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Abstract

Matroid intersection has a known polynomial time algorithm using an oracle. We generalize
this result to delta-matroids that do not have equality as a restriction, and give a polynomial
time algorithm for delta-matroid intersection on delta-matroids without equality using an oracle.
We note that when equality is present, delta-matroid intersection is as general as delta-matroid
parity. We also obtain algorithms using an oracle for delta-matroid parity on delta-matroids
without inequality, and for delta-matroid intersection where one delta-matroid does not contain
either equality or inequality, and the second delta-matroid is arbitrary. Both of these results also
generalize matroid intersection. The results imply a dichotomy for bipartite Boolean constraint
satisfaction problems using an oracle when one of the two sides does not contain equality, leaving
open cases of delta-matroid parity when both sides have equality; the results also imply a full
dichotomy for k-partite Boolean constraint satisfaction problems for £ > 3. We then discuss
polynomial cases of Boolean constraint satisfaction problems with two occurrences per variable
through delta-matroid parity that cannot be obtained using the oracle approach.

1 Introduction

An instance of the Boolean constraint satisfaction problem consists of a collection of variables
ranging over the Boolean domain and a collection of constraints on them. The aim is to assign
value 0 or 1 to each variable so as to satisfy all the constraints. The Boolean constraint satisfaction
problem is NP-complete. Schaefer [11] considered the restriction of Boolean constraint satisfaction
problems to the case where the constraints used must each belong to a given collection of allowed
constraint types. Schaefer then classified the Boolean constraint satisfaction problems as polynomial
time solvable or NP-complete, depending on the choice of the collection of allowed constraint types.
In the case where restricting a variable to take value 0 or to take value 1 is an allowed constraint,
the Schaefer polynomial cases are conjunctions (1) of Horn clauses, (2) of dual-Horn clauses, (3) of
2-satisfiability clauses, and (4) of linear equations modulo 2.

The constraint satisfaction problem with a collection of allowed constraint types can be further
restricted so that each variable is only allowed to participate in two constraints. While the
polynomial cases of Schaefer’s classification remain polynomial under this restriction, some of the
NP-complete cases may become polynomial time solvable. Feder [5] showed that the NP-complete
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cases of Schaefer’s classification remain NP-complete unless each allowed constraint type is a delta-
matroid. In that case, the problem with two occurrences for each variable is the well-known
delta-matroid parity problem [1], which generalizes matroid parity [10]. Only certain families of
matroid and delta-matroid parity problems are known to be polynomial time solvable. The best
known such problem is graph matching.

A further restriction of Boolean constraint satisfaction problems with two occurrences per
variable requires the constraints in an instance to be partitioned into two sets, so that each
variable participates in only one constraint from each set. This restricted problem is known as the
bipartite Boolean constraint satisfaction problem. Again, Feder [5] showed that for the bipartite
Boolean constraint satisfaction problem, the NP-complete cases of Schaefer’s classification remain
NP-complete unless each allowed constraint type is a delta-matroid. In that case, the bipartite
constraint satisfaction problem is delta-matroid intersection, which generalizes matroid intersection,
and in particular bipartite graph matching.

Since matroid intersection is polynomial time solvable by the algorithm of Edmonds [4], it is
natural to ask wether delta-matroid intersection is polynomial time solvable. The main difficulty is
that if the equality constraint is among the allowed constraint types, matroid intersection becomes
as hard as matroid parity. In fact, a bipartite Boolean constraint satisfaction problem is more
restrictive than the general Boolean constraint satisfaction problem with two occurrences per
variable only if the equality constraint is not among the allowed constraints. In this paper, we
thus consider delta-matroid intersection in the case where the delta-matroids do not contain the
equality constraint as a restriction, and give a polynomial time algorithm for the problem. This
completes our first classification result for bipartite Boolean constraint satisfaction problems, which
are assumed not to contain the equality constraint as an allowed constraint type, as polynomial
time solvable or NP-complete.

In the model adopted, we impose no restriction on the size of constraints describing the two
delta-matroids without equality to be intersected. We thus adopt the most general model, in which
each of the delta-matroids is given by an oracle that can be queried in polynomial time to obtain
a feasible assignment for the delta-matroid, or to determine whether a given assignment is feasible
for the delta-matroid. We observe also that Schaefer’s polynomial cases also remain polynomial
with a slightly more powerful oracle, which allows querying the oracle to determine whether a given
partial assignment can be extended to a full assignment satisfying a given constraint. Both oracles
have the same power in the case of delta-matroids.

In this general oracle model, we also show that delta-matroid parity for delta-matroids that do
not have the inequality constraint as a restriction can also be solved in polynomial time. We further
show that intersecting a delta-matroid that has neither the equality constraint nor the inequality
constraint as a restriction, with an arbitrary delta-matroid, also has a polynomial time algorithm.
As matroid intersection can be represented as the intersection of two delta-matroids that contain
neither the equality constraint nor the inequality constraint as a restriction, all of these results
generalize matroid intersection. In fact all three results follow from a single more general algorithm
for a class of delta-matroid parity problems.

This last result is then used to obtain a more general classification result for bipartite Boolean
constraint satisfaction, in which the allowed constraint types may be different for both sides of the
bipartition, and it is assumed that at least one side does not contain equality. If both sides contain
equality, then both sides can be assumed to be the same, where the problems not yet classified
are delta-matroid parity problems. We note that the polynomial cases in the classification are
polynomial in the oracle model as well. See Table 1 for the classification. This also implies a
dichotomy for k-partite Boolean constraint satisfaction with & > 3, where we have k sets of allowed
constraint types and each variable is only allowed to participate in one constraint from each of &
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e bipartite Boolean constraint satisfaction

1. NP-complete cases
2. Schaefer derived cases
(a) Horn
(b) dual-Horn
) linear
d) 2-SAT
) one side has only monadic constraints
) upward 2-SAT in one side and constraints with 2-SAT downward closure in other

side (and case interchanging upward and downward)

3. one side has 2-SAT upward closure with delta-matroid downward closure and other side
has 2-SAT downward closure with delta-matroid upward closure, each side is intersection
of upward and downward closure, and a flat of the delta-matroid can intersect a 2-SAT
clause in exactly one element only if the flat or the 2-SAT clause has only one element.

4. delta-matroid derived cases

(a) delta-matroid intersection without equality
(b) delta-matroid intersection having one side without equality or inequality

(c) upward delta-matroid in one side and constraints with delta-matroid downward
closure in other side (and case interchanging upward and downward)

(d) delta-matroid parity with equality
i. local even or odd delta-matroid
ii. A-local-zebra delta-matroid
iii. linear-zebra delta-matroid
iv. delta-matroid without inequality

V. open cases
e k-partite Boolean constraint satisfaction for k£ > 3

1. NP-complete cases

2. polynomial cases using an oracle

Table 1: Classification of bipartite Boolean constraint satisfaction problems: cases other than zebra
are also polynomial with oracle



sets of constraints of the corresponding types.

The study is thus conducted in the full generality of the oracle model. On the other hand, the
general case with two occurrences per variable cannot be solved in the general oracle model. In
particular, matroid parity has an exponential lower bound due to Lovéasz [9] in the oracle model.
We thus seek to study cases of delta-matroid parity where each of the constraints used is described
explicitly. In this model, Feder [5] showed that coindependent delta-matroids have a polynomial
time algorithm for delta-matroid parity. We show here that coindependent delta-matroid parity has
an exponential lower bound when the coindependent delta-matroid is described by an oracle. We
also introduce zebra delta-matroids, as a common generalization of coindependent delta-matroids
and the delta-matroids from the general factor problem that was solved by Cornuejols [2]. We
show that zebra delta-matroid parity can be solved in polynomial time when each of the zebra
constraints is described explicitly. We also show how to recognize certain delta-matroids that
can be represented through zebra delta-matroids, thus obtaining the class of zebra-compact delta-
matroids generalizing the compact delta-matroids of Istrate [8] based on the general factor problem.
Finally, for any class of even delta-matroids that has a polynomial time algorithm for delta-matroid
parity, such as linear matroids with the algorithms of Lovdsz [9], Gabow and Stallman [6], linear
delta-matroids with the algorithm of Geelen, Iwata and Murota [7], or local delta-matroids with
the algorithm of Dalmau and Ford [3], we define an associated class of delta-matroids that are not
necessarily even, along the same line that defined zebra delta-matroids from certain even delta-
matroids that can be obtained via graph matching. We show that these zebra-like delta-matroids
associated with the given class of even delta-matroids also have a polynomial time algorithm for
delta-matroid parity when the constraints used are described explicitly.

2 Definitions

A delta-matroid is a pair M = (E,F), where FE is a set and F is a set of subsets of E, satisfying
the following axiom: For all A, B € F, and for all x € AAB, there exists a y € AAB such that
AA{z,y} € F. Note that we may have y = z. The sets A € F are called the feasible sets of the
delta-matroid M.

A restriction of a delta-matroid M = (E,F) is a delta-matroid M; = (Fy,F1) with E; C E
such that for some E{ C E\ Ei, we have A € F; if and only if AU E] € F. Given two delta-
matroids My = (F1,F1) and My = (Ey, F) with E; N Ey = 0, the direct sum of My and M, is
the delta-matroid M = (E,F) with E = E; U E5 such that A € F if and only if AN E; € F; and
ANE; € Fy.

Let M = (E,F) be a delta-matroid and £ a partition of E into pairs. For every u € E, its
mate will be denoted by @, that is u is the only element in E such that {u,u} € L.

Let F' € F be a feasible set. We will let Lr denote the subset of £ containing those pairs
{u,@} € L such that either both u and @ are in F' or neither u nor 7 is in F.

An instance of the delta-matroid parity problem consists of a delta-matroid M = (E,F) and a
partition £ of F into pairs. The goal is to find a feasible set F' € F such that L is maximum,
that is, at least as large as L for any other G € F.

The delta-matroid intersection problem is the special case of the delta-matroid parity problem
where M = (E,F) is the direct sum of My = (Fy,F1) and My = (FEy,F2), and every pair in £
contains one element in F; and one element in Fs.

