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Abstract

We survey known results regarding locally testable codes and locally testable proofs (known
as PCPs), with emphasis on the length of these constructs. Locally testability refers to approx-
imately testing large objects based on a very small number of probes, each retrieving a single
bit in the representation of the object. This yields super-fast approximate-testing of the corre-
sponding property (i.e., be a codeword or a valid proof). We also review the related concept of
local decodable codes.

The currently best results regarding locally testable codes and proofs demonstrate a trade-off
between the number of probes and the length of the code or proof (relative to the information
that it encodes). Actually, the length is always “nearly linear”, and the trade-off is between
number of probes and the “level of near-linearity”. Needless to say, it is not clear whether this
trade-off is inherent.

The survey consists of two independent (i.e., self-contained) parts that cover the same mate-
rial at different levels of rigor and detail. Still, in spite of the repetitions, there may be a benefit
in reading both parts.
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Part I
A high-level overview

The title of this survey refers to two types of objects (i.e., codes and proofs) and two adjectives:
local testability and being short. A clarification of these terms is in place.

Codes, proofs and their length. Codes are sets of strings (of equal length), typically, having
a large pairwise distance. Equivalently, codes are viewed as mappings from short (k-bit) strings to
longer (n-bit) strings, called codewords, such that the codewords are distant from one another. We
will focus on codes with relative constant distance; that is, every two n-bit codewords are at distance
Q(n) apart. The length of the code is measured in terms of the length of the pre-image (i.e., we are
interested in the growth of n as a function of k). Turning to proofs, these are defined with respect
to a verification procedure for assertions of a certain length, and their length is measured in terms
of the length of the assertion. The verification procedure must satisfy the natural completeness and
soundness properties: For valid assertions there should be strings, called proofs, that are accepted
(in conjunction with the assertion) by the verification procedures, whereas for false assertions no
such strings may exist. The reader may envision proof systems for the set of satisfiable propositional
formulae (i.e., assertions of satisfiability of given formulae).

Local testability. By local testability we mean that the object can be tested for the natural
property (i.e., being a codeword or a valid proof) using a small (typically constant) number of
probes, each recovering individual bits in a standard representation of the object. Thus, local
testability allows for super-fast testing of the corresponding fundamental objects. The tests are
probabilistic and hence the result is correct only with high probability.! Furthermore, correctness
refers to a relazed notion of deciding (which was formulated, in general terms, in the context of
property testing [44, 32]): It is required that valid objects be accepted with high probability, whereas
objects that are “far” from being valid should be rejected with high probability. Specifically, in
case of codes, codewords should be accepted (with high probability), whereas strings that are “far”
from the code should be rejected (with high probability). In case of proofs, valid proofs (which
exist for correct assertions) should be accepted (with high probability), whereas strings that are
“far” from being valid proofs (and, in particular, all strings in case no valid proofs exist) should be
rejected (with high probability).?

Our notion of locally testable proofs is very related to the notion of a PCP (i.e., probabilistically
checkable proof)3, and we will ignore the difference in the sequel. The difference is that in the
definition of locally testable proofs we required rejection of strings that are far from any valid
proof, also in the case that valid proofs exists (i.e., the assertion is valid). In contrast, the standard
rejection criteria of PCPs refers only to false assertions. Still, all known PCP constructions actually
satisfy the stronger definition.*

Indeed, it is easy to see that deterministic tests will perform very poorly, and the same holds with respect to
probabilistic tests that make no error.

*Indeed, in the case the assertion is false, there exist no valid proofs. In this case all strings are defined to be far
from a valid proof.

3Needless to say, the new term “locally testable proof” was introduced to match the term “locally testable codes”.
In retrospect, “locally testable proofs” seems a more fitting term than “probabilistically checkable proofs”, because it
stresses the positive aspect (of locality) rather than the negative aspect (of being probabilistic). The latter perspective
has been frequently advocated by Leonid Levin.

*In some cases this holds only under a weighted version of the Hamming distance, rather under the standard



The very possibility of local testability. Indeed, local testability of either codes or proofs is
quite challenging, regardless of the issue of length:

e For codes, the simplest example of a locally testable code (of constant relative distance) is
the Hadamard code and testing it reduces to linearity testing. However, the analysis of the
natural linearity tester (of Blum, Luby and Rubinfeld [21]) turned out to be highly complex
(cf. [21, 6, 27, 12, 13, 10]).

e For proofs, the simplest example of a locally testable proof is the “inner verifier” of the PCP
construction of Arora, Lund, Motwani, Sudan and Szegedy [4], which in turn is based on the
Hadamard code.

In both cases, the constructed object has exponential length in terms of the relevant parameter
(i.e., the amount of information being encoded in the code or the length of the assertion being
proved).

Local testability at a polynomial blow-up. Achieving local testability by codes and proofs
that have polynomial length turns out to be even more challenging.

e In the case of codes, a direct interpretation of low-degree tests (cf. [6, 7, 31, 44, 30]), proposed
in [30, 44], yields a locally testable code of quadratic length over a sufficiently large alphabet.
Similar (and actually better) results for binary codes required additional ideas, and have
appeared only later (cf. [34]).

e The case of proofs is far more complex: Achieving locally testable proof of polynomial length
is essentially the contents of the celebrated PCP Theorem of Arora, Lund, Motwani, Safra,
Sudan and Szegedy [5, 4].

We focus on even shorter codes and proofs; specifically, codes and proofs of nearly linear length.
The latter term has been given quite different interpretations, and we start by sorting these out.

Types of nearly linear functions: A few common interpretations of this term are listed below
(going from the most liberal to the most strict one).

T1-nearly linear: A very liberal notion, at the verge of an abuse of the term, refers to a sequence
of functions f. : N — N such that, for every ¢ > 0, it holds that f.(n) < n!*€. That is, each
function is actually of the form n — n® for some constant ¢ > 1, but the sequence as a whole
can be viewed as approaching linearity.

T2-nearly linear: A more reasonable notion of nearly linear functions refers to individual func-
tions f such that f(n) = n't°(). Specifically, for some function e : N — [0,1] that goes
to zero, it holds that f(n) < n't<™). Common sub-types include the case that e(n) =
1/loglogn, the case that e(n) = 1/(logn)¢ for some ¢ € (0,1), and the case that e(n) =
exp((logloglog n)¢)/log n for some ¢ € (0,1). Indeed, the case in which e¢(n) = O(loglogn)/logn
(or so) deserves a special category.

Hamming distance. Alternatively, these constructions can be easily modified to work under the standard Hamming
distance.



T3-nearly linear: The strongest notion interprets near-linearity as linearity up to a poly-logarithmic
(or quasi-poly-logarithmic) factor. In the former case f(n) < poly(logn) - n, which cor-
responds to the aforementioned case of f(n) < n'*™) with e(n) = O(loglogn)/logn,
whereas the latter case corresponds to ¢(n) = poly(loglogn)/logn (i.e., in which case f(n) =
(log n)poly(log logn) | n).

Using the above notation, we summarize the state of the art with respect to local testability of
codes and proofs.

Local testability with nearly linear length: The ultimate goal may be to obtain locally
testable codes and proofs that are T3-nearly linear (i.e., nearly linear in the sense of Type T3).
We conjecture that locally testable codes and proofs of (strictly) linear length cannot be achieved.
Currently, locally testable codes and proofs of nearly linear length are known when nearly linear is
interpreted as Type T2 (i.e., T2-nearly linear).

Theorem 1 (Ben-Sasson, Goldreich, Harsha, Sudan and Vadhan [15)): There ezist locally testable
codes and proofs of length f(n) < n'T<) where e(n) = 1/(logn)*%. Actually, for every constant
c €(0,1), one can achieve length f(n) < n <™ where e(n) = 1/(logn)°.

Open Problem 2 Do there exist locally testable codes and proofs of length f(n) < poly(logn)-n?

In the rest of this part, we motivate the study of short locally testable objects, comment on the
relation between such codes and proofs, and discuss a somewhat related coding problem.

Motivation to the study of short locally testable codes and proofs

Local testability offers an extremely strong notion of efficient testing: The tester makes only a
constant number of bit probes, and determining the probed locations (as well as the final decision)
is typically done in time that is poly-logarithmic in the length of the probed object.

The length of an error-correcting code is widely recognized as one of the two most fundamental
parameters of the code (the second one being its distance). In particular, the length of the code
is of major importance in applications, because it determines the overhead involved in encoding
information.

The same considerations apply also to proofs. However, in the case of proofs, this obvious point
was blurred by the indirect, unexpected and highly influential applications of locally testable proofs
(known as PCPs) to the theory of approximation algorithms. In our view, the significance of locally
testable proofs (i.e., PCPs) extends far beyond their applicability to deriving non-approximability
results. The mere fact that proofs can be transformed into a format that supports super-fast prob-
abilistic verification is remarkable. From this perspective, the question of how much redundancy
is introduced by such a transformation is a fundamental one. Furthermore, locally testable proofs
(i.e., PCPs) have been used not only to derive non-approximability results but also for obtaining
positive results (e.g., CS-proofs [39, 42] and their applications [8, 23]), and the length of the PCP
affects the complexity of those applications.

In any case, the length of PCPs is also relevant to non-approximability results; specifically, it
affects their tightness with respect to the running time. For example, suppose (exact) SAT has
complexity 2% The original PCP Theorem [5, 4] only implies that approximating MaxSAT



requires time 2", for some (small) & > 0. The work of [43] makes « arbitrarily close to 1, whereas

the results of [34, 20] further improve the lower-bound to gn' = 5

On the relation between locally testable codes and proofs

Locally testable codes seem related to locally testable proofs (PCPs). In fact, the use of codes with
related “local testability” features is implicit in known PCP constructions. Furthermore, the known
constructions of locally testable proofs (PCPs) provides a transformation of standard proofs (for
say SAT) to locally testable proofs (i.e., PCP-oracles), such that transformed strings are accepted
with probability one by the PCP verifier. Moreover, starting from different standard proofs, one
obtains locally testable proofs that are far apart, and hence constitute a good code. It is tempting
to think that the PCP verifier yields a codeword tester, but this is not really the case. Note that
our definition of a locally testable proof requires rejection of strings that are far from any valid
proof, but it is not clear that the only valid proofs (w.r.t the constructed PCP verifier) are those
that are obtained by the aforementioned transformation of standard proofs to locally testable ones.®
In fact, the standard PCP constructions accept also valid proofs that are not in the range of the
corresponding transformation.

