Theorem 10. Let a, a1, · · · , ad > 0 be constants and ε, δ > 0 be small constants. Let P be a set of n
(a1, · · · , ad)-grid points in Rd, and Q be another set of m points in Rd with net P . Let w1 > w2 · · · > wk > 0
be positive weights with k · maxki=1{wi} = O(nε), and w be a mapping from P to {w1, · · · , wk}. There is
a hyper plane L such that (1) each half space has ≤ d−1

d m points from Q, and (2) for the subset A ⊆ P

6



containing all points in P with ≤ a distance to L has the property
∑

p∈A w(p) ≤
(

kd ·
(

∏d
i=1 ai

)
−1
d

+ δ

)

·

a ·∑k
j=1 wj · n

d−1
d

j +O(n
d−2
d +ε) for all large n.

Proof: Let b =
∏d

i=1 ai, c =
√

∑d
i=1 a

2
i , and the point o be the center point of Q via Lemma 1. Apply

Lemma 8.

Corollary 11. [15] Let Q be a set of n (1, 1)-grid points on the plane. There is a line L such that each half
plane has ≤ 2n

3 points in Q and the number of points in Q with ≤ 1
2 vertical distance to L is ≤ 1.129

√
n.

Proof: Let all points of Q have weight 1, k = 1, a = 1
2 and P = Q. Apply Theorem 10.

Corollary 12. Let Q be a set of n (1, 1, 1)-grid points on the 3D Euclid space. There is a plane L such
that each half space has ≤ 3n

4 points in Q and the number of points in Q with ≤ 1
2 vertical distance to L is

≤ 1.209n
2
3 .

Corollaries 11 and 12 are the separators for the 2D and 3D grid graphes respectively. An edge connecting
two neighbor grid points has distance 1. If two neighbor grid points are at different sides of the separator, one
of them has distance ≤ 1

2 to the separator. The work [15] for studying the protein folding in the HP-model
lets us introduce the notion of width bounded separator. The atoms positions of real protein molecular do
not follow the grid model like HP model [25]. In order to study the protein folding in more realistic model,
we would like to obtain the separator for 1-separated set. The distance 1 represents the minimal distance
between atoms in the protein. Such a separator may be useful for studying other geometric problems. The
results in the next several sections do not depend on the results in the rest of this section.

Definition 13. Let C = {C1, C2, · · ·} be a collection of balls in the d-dimensional Euclid space and let D
be a region, C is called packing in D if ∪iCi ⊆ D and no two of them have an interior point in common.

The density of C with respect to D is defined as d(C,D) =

∑

i
A(Ci)

A(D) , where the sum is over all i for which

Ci ∩D 6= ∅ and A(B) is the volume size of region B. Let d(C,D) = limr→∞ sup d(C,D(r)), where D(r) is
the ball of radius r centered at a fixed point o in D.

Lemma 14. Let ε > 0 be a small constant. Let P ′ be a 1-separated set with n points, and P be another set
in the Rd. The weight function w(p) = 1 for every p ∈ P ∪ P ′. Let ε be a small constant. Let o′ and o be

two points in Rd. The function g : P → P ′ be an one-one and onto mapping with dist(o, p) ≥ dist(o′,g(p))
s for

every p ∈ P . We have E(Fa,P,o) ≤ (1 + ε)s · E(Fa,P ′,o′) + c4 for all large n, where c4 is a constant.

Proof: Since E(fa,p,o) = Prd(a, o, p), by Lemma 3, we can select constant R0 big enough such that
E(fa,p,o) ≤ (1+ ε)s ·E(fa,g(p),o′) for all points p ∈ P with dist(p, o) > R0. E(fa,p,o) ≤ 1 for each point p ∈ P

with dist(p, o) ≤ R0.

Theorem 15. Assume the packing density for d-dimensional ball has d(C,Rd) ≤ Dd. For every 1-separated
set Q on the d-dimensional Euclid space, there is a hyper-plane L with balance(L,Q) ≤ d−1

d and the number

of points with distance ≤ a to L is (2kd ·
(

Dd

vd

)
1
d

+ o(1))a · n d−1
d .