We consider two particular delta-matroids, the equal delta-matroid M— = ({a,b}, {0, {a,b}}),
and the not-equal delta-matroid M, = ({a,b}, {{a},{b}}). Note that every delta-matroid parity
problem with M, L is equivalent to a delta-matroid intersection problem with M’ L', where
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M; = M and M, is the direct sum of M_ delta-matroids, one for each pair in £, where L'
has the corresponding pairs {u,a} and {@, b}.

Thus delta-matroid intersection is a strict special case of delta-matroid parity only for delta-
matroids M that do not have M_ as a restriction. In an instance of delta-matroid parity or
intersection, we are given an oracle for M = (E,F) that can be queried to provide a particular
feasible set in F, and tested with some A C F so that the oracle responds whether A € F, that is,
whether A is feasible.

The following is known [5]. If M = (E,F), L is an instance of delta-matroid parity, and K is
a subset of pairs from £, then we obtain a delta-matroid M’ = (E', F') with E’ consisting of the
elements of F that are not in pairs in K, and including in F’ all sets A C E’ such that there exists a
B € F such that BNE' = A and B is a feasible set for the delta-matroid M satisfying the pairings
in K, that is, Kg = K. We say that M’ is the delta-matroid obtained from M, L by contracting K.
We can then let £' = L\ K.

We give a polynomial time algorithm for any instance of delta-matroid parity on a delta-matroid
M with pairing £ such that no subset K C £ and pair {a, b} € L\ K are such that the delta-matroid
M’ obtained from M by contracting K has the not-equal delta-matroid M on {a, b} as a restriction.
The bipartite Boolean constraint satisfaction classification will follow from this result.

3 Small Delta-Matroids
In this section we establish simple properties of delta-matroids with three or four elements.

Lemma 3.1 Let M = ({a,b,c}, F) be a delta-matroid with a feasible set F' such that FA{a,b,c}
is also feasible. Then one of FA{a}, FA{c}, FA{a,c} is also feasible.

Proof. Let A= FA{a,b,c}, B=F, and z = b in the definition of delta-matroid. O

Lemma 3.2 Let M = ({a,b,c},F) be a delta-matroid having feasible sets FA{c} and FA{a,b}.
Then one of of FA{a}, FA{a,c}, FA{a,b,c} is also feasible.

Proof. Let A= FA{c}, B= FA{a,b}, and z = a in the definition of delta-matroid. a

Lemma 3.3 Let M = ({a,b,c,d},F) be a delta-matroid with a feasible set F such that FA{a,b}
and FA{a,b,c,d} are also feasible. Then one of FA{a}, FA{a,c}, FA{a,d}, FA{c,d} is also
feasible.

Proof. Counsider C = FA{a,c,d}. If C is feasible, let A = FA{a,b}, B = C, and z = b in the
definition of delta-matroid. If C is not feasible, take A = FA{a,b,c,d}, B = F, and = b in the
definition of delta-matroid. O

Lemma 3.4 Let M = ({a,b,c,d},F) be a delta-matroid with a feasible set F such that FA{a,b}
and FA{c,d} are also feasible. Then one of FA{a}, FA{a,c}, FA{a,d}, FA{a,b,c,d} is also
feasible.

Proof. Consider C = FA{a,c,d}. If C is feasible, let A = FA{a,b}, B = C, and x = b in the
definition of delta-matroid. If C is not feasible, take A = FA{c,d}, B = FA{a,b}, and z = a in
the definition of delta-matroid. O



4 Structure and Algorithm for Augmenting Paths and Blossoms

Let M = (E,F), L be an instance of the delta-matroid parity problem. A path in M is an ordered
collection w1, ..., u, of different elements in E. Let L C L be any collection of pairs of £. A path
U1, .., Uy is called L-alternating if: (1) for every 1 < 2j < n, {ugj,u2j+1} € L, (2) {w1, w1} ¢ L,
and (3) if n is even then {u1,up}, {tn,un} ¢ L, uy # u1. Let F' € F be a feasible set. We say that
a path uq,...,u, is an F-augmenting path (or simply an augmenting path when F' is implicit) if:
(1) FA{u1,...,ug9;} € Ffor all 1 < 2j <n and (2) FA{u1,...,up} € F.

The basic intuition behind this definition is that if F' is a feasible set such that |Lp| is not
maximum, then there exists some F-augmenting Lg-alternating path. This path can be used to
obtain a new feasible set G = FA{uy,...,u,} which increases the objective function that we intend
to maximize, |Lg| > |Lr|. In fact if |[Lp| is not maximum, then there exists an F-augmenting Lp-
alternating path that can be computed in time polynomial in |E| given a G € F with |Lg| > |LF|,
see e.g. [3].

Given a feasible F' € F, an edge is a pair {u, v} of distinct elements in E such that FA{u,v} € F,
and a special element is a single element v in E such that FA{u} € F.

Theorem 4.1 Suppose M has an F-augmenting Lp-alternating path. Let u1,...,us be a shortest

such path. Then either (1) there exists an Lp-alternating path vy, ...,v, with v1 = u1, v, = us,
such that for 2 < 2i < n, {voj_1,v2;} is an edge, and v, is a special element if n is odd, with each
v; among the uj, or (2) there exists an Lp-alternating path w.,...,w, with w1 = w1 and k odd,

and a 2 < 2r < k such that for every 2 < 2j < k, {waj_1,ws;} is an edge, and {wy, w1} is also
an edge, with each w; among the u;.

The alternating path in case (2) is called a blossom.
Proof. Let ug,...,u, be a shortest augmenting path. We show that either (1) for each 2 < 25 < n
there is an edge {ug;_1,uo;} for some 2 < 2¢ < 27, and if n is odd then wu, is a special element,
or (2) for some 2 < 2k < n there is an edge {ugy1,usx+1} for some 0 < 21 < 2k, and for each
2 <2j < 2k there is an edge {u2;_1,ug;} for some 2 < 2¢ < 2j. In case (1), tracing back the edges
from ug; for j = n or j = n — 1 to ug;_1, to the mate uo;_o, then the edge joining ug;_o to some
ugy 1 with 2¢’ < 2i, then to the mate uoy _1, and so on until u; = u is reached, gives an alternating
path from u; to u, that alternates going to a mate and traversing an edge. In case (2), we get such
a path from u; to ugg to the mate ugpy1 with an edge to ug4+1, with a similar alternating path
from w941 back to u1, which at the point it meets the path from wu; to ugr completes the blossom.

For each 25 < mn and each 0 < 2s < 2j, we show that either there is a 2s < 2i <
2j such that FA{ui,...,u, ui1,ug;} is feasible, or there is a 2s < 2 < 2j such that
FA{uq,...,us,ugi1, qu_l} is feasible, unless there is a blossom among elements u1, . . . , Uog, 21 -
The proof is by induction with decreasing s. When we reach s = 0, we have either the edge
{ugi—1,u2;} or the edge {ug;—1,u2j—1} as required.

The base case 2s = 25 — 2 is verified since FA{u1,...,ugj_2,u2j_1,us2;} is feasible by the defini-
tion of an augmenting path. Suppose the claim holds for 2s+2, and FA{u1, ..., u2s, U2s+1, U2s+2, U2i—1, Ut }
is feasible, where t = 2j or t = 25 — 1. Let G = FA{uy,...,uss}, and apply Lemma 3.3
with @ = ugs11, b = ugsyo, ¢ = ugi—1, d = us. We have that G, GA{a,b}, and GA{a,b,c,d}
are feasible. If GA{a} is feasible, we have a shorter augmenting path obtained from GA{a} =
FA{uq,...,uss,usst1}, contrary to assumption. If GA{a,c} is feasible, we have GA{a,c} =
FA{uq,...,us,usst1,u2—1} feasible, which inductively will give an edge {ug;4+1,u2k+1} as above
with 2k +1 =2 — 1 ant 2/ + 1 < 2s + 1, and thus a blossom. If GA{a,d} is feasible, we have
GA{a,d} = FA{u,...,uss,uzs41,us} feasible which inductively will give an edge {ugj_1,u} as
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above with 2j — 1 < 2s+ 1. If GA{c, d} is feasible, we have GA{c,d} = FA{uq,...,uos, ug;—1,us}
feasible which inductively will give an edge {ug,—1,u;} as above with 2r — 1 < 2i — 1.

It remains to show that u, is a special element if 7 is odd. We show for each 0 < 2s < n
that FA{u1,...,uss,up} is feasible inductively with s decreasing, unless there is a blossom. When
we reach s = 0 we have u, as a special element. The base case 2s = n — 1 is verified since
FA{uy,...,uy,} is feasible. Suppose the claim holds for 2s+2, and FA{uy,...,u2s, U2s+1, U2s+2, Un }
is feasible. Let G = FA{ui,...,u2s} and apply Lemma 3.1 with a = ugs, b = ugst1, ¢ = u,. We
have that G and GA{a,b, c} are feasible. If GA{a} is feasible, we have a shorter augmenting path
obtained from GA{a} = FA{u1,...,ugs, uzs+1}, contrary to assumption. If GA{c} is feasible, we
have GA{c} = FA{u,...,uss,u,} feasible, proceeding with the induction for u,. If GA{a,c}
is feasible, we have GA{a,c} = FA{uq,...,uss,u2s+1,un} feasible, which inductively will give an
edge {ugj4+1,usk+1} as above with 2k +1 =mn and 2/ + 1 < 2s + 1, and thus a blossom. O

We describe next an algorithm for finding an augmenting path or a blossom. Let u be such that
{u,u} ¢ Lp. Start a breadth first search at u that assigns levels to elements of E as follows. The
element wu is at level 1. If ug; 1 is at level 25 — 1, then put at level 2j all elements uo; not at levels
up to 25 — 1 such that {u2j_1, u2j} is an edge. If uy; is at level 27, then put its mate ugj 1 = ua; at
level 25 + 1 if it is not at a level up to 2j and {ug;,u2j+1} € Lr. The mate @ of u = u; is omitted
from the depth first search.