In spite of the above, locally testable codes and proofs are related, and the feeling is that locally
testable codes are the combinatorial counterparts of locally testable proofs (PCPs), which are
complexity theoretic in nature. From that perspective, one should expect (or hope) that it would
be easier to construct locally testable codes than it is to construct PCPs. This feeling was among
the main motivations of Goldreich and Sudan, and indeed their first result was along this vein:
They showed a relatively simple construction (i.e., simple in comparison to PCP constructions) of
a locally testable code of T1-nearly linear length [34, Sec. 3]. Unfortunately, their stronger result,
providing a locally testable code of T2-nearly linear length is obtained by constructing and using
a T2-nearly linear locally testable proof (i.e., PCP). Subsequent works [20, 15] have followed this
route, and only the recent work of Ben-Sasson and Sudan [19] (which achieves a more relaxed
notion of local testability) reversed the course to the “right one”: First codes are constructed, and
next they are used towards the construction of proofs (rather than the other way around).

Locally Decodable Codes

Locally decodable codes are in some sense complimentary to local testable codes. Here, one is
given a slightly corrupted codeword (i.e., a string close to some unique codeword), and is required
to recover individual bits of the encoded information based on a constant number of probes (per
recovered bit). That is, a code is said to be locally decodable if whenever relatively few location
are corrupted, the decoder is able to recover each information-bit, with high probability, based on
a constant number of probes to the (corrupted) codeword.

The best known locally decodable codes are of sub-exponential length. Specifically, k& infor-
mation bits can be encoded by codewords of length n = exp(ko(loglogq)/ 71089) that are locally
decodable using g bit-probes (cf. [9]). It is conjectured that, for every ¢ there exists an € > 0, such
that locally decodability based on ¢ queries (i.e., probes) requires codewords of length n > exp(k©).
The problem is related to the construction of (information theoretic secure) Private Information
Retrieval schemes, introduced in [24].

5A caveat: it is currently not known whether these improved lower-bounds can be achieved simultaneously with
optimal approximation ratios, but the hope is that this can eventually be done.

5Tet alone that the standard definition of PCP refers only to the case of false assertions, in which case all strings
are far from a valid proof (which does not exist).



A natural relaxation of the definition of locally decodable codes requires that, whenever few
location are corrupted, the decoder should be able to recover most of the individual information-bits
(based on a constant number of queries) and for the rest of the locations, the decoder may output
a fail symbol (but not the wrong value). That is, the decoder must still avoid errors (with high
probability), but on a few bit-locations it is allowed to sometimes say “don’t know”. This relaxed
notion of local decodability can be supported by codes that have T1-nearly linear length (cf. [15]).

An obvious open problem is to separate locally decodable codes from relaxed locally decodable
codes. This may follow by either improving the Q(qu—%) lower bound on the length of g-query
locally decodable codes (of [36]), or by providing relaxed locally decodable codes of T2-nearly linear
length.



Part 11
A more detailed and rigorous account

In this part we provide a general treatment of local testability. In contrast to Part I, here we allow
the tester to use a number of queries that is a (typically small) predetermined function of the length
parameter, rather than insisting on a constant number of queries. The latter special case is indeed
an important one.

1 Introduction

Codes (i.e., error correcting codes) and proofs (i.e., automatically verifiable proofs) are fundamental
to computer science as well as to related disciplines such as mathematics and computer engineering.
Redundancy is inherent to error-correcting codes, whereas testing validity is inherent to proofs. In
this survey we also consider less traditional combinations such as testing validity of codewords and
the use of proofs that contain redundancy. The reader may wonder why we explore these non-
traditional possibilities, and the answer is that they offer various advantages (as will be elaborated
next).

Testing the validity of codewords is natural in settings in which one may want to take an action
in case the codeword is corrupted. For example, when storing data in an error correcting format,
one may want to recover the data and re-encode it whenever one finds that the current encoding is
corrupted. Doing so may allow to maintain the data integrity over eternity, when encoded bits do
get corrupted in the course of time. Of course, one can use the error-correcting decoding procedure
associated with the code in order to check whether the current encoding is corrupted, but the
question is whether one can check (or just approximately check) this property much faster.

Loosely speaking, locally testable codes are error correcting codes that allow for a super-fast
testing of whether or not a give string is a valid codeword. In particular, the tester works in sub-
linear time and reads very few of the bits of the tested object. Needless to say, the answer provided
by such a tester can only be approximately correct, but this would suffice in many applications
(including the one sketched above).

Similarly, locally testable proofs are proofs that allow for a super-fast probabilistic verification.
Again, the tester works in sub-linear time and reads very few of the bits of the tested object. The
tester’s (aka verifier’s) verdict is only correct with high probability, but this may suffice for many
applications. In particular, it suffices in applications where proofs refer to the correctness of a
specific computation of practical interest (rather than referring to Fermat’s Theorem). Lastly, we
comment that such locally testable proofs must be redundant (or else there would be no chance for
verifying them based on inspecting only a small portion of them).

Our focus is on relatively short locally testable codes and proofs, which is not surprising in view
of the fact that we envision such objects being actually used in practice. Of course, we do not mean
to suggest that one may use in practice any of the constructions surveyed here (especially not the
ones that provide the stronger bounds). We rather argue that this direction of research may find
applications in practice. Furthermore, it may even be the case that some of the current concepts
and techniques may lead to such applications.

Organization: In Section 2 we provide a quite comprehensive definitional treatment of locally
testable codes and proofs, while relating these to PCPs, PCPs of proximity, and property testing.
In Section 3, we survey the main results regarding locally testable codes and proofs as well as many



of the underlying ideas. In Section 4 we consider locally decodable codes, which are somewhat
complementary to locally testable codes.

2 Definitions

Local testability is formulated by considering oracle machines. That is, the tester is an oracle
machine, and the object that it tests is viewed as an oracle. For simplicity, we confine ourselves
to non-adaptive probabilistic oracle machines; that is, machines that determine their queries based
on their explicit input (which in case of codes is merely a length parameter) and their internal coin
tosses (but not depending on previous oracle answers). When taking about oracle access to a string
w € {0,1}" we viewed w as a function w : {1,...,n} — {0,1}.

2.1 Codeword testers

We consider codes mapping sequences of k (input) bits into sequences of n > k (output) bits. Such
a generic code is denoted by C : {0,1}* — {0,1}", and the elements of {C(x) : z€{0,1}*} C {0,1}"
are called codewords (of C).

The distance of a code C : {0,1}* — {0,1}" is the minimum (Hamming) distance between its
codewords; that is, ming+,{A(C(z),C(y))}, where A(u,v) denotes the number of bit-locations on
which v and v differ. Throughout this work, we focus on codes of linear distance; that is, codes
C:{0,1}* — {0,1}" of distance Q(n).

The distance of w € {0,1}" from a code C : {0,1}* — {0,1}", denoted Ac(w), is the minimum
distance between w and the codewords; that is, Ac(w) def ming {A(w,C(z))}. For § € [0,1], the
n-bit long strings u and v are said to be é-far (resp., 6-close) if A(u,v) > §-n (resp., A(u,v) < §-n).
Similarly, w is é-far from C (resp., é-close to C) if Ag(w) > 6 - n (resp., Ac(w) < §-n).

Definition 2.1 Let C: {0,1}* — {0,1}" be a code of distance d, and let ¢ € N and 6 € (0,1). A
g-local (codeword) é-tester for C is a probabilistic (non-adaptive) oracle machine M that makes at
most q queries and satisfies the following two conditions:

Accepting codewords (aka completeness): For any x € {0,1}*, given oracle access to w = C(z),
machine M accepts with probability 1. That is, Pr[M @) (1¥)=1] = 1, for any = € {0,1}*.

Rejection of non-codeword (aka soundness): For any w € {0,1}" that is 6-far from C, given oracle
access to w, machine M rejects with probability at least 1/2. That is, Pr[M*(1¥)=1] < 1/2,
for any w € {0,1}" that is 6-far from C.

We call g the query complexity of M, and 6 the proximity parameter.

The above definition is interesting only in case én is smaller than the covering radius of C (i.e., the
smallest 7 such that for every w € {0,1}" it holds that Ac(w) < r). Clearly, r > d/2, and so the
definition is certainly interesting in the case that § < d/2n, and indeed we will focus on this case.
On the other hand, observe that ¢ = ©(1/6) must hold, which means that we focus on the case
that d/n = Q(1/q).

We next consider families of codes C = {Cy : {0,1}* — {0,1}"®)},ck, where n,d : N — N and
K C N, such that Cj has distance d(k). In accordance with the above, we care most of the case
that 6(k) < d(k)/2n(k). Furthermore, seeking constant query complexity, we focus on the case
d = Q(n).



Definition 2.2 For functions n,d : N — N, let C = {Cy, : {0,1}* — {0,1}"®) }rcx such that Cy
is a code of distance d(k). For function ¢ : N — N and 6§ : N — (0,1), we say that M is g-local
(codeword) é-tester for C = {Cy }rek if, for every k € K, machine M is a q(k)-local §(k)-tester for
Cg. Again, q s called the query complexity of M, and 6 the proximity parameter.

Recall that being particularly interested in constant query complexity (and recalling that d(k)/n(k) >
26(k) = Q2(1/q(k))), we focus on the case that d = Q(n) and constant § < d/2n. In this case, we
may consider a stronger definition.

Definition 2.3 Let n,d and C be as in Definition 2.2 and suppose that d = Q(n). We say that C
18 locally testable if for every constant § > 0 there exists a constant g and a probabilistic polynomial-
time oracle machine M such that M is a q-local 6-tester for C.

We will be concerned of the growth rate of n as a function of k, for locally testable codes C = {Cy, :
{0,1}* — {0,1}*®)}, .k of distance d = (n). More generally, for d = Q(n), we will be interested
in the trade-off between n, the proximity parameter ¢, and the query complexity gq.

2.2 Proof testers
We start by recalling the standard definition of PCP.

Definition 2.4 A probabilistically checkable proof (PCP) system for a set S is a probabilistic (non-
adaptive) polynomial-time oracle machine (called verifier), denoted V', satisfying

Completeness: For every x € S there exists an oracle w such that V, on input x and access to
oracle 7., always accepts x; that is, Pr[V™ (z)=1] = 1.

Soundness: For every x € S and every oracle w, machine V, on input x and access to oracle ,
rejects x with probability at least %; that is, Pr[M™(x)=1] < 1/2,

Let Qu(r) denote the set of oracle positions inspected by V on input x and random-tape v €
{0,1}P(=)) The query complexity of V is defined as q(n) e MaX e o 13 refo,1}peiy) {|Qa(T)[ }-
The proof complexity of V' is defined as p(n) def maxX,e(o,1}n{| Ure{o,13poly(m) Qz(r)|}-

Note that in the case that the verifier V uses a logarithmic number of coin tosses, its proof com-
plexity is polynomial. In general, the proof complexity is upper-bounded by 2" - ¢, where 7 (resp.,
q) is the randomness (resp., query) complexity of the proof tester. Thus, the trade-off between the
query complexity and the proof complexity is typically captured by the trade-off between the query
complexity and the randomness complexity. Furthermore, focusing on the randomness complexity
allows for better bounds when composing proofs (cf. §3.2.2).