Proof: Select R0 > 0 large enough such that if R > R0 and n balls of radius r = 1
2 are packed into

Bd(R, o), then
n·vdrd
vdRd < Dd + ε. Let Ri = (1 + ε)iR0 for i = 1, 2, · · · . Let ni be the number of balls packed

in Bd(Ri, o). Since ni·vdrd
vdRd

i

< Dd + ε, we have ni <
Rd
i (Dd+ε)
rd

. Let R′i =
(

nib
vd

)
1
d

+ c <





(

Rd
i
(Dd+2ε)

rd

)

b

vd





1
d

=
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Ri

r ·
(

(Dd+2ε)b
vd

)
1
d

. The ball Bd(R
′
i, o

′) contains ≥ ni regular (b, c)-regions by Lemma 5. Let g be a function

that maps every center point ck of ball Ck of radius r in Bd(Ri, o) to a point p′k in one of the (b, c)-regular
regions of Bd(R

′
i, o

′), and g(ck) and g(cj) belong to different (b, c) regular regions for ck 6= cj . For every
ball center ck between Bd(Ri, o) and Bd(Ri+1, o), it is mapped to a point p′k in Bd(R

′
i+1, o

′). We have

dist(o, ck) ≥ Ri =
Ri

R′
i+1

· R′i+1 ≥
dist(o′,p′k)

R′
i+1
Ri

≥ dist(o′,p′k)
s , where s = 1

r ·
(

(Dd+2ε)b
vd

)
1
d ≥ R′i+1

Ri+1
. The theorem

follows from Lemmas 1, 14 and 8.

Corollary 16. Let Q be a 1-separated set on the d-dimensional Euclid space. There is an a-wide separator L

such that balance(L,Q) ≤ d−1
d and the number of points with distance ≤ a/2 to L is (kd ·( 1

vd
)

1
d +o(1))·a·n d−1

d .

Proof: The packing density is always ≤ 1. Apply Theorem 15. Notice that the distance to L should be
≤ a/2 instead of a for the definition of a-wide separator.

Theorem 17. [39] Given a packing C with congruent copies of discs, d(C,R2) ≤ π√
12
.

Corollary 18. Let Q be a set of points on 2-dimensional plane. Every two points have distance ≥ 1. There
is an a-wide separator L such that each half plane has at most 2

3n points in Q, and the number points in Q
with distance ≤ a/2 to L is ≤ 1.2126a

√
n.

Proof: Apply Theorem 15 with D2 = π√
12
.

4. Algorithm for finding separator

In order to make sections 4 and 5 easy to follow, we focus on the 2-dimension case. We show there is an
O(n3)-time algorithm for finding separator in 2-dimensional plane. The technique for finding the separator
can be easily extended to higher dimension after minor adjustments. The algorithm is essentially brute-force,
but it is enough for its application in the next section. We have obtained almost linear time algorithm at
2-dimensional case, which is more involved and will be presented in the coming paper. For a > 0, Ca(p) is
the circle of radius a and center p.

Lemma 19. Let constant a > 0, and small constant ε > 0. Let P and Q be two sets of points on the plane.
Let w be a mapping from P to [0,+∞). Let L′ be a line on the plane. Then there is another line L such that
measure(L,P, a, w) ≤ measure(L′, P, a + ε) and balance(L,Q) = balance(L′, Q). Furthermore L has one of
the following properties: 1)L is through two points in Q or, 2)L is through one point from Q and is tangent
to Ca+ε(p) for some p ∈ P or, 3)L is tangent to both Ca+ε(p1) and Ca+ε(p2) for some p1, p2 ∈ P .

Proof: We move the line L′ along the direction vertical to itself until it touches a point q in Q or is
tangent to a circle Ca+ε(p) for some p ∈ P . Rotate L′ around q or Ca+ε(p) (keep the tangent relationship)
until it touches another point q′ in Q or tangent to Ca+ε(p

′) for some p′ ∈ P . The movement of the line L′

increases neither the number of points of Q in any of two sides of L′, nor the number of points in P with
< a+ ε distance to L′ on any side of L′.