The algorithm terminates in one of four situations: (1) two distinct elements ugj, vo; are mates,
in which case a blossom has been found; (2) two distinct elements Ugj+1,v2j4+1 have an edge
{u2j4+1,v2j41}, in which case a blossom has also been found; (3) an element ug; at level 2j is
such that {us;,u3;} ¢ Lr, in which case an augmenting path has been found; (4) an element ug;1
at level 25 + 1 is a special element, in which case an augmenting path has been found.

Theorem 4.2 The claims about having found an augmenting path or a blossom by the breadth first
search in the four cases are correct.

Proof. In case (1) the two paths from u; to ug; and vo; plus the mates ug; and vy; complete a
blossom. In case (2) the two paths from u; to ugj;+1 and vaj41 plus the edge {ugj;1,v2;41} complete
a blossom.

In case (3) we have a path u;,...,ugj. We claim that it is an augmenting path, inductively on
j- Let K be the subset of £ consisting of the pairs {ug;,ug; 11} for each 2 < 2i < 25 —4, and obtain
M', L' by contracting K. Let F’ be the feasible set in M’ corresponding to F' in M. We apply
Lemma 3.4 to F' with a = uy, b = ugj_g, ¢ = ugj_1, d = up;. We have that F'A{a,b} is feasible
for M’ since Fi = FA{u1,us,...,uj—3,u2j—2} is feasible inductively for M and Kr, = K, by
removing {ugj_2,uzj—1} from £ and adding new mates for ug;_o,ug;_1, so that ui,...,ugj_o will
be an augmenting path by induction. Also F'A{c,d} is feasible for M’ since F» = FA{ug;_1,uz;}
is feasible for M by the definition of an edge, and Kp, = K. If F'A{a} is feasible for M’, then
FAS, is feasible for M with u; € S; and S1 C {u1,us,...,uzj—3}, and Krag, = K, so there must
be an augmenting path contained in S;. This subset however does not have all the edges and
special vertices needed to satisfy the conditions in Theorem 4.1 when there exists an augmenting
path as otherwise they would have been found in the breadth first search. If F'A{a,c} is feasible
for M’, then FASQ is feasible for M with U, U25-1 S SQ and S2 g {’U,l,UQ,...,UQj_g,’U,Qj_l},
and Kras, = K. In this case ugj_1 would have been reached earlier in the breadth first search.
Similarly, if F'A{a,d} is feasible for M', then FASj; is feasible for M with wu;,u2; € S3 and
Sz C {u1,u,...,uzj—3,uz;}, and Kpas, = K, so ug; would have been reached earlier in the
breadth first search. Therefore F'A{a,b,c,d} is feasible for M', and so FAS, is feasible for M
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with wi,ugj_2,uj_1,u2; € Sy and Sy C {u1,...,us;}, and Kpas, = K. Furthermore S, must be
equal to this subset, otherwise uo; would have been reached earlier in the breadth first search. This
proves we have obtained an augmenting path that replaces F' with FA{u1,...,us;}.

The proof in case (4) is analogous. We have a path u1,...,ugj11. We show again that it has
the elements of some augmenting path. Let K be the subset of £ consisting of the pairs {ug;, u2;+1}
for each 2 < 2i < 25 — 2, and obtain M', £’ by contracting K. Let F' be the feasible set in M’
corresponding to F in M. We apply Lemma 3.2 to F' with a = u1, b = ugj, ¢ = ugj+1. We have
that F'A{c} is feasible for M’ since F3 = FA{ugj1} is feasible for M because ugj11 is a special
element and Kp, = K. Also F'A{a,b} is feasible for M’ since Fy = FA{ui,u,...,uzj—1,uz;} is
feasible by the preceding case of an even length path. If F'A{a} is feasible for M’', then FAS5
is feasible for M with u; € S5 and S5 C {u1,...,u2j—1}, and Kras; = K, so there must be an
augmenting path contained in S5, which does not have the edges in special vertices to satisfy the
conditions in Theorem 4.1. If F'A{a,c} is feasible for M’ then FASg is feasible for M with
u1,u2j+1 € Sg and Sg C {u1,...,u2j—1,u2j41}, and Kpass = K, which is not possible since ug; 1
would then have been reached earlier by the breadth first search. Therefore F'A{a,b,c} is feasible
for M', and so FASy is feasible for M with ui,ugj,ugjy1 € S7 and Sy C {u1,...,ugj41}, and
Kras; = K. Furthermore S7 must be equal to this subset, otherwise us; would have been reached
earlier in the breadth first search. This proves we have obtained an augmenting path that replaces
F with FA{’U,l,...,’U,Qj+1}. O

5 Delta-Matroid Intersection without Equality

So far the argument has been carried in the full generality of arbitrary delta-matroids and the
general parity problem. The arguments usually become more difficult with the introduction of
blossoms, which can contain other blossoms, and this can lead to requiring the delta-matroid to
have a presentation that is not only by means of an oracle, or some other special structure, such as
in the case of linear or local delta-matroids [7, 3]. In special cases with restrictions involving the
equal delta-matroid M— and the not-equal delta-matroid M, blossoms can be more easily handled.
This leads to our main result.

Suppose the algorithm of Theorem 4.2 found a blossom as in Theorem 4.1. Restrict the breadth
search for an augmenting path to the elements w1, ..., woy, . . . , wi of the blossom. When we restrict
the breadth first search further by excluding some wo;, wo;+1 We may find a smaller blossom or an
augmenting path as in Theorem 4.2. We may thus assume this does not happen for the blossom
under consideration.

Theorem 5.1 There is a polynomial time algorithm using an oracle for any instance of delta-
matroid parity on a delta-matroid M with pairing L such that no subset K C L and pair
{a,b} € L\ K are such that the delta-matroid M' obtained from M by contracting K has the
not-equal delta-matroid M on {a,b} as a restriction.

Proof. Let wi,...,wsyr,...,w be the blossom obtained above. Let K be the pairs {wo;, wo;11}
for 2 < 27 < k — 2. Contracting K in M, we obtain M’ with corresponding feasible set F’. Let
a = wy, b=wyg, c = wg_1. The set F'A{a,b} is feasible by the augmenting path wy, ..., wor—1, wy

obtained after removing the pair {wyg_1,wi} from £ and adding new mates for wg_1,wy, using
Theorem 4.2. The set F'A{a,c} is feasible by the augmenting path wy,...,w, 1 obtained also
after removing the pair {wg_1,wx} from £ and adding new mates for wy_1, wy, using Theorem



4.2. Setting G’ = F'A{a}, we have that G'’A{b} and G’ A{c} are feasible, giving M on {b,c} as a
restriction unless G’ or G'A{b, ¢} is feasible.

If G’ or G'A{b, c} is feasible, then there is an augmenting path involving a subset of w1, ..., wg,
and this augmenting path cannot miss any {wo;, we;+1} by the choice of the blossom, so the elements
wi,. .., wy form an augmenting path in some order. The remaining case has M on {b, ¢} simulated
by G'A{b} and G'A{c}, contrary to assumption. O

We infer three results as special cases.

Lemma 5.2 Let M = ({a,b,c,d}, F) be a delta-matroid that contracts to M' on {c,d} using
K = {{a,b}}. If M' is either the M— or the My delta-matroid, but M does not have M' on {c,d}
as a restriction, then |FAG| is even for all F,G € F.

Proof. We have M’ = ({c,d}, {F,FA{c,d}}) By assumption on M, we have a feasible F' such
that FA{a,b,c,d} is feasible, but FA{a,b}, FA{c,d} are not feasible, and furthermore FA{c},
FA{d}, FA{a,b,c}, FA{a,b,d} are not feasible. This guarantees that M’ is not a restriction of
M, and that contracting K = {{a,b}} gives M.

If FA{a} is feasible, then taking A = FA{a}, B = FA{a,b,¢c,d} and z = b in the
definition of delta-matroid yields a contradiction. If FA{b} is feasible, then taking A = FA{b},
B = FA{a,b,c,d} and x = a in the definition of delta-matroid yields a contradiction. If FA{a,c,d}
is feasible, then taking A = FA{a,c,d}, B = F and z = a in the definition of delta-matroid yields
a contradiction. If FA{b,c,d} is feasible, then taking A = FA{b,c,d}, B = F and z = b in the
definition of delta-matroid yields a contradiction. Thus |FAG]| is even for all feasible G. O

We shall make use of Wenzel’s strong ezchange aziom for even delta-matroids [12] M = (E, F),
which states that for all A, B € F and © € AAB, there exists y € AAB such that AA{z,y} € F
and BA{z,y}.

The first special case is as follows.

Theorem 5.3 There is a polynomial time algorithm using an oracle for delta-matroid parity on
delta-matroids M that do not have the not-equal delta-matroid M as a restriction.

Proof. Tt suffices that if M is obtained from M by contracting K, then M’ does not have M as a
restriction either, so that the algorithm of Theorem 5.1 applies. Suppose M~ on {c,d} is obtained
as a restriction after contracting K = {{a,b}}, but not before. We may restrict M to {a,b,c,d}
and apply Lemma 5.2. We thus have a feasible F' = {c} such that |[FAG]| is even for all feasible
G, and with FA{a,b,c,d} also feasible. By Wenzel’s strong exchange axiom there are two other
complementary feasible sets, say FA{a,c} and FA{b,d}. Restricting M to feasible sets that do
not contain either b or d, we obtain have two feasible sets {a}, {c} giving M as a restriction on
{a, ¢} before contracting K. O

The second special case is as follows.

Theorem 5.4 There is a polynomial time algorithm using an oracle for delta-matroid parity on
a delta-matroid M with pairing £ for which there exist two disjoint sets of elements S, T each
containing one element from each pair in L such that if the not-equal delta-matroid My is a
restriction of M on {a,b}, then both a and b are in S, and if the equal delta-matroid M- is a
restriction of M on {a,b}, then at least one of a,b is in S.



Proof. It suffices that if M’ is obtained from M by contracting X C L, then M' also satisfies the
property in the Theorem, so that M’ does not have M as a restriction on {a,b} with at most one
of a,b in S, and thus for {a,b} € L, and the algorithm of Theorem 5.1 applies. We show this by
induction on |K|.