All known PCP constructions can be easily modified such that the oracle locations accessed
by V are a prefix of the oracle (i.e., Ure{ojl}polyquQz(r) C {1,....p(|z|)}, for every z).” (For
simplicity, the reader may assume that this is the case throughout the rest of this exposition.)
More importantly, all known PCP constructions can be easily modified to satisfy the following
definition, which is closer in spirit to the definition of locally testable codes.

Definition 2.5 For function ¢ : N — N and 6§ : N — (0,1), we say that a PCP system V for a
set S is a g-locally o-testable proof system if it has query complexity q and satisfies the following
condition

"In fact, for every = € {0,1}", it holds that U, cfo1yroty(m) Qa(r) = {1, ..., p(n) }.



Rejecting invalid proofs: For every x € {0,1}* and every oracle = that is 6-far from Il, def {w :
Pr[V¥(z)=1] = 1}, machine V, on input = and access to oracle 7, rejects = with probability
at least %.8

The proof complexity of V is defined as in Definition 2.4.

Note that Definition 2.5 uses the tester V itself in order to define the set (denoted II,,) of valid proofs
(for z € S). That is, V is used both to define the set of valid proofs and to test for the proximity of
a given oracle to this set. A more general definition (presented next), refers to an arbitrary proof
system, and lets II, equal the set of valid proofs (in that system) for x € S. Obviously, it must
hold that IT, # () if an only if z € S. Typically, one also requires the existence of a polynomial-time
procedure that, on input a pair (x,7), determines whether or not m € II,.? For simplicity we
assume that, for some function p : N — N and every z € {0,1}*, it holds that II, C {0,1}7(=],
The resulting definition follows.

Definition 2.6 Suppose that, for some function p : N — N and every z € {0,1}*, it holds that
I, C {0,1}*(=D. For functions ¢ : N — N and 6§ : N — (0,1), we say that a probabilistic (non-
adaptive) polynomial-time oracle machine V is a g-locally 6-tester for the proof system {Hz‘}me{o,l}*
if V' has query complezity q and satisfies the following conditions

Technical condition: On input x, machine V issues queries in {1,...,p(|z|)}.

Accepting valid proofs: For every z € {0,1}* and every oracle © € Il,, machine V', on input x and
access to oracle w, accepts x with probability 1.

Rejecting invalid proofs: For every x € {0,1}* and every oracle 7 that is 6-far from Il;, machine
V', on input x and access to oracle w, rejects x with probability at least %

The proof complexity of V' is defined as p,'° and & is called the proximity parameter. In such a
case, we say that I = {I1;} e 0,1}~ 45 g-locally 6-testable, and that S = {x € {0,1}* : I, # 0} has
g-locally 6-testable proofs of length p.

We say that 11 is locally testable if for every constant 6 > 0 there exists a constant q such that II s
g-locally 6-testable. In such a case, we say that S has locally testable proofs of length p.

2.3 Discussion

We first comment about a few definitional choices made above. Firstly, we chose to present testers
that always accept valid objects (i.e., accept valid codewords (resp., valid proofs) with probability 1).
This is more appealing than allowing two-sided error, but the latter weaker notion is meaningful

8The above definition relies on two natural conventions:

1. All strings in Tl are of the same length, which equals |U, ¢ ¢ 1}poiy(n) Q=(7)|, Where Q= () is as in Definition 2.4.
Furthermore, we consider only 7’s of this length.

2. If I, = 0 then every 7 is considered §-far from II,.

9We comment that in the case that the verifier V' uses a logarithmic number of coin tosses, its proof complexity is
polynomial (and so the “effective length” of the strings in II, must be polynomial in |z|). Furthermore, if in addition
it holds that II, = {w : Pr[V¥(z) =1] = 1}, then (scanning all possible coin tosses of) V yields a polynomial-time
procedure for determining whether a given pair (z, 7) satisfies 7 € II,.

ONote that by the technical condition, the current definition of the proof complexity of V is lower-bounded by the
definition used in Definition 2.4.
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too. A second choice was to fix the error probability (i.e., probability of accepting far from valid
objects), rather than introducing yet another parameter. Needless to say, the error probability can
be reduced by sequential applications of the tester.

In the rest of this section, we consider an array of definitional issues. First, we consider two
natural strengthenings of the definition of local testability (cf. §2.3.1). We next we discuss the
relation of local testability to property testing (cf. §2.3.2), and the relation of locality testable
proofs to PCP of proximity (as defined in [15], cf. §2.3.3). Finally, we discuss the relation between
local testable codes and proofs (cf. §2.3.4), and the motivation to the study of short local testable
codes and proofs (cf. §2.3.5). (The text regarding the last issue is almost identical to a corresponding
text that appears in Part I.) Finally (in §2.3.6), we mention a weaker definition, which seem natural
only in the context of codes.

2.3.1 Stronger definitions

The definitions of testers presented so far, allow for the construction of a different tester for each
relevant value of the proximity parameter. However, whenever such testers are actually constructed,
they tend to be “uniform” over all relevant values of the proximity parameter. Thus, it is natural
to present a single tester for all relevant values of the proximity parameter, provide this tester with
the said parameter, allow it to behave accordingly, and measure its query complexity as a function
of that parameter. For example, we may strengthen Definition 2.3, by requiring the existence of a
function ¢ : (0,1) — N and an oracle machine M such that, for every constant § > 0, all (sufficiently
large) k and all w € {0,1}**), the following conditions hold:

1. On input (1%,6), machine M makes q(6) queries.
2. If w is a codeword of C then Pr[M¥ (1% §) = 1] = 1.
3. If w is é-far from {C(z) : = € {0,1}*} then Pr[M¥ (1%, 6) = 1] < 1/2.

An analogous strengthening applies to Definition 2.6. A special case of interest is when ¢(6) =
O(1/6). In this case, it makes sense to ask whether or not an even stronger “uniformity” condition
may hold. Like in Definitions 2.1 and 2.2 (resp., Definitions 2.5 and 2.6), the tester M is not given
the proximity parameter (and so its query complexity cannot depend on it), but we only require
it to reject with probability proportional to the distance of the oracle from the relevant set. For
example, we may strengthen Definition 2.3, by requiring the existence of an oracle machine M and
a constant g such that, for every constant § > 0, every (sufficiently large) k and w € {0,1}"*) the
following conditions hold:

1. On input 1%, machine M makes g queries.
2. If w is a codeword of C then Pr[M™(1*,§) = 1] = 1.

3. If w is 6-far from {C(z) : x € {0,1}*} then Pr[M¥(1%,6) = 1] < 1 — O(6).

2.3.2 Relation to Property Testing

Locally testable codes (and their corresponding testers) are essentially special cases of property test-
ing, as defined in [44, 32]. Specifically, the property being tested is membership in a predetermined
code. The only difference between the definitions presented in Section 2.1 and the formulation that
is standard in the property testing literature is that in the latter the tester is given the proximity
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parameter as input and determines its behavior (and in particular the number of queries) accord-
ingly. This difference is eliminated in §2.3.1. We note, however, that most of the property testing
literature is concerned with “natural” objects (e.g., graphs, sets of points, functions) presented in
a “natural” form rather than with object designed artificially to withstand errors (i.e., codewords
of error correcting codes).

Our general formulation of proof testing (i.e., Definition 2.6) can be viewed as a generalization
of property testing. That is, we view the set II, as a set of objects having a certain z-dependent
property (rather than as a set of valid proofs for some property of ). In other words, Definition 2.6
allows to consider properties that are parameterized by auxiliary information (i.e., x), whereas
traditional property testing may be viewed as referring to the case that x only determines the
length of strings in II, (e.g., II; = 0 for every & ¢ {1}* or, equivalently, II, = II, for every
2] = [y]).1!

2.3.3 Relation to PCPs of Proximity

Our definition of a locally testable proof is related but different from the definition of a PCP of
proximity (appearing in [15]).12 We start by reviewing the definition of PCP of proximity.

Definition 2.7 A PCP of proximity for a set S with proximity parameter ¢ is a probabilistic (non-
adaptive) polynomial-time oracle machine, denoted V, satisfying

Completeness: For every © € S there exists a string w, such that V always accepts when given
access to the oracle (x,m,); that is, Pr[V®™=(12)=1] = 1.

Soundness: For every x that is 6-far from SN0, 1}|m| and for every string w, machine V rejects with
probability at least % when given access to the oracle (x,); that is, Pr[M®™(11*)=1] < 1/2.

The query complexity of V is defined as in case of PCP, but here also queries to the x-part are
counted.

The oracle (z,7) is actually a concatenation of two oracles: the input-oracle z (which replaces an
explicitly given input in the definitions of PCPs and locally testable proofs), and a proof-oracle m
(exactly as in the prior definitions). Note that Definition 2.7 refers to the distance of the input-
oracle to S, whereas locally testable proofs refer to the distance of the proof-oracle from the set 11,
of valid proofs of membership of x € S.

Still, PCPs of proximity can be defined within the framework of locally testable codes. Specifi-
cally, consider an extension of Definition 2.6, where (relative) distances are measured according to a
weighted Hamming distance; that is, for a weight function w : {1,...,n} — [0,1] and w,v € {0,1}",
we let 6, (u,v) = Y w(i) - A(us,v;). (Indeed, the standard notion of relative distance between
u,v € {0,1}" is obtained by 8, (u, v) when using the uniform weighting function (i.e., w(i) = 1/n for
every i € {1,...,m}).) Now, Definition 2.7 can be viewed as a special case of (the extended) Defini-
tion 2.6 when applied to the (rather artificial) set of proofs IIj» = {(z,7) : z € SN{0,1}" A7 € 1T},
where I, = {r : Pr[V®7(1l*l) = 1] = 1}, by using the weighted Hamming distance é, for w
that is uniform on the input-part of the oracle; that is, for (z,7),(z',7') € {0,1}"P, we use

11p fact, in the context of property testing, the length of the oracle must always be given to the tester (although
some sources neglect to state this fact).