Theorem 20. Let constant a, a1, a2, α > 0 and small constants ε, δ > 0. Let P be a set of (a1, a2)-grid
regular points and Q be another set of points of the plane. The weight function w is from P to {w1, · · · , wk},
and the weights w1 > · · · > wk > 0 have k·maxki=1{wi} = O(nα). There is an O(n3) time algorithm that finds

a separator line L such that balance(L,Q) ≤ 2
3 , and measure(L,P, a, w) ≤

(

k2·a√
a1·a2

+ δ
)

∑k
i=1 wi

√
ni+O(nα)

for all large n.
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Proof: Let δ1, δ2 > 0 be small enough such that k2 · δ1 + δ2δ1 + aδ1 < δ. By Theorem 10, there is a line
L′ with balance(L′, Q) ≤ 2

3 and measure(L′, P, a + δ1, w) ≤ (k2 + δ2) · (a + δ1) · (
∑k

j=1 wj
√
nj) + O(nα) ≤

(k2 · a+ δ) · (∑k
j=1 wj

√
nj) +O(nα). By Lemma 19 and the algorithm below (with ε = δ1), it can be found

in O(n3) time.
Algorithm

Input a, ε > 0, and points sets P,Q on the 2D plane;
B =∞ and L = ∅;
for each q1 ∈ Q and q2 ∈ Q

let L0 be the line through both q1 and q2
if (balance(L0, Q) ≤ 2

3 and (measure(L0, Q, a+ ε, w) < B))
then B = measure(L0, Q, a+ ε, w) and L = L0.

for each p ∈ P and q ∈ Q
let L1, L2 be the lines through q and tangent to Ca+ε(p)
for (i=1 to 2) if (balance(Li, Q) ≤ 2

3 and (measure(Li, P, a+ ε, w) < B))
then B = measure(Li, P, a+ ε, w) and L = Li.

for each p1 ∈ P and p2 ∈ P
let L1, L2, L3, L4 be the lines tangent to both Ca+ε(p1) and Ca+ε(p2)
for (i=1 to 4) if (balance(Li, Q) ≤ 2

3 and (measure(Li, P, a+ ε, w) < B))
then B = measure(Li, P, a+ ε, w) and L = Li.

Output L
End of the Algorithm

5. Application of width bounded separator

In this section we apply our geometric separator to the well-known disk covering problem: Given a set
of points on the plane, find the minimal number of discs with fixed radius to cover all of those points.
Hochbaum and Maass [22] showed it has polynomial time approximation scheme, which was improved to
nO(l)-time with approximation ratio (1 + 1

l ) by Feder, Greene [13] and Gonzalez [19]. The d-dimensional
ball covering problem is to cover n points on the d-dimensional Euclid space with minimal number of d-
dimensional ball of fixed radius. This problem arises in the area of locating emergency facilities such that
all customers are within a reasonable radius around the facility, as well as in the area of wireless computing,
where a wireless network is modeled as a set of discs to cover a set of users.

Theorem 21. There is a 2O(
√
n)-time exact algorithm for the disk covering problem on the 2D plane.

Proof: Assume Q is the set of n input points on the plane. Let’s set up an (1, 1)-grid regular partition. For
an grid point p = (i, j) (i and j are integers) on the plane, define grid(p) = {(x, y)|i− 1

2 ≤ x < i+ 1
2 , j− 1

2 <
y ≤ j + 1

2}, which is a half close and half open 1 × 1 square. There is no intersection between grid(p) and
grid(q) for two different grid points p and q. Assume the diameter of disk is 1. Our “local binding” method
is to merge the points of Q ∩ grid(p) to the grid point p and assign certain weight to p to measure the Q
points density in grid(p). Partition the point set Q into Q(p1), · · · , Q(pm) as follows

Partition(Q)
m = 0
Repeat

select a point q ∈ Q− ∪mi=1Q(pi)
let pm+1 be the grid point with q ∈ grid(pm+1)
let Q(pm+1) be the set Q ∩ (grid(pm+1)).
m = m+ 1

until Q = ∪mi=1Q(pi)
Output P = {p1, · · · , pm} and Q(p1), · · · , Q(pm).