Suppose M— or M, on {c,d} is obtained as a restriction after contracting K = {{a,b}}, with
c and d in T. We may restrict M to {a,b,c,d} and apply Lemma 5.2. We thus have a feasible F’
such that | FAG]| is even for all feasible G, and with FA{a,b, c,d} also feasible. By Wenzel’s strong
exchange axiom there are two other complementary feasible sets, say FA{a,c} and FA{b,d}. If
a is in T, then F' and FA{a,c} give M_ or M, as a restriction on {a,c} with both a and ¢ in T,
which is not possible by inductive hypothesis. Otherwise b is in T', and then F' and FA{b,d} give
M_ or M as a restriction on {b,d} with both b and d in T, which is not possible by inductive
hypothesis.

Suppose M on {c,d} is obtained as a restriction after contracting K = {{a,b}}, with ¢ in §
and d in T', but not before. We may restrict M to {a, b, c,d} and apply Lemma 5.2. We thus have a
feasible F' = {c} or F' = {d} such that |FFAG)| is even for all feasible G, and with FA{a,b,c,d} also
feasible. By Wenzel’s strong exchange axiom there are two other complementary feasible sets, say
FA{a,c} and FA{b,d}. If F = {d}, then the two feasible sets {b},{d} give a M. delta-matroid
on {b,d} with d in T', which is not possible by inductive hypothesis. If b is in T" and F' = {c}, then
the two feasible sets F' and FA{b,d} give an M_ delta-matroid on {b,d} with both b,d in T, which
is not possible. Otherwise a is in T' and F' = {c}, and then the two feasible sets {a}, {c} give a M,
delta-matroid on {a,c} with a in T, which is not possible by inductive hypothesis. O

Corollary 5.5 There is a polynomial time algorithm using an oracle for delta-matroid intersection
on two delta-matroids My, My where the delta-matroid My is arbitrary, and the delta-matroid My
does not have either the equal delta-matroid M— or the not-equal delta-matroid My as a restriction.

Proof. Apply Theorem 5.4 with S consisting of the elements in M; and T consisting of the
elements in Ms. O

The third special case is as follows.

Theorem 5.6 There is a polynomial time algorithm using an oracle for delta-matroid parity on
a delta-matroid M with pairing £ for which there exist two disjoint sets of elements S, T each
containing one element from each pair in L such that if the not-equal delta-matroid My is a
restriction of M on {a,b}, then either both a and b are in S or both a and b are in T, and if
the equal delta-matroid M_ is a restriction of M on {a,b}, then one of a,b is in S and the other
one inT.

Proof. It suffices that if M’ is obtained from M by contracting X C L, then M' also satisfies the
property in the Theorem, so that M’ does not have M as a restriction on {a,b} with one of a,b
in S and the other one in 7', and thus for {a,b} € L, and the algorithm of Theorem 5.1 applies.
We show this by induction on |K|.

Suppose M on {c,d} is obtained as a restriction after contracting K = {{a,b}}, with ¢ in §
and d in T, but not before. We may restrict M to {a,b,c,d} and apply Lemma 5.2. We thus have
a feasible F' = {c} such that |FFAG]| is even for all feasible G, and with FA{a,b,c,d} also feasible.
By Wenzel’s strong exchange axiome there are two other complementary feasible sets, say FA{a,c}
and FA{b,d}. If a is in T, then restricting M to feasible sets that do not contain either b or d,
we obtain have two feasible sets {a}, {c} giving M as a restriction on {a, c} before contracting K,

10



which is not possible by inductive hypothesis. Otherwise b is in 7', and restricting M to feasible
sets that contain a and do not contain ¢, we obtain two feasible {a} and {a,b,d} giving M_ as a
restriction on {b,d}, which is not possible by inductive hypothesis.

Suppose M_ on {c,d} is obtained as a restriction after contracting X = {{a,b}}, with ¢,d
both in S, but not before. Say a is in S and b is in 7. We may restrict M to {a,b,c,d} and
apply Lemma 5.2. We thus have a feasible F = () or F = {a,b} such that |[FAG)| is even for all
feasible G, and with FA{a,b, c,d} also feasible. By Wenzel’s strong exchange axiom there are two
other complementary feasible sets, say FA{a,c} and FA{b,d}. If F = (), then restricting M to
feasible sets that do not contain either b or d, we obtain have two feasible sets 0, {a,c} giving M_
as a restriction on {a,c} with both a and ¢ in S, which is not possible by inductive hypothesis.
Otherwise F' = {a, b}, and restricting M to feasible sets that contain a and do not contain ¢, we
obtain two feasible {a,b} and {a,d} giving M. as a restriction on {b,d} with b in T and d in S,
which is not possible by inductive hypothesis. O

Corollary 5.7 There is a polynomial time algorithm using an oracle for delta-matroid intersection
on two delta-matroids My, My that do mot have the equal delta-matroid M_ as a restriction.
This generalizes matroid intersection, as matroids do not have the equal delta-matroid M— as a
restriction.

Proof. Apply Theorem 5.6 with S consisting of the elements in M; and T consisting of the
elements in Ms. O

We note also that intersecting two matroids M; and My is equivalent to intersecting M,
consisting of the independent sets of M;, and M, consisting of the spanning sets of Mj.
Furthermore both M; and M have neither M_ nor M as a restriction. Therefore all the
results above generalize matroid intersection.

6 Bipartite Boolean Constraint Satisfaction

Corollary 5.7 also completes the classification of bipartite Boolean constraint satisfaction from [5, 11]
as mentioned in the introduction. A constraint C' on a set of Boolean variables X is a set of
Boolean assignments x to the variables in X. A restriction of C' by an assignment y to Y C X
is the constraint C'x, on the variables X \ Y consisting of all assignments z such that if = is the
assignment to X that agrees with y on Y and agrees with z on X\ Y, then z is in Cx . The bipartite
Boolean constraint satisfaction problem on a set C of allowed constraints has an instance consisting
of two sets of constraints S and T on subsets of a set of variables X, where each constraint in S
or T corresponds to a constraint in C under some correspondence of variables, and each variable
in X occurs in at most one constraint in § and at most one constraint in 7. The aim is to assign
Boolean values to the variables in X so as to satisfy the constraints in S and the constraints in
T simultaneously. The bipartite case of Boolean constraint satisfaction differs from the general
case with two occurrences per variable only when the equality constraint {00,11} is not an allowed
constraint in C. Let the inequality constraint be {10,01}. A constraint is a delta-matroid if the
collection of subsets of a set E with n elements defining a delta-matroid is viewed as a collection
of assignments to n Boolean variables defining a constraint C, where a 0 or 1 in a bit position
corresponds to presence or absence of an element in the subset.

Theorem 6.1 Fvery bipartite Boolean constraint satisfaction problem, with a set of allowed
constraints closed under restriction, and where equality is not an allowed constraint, is one
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of Schaefer’s polynomial cases, or polynomial by delta-matroid intersection without M_ as a
restriction, or is NP-complete. The polynomial cases remain polynomial even when the two sides
of the bipartition are given by an oracle that answers whether a restriction Sx, or Txy of either
side of the bipartition is nonempty. This oracle result holds in the general case where equality is
an allowed constraint for Schaefer’s polynomial cases and for delta-matroids that do not contain
inequality.

Proof. The classification is obtained by Feder [5], and the remaining open case of delta-matroid
intersection without M_ as a restriction is polynomial by Corollary 5.7 using an oracle. When M_
is allowed in delta-matroids, forbidding M gives polynomiality by Theorem 5.3 using an oracle.
The polynomial cases of Schaefer [11] are the following: (1) each constraint is a conjunction of
2-satisfiability clauses, (2) each constraint is a conjunction of Horn clauses, (3) each constraint is
a conjunction of dual-Horn clauses, and (4) each constraint is a conjunction of linear equations
modulo 2. An oracle in (1) allows us to obtain all the 2-satisfiability clauses and solve the problem.
An oracle in (2) (resp. (3) ) allows us to obtain all the variables forced to value 1 (resp. value 0) by
some clause, and once no variable is forced, the remaining variables can be assigned value 0 (resp.
value 1) if a solution exists.

For (4), we consider a candidate assignment x to the variables X and if this candidate assignment
does not satisfy one of the two oracles, we obtain an assignment 4 to a subset of variables Y C X
such that y is a restriction of z and does not satisfy the oracle, yet every restriction of y to |Y|—1
variables in Y satisfies the oracle. This implies that the single linear equation involving precisely
the variables in Y not satisfied by y must be satisfied by all assignments in the oracle. We then
repeat the process for a candidate assignment z to the variables X satisfying this equation, and this
assignment either satisfies both oracles or provides another equation. We proceed to add equations
until a solution is found, or until the equations obtained so far are not satisfiable. Note that at
most n = | X| equations will be obtained, since each equation reduces by one the number of free
variables, so the process terminates in polynomial time. O

We now proceed to the classification of bipartite Boolean constraint satisfaction problems in
the case where the allowed constraint types may not be the same for both sides of the bipartition.
Let A and B be two sets of constraint types. We say that (A, B) simulates constraint C' on A if
there exists an instance of bipartite Boolean constraint satisfaction with constraints from A in one
side and constraints from B in the other side, with every variable constrained exactly once in the
A side and constrained at most once in the B side, such that the variables that are not constrained
in the B side are the variables of C, and the set of assignments of values to variables in C' for which
there exists a solution to this instance is the same as C. We say that (A, B) simulates constraint
C on B if (B, A) simulates constraint C on B.

Let A, B, A’,B' be sets of constraint types. We say that (A, B) simulates (A',B') if (A, B)
simulates every constraint C' € A’ on A and simulates every constraint C € B’ on B. We say that
(A, B) is closed under simulation if whenever (A, B) simulates (A’, B') we have A’ C A and B’ C B.