2We mention that PCP of proximity are almost identical to Assignment Testers, defined independently by Dinur
and Reingold [25]. Both notions are (important) special cases of the general definition of a “PCP spot-checker”
formulated before in [26].
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Ow((z, ), (2, 7)) def A(z,z")/n, which corresponds to w(i) = 1/n if i € {1,...,n} and w(i) = 0
otherwise. Alternatively, weights can be approximately replaced by repetitions (provided that the
tester checks the consistency of the repetitions).!3

We mention that PCPs of proximity (of constant query complexity) yield a simple way of
obtaining locally testable codes. More generally, we can combine any code Cy with any PCP of
proximity V', and obtain a g-locally testable code with distance essentially determined by Cy and
rate determined by V, where ¢ is the query complexity of V. Specifically, x will be encoded by
appending ¢ = Cy(z) by a proof that ¢ is a codeword of Cg, and distances will be determined by
the weighted Hamming distance that assigns uniform weights to the first part of the new code. As
in the previous paragraph, these weights can be implemented by making suitable repetitions.

Finally, we comment that the definition of a PCP of proximity can be extended by providing
the verifier with part of the input in an explicit form. That is, referring to Definition 2.7, we let
x = («/,2"), and provide V with explicit input (z',1*)) and input-oracle z” (rather than with
explicit input 1%l and input-oracle z). Clearly, the extended formulation implies PCP as a special
case (i.e., "7 = ). More interestingly, an extended PCP of proximity for a set of pairs R (e.g., the

witness relation of an NP-set), yields a PCP for the set S e {z' : 32" s.t. (¢, 2") € R}.

2.3.4 Relating locally testable codes and proofs

Locally testable codes can be thought of as the combinatorial counterparts of the complexity theo-
retic notion of locally testable proofs (PCPs). This perspective raises the question of whether one
of these notions implies (or is useful towards the understanding of) the other.

Do PCPs imply locally testable codes? The use of codes with features related to local
testability is implicit in known PCP constructions. Furthermore, the known constructions of locally
testable proofs (PCPs) provides a transformation of standard proofs (for say SAT) to locally testable
proofs (i.e., PCP-oracles), such that transformed strings are accepted with probability one by the

PCP verifier. Specifically, denoting by S, the set of standard proofs referring to an assertion =z,

there exists a polynomial-time mapping f, of S, to R, def {fz(y) : y € S} such that for every

m € Ry it holds that Pr[V™(z) = 1] = 1, where V is the PCP verifier. Moreover, starting from
different standard proofs, one obtains locally testable proofs that are far apart, and hence constitute
a good code (i.e., for every z and every y # y' € Sy, it holds that A(f.(y), f=(¥")) > Q| f=(y)]))-
It is tempting to think that the PCP verifier yields a codeword tester, but this is not really the
case. Note that Definition 2.5 requires rejection of strings that are far from any valid proof (i.e.,
any string far from II,), but it is not clear that the only valid proofs (w.r.t V) are those in R,
(i.e., the proofs obtained by the transformation f, of standard proofs (in S;) to locally testable
ones).'* In fact, the standard PCP constructions accept also valid proofs that are not in the range
of the corresponding transformation (i.e., f;); that is, IT, as in Definition 2.5 is a strict subset of R,

3That is, given a verifier V as in Definition 2.7, and denoting by n and p = p(n) the sizes of the two parts of
its oracle, we consider proofs of length ¢ - n + p, where t = p/o(n) (e.g., t = (p/n) - logn). We consider a verifier
V' with syntax as in Definition 2.6 that, on input 1" and oracle access to w = (u1, ..., ut,v) € {0,1}*" 1P where
u; € {0,1}" and v € {0, 1}?, selects uniformly i € {1, ..., ¢} and invokes V*¢**(1™). In addition, V' performs a number
of repetition tests that is inversely proportional to the proximity parameter, where in each test V' selects uniformly
i,4 € {1,...,t} and j € {1,...,n} and checks that u; and u; agree on their j-th bit. Thus, V' essentially emulates
the PCP of proximity V, and the fact that V satisfies Definition 2.7 can be captured by saying that V' satisfies
Definition 2.6.

MTet alone that Definition 2.4 refers only to the case of false assertions, in which case all strings are far from a
valid proof (which does not exist).
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(rather than IT, = R,). We comment that most known PCP constructions can be (non-trivially)!®
modified to yield IT, = R,, and thus to yield a locally testable code (but this is not necessarily the

best way to design locally testable codes, see one alternative in §2.3.3).

Do locally testable codes PCPs? Saying that locally testable codes are the combinatorial
counterparts of locally testable proofs (PCPs), raises the expectation (or hope) that it would be
easier to construct locally testable codes than it is to construct PCPs. The reason being that
combinatorial objects (e.g., codes) should be easier to understand than complexity theoretic ones
(e.g., PCPs). Indeed, this feeling was among the main motivations of Goldreich and Sudan, and
their first result (cf. [34, Sec. 3]) was along this vein: They showed a relatively simple construction
(i.e., simple in comparison to PCP constructions) of a locally testable code of T1-nearly linear
length. Unfortunately, their stronger result, providing a locally testable code of T2-nearly linear
length is obtained by constructing (cf. [34, Sec. 4]) and using (cf. [34, Sec. 5]) a T2-nearly linear
locally testable proof (i.e., a PCP). Subsequent works [20, 15] have followed this route, and only the
recent work of Ben-Sasson and Sudan [19] (which achieves a more relaxed notion of local testability)
reversed the course to the “right one”: First codes are constructed, and next they (or actually their
analysis) are used towards the construction of proofs (rather than the other way around).

2.3.5 Motivation to the study of short locally testable codes and proofs

Local testability offers an extremely strong notion of efficient testing: The tester makes only a
constant number of bit probes, and determining the probed locations (as well as the final decision)
is typically done in time that is poly-logarithmic in the length of the probed object.

The length of an error-correcting code is widely recognized as one of the two most fundamental
parameters of the code (the second one being its distance). In particular, the length of the code
is of major importance in applications, because it determines the overhead involved in encoding
information.

As argued in the Introduction, the same considerations apply also to proofs. However, in the
case of proofs, this obvious point was blurred by the indirect, unexpected and highly influential ap-
plications of PCPs to the theory of approximation algorithms. In our view, the significance of locally
testable proofs (or PCPs) extends far beyond their applicability to deriving non-approximability
results. The mere fact that proofs can be transformed into a format that supports super-fast prob-
abilistic verification is remarkable. From this perspective, the question of how much redundancy
is introduced by such a transformation is a fundamental one. Furthermore, locally testable proofs
(i.e., PCPs) have been used not only to derive non-approximability results but also for obtaining
positive results (e.g., CS-proofs [39, 42] and their applications [8, 23]), and the length of the PCP
affects the complexity of those applications.

In any case, the length of PCPs is also relevant to non-approximability results; specifically, it
affects their tightness with respect to the running time. For example, suppose (exact) SAT has
complexity 2%("). The original PCP Theorem [5, 4] only implies that approximating MaxSAT
requires time 2", for some (small) o > 0. The work of [43] makes « arbitrarily close to 1, whereas
the results of [34, 20] further improve the lower-bound to 97" We mention that it is currently
not known whether these improved lower-bounds can be achieved simultaneously with optimal
approximation ratios, but the hope is that this can eventually be done.

5The interested reader is referred to [34, Sec. 5.2] for a discussion of typical problems that arise.
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2.3.6 A weaker definition

One of the concrete motivations for local testable codes refers to settings in which one may want
to re-encode the information when discovering that the codeword is corrupted. In such a case,
assuming that re-encoding is based solely on the corrupted codeword, one may assume (or rather
needs to assume) that the corrupted codeword is not too far from the code. Thus, the following
version of Definition 2.1 may make sense.

Definition 2.8 Let C: {0,1}* — {0,1}" be a code of distance d, and let ¢ € N and 61,65 € (0,1).
A weak g-local (codeword) (81, 62)-tester for C is a probabilistic (non-adaptive) oracle machine M
that makes at most q queries, accepts any codeword, and rejects non-codewords that are both 61-far
and d9-close to C. That is, the rejection condition of Definition 2.1 is modified as follows.

Rejection of non-codeword (weak version): For any w € {0,1}" such that Ac(w) € [61m,b2n],
given oracle access to w, machine M rejects with probability at least 1/2.

Needless to say, there is something highly non-intuitive in this definition: It requires rejection of
non-codewords that are somewhat far from the code, but not the rejection of codewords that are very
far from the code. Still, such weak codeword testers may suffice in some applications. Interestingly,
such weak codeword testers do exists and even achieve linear length (cf. [45, Chap. 5]). We note
that the non-monotonicity of the rejection probability of testers has been observed before, the most
famous example being linearity testing (cf. [21] and [10]).

2.4 A confused history

There is a great deal of confusion regarding credits for some of the definitions presented in this
section.'® We refer mainly to the definition of locally testable codes. This definition (or at least
a related notion)'” is arguably implicit in [7] as well as in subsequent works on PCP (see §2.3.4).
Furthermore, the definition of locally testable codes has appeared independently in the works of

Friedl and Sudan [30] and Rubinfeld and Sudan [44] as well as in the PhD Thesis of Arora [3].

3 Results and Ideas

We review the know constructions of locally testable codes and proofs, starting from codes and
proofs of exponential length and concluding with codes and proofs of nearly linear length.
3.1 The mere existence of locally testable codes and proofs

The mere existence of locally testable codes and proofs, regardless of their length, is non-obvious.
Thus, we start by recalling the simplest constructions known.

16Some confusion exists also with respect to some of the results and constructions described in Section 3, but in
comparison to what is going to be discussed here the latter confusion is minor.

"The related notion refers to the following relaxed notion of codeword testing: For two fixed good codes Ci C
Ca C {0,1}", one has to accept (with high probability) every codeword of Ci, but reject (with high probability)
every string that is far from being a codeword of C;. Indeed, our definitions refer to the special (natural) case that
Cy = C1, but the more general case suffices for the construction of PCPs (and is implicitly achieved in most of them).
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3.1.1 The Hadamard Code is locally testable

The simplest example of a locally testable code (of constant relative distance) is the Hadamard
code. This code, denoted Cy,q, maps x € {0,1}k to a string, of length n = 2F, that provides
the evaluation of all GF(2)-linear functions at x; that is, the coordinates of the codeword are
associated with linear functions £(z) = S-F_ | £iz; and so Cy.a(z), = £(z) = Y%, fiz;. Testing
whether a string w € {0, 1}2’c is a codeword reduces to linearity testing. This is the case because
w is a codeword of Cy,q if and only if, when viewed as a function w : {0,1}* — {0,1}, it is
linear (i.e., w(z) = Y& ciz for some ¢;’s or equivalently w(y + z) = w(y) + w(z) for all y, 2).
Specifically, local testability is achieved by uniformly selecting y, z € {0,1}* and checking whether
w(y+z) = w(y) + w(z). The analysis of this natural tester, due to Blum, Luby and Rubinfeld [21],
turned out to be highly complex (cf. [21, 6, 27, 12, 13, 10]). In particular, it is known that if w
is 6-far from linear then the aforementioned (3-query) test rejects with probability at least I'(6),
where the function T': [0,0.5] — [0, 1] is defined as follows:

3r —622 0<x<5/16
T(z) &' 45/128  5/16 < x < 45/128
x 45/128 < z < 1/2.
The above lower bound is composed of three different bounds with “phase transitions” at z = 15—6
and z = %. It was shown in [10] that this combined lower bound is close to the best one possible.
We believe is that this strange behavior of the rejection probability is a strong indication of the
non-triviality of the nature of this “innocent looking” test.