End of Partition
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Let ni be the grid points pj ∈ P with gi−1 ≤ |Q(pj)| < gi, where g is a constant g > 1. From this
definition, we have

dlogg ne
∑

i=1

gi · ni ≤ g · n, (14)

where dxe is the least integer ≥ x. Let P = {p1, · · · , pm} be the set grid points derived from partitioning set Q
in the algorithm above. Define function w : P → {1, 2, · · · ,

⌈

logg n
⌉

} such that w(p) = i if gi−1 ≤ |Q(p)| < gi.

Select small δ > 0 and a = 3
2 +

√
2

2 . By Theorem 20 we can get a line L on the plane such

that balance(L,Q) ≤ 2
3 and measure(L,P, a, w) ≤ (k2 · a + δ)(

∑dlogg ne
i=1 i · √ni). Let J(L) = {p|p ∈

P and dist(q, L) ≤ 1
2 for some q ∈ Q(p)}. After those points of Q with distance ≤ 1

2 to the separator line L
are covered, the rest of points of Q on the different sides of L can be covered independently. Therefore, the
covering problem is solved by divide and conquer method as described by the algorithm below.

Algorithm

Input a set of points Q on the plane.
run Partition(Q) to get P = {p1, · · · , pm} and Q(p1), · · · , Q(pm)
find a separator line L for P,Q with (by Theorem 20)

balance(L,Q) ≤ 2
3 and measure(L,P, a, w) ≤ (k2 · a+ δ)

∑dlog ne
i=1 i

√
ni

for each covering to the points in Q with ≤ 1/2 distance to L
let Q1 ⊆ Q be the those points on the left of L and not covered
let Q2 ⊆ Q be the those points on the right of L and not covered
recursively cover Q1 and Q2

merge the solutions from Q1 and Q2

Output the optimal solution (with the minimal number of discs covering all points)
End of Algorithm

For each grid area grid(pi), the number of discs containing the points in Q(pi) is no more than the

number of discs covering the 3 × 3 area, which needs no more than c3 = (

⌈

3√
2

2

⌉

)2 = 25 discs. Two grid

points p = (i, j) and p′ = (i′, j′) are neighbors if max(|i − i′|, |j − j′|) ≤ 1. For each grid point p, define
m(p) to be the neighbor grid point q of p (q may be equal to p) with largest weight w(q). For a grid point
p = (i, j), the 3 × 3 region {(x, y)|i − 3

2 ≤ x < i + 3
2 and j − 3

2 < y ≤ j + 3
2} has < 9 × gw(m(p)) points in

Q. The number of ways to put one disc covering at least one point in Q(p) is ≤ (9 × gw(m(p)))2 (let each
disc have two points from Q on its boundary whenever it covers at least two points). The number of ways
to arrange ≤ c3 discs to cover points in Q(p) is ≤ (9 × gw(m(p)))2c3 . The total number of cases to cover all
points with distance ≤ 1

2 to L in ∪p∈J(L)Q(p) is

≤
∏

p∈J(L)

(9 · gw(m(p)))2c3 =
∏

p∈J(L)

2(log2 9+w(m(p))·log2 g)2c3 ≤
∏

p∈J(L)

22c3(log2 9+log2 g)w(m(p)) (15)

= 2
2c3(log2 9+log2 g)

∑

p∈J(L)
w(m(p)) ≤ 22c3(log2 9+log2 g)9·measure(L,P,a,w) (16)

≤ 22c3(log2 9+log2 g)9(k2·a+δ)(
∑dlogne

i=1
i·√ni) (17)

This is because that for each grid point q, there are at most 9 grid points p with m(p) = q. Furthermore,

for each p ∈ J(L), p has distance ≤ 1
2 +

√
2

2 = a to L and m(p) has distance ≤ 3
2 +

√
2

2 to L. Let the exponent

of (17) be represented by u = 2c3(log2 9 + log2 g)9(k2 · a+ δ)(
∑dlogne

i=1 i · √ni). By the well known inequality
(
∑m

i=1 ai · bi)2 ≤ (
∑m

i=1 a
2
i ) · (

∑m
i=1 b

2
i ),

(

dlogg ne
∑

i=1

i
√
ni)