Theorem 6.2 Let A,B be sets of constraint types such that (A,B) is closed under simulation
and both A,B contain the single variable constraints {0}, {1}, and {0,1}. Then the bipartite
Boolean constraint satisfaction with constraints from A in one side and from B in the other has
(1) polynomial cases derived from Schaefer’s classification; (2) polynomial cases derived from delta-
matroid intersection in the case where neither side has equality and in the case where one side has
neither equality nor inequality; (3) a polynomial case that combines 2-satisfiability and delta-matroid
intersection. If a problem is not in cases (1), (2), or (3), then either (4) A is the same as B and
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consists of delta-matroids including equality, so the problem is a delta-matroid parity problem, or
(5) the problem is NP-complete. The polynomial cases (1),(2),(3) remain polynomial in the oracle
model as in Theorem 6.1.

We define some specific constraint types on variables x,y,z. Let [z = y] be {00,11}. Let
[z # y] be {10,01}. Let [z < y] be {00,01,11}. Let [z V y] be {10,01,11}. Let [x = y = z] be
{000,111}. Let [1-3 z,y, 2] be {100,010,001}. Let [z V y V z] be {100,010,001,110,101,011,111}.
Let [z < y,z] be {000,001,010,011,111}. Let [z + y + z = 0] be {000,110,101,011} and
let [z +y+ 2z = 1] be {100,010,001,111}. Let [~ z V y V z] be any constraint satisfying
[1-3 z,y,2] C [ zVyVz] ClzxVyVz. Let [ z < y,z| be any constraint satisfying
[t=y=2] Cl~z<y,z| Clzr <y,z]. For these constraint types, we denote by T the complement
of variable z, and by & a literal that may be either z or Z. Feder [5] showed the following.

Lemma 6.3 For a given constraint C, we have that ({C},{{0},{1},{0,1}}) simulates (1) [z V y]
or [z # y] if C is not Horn; (2) [TV Y] or [z # y] if C is not dual-Horn; (3) [z < y] or [z V y] or
[Z VY] if C is not linear; (4) some [= TV gV Z] if C is not 2-SAT; and (5) some [~ % < §,Z] if C
is not a delta-matroid.

If X =z129---2r and Y = y1y2 - - - Y5, are k-bit vectors, write X <Y ifz; <y, foralll <37 <k,
write X <Y if X <Y and X #Y, and let d(X,Y) be the Hamming distance between X and Y,
that is, the number of bits 1 < ¢ < k such that z; # y;.

Lemma 6.4 For a given constraint C, (1) if ({C},{{0},{1},{0,1}}) simulates neither [x = y| nor
[z < yl, then for every X,Y € C with X <Y we have that every Z such that X < Z <Y satisfies
Z € C; (2)if ({C},{{0},{1},{0,1}}) simulates neither [z # y| nor [TV Y|, then there exists X € C
such that Z < X for every Z € C; (3) if ({C},{{0},{1},{0,1}}) simulates neither [z # y] nor
[z V y], then there exists X € C such that X < Z for every Z € C.

Proof. For (1), if X < X' < Y' <Y with X".Y’ € C and d(X',Y’') > 2, then there exists
X' < Z' < Y'" such that Z' € C. Otherwise we can consider the restriction C' of C to bit
vectors T such that t; = b; if z{ = y/ = b;, and select 4,j such that =} < y; and z; < yj, so
that the condition defined by C’ on bit positions 4, is [z; = z;]. Thus by induction there exist
X =X%< X! <... < X} =Y with d(X?, X**t1) = 1 and each X’ € C. Consider the restriction
C' of C to bit vectors T such that t; = b; if z; = y; = b;, and say X' has x; =1lforl1<j<iand
:1:; =0 for i < j < k. Assume inductively that if X <T < X* then T € C. Suppose Z is such that
X < Z< X" and Z ¢ C with d(Z, X**!) minimum. Then z;;; = 1, and choosing 1 < j < i such
that z; = 0, we have that the bit vectors T' obtained from Z by changing z; or z; ;1 or both are in
C, thus giving [z;41 < x|, completing the induction and the proof of (1).

For (2), if the condition does not hold, then there exist X,Y € C such that there isno T € C
with X <T orY < T, and d(X,Y) > 2. Choose X,Y € C such that if we consider the restriction
C' of C to bit vectors T with ¢; = b; if z; = y; = b;, then there isnot T'€ C' with X < T or Y < T,
and d(X,Y) > 2 is minimum with this property. The minimality of d(X,Y’) implies that if Z € C’
then Z < X or Z <Y, otherwise some Z' € C' with Z' > Z is such that there is no T' € C' with
7' < T and Z' # X,Y, so that 2 < d(X,Z') < d(X,Y), contrary to minimality. Let 7, be bit
positions such that z; = 0,z; = 1,y; = 1,y; = 0. Then there is no Z € C’ such that z; = z; = 1,
so the condition defined by C’ on bit positions i and j is either [z; # z;] or [Z; V T;], proving (2).
The proof for (3) is the same as for (2). O

A constraint C' is upward closed if for every X € C, if X < Z then Z € C, and downward closed
if for every X € C, if Z < X then Z € C. The upward closure of a constraint C' is the constraint
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up(C) consisting of the bit vectors Z such that there exists X € C with X < Z. The downward
closure of a constraint C' is the constraint down(C) consisting of the bit vectors Z such that there
exists X € C with Z < X.

Lemma 6.5 Let A, B be as in the statement of Theorem 6.2, and suppose every constraint in A can
be decomposed into an upward closed constraint, and constraints {0}. Then the Boolean constraint
satisfaction problem with constraints from A in one side and from B in the other is polynomial in
cases (1) for every C € B, down(C) can be decomposed into {0}, {0,1} constraints, or every C € A
can be decomposed into {0}, {1}, {0,1} constraints; (2) the constraints in A are delta-matroids,
and for every C € B, down(C) is a delta-matroid; (3) the constraints in A are 2-SAT, and for
every C € B, down(C) is 2-SAT. If we are not in cases (1),(2),(3), then A is NP-complete.

Proof. We show that the problem reduces to the problem where B is replaced by down(B)
consisting of the constraints down(C) for C € B. Given an instance of the problem with B, if
a constraint C in the B side has a variable z constrained by {0} in A, restrict C' to bit vectors
satisfying = 0. If the resulting instance has a solution, then it also has a solution with each C
in the B side replaced with down(C). If the resulting instance has a solution with each C in the B
side replaced with down(C), then we may replace the X chosen from some down(C) withaY € C
such that X <Y. This gives a solution with C, since replacing X with Y > X will still satisfy the
constraints in the A side, because these are upward closed.

If down(C) in down(B) can always be decomposed into {0} and {0,1} constraints, then it
suffices to test the corresponding restriction of the A side. The same argument holds if C' € A can
be decomposed into {0},{1},{0,1} constraints.

Suppose A is delta-matroid, and C € A cannot be decomposed into {0}, {1}, {0,1} constraints.
Then by (3) of Lemma 6.4 we can simulate [z # y] or [z V y] in the A side, and in fact we can
simulate [z V y| since [z # y] is not upward closed. Given a constraint D € B use for every variable
z; in D a corresponding condition [z; V y;] in A, to simulate a constraint C in A with variables y;.
The constraint C' is obtained from down(D) by complementing all bits. Since A is delta-matroid
and closed under simulation, it follows that C is delta-matroid and thus down(D) is delta-matroid.
Once both sides are delta-matroids, the fact that the constraints in A are upward closed implies
that they do not have [z = y| or [z # y] as a restriction, and the intersection of a delta-matroid
without equality or inequality with an arbitrary delta-matroid is polynomial by Corollary 5.5.

Suppose A is 2-SAT, and C € A cannot be decomposed into {0}, {1},{0,1} constraints. Then
as in the delta-matroid case we get [z V y] in the A side, and so for every constraint D € B we get
the constraint C' obtained by complementing all bits of down(B) in A, so since A is 2-SAT and
closed under simulation, it follows that down(D) is 2-SAT as well. The problem is thus reduced to
2-SAT and therefore polynomial.

In the remaining case, A is not delta-matroid or 2-SAT, and for some C' in B we have that
down(C') cannot be decomposed into {0}, {0,1} constraints. Then by (3) of Lemma 6.4 we can
simulate [z # y] or [T V 7] in the B side, obtaining [Z V 7] as the downward closure. By (4) of
Lemma 6.3, we can simulate some [~ Z V g V Z] in the A side, and the only such constraint that is
upward closed as required for the A side is [z Vy V z]. By (5) of Lemma 6.3, we can simulate some
[~ Z < g, Z] in the A side, and the only such constraint that is upward closed as required for the A
side is [Z < y, z] which we denote also by [z V y, 2].

We thus have [zVyV 2], [£Vy, 2] in the A side. Combining these with conditions [ZV '], [V /],
[ZV 2] on the B side gives corresponding [Z V7V ], [T V7,7 in the B side. We do a reduction from
3-SAT. A 3-SAT clause that has both positive and negative literals can be decomposed into a clause
that has only positive and a clause that has only negative literals, so that the two give the original
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3-SAT clause by resolution. We already have positive and negative 3-SAT clauses simulated. By
combining [z V y V 2] in A with [ZV 2] in B and with [2/ V 21, 23] in A, we obtain [z V y V 21, 2]
in A. This creates the multiple copies of variable z in the 3-SAT clause needed to combine with
corresponding copies of Z in 3-SAT clauses for B, which can be obtained analogously. We thus have
multiple copies of variables in clauses [z V y V 2] in A and clauses [T V3V Z| in B as needed to

complete the reduction and get NP-completeness. O

Note that the same result holds if we exchange upward closed with downward closed. A
constraint C' is Horn if every nonempty restriction C’ of C has a least element. Thus in the
first part of case (1) in Lemma 6.5, both A and B are dual-Horn. In the second part of case (1)
the constraints in A decompose into monadic relations.