Other codes. We mention that Reed-Muller Codes of constant order are also locally testable [1].
These codes have sub-exponential length, but are quite popular in practice. The Long Code is also
locally testable [11], but this code has double-exponential length (and was introduced merely for
the design of PCPs). Finally, we mention that random linear codes (of linear length) require any
codeword tester to read a linear number of bits of the codeword [17], thus providing an additional
indication to the non-triviality of local testability.

3.1.2 The Hadamard-Based PCP of [4]

The simplest example of a locally testable proof (for a set not known to be in BPP) is the “inner
verifier” of the PCP construction of Arora, Lund, Motwani, Sudan and Szegedy [4], which in turn is
based on the Hadamard code. Specifically, proofs of the satisfiability of a given system of quadratic
equations over GF(2) are presented by providing a Hadamard encoding of the outer-product of
a satisfying assignment (i.e., a satisfying assignment o € {0,1}" is presented by Cy.4(3), where
B = (Bij)ijem) and B;; = a;;). Given an alleged proof w € {0, 1}2n2, the proof-tester proceeds as
follows:

1. Tests that 7 is indeed a codeword of the Hadamard Code. If the test passes then w is close
to some Cy,a(/3), for an arbitrary 8 = (8i;); je[n-

2. Tests that the aforementioned [ is indeed an outer-product of some a € {0,1}". Note
that the Hadamard encoding of « is supposed to be part of the Hadamard encoding of
B (because Y7 cia; = i, cia? is supposed to equal I, c;Bi;). So we would like
to test that the latter codeword matches the former one. Specifically, we wish to test
whether (8; ;)i jein equals (@ic); e (i-e., the equality of two matrices). This can be
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done by uniformly selecting (r1,...,7s), (81,-.-,8n) € {0,1}", and comparing =, ; ;5,0 ; and
Ei,j ;8050 = (> Tiai)(zj Sjaj)-

The above would have been fine if w = Cy,q(5), but we only know that w is close to Cy.q(5)-
The Hadamard encoding of « is a tiny part of the latter, and so we should not try to retrieve
the latter directly (because this tiny part may be totally corrupted). Instead, we use the
paradigm of self-correction (cf. [21]): In general, for any fixed ¢ = (c;;); je[n], Whenever we
wish to retrieve 37 ¢; ;8i j, we uniformly select r = (r; j); je|n) and retrieve both w(r) and
w(r + ¢). Thus, we obtain a self-corrected value of w(c); that is, if w is é-close t0 Cy.qa(f)
then w(r 4+ ¢) —w(r) = Y14 ¢,;0;; with probability at least 1 — 26.

Using self-correction, we indirectly obtain bits in Cy.a(a), for & = (ai)iem) = (Bii)ign)- Sim-
ilarly, we can obtain any other desired bit in Cy,q(3), which in turn allows us to test whether
(Bij)ijemn) = (iaj); jem)- In fact, we are checking whether (8; ;) jein) = (8iiB;,5)ije[n]> bY
comparing >, ;783 j and (32, 7i8:,i) (22, 88;,5), for randomly selected (71, ...,7n), (81,-., 8n) €
{0,1}™.

3. Finally, we need to check whether the aforementioned « satisfies the given system of equations.
Towards this end, we uniformly selects a linear combination of the equations, and check
whether « satisfies the resulting (single) equation. Note that the value of the corresponding
linear expression (in quadratic (and linear) forms) appears as a bit of the Hadamard encoding
of 3, but again we retrieve it from w by using self correction.

One key observation underlying the analysis of Steps 2 and 3 is that for (u,...,un) # (v1, ..., Up) €
{0,1}", if we uniformly select (71, ....,7n) € {0,1}" then Pr[}; ru; = Y, riv;] = 1/2. Similarly,
for n-by-n matrices A # B, when r,s € {0,1}" are uniformly selected (vectors), it holds that
Pr[As = Bs| = 9-Tank(4-B) and it follows that Pr[rAs = rBs] < 3/4.

3.2 Locally testable codes and proofs of polynomial length

The constructions presented in Section 3.1 have exponential length in terms of the relevant param-
eter (i.e., the amount of information being encoded in the code or the length of the assertion being
proved). Achieving local testability by codes and proofs that have polynomial length turns out to
be even more challenging.

3.2.1 Locally testable codes of quadratic length

A direct interpretation of low-degree tests (cf. [6, 7, 31, 44, 30]), proposed by Friedl and Sudan [30]
and Rubinfeld and Sudan [44], yields a locally testable code of quadratic length over a sufficiently
large alphabet. Similar (and actually better) results for binary codes required additional ideas,
and have appeared only later (cf. [34]). We sketch both constructions below, starting with locally
testable codes over very large alphabets (which are defined analogously to the binary case).

We will consider a code C : ¥ — X" of linear distance, with |S| > k and n > k2. For
parameters m < d < logk (such that k& < d™), consider a finite field F' of size O(d) and an
alphabet ¥ = F4l. Viewing the information as a m-variant polynomial p of total degree d over
F, we encode it by providing its value on all possible lines over F™, where each such line is defined
by two points in F™. Actually, the value of p on such a line can be represented by a univariate
polynomial of degree d. Thus, the code maps log, |F|(m; ) > (d/m)™ log |F| bits of information

(which may be viewed as k e (d/m)™/(d + 1) ~ d™'/m™ long sequences over ¥ = F4*1) to
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sequences of length n e |F|>™ = O(d)?™ over X.. Note that the smaller m, the better the rate (i.e.,
relation of n to k) is, but this comes at the expense of using a larger alphabet. In particular, we
consider two instantiations:

1. Using d = m™, we get k = m™ 2 and n = m2m2+"(m), which yields n ~ exp(y/logk) - k?
and log || = log |F|*! = dlog d =~ exp(y/logk).

2. Letting d = m¢ for any constant ¢ > 1, we get k =~ m(e=Dm and n = m2emte(m)  which yields
n = k2¢/(<=1D and log |Z| ~ dlog d ~ (log k)°.

As for the codeword tester, it uniformly selects two intersecting lines and checks that the corre-
sponding univariate polynomials agree on the point of intersection. Thus, this tester makes two
queries (to an oracle over the alphabet X). The analysis of this tester reduces to the analysis of
the corresponding low degree test, undertaken in [4, 43].

The above tester uses only two queries, but the entire description (which refers to codes over a
large alphabet) deviates from the bulk of our treatment, which has focused on a binary alphabet.
We comment that 2-query locally testable binary codes are essentially impossible (cf., [14]), but
we have already seem that 3-query tests are possible. A natural way of reducing the alphabet size
of codes is via the well-known paradigm of concatenated codes [28].18 However, local testability
can be maintained only in special cases. In particular, observe that, for each of the two queries
made by the tester of C, the tester does not need the entire polynomial represented in ¥ = F¢t1,
but rather only its value at a specific point. Thus, encoding ¥ by an error correcting code that
supports recovery of the said value while using a constant number of probes will do.'? In particular,
Goldreich and Sudan used an encoding of F?*t! = F"* by sequences of length |F|*" over F, and
provided a testing and recovery procedure that makes O(e) queries [34, Sec. 3.3]. We mention that
the case of e =1 and |F| = 2 corresponds to the Hadamard code, and that bigger constant e allow
for shorter codes. The resulting concatenated code, C', is a locally testable code over F, and has
length n- O(d)*" = n- exp((elog d) - d*/¢). Using constant e = 2¢ and setting d = m® ~ (log k)¢, we
get n = k2¢/(c=1) . exp(O(log k)/?) and |F| = poly(log k). Finally, a binary locally testable code
is obtained by concatenating C’ with the Hadamard code, while noting that the latter supports
a “local recovery” property that suffices to emulate the tester for C’. In particular, the tester of
C’ merely checks a linear (over F') equation referring to a constant number of F-elements, and
for F = GF(2%), this can be emulated by checking related random linear combinations of the bits
representing these elements, which in turn can be local recovered (or rather self-corrected) from the
Hadamard code. The final result is a locally testable (binary) code of nearly quadratic length.2°

3.2.2 Locally testable proofs of polynomial length: The PCP Theorem

The case of proofs is far more complex: Achieving locally testable proof of polynomial length is
essentially the contents of the celebrated PCP Theorem of Arora, Lund, Motwani, Safra, Sudan

'8 A concatenated code is obtained by encoding the symbols of an “outer code” (using the coding method of the
“inner code”). Specifically, let Cy : Z’fl — XT* be the outer code and Cj : E’;Q — X232 be the inner code, where
%1 = ¥%2. Then, the concatenated code C : ¥51%2 — %71"2 g obtained by C(z1, ..., 2zx,) = (C2(y1), ..., C2(yn, ),
where z; € 52 = % and (y1,..., Yn; ) = C1 (21, ..., %, ). Using a good inner code for relatively short sequences, allows
to transform good codes for a large alphabet into good codes for a smaller alphabet.

9Tndeed, this property is related to locally decodable codes, to be discussed in Section 4. Here we need to recover
one out of |F| specific linear combinations of the encoded (d + 1)-long sequence of F-symbols. In contrast, locally
decodable refers to recovering one out of the original F-symbols of the (d + 1)-long sequence.

20 Actually, the aforementioned result is only implicit in [34], because Goldreich and Sudan apply these ideas directly
to a truncated version of the low-degree based code.
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and Szegedy [5, 4]. The construction is analogous to (but far more complex than) the one presented
in the case of codes:?! First one constructs proofs over a large alphabet, and next one composes
such proofs with corresponding “inner” proofs (over a smaller alphabet, and finally a binary one).