2 ≤ (

dlogg ne
∑

i=1

i

gi/2
· gi/2√ni)2 ≤ (

dlogg ne
∑

i=1

i2

gi
) · (
dlogg ne
∑

i=1

gini) (18)

10



Using the standard calculus (see appendix 8.1),
∑∞

i=1
i2

gi = g(g+1)
(g−1)3 . By (18) and (14), u ≤ e(g)

√
n,

where e(g) = 2c3(log2 9 + log2 g)(k2 · a + δ)
√

g(g+1)
(g−1)3 ·

√
g. Let T (n) be the maximal computational time

of the algorithm for covering n points. The problem T (n) is reduced to two problems T ( 2
3n). We have

T (n) ≤ 2 · 2e(g)
√
nT ( 2n

3 ) ≤ 2log3/2 n2e(g)(1+α+α2+···)√n = 2e(g)(
1

1−α )
√
n+log3/2 n = 2O(

√
n), where α =

√

2
3 .

Definition 22. We consider undirected graphs G = (V,E), where V denotes the vertex set and E denotes
the edge set. An independent set I of a graph G = (V,E) is a set of pairwise nonadjacent vertices of a graph.
An vertex cover C of a graph G = (V,E) is a subset of vertices such that each edge in E has at least one
end point in C. A dominating set D is a set of vertices such that the rest of the vertices in G has at least
one neighbor in D. For a set of disks D = {Cr1(p1), Cr2(p2), · · · , Crn(pn)}, the disk graph is GD = (VD, ED),
where vertices set VD = {p1, p2, · · · , pn} and ED = {(pi, pj)|Cri(pi)∩Crj (pj) 6= ∅}. DG is the class of all disk
graphs. DGσ is the class of all disk graphs GD such that D is the set of disks {Cr1(p1), Cr2(p2), · · · , Crn(pn)}
with

maxni=1 ri
minn

i=1
ri
≤ σ.

Disk graphs have been used to model problems in several areas such as broadcast networks [20, 24], image
processing [22] and VLSI design [29]. Several standard graph theoretic problems for GD1 are NP-hard [9, 14,
30, 40]. The approximation schemes were developed for maximum independent set and and minimum vertex
cover problems on GD1 [23] and GDσ [12]. The nO(

√
n)-time exact algorithm for the maximum independent

set problem for DGσ with constant σ was derived by Alber and Fiala [4] via parameterized approach, which
was further simplified by Agarwal, Overmars and Sharir [1] for DG1. We obtain 2O(

√
n)-time algorithms

for maximum independent set, minimum vertex cover, and minimum dominating set problems for DGσ

with constant σ. Their algorithms are similar each other. We only describe the algorithm for maximum
independent set. We believe our method also works for many other problems on disk graph.

Theorem 23. There is a 2O(σ
√
n) time algorithm for the maximum independent set problem for DGσ.

Proof: The algorithm is similar to that for the disk covering problem. We only describe the difference
between them. Assume GD = (Q,E) is a disk graph such that D is a set of discs on the plane with

diameters in the range [1, σ]. Choose a = 1.5σ +
√

2
4 . Let the plane form a (

√
2

2 ,
√

2
2 )-grid regular partition.