Lemma 6.6 Let A, B be as in the statement of Theorem 6.2, and suppose some constraint in A
cannot be decomposed into an upward closed constraint, and constraints {0}, and some constraint
in A cannot be decomposed into a downward closed constraint, and constraints {1}. Then we have
the polynomial cases where A and B are both Horn, both dual-Horn, both 2-SAT, both linear, or
with at most one side having [z = y| the polynomial case of delta-matroids. In the remaining cases,
either both sides are delta-matroids with [x = y] and A = B, corresponding to delta-matroid parity,
or the A side is neither Horn, dual-Horn, 2-SAT, linear, or delta-matroid.

Proof. If A is a delta-matroid and B is not a delta-matroid, then by (5) of Lemma 6.3 we have
some [= Z < ¢, 2] in B. In the cases where A has one of [t =], [t # t'], [t < t'], or both [t V ']
and [V #'], then combining such conditions for ¢ or # being z,%,z and corresponding z',y', 2’ we
get [= & < 7, 2] in A, which is not a delta-matroid, contrary to assumption. We thus have of these
choices for t,#' either just [tV #'] or just [tV #]. By cases (1),(2),(3) of Lemma 6.4, we have that A
decomposes into constraints {0}, {1}, and just upward closed constraints or just downward closed
constraints, contrary to assumption.

If both A and B are delta-matroids, and A does not have [z = y|, then either B does not have
[ = y] either and the problem is polynomial by Corollary 5.7; or B does have [z = y], in which case
A does not have [z # '] since using also [y # 3'] would give [/ = ¢'] in A as well, so the problem
is polynomial by Corollary 5.5. If both sides have [x = y], then every constraint in .4 can also be
obtained in B and viceversa, so A = B and we have a class of delta-matroid parity problems.

If A is 2-SAT and B is not 2-SAT, then by (4) of Lemma 6.3 we have some [ ZV gV Z] in B.
In the cases where A has one of [t = '], [t # #'], [t < #], or both [t V#'] and [t V ], then combining
such conditions for ¢ or ¢’ being z,y, z and corresponding z', /', 2’ we get [~ 2V gV Z] in A, which is
not 2-SAT, contrary to assumption. We thus have of these choices for ¢, either just [tV ¢'] or just
[tV #]. By cases (1),(2),(3) of Lemma 6.4, we have that A decomposes into constraints {0}, {1},
and just upward closed constraints or just downward closed constraints, contrary to assumption.
If both sides are 2-SAT the problem is polynomial.

If A is linear and B is not linear, and A is not 2-SAT, then we have in A a linear constraint
[t+y+2=0]or [z+y+2z= 1], and in B by (3) of Lemma 6.3 we have [z < 2], or [zV 2], or [ZV 2/].
combining these with [z’ 4+ 4"+ 2’ = 0] or [z’ +y'+ 2" = 1] in A gives a constraint on z,y,z’,y’ that
is not linear, contrary to assumption. If both sides are linear the problem is polynomial.

If A is Horn and B is not Horn, then in B we get [z # y| or [z V y] by (1) of Lemma 6.3. Since
A does not decompose into {1} constraints and downward closed constraints by assumption, we
have by (1),(3) of Lemma 6.4 that A has [z = y], or [x < y], or [z # y], or [z V y], yet the last two
are not Horn, so A must have [z = y] or [z < y]. Combining these with [z # y] or [z V y] in B gives
[’ V 4] in A, which is not Horn, contrary to assumption. If both sides are Horn the problem is
polynomial. The case of dual-Horn is identical. O
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We now consider situations where the last case in the preceding lemma gives NP-completeness.

Lemma 6.7 Let A, B be as in the statement of Theorem 6.2. Assume A is not Horn, dual-Horn,
2-SAT, linear, or delta-matroid. Assume also B contains either [x = y| or [z < y]. Then the
bipartite constraint satisfaction problem is NP-complete.

Proof. If B contains [z = y|, then either we have [z # y] in A which combines with a condition
from (3) of Lemma 6.3 to give [z < y] in B, or we have both [z Vy] and [Z V7] by (1),(2) of Lemma
6.3 to also give [z < y| in B.

If B contains [t < t'], combining this with [~ Z V ¢ V Z] from A by (4) of Lemma 6.3 gives
[ZVgVZ]in B. Combining with [~ Z < g, Z] from A by (5) of Lemma 6.3 gives [Z < 7, 2] in B.

Since A contains either [t # ¢'] or both [t V ¢'] and [t V /] from (1) and (2) of Lemma 6.3, we also
get [V gV Z and [Z < §,7] in A. Using [z < y] from B and [t # ¢'] or both [t V ¢], [f V #] from
A we get both [z V y] and [Z V 7] in B, that is all three kinds of 2-SAT clauses in B. We can thus
replace each Z in the conditions of A with any choice out of z or T using these clauses in B. Since
A contains [Z V § V Z], we have that A contains [z V y] or [Z Vy]. Say A contains [Z V 7], and then
using [z VyV z] and [z V y, 2] in B gives NP-completeness as in the last part of the proof of Lemma

6.5. O

In the remaining case, neither A nor B contains either [z = y] or [z < y]. By (1) of Lemma
6.4, this implies that every constraint C in A or B satisfies C = up(C) N down(C). Furthermore A
is not delta-matroid, so it contains a constraint [~ Z < g, Z], and by the property just stated this
must be either [z Vy,z|, [z Vy,z]\ {111}, [ZV7T,Z], [T VT,Z] \ {000}. Say by symmetry it is either
[#Vy,z] or [zVy,z]\{111}. Then A contains [z V y]. Since B is not dual-Horn, it contains either
[z V7| or [x # y], and in this last case it contains [T V 7] as well by combination with [z V y] from
A. Combining [Z V7| from B with either [z Vy, 2] or [zVy,z]\ {111} from A, we get [EV7,Z] in B,
and thus [z Vy, z] in A. Furthermore, we get the complement of down (D) in A for every constraint
D in A, so by Lemma 6.5 the problem is NP-complete unless down(D) is 2-SAT. Similarly, we
get the complement of up(C) in B for every constraint C in A, and by Lemma 6.5 the problem is
NP-complete unless up(C) is 2-SAT.

If up(D) is not delta-matroid, then by (5) of Lemma 6.3 it contains [z V y,z] so D contains
[ Vy,z] or [V y,z]\ {111}. Then by the preceding argument exchanging A and B, we have
that the problem is NP-complete unless up(D) and down(C) are 2-SAT. In this last case, since
C = up(C) N down(C) and D = up(D) N down(D), the whole problem is 2-SAT.

Thus in the remaining case up(D) is a delta-matroid, and by the same argument down(C)
is a delta-matroid, while up(C) and down(D) are 2-SAT, for every C in A and D in B. By
complementing A, this problem is more easily viewed as having an instance consisting of M such
that up(M) is a delta-matroid and down(M) is 2-SAT, with the variables partitioned into pairs
z,y that must satisfy [z # y] in a solution.

Eliminate any variable z such that M has no bit-vector with x = 1 (resp = = 0), while setting
y =1 (resp y = 0) for the corresponding variable in the pair [z # y]. We may solve the down (M)
2-SAT part with constraints [z # y] and obtain a solution X if one exists. We may also solve
the up(M) delta-matroid part with constraints [z # y] and obtain a solution Y if one exists, by
Corollary 5.7. If X is in up(M), then X is in M = up(M) N down(M) and we are done. If X is
not in up(M), then there exists a 7' > X with T not in up(M) such that every U > T is in up(M).
Let S be the set of variables z that have value 0 in 7', called a flat of up(M). There is no element
of up(M) that has all variables z in S with value 0. For every z in S, there is a least element of
M that has z = 1 and with y = 0 for all other y in §.
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We claim that X' obtained from X by changing z = 0 to z = 1 is also in down(M). Otherwise
X' fails to satisfy some 2-SAT clause involving z, say [T V z] for some z not in S. Then an element
V of M with x = 1 and y = 0 for all other y in S also has z = 0. Restricting M to the variables
in SU{z}, to obtain M', we have that up(M') is a delta-matroid, and contains V with a single
variable z = 1. Let W be a least vector in M’ having z = 1, and let y be some other variable that
has y = 1 in W. Restrict M’ by setting all variables other than x that have value 0 in W to value
0, thus obtaining M"”. We have in M" vectors with yz = 00 and vectors with yz = 11, but no
vector with yz = 01 in M", giving either [z < y] or [z = y], contrary to assumption. This proves
the claim.

Note that the solution Y obtained above must have some z in S with value £ = 1. Thus we
may just obtain X’ by trying all choices of variables z that have z=0in X and z = 1 in Y, until
X' obtained by changing z does not fail to satisfy the 2-SAT clauses in down(M). We may then
change the mate that was linked to z by [z # y] from y = 1 to y = 0 to obtain a new solution X" in
down (M) which is closer to Y. Repeating the process, we eventually reach some X" in down (M)
that is also in up(M), since otherwise we keep getting closer to Y, and Y is in up(M). We thus
obtain from X and Y some X" such that X" € down(M)Nup(M) = M and satisfies all conditions
[z # y] as well.

This algorithm completes the proof of Theorem 6.2.

Theorem 6.8 Let M be an upward closed delta-matroid, let R be a collection of 2-SAT clauses
[Z], [T VY| such that no flat of M with at least two elements meets a clause [T V 7| in exactly one
element. Then one can solve the constraints given by M, R, and a pairing with conditions [x # y]
in polynomial time.

We now obtain a full classification for k-partite Boolean constraint satisfaction for k& > 3.

Theorem 6.9 Let Ai,..., A be sets of constraint types each containing the single variable
constraints {0}, {1}, {0,1} and at least one constraint that does not decompose into these, with
k > 3. Then the k-partite Boolean constraint satisfaction problem with constraints from A; in part
1 and each wvariable participating in only one constraint from each part i is either polynomial time
solvable using an oracle or NP-complete.

Proof. If some A; contains a constraint that is not a delta-matroid, say Ay, then the problem
defined by A; and Aj is either polynomial time solvable using an oracle or NP-complete by Theorem
6.2. The NP-completeness of this subproblem implies the NP-completeness of the entire problem,
while if the subproblem is polynomial then the algorithm simulates an oracle for the solutions of
the subproblem, thus giving a new problem where the parts A; and .42 have been combined into
a single part A’ that contains a constraint that is not a delta-matroid, thus reducing the analysis
for k to k — 1.