The first step is to introduce the following NP-complete problem. The input to the problem
consists of a finite field F, a subset H C F of size ||F|'/'®], an integer m < |H]|, and a (3m + 4)-
variant polynomial P : F3™t4 — F of total degree 3m|H| + O(1). The problem is to determine
whether there exists an m-variant (“assignment”) polynomial A : F™ — F of total degree m|H |
such that P(z,z,y, T, A(z), A(y), A(2)) = 0 for every z,y,2 € H™ and 7 € {0,1}3 C H. Note that
the problem-instance can be explicitly described by a sequence of |F|>™*4log, |F| bits, whereas the
solution sought can be explicitly described by a sequence of |F|™ log, |F| bits. We comment that
the NP-completeness of the aforementioned problem can be proved by a reduction from 3SAT, by
identifying the variables of the formula with H™ and essentially letting P be a low-degree extension
of a function f : H3™ x {0,1}3 — {0,1} that encodes the structure of the formula (by considering
all possible 3-clauses). In fact, the resulting P has degree |H| in each of the first 3m variables and
constant degree in each of the other variables, and this fact can be used to improve the parameters
below (but not in a fundamental way).

The proof that P satisfies the aforementioned condition consists of an m-variant polynomial
A : F™ — F (which is supposed to be of total degree m|H|) as well as 3m + 4 auxiliary poly-
nomials A4; : F3*1 — F for i = 1,...,3m + 1 (each supposedly of degree (3m|H| + O(1)) -
m|H|). The polynomial A is supposed to satisfy the conditions of the problem, and in particular
P(z,z,y,7,A(), A(y), A(2)) = 0 should hold for every z,y,2 € H™ and 7 € {0,1}* C H. Fur-
thermore, Ay(z,z,z,T) def P(z,z,y,7,A(z), A(y), A(z)) should vanish on H®>™*!, The auxiliary
polynomials are given to assist the verification of the latter condition. In particular, it should be
the case that A; vanishes on F'H?™*1=% 3 condition that is easy to test for Az, 1 (assuming that
A3zmy1 is a low degree polynomial). Checking that A; | agrees with A; on F*"'H dm+1-(i-1) " for
1=1,...,3m + 1, and that all A;’s are low degree polynomials, establishes the claim for Ay. Thus,
testing an alleged proof (A, Ay, ..., A3m+1) is performed as follows:

1. Testing that A is a polynomial of total degree m|H|. This is done by selecting a random
line through F™, and testing whether A restricted to this line agrees with a degree m|H|
univariate polynomial.

2. Testing that, for s = 1,...,3m + 1, the polynomial A; is of total degree d def (3m|H|+ 0(1)) -
m|H|. Here we select a random line through F3™*1 and test whether A; restricted to this
line agrees with a degree d univariate polynomial.

3. Testing that, for i = 1,...,3m + 1, the polynomial A; agrees with A;_; on Fi~1H3m+1-(i-1)
This is done by uniformly selecting 7’ = (r1,...,7_1) € F~! and 7" = (Ti41,.,T3my1) €
F3m+1=t "and comparing A;_1(r/,e,7"") to A;(r',e,r"), for every e € H. In addition, we check
that both functions when restricted to the axis-parallel line (/,-,r") agree with a univariate
polynomial of degree d.2> We stress that the values of Ay are computed according to the given
polynomial P by accessing A at the adequate locations (i.e., by definition Ag(z,z,2,7) =
P(z,2,y,7, A(z), A(y), A(2)))-

4. Testing that Az, 1 vanishes on F3™*!. This is done by uniformly selecting r € F3™+! and
testing whether F'(r) = 0.

210ur presentation reverses the historical order in which the corresponding results (for codes and proofs) were
achieved. That is, the constructions of locally testable proof of polynomial length predated the coding counterparts.
22Thus, effectively, we are self-correcting the values at H (on the said line), based on the values at F (on that line).
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The above description (which follows [46, Apdx. C]) is somewhat different than the original presen-
tation in [4], which in turn follows [6, 7, 27].2% The above tester may be viewed as making O(m|F|)
queries to an oracle over the alphabet F, or alternatively as making O(m|F|log |F|) binary queries.?*
Note that we have already obtained a highly non-trivial tester. It makes O(m|F|log|F|) queries in
order to verify a claim regarding an input of length n def |F|>™+4log, | F|. Using m = logn/loglogn,
|H| =logn and |F| = poly(log n), we have obtained a tester of poly-logarithmic query complexity.

To further reduce the query complexity, one invokes the “proof composition” paradigm, intro-
duced by Arora and Safra [5]. Specifically, one composes an “outer” tester (as described above)
with an “inner” tester that checks the residual condition that the “outer” tester determines for the
answers it obtains. This composition is more problematic than one suspects, because we wish the
“inner” tester to perform its task without reading its entire input (i.e., the answers to the “outer”
tester). This seems quite paradoxical, as how can the “inner” tester operate without reading its
entire input. The problem can be resolved by using a “proximity tester” (i.e., a PCP of proximity)
as an “inner” tester, provided that it suffices to have such a proximity test (for the answers to the
“outer” tester).

e One approach, introduced in [4], is to convert the “outer” tester into one that makes a constant
number of queries over some larger alphabet, and furthermore have the answer be presented
in an error correcting format. The implementation of this approach consists of two steps
and is based on some specifics. The first step is to convert the “outer” tester into one that
makes a constant number of queries over some larger alphabet. This step uses the so-called
parallelization technique (cf. [40, 4]). Next, one applies an error correcting code to these O(1)
longer answers, and assumes that the “proximity tester” can handle inputs presented in this
format (i.e., that it can test an input that is presented by an encoding of a constant number
of its parts).??

e An alternative approach, pursued and advocated in [15], is to take advantage of the specific
structure of the queries, “bundle” the answers together and furthermore show that the “bun-
dled” answers are “robust” in a sense that fits proximity testing. In particular, the (generic)
parallelization step is avoided, and is replaced by a closer analysis of the specific (outer)
tester.

We will demonstrate the latter approach next.

First, we show how the queries of the aforementioned tester can be “bundled” (into a constant
number of bundles). In particular, we consider the following “bundling” that accommodates all
types of tests (and in particular the m+1 different sub-tests performed in Steps 2 and 3). Consider

B(1,..ce, T3m+1) = (A1(T1, 22, oo oes T3m41), A2(T2, cooss T3m41, 1), ooy A3m41 (X3mt1, T1y ooy T3m))

and perform all 3m + 1 tests of Step (3) by selecting uniformly (79, ..., 73,n11) € F*™ and querying
B at (e,r9,...;73m+1) and (r3mi1,€,...,73m,) for all e € F. Thus, all 3m + 1 tests of Step (3)
can be performed by retrieving the values of B on a single azis parallel random line through

23The point is that the sum-check, which originates in [41], is replaced by an analogous process (which happens to
be non-adaptive).

24 Another alternative perspective is obtained by applying so-called parallelization (cf. [40, 4]). The result is a test
making a constant number of queries that are each answered by strings of length poly(|F|).

25The aforementioned assumption holds trivially in case one uses a generic “proximity tester” (i.e., a PCP of
proximity or an Assignment Tester) as done in [25]. But the aforementioned approach can be (and was in fact
originally) applied with a specific “proximity tester” that can only handle inputs presented in one specific format

(cf. [4)).
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F3m+1 Furthermore, note that all 3m + 1 tests of Step (2) can be performed by retrieving the
values of B on a single (arbitrary) random line through F3™*!1. Finally, observe that the tests
are “robust” in the sense that if, for some 4, the function A; is (say) 0.01-far from satisfying the
condition (i.e., being low-degree or agreeing with A; 1) then with constant probability many of
the values of A; on an adequate random line will not fit to what is needed. This robustness
property is inherited by B, as well as by B’ (resp., A’) that is obtained by applying a good binary
error-correcting code on B (resp., on A). Thus, we may replace A and the A;’s by A’ and B/,
and conduct all all tests by making O(m?|F|log|F|) queries to A’ : F™ x [O(log |F|)] — {0,1}
and B’ : F3™t1 x [O(log |F|>™t1)] — {0,1}. The robustness property asserts that if the original
polynomial P had no solution (i.e., an A as above) then the answers obtained by the tester will be
far from satisfying the residual decision predicate of the tester.

Once the robustness property of the resulting (“outer”) tester fits the proximity testing feature
of the “inner tester”, composition is possible. Indeed, we compose the “outer” tester with an
“inner tester” that checks whether the residual decision predicate of the “outer tester” is satisfies.
The benefit of this composition is that the query complexity is reduced from poly-logarithmic to
polynomial in a double-logarithm. At this point we can afford the Hadamard-Based proof tester
(because the overhead in the proof complexity will only be exponential in a polynomial in a double-
logarithmic function), and obtain a locally testable proof of polynomial length.

3.3 Locally testable codes and proofs of nearly linear length

We now move on to even shorter codes and proofs; specifically, codes and proofs of nearly linear
length. The latter term has been given quite different interpretations, and we start by sorting these
out.

3.3.1 Types of nearly linear functions

A few common interpretations of this term are listed below (going from the most liberal to the
most strict one).

T1-nearly linear: A very liberal notion, at the verge of an abuse of the term, refers to a sequence
of functions fe : N — N such that, for every ¢ > 0, it holds that f.(n) < n'*€. That is, each
function is actually of the form n — n¢, for some constant ¢ > 1, but the sequence as a whole
can be viewed as approaching linearity.

The PCP of Polishchuk and Spielman [43] and the simpler locally testable code of Goldreich
and Sudan [34, Thm. 2.4] have nearly linear length in this sense.

T2-nearly linear: A more reasonable notion of nearly linear functions refers to individual func-
tions f such that f(n) = n!T°(). Specifically, for some function € : N — [0,1] that goes to
zero, it holds that f(n) < n!'T<("). Common sub-types include the following:

1. €(n) = 1/loglogn.

2. ¢(n) = 1/(logn)° for some ¢ € (0,1).
The currently best locally testable codes and proofs [34, 20, 15] have nearly linear length
in this sense.

3. €e(n) = exp((log loglogn)¢)/logn for some c € (0,1).

Indeed, the case in which e(n) = O(loglogn)/logn (or so) deserves a special category.
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T3-nearly linear: The strongest notion interprets near-linearity as linearity up to a poly-logarithmic
(or quasi-poly-logarithmic) factor. In the former case f(n) < poly(logn) - n, which corre-
sponds to the case of f(n) < n't<™ with e(n) = O(loglogn)/logn, whereas the latter case
corresponds to e(n) = poly(loglogn)/logn (i.e., in which case f(n) < (logn)Pely(loglogn) . ),

Using the above notation, we summarize the state of the art with respect to local testability of
codes and proofs.