For each (
√

2
2 ,

√
2

2 )-grid regular point p = (u, v) (u = i
√

2
2 and v = j

√
2

2 for some integers i and j), define

grid(p) = {(x, y)|u−
√

2
4 ≤ x < u+

√
2

4 , v−
√

2
4 ≤ y < v+

√
2

4 }. By Theorem 20, we can get a separator line L

on the plane such that balance(L,Q) ≤ 2
3 and measure(L,P, a, w) ≤ (

√
2 ·k2 ·a+ δ)(

∑dlogg ne
i=1 i ·√ni). Select

all of the possible independent points in Q with distance ≤ σ/2 to the separator line L. Let J(L) = {p|p ∈
P and dist(q, L) ≤ δ

2 for some q ∈ Q(p)}. For each (
√

2
2 ,

√
2

2 )-grid regular point p, at most one point can be
selected from Q ∩ grid(p) to join the maximum independent set. The number of ways to select independent

points with ≤ σ
2 distance to L is bounded by

∏

p∈J(L) g
w(p) = g

∑

p∈J(L)
w(p) ≤ g(

√
2·k2·a+δ)(

∑dlogg ne
i=1

i·√ni) =

2O(
√
n). This gives that T (n) = 2O(σ

√
n)T ( 2n

3 ) = 2O(σ
√
n).

6. Covering algorithm in higher dimension space

The methods above in sections 4 and 5 can be extended to high dimension with some slight adjustment.

Lemma 24. Let constant a, a1, · · · , ad > 0 and small constant δ > 0. Let P be a set of (a1, · · · , ad)-
grid points and Q be another set of points on d-dimensional space. The weights w1 > · · · > wk > 0 have
k ·maxki=1{wi} = o(nε). There is an O(nd+1) time algorithm that finds a separator such that balance(L,Q) ≤
d−1
d , and measure(L,P, a, w) ≤

(

kd
(a1···ad)1/d

+ δ
)

a
∑k

i=1 win
d−1
d

i +O(n
d−2
d +ε) for all large n.
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Proof: (Sketch). For every integer pair a, b ≥ 0 with a + b = d, select all possible a points p1, · · · , pa
from P and all possible b points q1, · · · , qb from Q. Let the hyper-plane be through q1, · · · , qb and tangent to
Bd(a+ δ, pi) (i = 1, · · · , a).

Theorem 25. There is a 2O(n1−1/d)-time algorithm for the ball covering problem in the d-dimensional space.

Proof: (Sketch). By Theorem 10, the separator L has the properties: balance(L,P ) ≤ d−1
d , and

measure(L,Q, a, w) ≤ (kd · a + δ)
∑

i · n
d−1
d

i . Use the well known Hölder inequality (
∑m

i=1 aibi) ≤
(
∑m

i=1 a
k
i )

1
k (
∑

i=1 b
k′
i )

1
k′ , where k, k′ > 1 and 1

k + 1
k′ = 1. We have

dlogg ne
∑

i=1

i · n
d−1
d

i =

dlogg ne
∑

i=1

((

i

g
d−1
d i

)

· (g d−1
d in

d−1
d )

)

(19)

≤







dlogg ne
∑

i=1

(

i

g
d−1
d i

)d






1
d

·





dlogne
∑

i=1

(

g
d−1
d i · n

d−1
d

i

)
d

d−1





d−1
d

(20)

=







dlogg ne
∑

i=1

(

id

g(d−1)i

)







1
d

·





dlogne
∑

i=1

(

gini
)





d−1
d

= O(n
d−1
d ) (21)

7. Conclusions

We derive some width-bounded geometric separators that can be applied to some geometric problem with
arbitrary input points like disk covering problem. We also proved the width-bounded separator for 1-
separated points. It is believed that there will be more applications for this notion to other geometric
problems. For example, the separator for 1-separated set may be useful tool for the protein folding problem
in more general model other than the grid model [25], but we still do not have a suitable model for it.
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8. Appendix

8.1. Sum of infinite sequences

Let x be a variable with |x| < 1. f(x) =
∑∞

i=1 x
i = x

1−x . f(x)
′ =

∑∞
i=1 ix

i−1 = 1
(1−x)2 . x(f(x)

′) =
∑∞

i=1 ix
i = x

(1−x)2 . (x(f(x)
′))′ =

∑∞
i=1 i

2xi−1 = 1+x
(1−x)3 . x(x(f(x)

′))′ =
∑∞

i=1 i
2xi = x(1+x)

(1−x)3 . This shows that

for g > 1,
∑∞

i=1
i2

gi = x(x(f( 1
g )
′))′ = g(g+1)

(g−1)3 .
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