In the remaining case all A; are delta-matroids. If at most one A; contains [z = y], say Aj,
then all A; for j > 1 not containing [z = y] also do not contain [z # y| unless A; does not
contain [z = y|, otherwise [z = y] could be simulated on A; as well. We may thus intersect the
delta-matroids from 4; and Az by Corollaries 5.5 and 5.7, again giving a new problem where the
parts A; and As have been combined into a single part A’ for which an oracle can be simulated,
thus reducing the analysis for k to k — 1.

If all A; are delta-matroids, at least one A; contains [z = y|, say A;, and at least one A;
does not contain [z = y], say A, then we may again combine A; and A, into a single part A’ by
Corollary 5.5, and this part is not a delta-matroid by a constraint on z,y, z given by [z = y] in A;
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and one of [z # z|, [x < z], [z V 2], [TV Z] in Asg, thus reducing the analysis to an earlier case from
k to k—1.

Finally, if all A; are delta-matroids and contain [z = y|, then combining [z = y] in A4, [y = 2]
in A9, and [z = 2'], [y = 9], [z = 2'] in A3 gives [2' =y’ = 2/] in A3, contrary to the assumption
that Ajz is a delta-matroid. O

7 Delta-Matroid Parity without Oracle

For the remaining open cases of the general problem where equality is an allowed constraint, namely
cases where all constraints are given by delta-matroids, we note that not all known polynomial cases
remain polynomial in the oracle model. The coindependent delta-matroid case from Feder [5] has
an algorithm polynomial in n2¥, where n is the number of variables and & is the maximum number
of variables per constraint, and has a lower bound exponential in k if a constraint on k variables is
given by an oracle. There are other cases, such as local delta-matroids [3], that remain polynomial
with an oracle.

We generalize the case of coindependent delta-matroids. A delta-matroid M = (E, F) is a zebra
delta-matroid if there exist integers 0 < r < s < |E| such that: (1) For all feasible sets F' € F,
r < |F| <s; (2) For all A C E with |A| € {r,s}, A is a feasible set, that is, A € F; and (3) For
all A C E with r < |A] < s, either A € F, or for all B C E, if |[AAB| = 1 then B € F. Zebra
delta-matroids generalize the delta-matroids arising in the general factor problem.

A zebra delta-matroid is a coindependent delta-matroid if r € {0,1} and s € {|E| — 1,|E|}.
Coindependent delta-matroids were studied in [5].

Theorem 7.1 Delta-matroid parity on a coindependent delta-matroid with |E| = 2k with oracle
has a lower bound of 2F on the number of queries to the oracle.

Proof. Let E = {x1,...,29r} and £ = {{z9;_1,z9;} : 1 < i < k}. Consider a set A C F such
that for all 1 <4 <k, xz9,_1 € A if and only if z9; € A. Let F be the set of all subsets of F of odd
cardinality plus A, which is of even cardinality. While an algorithm has queried fewer than 2* sets
B C FE such that for all 1 < i < k, z9;_1 € B if and only if z9; € B, the oracle may answer that
B ¢ F, and only when the 2*-th such B is queried set A = B, giving the answer to the problem. O

We prove a counterpart to this lower bound.

Theorem 7.2 Suppose M = (E,F) with |E| = n is the direct sum of zebra delta-matroids
M,; = (E;, F;) with |E;| < k, |F;| < f. Then delta-matroid parity on M, L, can be solved in
time O(n®f).

We successively simplify the problem.

Lemma 7.3 The problem reduces to the case where we have a feasible F' and only a single {a,b} € L
such that {a,b} ¢ Lr, and one of the M; has E; = {b}.

Proof. The problem reduces to finding an augmenting path. For each choice of an element a with
which to start the augmenting path given F' € F, so that {a,b} € £ and {a,b} ¢ L, let S be the
set of elements ¢ such that {¢,d} € £ and {c,d} ¢ Lr for some element d. For each ¢ € S, let
M! = ({e}, F.), where F. = {0,{c}} if ¢ # a,b, {b} € F, if and only if b € F, § € F} if and and
only if b ¢ F, {a} € F, ifand only if a ¢ F, and ) € F, if and only if a € F. Let M’ be the direct
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sum of the M; and the M. Extend the feasible F for M to a feasible F' for M’ by including ¢ € S
in F' if and only if ¢ € F for ¢ # a, and including @ in F’ if and only if a ¢ F. Let £’ consist of the
pairs {c,d} € L such that ¢,d ¢ S, and the pairs {c,¢} for ¢ € S. Thus the only {c,d} € L' such
that {c,d} ¢ L% is {¢,d} = {a,a@}, and the augmenting paths for M, L started at a correspond to
the augmenting paths for M', £', which must start at a. O

Consider the problem in the form of Lemma 7.3, with zebra delta-matroids M; = (FE;, F;)
having corresponding r;,s;. Let M] = (E;,F,), where F, consists of the sets ] C E; such that

2 2

ri < |F]| < s; and F;A(F N E;) is of even size.

Lemma 7.4 The problem reduces to a problem where all but one of the M; have been replaced by
M] and the conditions of Lemma 7.3 are also met.

Proof. The augmenting path starting at a must end in some My = (Ey,Fy). Replace all
M, # My with M/, to obtain M'. Since every M; # M; has an even number of elements in the
augmenting path starting at a, it follows that this augmenting path is also an augmenting path in
M'. Conversely, suppose we have an augmenting path in M’, starting at a. Let the augmenting
path be ¢ = z1,...,T941 with z911 € Epy. Either this is also an augmenting path for M, or
there exists an 1 < j < t such that FA{z,...,z9; 2} is feasible for M but FA{z1,...,z9;} is
not feasible for M. In this last case, since each M; is a zebra delta-matroid, we have that zo;_;
is in some M; with r;,s; and (FA{z1,...,2z2j-1}) N E; has size r; < u < s;, so the fact that
FA{z1,...,z9;} is not feasible implies that FA{zy,...,29;_1} is feasible, giving an augmenting
path a = z1,...,29; 1 for M. O

Consider the problem in the form of Lemma 7.4.
Lemma 7.5 The problem reduces to graph matching.

Proof. So far, we have a single My = (Ey, Fo) not of the form of the M, with |Ey| < k. We
may then consider each of the at most f feasible sets Fy € Fy such that |(F N Ey)AFy| is odd, and
replace My with M) = (Ey, {Fy}), which decomposes into |Ey| < k zebra delta-matroids, giving at
most k£ unmatched pairs plus the pair {a,b}.

Now the problem has delta-matroids M] = (E;, F}). with F, consisting of all F] with
r < |Fj| < s and both ¢t = s — r,|F]| — r even. Define a graph G consisting of a clique K on
t vertices, an independent set I on r vertices, a complete bipartite graph with the r + ¢ vertices in
K UI in one side and some additional r + ¢ vertices forming a set U in the other side. To match all
vertices in K UT U U, we must have r < r + 25 < r 4t vertices in U matched to vertices in K U I,
corresponding to a choice of 7 4 2j elements from E; forming some F} € F;. We may then join the
sets U = U; for each M, with edges corresponding to the pairs {a,b} € L.

We may assume a is not in My. We look for an F'-augmenting path in the resulting graph
starting at a for F' = FA((FAFy)NEy). The augmenting path a, ...,z willhave 71 € (FNE))AF,
and either (FNEy)A{z1} is feasible for My, in which case we replace F with F/ = FA{a,...,z1,T1},
or we replace F' with F" = F'A{zy} for some zo € (F' N Ey)AF, such that (F' N Ey)A{zs} is
feasible for My, set a = T3 and proceed to look for an augmenting path starting at a. In the end,
we will either have F'N Ey = Fy or have found a shorter augmenting path by Lemma 7.4. O

The graph of Lemma 7.5 has O(n) vertices and m = O(nk) edges and requires finding at most
f augmentations in a graph if we go through the Fy with dy = |(F N Ey)AFy| in order of increasing
dp. Each augmentation can be done in time O(m), giving a total time O(mf) = O(nkf) for the
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problem of Lemma, 7.4. This complexity can be reduced by only implicity maintaining the graph
corresponding to of each M;, so that only the O(|E;|) times that M; is visited are counted, and
the search for an augmenting path takes O(n) time. Each of the sets in Fj is considered at most
k times while finding augmenting paths, once for each element in Fy to be included. Thus the
problem of Lemma 7.4 is solved in O(nf) time. The problem of Lemma 7.3 can be solved in time
O(n?f) by considering the at most n possible choices of My. Testing the at most n unmatched
pairs to find a maximum number of augmentations for the original problem can be done in time
O(n2f), solving the original problem and proving Theorem 7.2.

Of course, for the general factor problem, which can be viewed as consisting of zebra delta-
matroids such that if A is feasible then every B with |B| = |A] is also feasible, we can let M)
consist of the sets of a given size, and only two sizes need to be considered, namely the sizes p, g
such that p < v = |F N Ey| < ¢ that give the least odd values for v — p,q — v. This costs of a factor
of k for at most k augmentations instead of f, giving a bound of O(n®k) on the running time. See
also Cornuejols [2] for a more efficient algorithm for the general factor problem.

Istrate [8] defined compact delta-matroids by combining the delta-matroids of the general
factor problem in a star arrangement. More generally, we can combine zebra delta-matroids in
a tree configuration. Formally, define M = (E,F) to be a zebra-compact delta-matroid inductively
if there exists a zebra delta-matroid M; = (Fy U {a},F1) and a zebra-compact delta-matroid
My = (E2 U {b}, F2) such that M is obtained from M;, My by linking a and b and contracting
K = {{a,b}}; also the direct sum of a zebra delta-matroid and a zebra-compact delta-matroid is a
zebra-compact delta-matroid, and every zebra delta-matroid is a zebra-compact delta-matroid.

Theorem 7.6 A zebra-compact delta-matroid M = (E,F) with |E| = k can be recognized and
decomposed into zebra delta-matroids in time O(ck2) for some constant c.