3.3.2 Local testability with nearly linear length

Currently, locally testable codes and proofs of nearly linear length are known when nearly linear is
interpreted as Type T2 (i.e., T2-nearly linear). More generally, we have:

Theorem 3.1 (Ben-Sasson, Goldreich, Harsha, Sudan and Vadhan [15]): There exists a universal

constant ¢ > 2 such that for every function q : N — N satisfying 2¢ < q(k) < % there exists

a g-locally testable proof of length Fy(k) - k for satisfiability (of formulae of length k), where

e k < _ _Zc_ k 2
Fy(k) ' exp K&C) + (log k)q(k)) - (loglog k) + (log k)q%k) + Q(CZ) - poly log log log k (1)
The same length bound holds for q-locally testable codes, where k denotes the length of the infor-
mation being encoded.

Let us derive two extreme cases of Theorem 3.1, while setting ¢t = ¢(k)/c.

1. Constant query complexity: For t € [2, ..., %], we have (log k)% > (loglog k)'/%9 and
so Fi(k) = exp((log k)%) In particular, for any constant ¢, we get locally testable proofs and

2

t

codes (i.e., ¢ t-locally testable proofs and codes) of length exp((log k)%) - k = k<) where
e(k) =1/(log k)~ 7.

2. T8-nearly linear length: For ¢t > %gﬁgf, we have (log k)% < (loglog k)/191 and so Fy(k) =

2loglogk

exp(t2 - poly logloglog k) = exp(O(loglog k)?). In particular, setting ¢ = Togloglog k>

o(log log k)-locally testable proofs and codes of length exp(O(loglog k)?) - k.

we get

For an even stricter notion of T3-nearly linear (i.e., a poly-logarithmic factor rather than a quasi-
poly-logarithmic one), testers of poly-logarithmic query complexity are known.

H query complexity ‘ length overhead ‘ comments H
poly(log k) poly(log k) Theorem 3.2.
o(log log k) exp(poly(loglogk)) | These are two extreme cases
Any constant ¢ | exp((log k)°911/9) of Theorem 3.1.

Figure 1: The best known ¢(-)-locally testable codes and proofs

Theorem 3.2 (Ben-Sasson and Sudan [19]): There exists a poly-logarithmic function f : N — N
such that there exist f-locally testable codes and proofs of length f(k)-k, where k denotes the length
of the actual information (i.e., the assertion in case of proofs and the encoded information in case
of codes).
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The known results are summarized in Figure 1, where k is as in Theorems 3.1 and 3.2. The ultimate
goal may be to obtain locally testable (i.e., O(1)-locally testable) codes and proofs of T3-nearly
linear length. Indeed, we conjecture that this is possible.

Conjecture 3.3 There ezist locally testable codes and proofs of length poly(log k) - k.
We conjecture that locally testable codes and proofs of (strictly) linear length cannot be achieved.

Conjecture 3.4 There exist no locally testable codes and proofs of linear length.

3.3.3 The ideas underlying the constructions

We briefly mention some of the ideas that underly the proofs of Theorems 3.1 and 3.2.

A nearly linear arithmetic representation of SAT. The proof of the PCP Theorem starts by
a reduction of 3SAT to an arithmetic problem, but the reduction (as sketched in §3.2.2) represents
an n-variable input formula as a binary string of length O(n?®). Thus, this very first step already
cubes the length of the constructed proof. An alternative arithmetization, which only incurs a
poly-logarithmic increase in length, is obtained by first “embedding” the formula in a de-Bruijn
graph such that the variables and clauses are placed at vertices of the opposite ends of the graph
(cf. [7, 43]). The specific formula will be encoded in an adequate routing of the variables to the
clauses in which they appear, and the arithmetization will “hard-wire” this routing in an adequate
polynomial (of the type used in §3.2.2). Extra complications arises when one seeks to perform
this process “optimally” (i.e., with the minimal number of variables), which is important when
using large fields (as seems required for deriving the results of Theorem 3.1). These difficulties are
resolved in different ways in [43] and in [15], respectively.

Derandomizing low-degree tests. Another source of polynomial blow-up in the proof length is
the low-degree tests, which play a key role in all PCP constructions (cf. §3.2.2). Recall that to test
that a function of the form f : F™ — F' is low degree, we fetched its values on points of a random
line. Since a sub-proof will be (eventually) appended per each such a choice (of a line), we will
need |F?™| such sub-proofs squaring the size of the original function f. Thus, a derandomization
of this test (as done non-constructively in [34] and constructively in [20, 15]) is of key importance.
In particular, it turns out that it suffices to consider a set of O(|F™ 1|) lines; specifically, each
line is specified by a canonical point (residing on this line) and a slope that belongs to a subset of
poly-logarithmic many slopes (out of all |F"| possible slopes) [20].

Avoiding parallelization. As explained in §3.2.2, parallelization play a key role in all previous
PCP constructions, and applying it increases the size of the proof by a factor that is at least
proportional to the query complexity of the original PCP. But this is too much in the context of
proving Theorem 3.1, and so the alternative “bundling” technique was introduced and used (in [15])
in order to support a new proof composition method (sketched already in §3.2.2). Similarly, other
types of packing various polynomials into a single polynomial (by using an auxiliary variable),
which were used in prior constructions, have to be avoided.
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Unbounded number of proof compositions. As mentioned above, proof composition plays a
central role in the construction of PCPs. The reason being that a PCP must satisfy two conflicting
conditions; specifically, have relatively small query complexity and still be short. Trying to optimize
both complexity measures simultaneously turns out to be very hard, and proof composition allows
to make progress based on “non-optimal” constructions. Typically, the more we can apply proof
composition, the better. Indeed, significant progress was achieved by using a non-constant (e.g.,
double-logarithmic) number of proof compositions [15, 25]. In the context of providing short PCPs,
the new composition method of [15] has played an important role. The result, stated in Theorem 3.1,
is a PCP with query complexity that is linear in the number of proof compositions (denoted t),
and length overhead that decreases double-exponentially with this number (i.e., the overhead is
essentially exp((log k)%/?)).

Recursive construction of a special purpose PCPP. The aforementioned proof composition
paradigm seems to incur an unavoidable poly-logarithmic blow-up in the proof length, per each
application. This is the source of the (log k) factor in Eq. (1), where ¢ = ¢(k)/c is the number
of proof compositions. This overhead is due to the fact that we reduce a specific problem (i.e.,
evaluating the residual tester decision regarding the oracle’s answers) to a generic one, and then
arithmetize the latter.2® An alternative approach was taken in [19], resulting in Theorem 3.2:
They first construct a g(k)-local codeword tester, for g(k) = vk, and then reduce the residual test
to testing the same codeword property on sequences of length ¢(k). Unfortunately, the reduction
uses a constant number of recursive calls, and so the end result uses a number of queries that is
exponential (rather than linear) in the number of compositions, which in turn is double-logarithmic.

3.4 Additional considerations

Our presentation, so far, has focused at obtaining the best possible trade-offs between the query
complexity and the length overhead of locally testable codes and proofs. However, given the fun-
damental nature of these codes (resp. proofs), it is natural to investigate (generic) transformations
between such codes (resp. proofs). A first step in this direction is taken in [18], which studies the
effect of taking tensor products of locally testable codes. Their results refer to linear codes and
come at the cost of decreasing the relative distance of the code.

Our motivation to studying locally testable codes and proofs referred to super-fast testing,
but our actual definitions have focused on the query complexity of these testers. In the case of
codes, it is indeed the case that (in all known testers) the testing time is related to the query
complexity. However, in the case of proofs there is a seemingly unavoidable (linear) dependence of
the verification time on the input length. This (linear) dependence can be avoided if one considers
PCP-of-Proximity (see Section 2.3.3) rather than standard PCP. But even in this case, additional
work is needed in order to derive testers that work is sub-linear time. Specifically, in [16], results
analogous to Theorems 3.1 and 3.2 are derived for PCP-of-Proximity using verifiers that run in
polylogarithmic time.

4 Locally Decodable Codes

Locally decodable codes are complimentary to local testable codes. Recall that the latter are required
to allow for super-fast rejection of strings that are far from being codewords (while accepting all

26Qur feeling is that a poly-logarithmic blow-up is unavoidable when reducing a specific problem to a generic one.
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codewords). In contrast, in case of locally decodable codes, we are guaranteed that the input is
close to a codeword, and are required to recover individual bits of the encoded information based
on a small number of probes (per recovered bit). As in case of local testability, the case when the
operation (in this case decoding) is performed based on a constant number of probes is of special
interest.

Local decodability is of natural practical appeal, which in turn provides additional motivation
for local testability. The point being that it makes little sense to try recover part of the data, in
case the codeword is too corrupted. Thus, one should first apply local testability to check that the
received codeword is not too corrupted, and apply local decodability only in case the codeword test
passes.

4.1 Definitions

We follow the conventions of Section 2.1, but extend the treatment to codes over any finite alphabet
¥ (rather than insisting on ¥ = {0,1}). In the following, we use the notation [k] e {1,2,...,k}.

Definition 4.1 Let C: X% — X" be a code, and let ¢ € N and § € (0,1). A g-local 6-decoder for C
is a probabilistic (non-adaptive) oracle machine M that makes at most q queries and satisfies the
following condition:

Local recovery from somewhat corrupted codewords: For every i € [k] and z = (x1,...,z3) € XF,
and any w € X" that is 6-close to C(x), on input i and oracle access to w, machine M outputs
x; with probability at least 2/3. That is, Pr[M™(1%,i) =z;] > 2/3, for any w € I that is
6-far from C(z).

We call g the query complexity of M, and 6 the proximity parameter.

Note that the proximity parameter must be smaller than the covering radius of the code (as oth-
erwise the definition cannot possibly be satisfies (at least for some w and ¢)). One may strengthen
Definition 4.1 by requiring that the bits of an uncorrupted codeword be always recovered correctly
(rather than with high probability); that is, for every i € [k] and z = (z1,...,z) € ZF, it must
hold that Pr[MC®) (1% i)=1z;] = 1. Turning to families of codes, we make the following definition
(which potentially allows the alphabet to grow with k).

Definition 4.2 For functions n,o : N — N, let C = {Cy, : [0(k)]* — [0(k)]"*®)}rer. We say that
C s a local decodable code if there exist constants 6 > 0 and q and a machine M that is a q-local
0-decoder for Cg, for every k € K.