Proof. We can test each of the 2¥ possible decompositions F; C E, Fy = E \ F1, each in time
O(c*) for some constant c. If there exist two elements AU B, A’ U B’ € F, where A, A’ C E;
and B, B' C Es, such that AU B', A'U B ¢ F, then this determines uniquely the feasible sets of
M7, My, namely the possible choices of B”, B" such that AU B", A" U B" € F give feasible sets
B"U{b},B" € Fy or B",B" U{b} € F, and similarly for F;. After verifying this decomposition,
we proceed inductively.

Otherwise, unless M is a direct product of My = (E1,F1) and My = (FEy, Fc, we only have
AUB,AUB' A'"UB" € F but A’'UB ¢ F. Then we have BU{b}, B’ € F», and possibly B'U{b} € F»
(or equivalently B, B'U{b} € F, and possibly B’ € F,). All the possibly included subsets must be
included either for F; or for F3, say for 1, and it can then be shown that including them all or none
for F5 will allow the decomposition to proceed if some subset of them allows the decomposition
to proceed. However, we may then not get a zebra delta-matroid for each delta-matroid that is
not further decomposed. It may at that point be decided whether to include the possibly included
subsets in Fy or not for the resulting delta-matroid that is not further decomposed containing {b}.
A similar situation arises for the case of a direct product of M1 and M> where we still choose to
decompose using elements a,b. In that case, for elements A U B € F, we must always include
B € F, and possibly B U {b} € F,, or always include B U {b} € F» and possibly B € Fs.

For the delta-matroids M; = (FE;, F;) that are not decomposed and must be zebra delta-
matroids, we may choose what possibly included elements for F; to exclude by choosing the
corresponding 0 < r; < s; < |E;| so as to satisfy the definition of a zebra delta-matroid, thus
having to exclude all sets of size less than r; or greater than s;, while we may always choose to
include sets of size from 7; to s;.
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There are thus d* cases that take O(c*) time and reduce to a case for a smaller k, giving the
recurrence f(k) = d*(c¥ + f(k — 1)), f(0) = 0, on the time used for finding such a decomposition,
that is time complexity of the order O((cd)kz). O

A delta-matroid M = (E,F) is even if for all F,G € F, |[FAG)| is even. We consider any class
C of even delta-matroids, closed under restriction and direct sum, such that there is a polynomial
time algorithm for delta-matroid parity on matroids in C. Examples of C include even local delta-
matroids [3] and linear delta-matroids over a given field [7].

A delta-matroid M = (E,F) is a C-zebra delta-matroid if for every feasible set A € F, there
exists a delta-matroid M4 = (E,F4) in C such that: (1) all sets B € F such that AAB is of
even size are also in Fu; (2) if B € FNF4 and C € Fy \ F are such that |[BAC| = 2 and
|AAC| = |AAB| + 2, then the two sets D such that |[BAD| = |DAC| = 1 satisfy C € F.

We assume that a C-zebra delta-matroid M is given together with appropriate presentations for
the corresponding delta-matroids M4 in C.

Theorem 7.7 Suppose M = (E,F) with |E| = n is the direct sum of C-zebra delta-matroids
M,; = (E;, F;) with |E;| < k, |F;| < f. Then delta-matroid parity on M, L, can be solved in time
polynomial in n and f.

Proof. The proof is analogous to the proof of Theorem 7.2. As in Lemma 7.3, the problem reduces
to the case where we have a feasible F' and only a single {a,b} € L such that {a,b} ¢ L, and one
of the M; has E; = {b}.

Consider the problem in this form with C-zebra delta-matroids M; = (E;, F;). For A= FNE;,
let M = (E;, F;) be the delta-matroid (M;) 4 in C in the definition of C-zebra delta-matroids. As in
Lemma 7.4, the problem reduces to a problem where all but one of the M; have been replaced by M.
The key point as before is that given an augmenting path be a = z1,..., 2941 With 29111 € Ep in
M, either this is also an augmenting path for M, or we have FA{z1,...,z9;_2} feasible for M and
for M', but FA{z1,...,zo;} feasible for M' and not feasible for M, and then FA{z1,...,z9; 1}
is feasible for M by the definition of C-zebra delta-matroids, giving an augmenting path for M as
well. Finally, as in Lemma 7.5, we replace My = (Ey, Fo) with M} = (Ey,{Fo}) for each Fy € Fy
and find augmenting paths starting at a and ending in M|, so that in the end, we will either have
FNEy = Fy or have found a shorter augmenting path, using the algorithm for delta-matroid parity
in C, since any algorithm for delta-matroid parity can be used to find an augmenting path starting
at a if it exists. O

An even delta-matroid M = (E,F) is local if for every F € F and every pairing L, if
Zi,...,Tok 18 a path such that FA{z9; 1,29} € F for 2 < 2i < 2k and {z9;,x2+1} € L for
2 < 2¢ < 2k, and there is no shorter path =1 = yi1,...,y = x9r satisfying this property with
{yl, s ay2l} - {$1a s a$2k}a then FA{‘TI, s a-TQk} eF.

The algorithm of Dalmau and Ford [3] for local delta-matroid parity only requires in the case
of even delta-matroids that this property hold, in an augmenting phase started at a feasible set
F € F, for that particular feasible set F'. We say that in that case M is F-local. The algorithm uses
the fact that if z1,..., 29, is an F-augmenting, Lpr-alternating path, then by repeated application
of Wenzel’s strong exchange axiom for even delta-matroids, there exists a Lp-alternating path
21 = X1,...,%Tox = Zop such that FA{x9; 1,x9;} € F for 2 < 24 < 2k. Such a path may be found
by an augmentation in graph matching, by considering the graph consisting of all edges {z,y} such
that FA{z,y} € F, plus edges {z,y} in the given matching for {z,y} € Lp. The algorithm also
attempts to find a shorter augmenting path, in the subgraph induced by z1, ..., Z2-1, T2;42, - - . , T2k,
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for each 2 < 27 < 2k. When such a shorter augmenting path is not found, the definition of F-local
guarantees that zi,...,z9 is an F-augmenting path.

We generalize local-zebra delta-matroids by only requiring M4 to be A-local instead of local,
and still obtain a polynomial time algorithm for the corresponding A-local-zebra delta-matroid
parity problem. We thus have polynomial time algorithms when the even delta-matroids M4 in
the definition of C-zebra are all linear over a given field, or all A-local. These classes are closed
under direct sums. More generally, we may allow M4 to be obtained from Mp in the class of
delta-matroids linear over a given field or the class of B-local delta-matroids by contracting K such
that Xp = K and A consists of the elements of B not in pairs from K.

A main example of local-zebra delta-matroids is the class of delta-matroids M = (E,F) that
satisfy a stronger exchange property, namely that for all feasible sets A, B and every element
z € AAB, either AA{z} is feasible, or for every y € AA{z}AB the set AA{z,y} is feasible. In
this case the local delta-matroid M4 = (E,F4) can be defined by letting F4 be the set of all B C E
such that AAB is of even size and AAB C AAD for some D € F.

Indeed, condition (2) in the definition of local-zebra holds by the stronger exchange property
applied to B and D such that AAC C AAD. It remains to show that M4 is a local delta-matroid.
The subsets D € F can be chosen without loss of generality with AAD of maximum size over
D € F. Any two such D must satisfy |D1ADsy| = 2, otherwise there exists {z,y} C D;ADj such
that |AA(D1A{z,y})| = |AAD;| + 2, and so D1A{z}, D1A{z,y} ¢ F contrary to the stronger
exchange property for Dy, Dy. There exists thus a set E such that |[D;AE| =1 for all such D;, and
if [ AAD;| > 1 then E can be chosen so that |AAE| = |AAD;|+1. Furthermore, if there are at least
two such feasible D;, say Dy and Dy, then we may not have two D; such that |AAE| = |[AAD;|+1
that are not feasible, say D3 and D4. Otherwise, if D; = EA{z;}, then the possible intersections
of AAF for F € F with X = {z1, 23,24} include () and X, but do not include any other subset YV’
containing z1 corresponding to some feasible G, by the stronger exchange property applied to D1,
G and z1, contradicting M beign a delta-matroid by the exchange property for §, X and z;.

Letting E = D if there is only one such D;, and letting E = () if |AAD;| < 1, we have that
My = (E,Fa) has F4 consisting of all sets G such that AAG is of even size and a subset of AAE,
or consisting of all these sets G except for a single G with |[AAG| = |AAE| — 1. Suppose now
G € F4 and some path z1,...,zo fails to satisfy the definition of G-local for M4. If k£ > 3, then
either GA{z1,z4} or GA{z1,z6} is in F4 since at most one even size subset of GAFE fails to give
a feasible set. Thus z1,...,T9; has a shortcut path as in the definition of G-local when k > 3. If
k = 2, then either GA{z1,z4} € F4 giving again a shortcut, or GA{z1, 9, 23,24} € F4 because
at most one even size subset of GAF is missing, satisfying the definition of G-local. Thus M4 is
G-local for all G € F4, that is, M 4 is local and therefore M is local-zebra.

8 Conclusions

We considered bipartite Boolean constraint satisfaction having two different sets of allowed
constraint types for both sides of the bipartition. This case is properly bipartite only if at least one
side does not contain equality. We obtain a classification for these problems if they do not have
equality in both sides. All the algorithms work even in an oracle model, leaving open when equality
is an allowed constraint in both sides cases of delta-matroid parity, which cannot in general be solved
in oracle model. We also obtain a full classification for k-partite Boolean constraint satisfaction
with k£ > 3.

Known polynomial cases of delta-matroid parity include local and linear delta-matroids, and
delta-matroids obtained from these by simulation. All of the remaining known polynomial cases
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are covered by cases studied in this paper. The first case is that of delta-matroids that do not
contain inequality. The second case is obtained from any of the known polynomial cases C of even
delta-matroids by considering the corresponding C-zebra delta-matroids, and adding closure under
simulation as well. Here C may be the class of delta-matroids obtained by simulation from linear
delta-matroids over a given field, or the class of delta-matroids obtained by simulation from A-local
delta-matroids.
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