We mention that locally decodable codes are related to (information theoretic secure) Private
Information Retrieval schemes, introduced in [24]. In the latter a user wishes to recover a bit
of data from a k-bit long database, copies of which are held by s servers, without revealing any
information to any single server. To that end, the user (secretly) communicates with each of the
servers, and the issue is to minimize the total amount of communication. As we shall see, certain
s-server PIR schemes yield 2s-locally decodable codes of length exponential in the communication
complexity of the PIR.
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Related notions of local recovery. The notion of local decodability is a special case of a
general notion of local recovery, where one may be required to recover an arbitrary function of
the original information based on a constant number of probes to the (corrupted) codeword. The
function f : ©*¥ — {0,1}* be better restricted in two ways: First it should have a small range (e.g.,
its range may be X), and secondly it should come from a small predetermined set F of functions.
Definition 4.1 may be recast in these terms, by considering the set of projection functions (i.e.,
{fi - ¥ — %} where fi(z1,...,2x) = x;). We believe that this is the most natural special case
of the general notion of local recovery. In §3.2.1 we referred to another special case, where the
alphabet is associated with a finite field F' and the recovery function f. : F* — F is one out of |F|
possible linear functions (specifically, fe(z1,...,zx) = Y5 €' 1z;, for e € F).27 Another natural
case (also used in §3.2.1) is that of the recovery of (correct) symbols of the codeword, which may be
viewed as self-correction. (In this case the set of functions correspond to the functions determining
each codeword symbol as a function of the encoded message.)

4.2 Results

The best known locally decodable codes are of sub-exponential length. Specifically, £ information
bits can be encoded by codewords of length n = exp(ko(10g logq)/ 71089) that are locally decodable
using ¢ bit-probes (cf. [9]). It is conjectured that, for every ¢ there exists an € > 0, such that locally
decodability based on g queries (i.e., probes) requires codewords of length n > exp(k¢).

4.2.1 Locally decodable codes of sub-exponential length

For any d > 1, there is a simple construction of a 2%-locally 2~¢~2-decodable binary code of length
n = 27¥" For h = kY4, we identify [k] with [r]¢, and view z € {0,1}* as (Tiy . ig)is, ... ig€[h)-
We encode z by providing the parity of all z;, _;, residing in each of the (2")? sub-cubes of [h]%;
that is, for every (Si,...,Sq) € 2lhl x ... x 2lhl " we provide C(2)sy,..8, = PireSu,...iqeSuTir, .. ig-
Indeed, the Hadamard code is the special case in which d = 1. To recover the value of z;,,_;,,
at any desired (iy,...,iq) € [h]¢, the decoder uniformly selects (Rj, ..., Rg) € 2[* x --- x 2 and
recovers the (possibly corrupted) values C(z)s,, .. s,, where each S; either equals R; or equals
R;jA{i;}. The key observation is that each of the decoder’s queries is uniformly distributed.
Thus, with probability at least 3/4, XORing the 2¢ answers, yields the desired result (because
O 51 €{R1,R1 Afir )}, Sue{ R, RN (i} C(T) 51,54 €quals C(Z) (i}, {ig} = Tiy,...ria)-

We comment that a related code (of length n = de'kw) allows for recovery based on d +
1 (rather 2%) queries. The original presentation, due to [2] (building on [24]), is in terms of
PIR schemes (with s = (d + 1)/2 servers and overall communication d?% - k'/¢ = exp(O(s)) -
EY/(2s=1)) In particular, in the case d = 2, we use two servers, sending (Ri, R, R3) to one and
(R1A{i1}, RoA{ia}, R3A{is}) to the other. Upon receiving (S1, S2, S3), each server replies with the
bit C(x)s,,95,55 = Dj1€81,j2€Ss,j3€53Lj1,j2,53» a5 Well as the sequences (C(x)slA{1}752’53, . C(‘T)SlA{kl/S},Sz,Sg)’
(C()s51,5,2{1},550 -+ C(T) 5, s, a{k1/3},55)s and (C(T)s, 5, 55411 -+ C(T) g, 55.5,A0k1/3}), Which al-
low the user to recover C(:B)SlA{il},Sz,Sga C(x)sl,SQA{iz},Sg7 and C(:B)Sl,Sg,SgA{il}-

The corresponding locally decodable code is obtained by a generic transformation that ap-
plies to any PIR scheme with s servers, in which the user makes uniformly distributed queries
of length gst(k), gets answers of length ans(k), and recovers the desired value by XORing some
predetermined bits contained in the answers. In this case, the resulting code will contain the

?"Indeed, the value f. (1, ..., 2x) is the evaluation at e of the polynomial p(¢) = Zle z;¢*~! represented by the
coefficients (z1, ..., k).
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Hadamard encoding of each of the possible answers provided by each of the servers; that is, if the
j-th server answers according to A;(z,q) € {0,1}2"S() where z € {0,1}* and ¢ € {0,1}95*) then
C()j.q. = Cuaa(A;(z, q))e, for every £ € {0,1}2"S(F)| Thus, the length of the code is 5-295t(%).2ans(k)
Now, on input 7 € [k], the decoder emulates the PIR user, obtaining the query sequence (q1, ..., ¢s)
and the desired linear combinations (£1, ....,£). It uniformly selects 71, ...,7s € {0,1}2"®*) queries
the (possibly corrupted) codeword at locations (1, q1,71), (1,q1,71 D 1), -, (8,qs,7s), (8,45, 7s D Ls),
and XORs the 2s answers.

As mentioned above, better locally testable codes are known, but their construction is more
involved (cf. [9]). Again, it is instructive to consider first the construction of PIR schemes, in which
case s servers allow for a scheme with overall communication k<(*), where ¢(s) = O(loglog s)/slog s <
1/(2s —1). In particular, €(3) = 4/21 improving over the previous bound of 1/5.

Theorem 4.3 [9]: For every constant q, there exist q-locally decodable binary codes of length n =

exp(ke(Q)), where €(q) = 70(201“’;1;5@

4.2.2 Polylog-local decoding for codes of nearly linear length

We will consider a code C : ©% — " of linear distance, while identifying ¥ with a finite field. For
parameters h and m = logy, k, consider a finite field F of size O(m - h), and a subset H C F' of size
h. Viewing the information as a function f : H™ — F, we encode it by providing the values of its
low-degree extension f F™ — F on all points in F, where f is a m-variant polynomial of degree
|H|—1 in each variable. Thus, the code maps k = h™ long sequences over F' (which may be viewed
as h™ log | F| bits of information) to sequences of length n Lef |F|™ = O(mh)™ = O(m)™ -k over F.
This code has relative distance mh/|F|. Note that the smaller m, the better the rate (i.e., relation
of n to k) is, but this comes at the expense of using a larger alphabet F' (as well as larger query
complexity of the decoder presented below).

The decoder works by applying the self-correction paradigm. Given a point £ € H™ and access
to an oracle w : F™ — F that is 1/2-close to f , the value of f(z) is recovered by uniformly selecting
a line through x, querying for the |F'| values of w along the line, finding the degree mh univariate
polynomial with the greatest agreement with these values, and evaluating it at the adequate point.
Thus, we obtain an |F|-local decoder.

Using a constant m, we obtain an O(k'/™)-locally decodable code of constant rate (i.e., n =
O(k)), over an alphabet of size O(k'/™). On the other hand, using m = elogk/loglogk (for
any constant ¢ > 0), we obtain a poly(log k)-locally decodable code of length n = k'*€, over an
alphabet of size poly(logk). Concatenation with any reasonable?® binary code (coupled with a
trivial decoder that reads the entire codeword), yields a binary poly(log k)-locally decodable code
of length n = k't

4.2.3 Lower Bounds

It is known that locally decodable codes cannot be T2-nearly linear: Specifically, any g-locally
decodable code C : ¥ — %" must satisfy n = Q(qu%l) (cf. [36]). For ¢ = 2 and ¥ = {0,1}, an
exponential lower bound is known (cf. [38], following [33]). We conjecture that locally decodable
codes cannot have polynomial length. In fact, we conjecture that locally decodable codes must
have sub-exponential length.

28Indeed, we may use any good code (i.e., linear length and linear distance), as such can be easily constructed for
block length O(loglog k). But we can even use the Hadamard code, because the length overhead caused by it in this
setting is negligible.
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Conjecture 4.4 For every q there exists an € > 0 such that, for every 6 > 0 and all sufficiently
large k, if C: {0,1}* — {0,1}" has a g-local §-decoder then n > exp(k®).

We actually conjecture the same for families of codes over arbitrary alphabets, even when the
alphabet size grows arbitrarily with k.

4.3 Relaxations

In light of the aforementioned conjecture it is natural to seek relaxations to the notion of locally
decodable codes. One natural relaxation requires local recovery of most individual information-
bits, allowing for recovery-failure (but not error) on the rest [15]: That is, it is requires that,
whenever few location are corrupted, based on a constant number of queries, the decoder should
be able to recover most of the individual information-bits, and for the rest of the locations, the
decoder may output a fail symbol (but not the wrong value). Augmenting these requirements by
the requirement that whenever the codeword is not corrupted — all bits are recovered correctly
(with high probability), yields the following definition.

Definition 4.5 For functions n,o : N — N, let C = {Cy, : {0,1}* — {0,1}"®) },cx. Forg e N and
6,p € (0,1), a g-local relaxed (6, p)-decoder for C is a probabilistic (non-adaptive) oracle machine
M that makes at most q queries and satisfies the following conditions:

Local recovery from uncorrupted codewords: For every i € [k] and x = (x1,...,xx) € X*, it holds
that Pr[MC@) (1% i) =z,] > 2/3,

Relaxed local recovery from somewhat corrupted codewords: For every x = (x1,...,zx) € vk and
any w € X" that is 6-close to C(x), the following two conditions hold:

1. For every i € [k], it holds that Pr[MC®) (1% i) € {z;, L}] > 2/3, where L is a special
(“failure”) symbol.

2. There exists a set I, C [k] of size at least pk such that, for every i € I,,, it holds that
Pr[MC@ 1k, i) =x;] > 2/3.2°

In such a case, C is said to be locally relaxed-decodable.

It turns out (cf. [15]) that Condition 2, in the relaxed recovery requirement, essentially follows from
the other requirements. That is, codes satisfying the other requirements can be transformed into
locally relaxed-decodable codes, while essentially preserving their rate (and distance). Furthermore,
the resulting codes satisfy the following stronger form of Condition 2: There exists a set I, C [k]
of density at least 1 — O(A(w, C(x))/n) such that for every i € I, it holds that Pr[MC®) (1 i) =
.Z‘z] > 2 / 3.

Theorem 4.6 [15]: There exist locally relaxed-decodable codes of T1-nearly linear length. Specif-
ically, for every e > 0, there exists codes of length n = k'*¢ that have a O(1/€?)-local relazed
(Q(e),1 — O(e))-decoder.

An obvious open problem is to separate locally decodable codes from relaxed ones. This may follow
by either improving the aforementioned lower bound on the length of locally decodable codes or by
providing relaxed locally decodable codes of T2-nearly linear length.

We stress that it is not required that Pr[MC(m)(lk,i) =1] > 2/3for ¢ € [k] \ Iw. Adding this requirement
collapses the notion of relaxed-decodability to ordinary decodability (cf. [22]).
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