T Wamacst il b braties dagiedy rddus Ndsand P

Phuong Nguyen
University of Toronto, April 2004. Revised Jan, 2005.

Abstract

We introduce “minimal” two—sorted first—order theories VL, VSL, VNL and VP that characterize
the classes L, SL, NL and P in the same way that Buss’s S} hierarchy characterizes the polynomial time
hierarchy. Our theories arise from natural combinatorial problems, namely the s¢-Connectivity Problem
and the Circuit Value Problem. It turns out that VL is the same as Zambella’s ZZ-Rec, VP is the
same as Cook’s TV?, and VNL and VSL are respectively the same as VI-KROM [8] and Kolokolova’s
Vi-SymKROM [12]. Except for VL = 3¥-Rec, establishing these equivalences is non-trivial.

1 Introduction

We study the logical characterization of the complexity classes L, SL,INL and P. The first three are the
classes of languages computable by respectively: deterministic, symmetric nondeterministic, and nondeter-
ministic Turing machines using logarithmic space. P is the class of languages computable by deterministic
Turing machines in polynomial time, or equivalently by alternating Turing machines using logarithmic space.

Each complexity class C is associated with a function class FC, i.e., the class of functions which grow at
most polynomially in length, and whose graphs are in C. Thus C can be characterized by a theory T in
the sense that the provably total functions in 7 are precisely the functions in FC. For example there have
been a number of theories that characterize P: S} [2], VI-HORN [7], V! [4], TV? [5] and PV [6] VPV
[5]. The theory S} is the first level in the hierarchy S3 C S2... of single-sorted first-order theories which
characterize the polynomial time hierarchy. The theory V1 is the two-sorted version of S3, while VI-HORN
is defined using the syntactic class of Horn formulas, based on the fact that the Satisfiability Problem for
this class of formulas is complete for P, and TV (which has been shown equivalent to V'-HORN) is a
finitely axiomatizable theory which can be seen as minimal for polynomial-time reasoning. (The two theories
V! and TV lie in the hierarchy of two-sorted theories V¢ C TV® C V! C TV' C ... which we will not
discuss here.)

In case of NL, the second-order theory SVL99 [3] is defined by formulating computation of logspace Turing
machines. The theory VI-KROM [8], on the other hand, is similar to VI-HORN but is developed based on
the fact that the satisfiability problem for propositional 2CNF formulas (conjunctive normal form formulas
with 2 literals per clause, or the Krom formulas [9]) is complete for NL. Thus for V!-KROM, the Horn
formulas are replaced by the Krom formulas.

Similar to VI-KROM, the theory V!-SymKROM has the same style as VI-HORN. It is defined in
the same way as VI-HORN, using the class of the so-called Symmetric Krom formulas instead of the
Horn formulas. It is based on the fact that the Satisfiability Problem for the Symmetric Krom formulas is
complete for SL. The theories VI-HORN, VI-KROM and V!-SymKROM are developed based on the
characterization of the corresponding classes in the context of Descriptive Complexity [9].

The theories we obtain are finitely axiomatizable and “minimal” for the corresponding classes. For P we will
show that our theory VP is equivalent to TV, and thus exhibits a finite axiomatization of TV®. For L,
the theory VL for L obtained by our method, not surprisingly, is equivalent to Zambella’s theory ¥-Rec
[14]. Consequently, it demonstrates the finite axiomatizability of F-Rec. For NL, our theory VNL seems
more natural than VI'-KROM in the sense that it does not require the artificial syntactic requirement on
the axioms. In this revision, we note that it has been shown [12] that VI-KROM and VNL are the same.
With similar arguments one can see that V!-SymKROM = VSL.

ISSN 1433-8092

Our theories grow out from the detailed treatment of two—sorted first—order logic in [4]. To prove the char-
acterization of the classes by our theories, we follow the method used in [5] and introduce their conservative
extensions which are universal and also “minimal”. Indeed, we will discuss the universal, conservative ex-
tension VNL of VNL in detail. From the fact that VINL is a universal theory and a conservative extension
of VNL, by applying the Herbrand’s Theorem for VNL we obtain the Witnessing Theorem for VNL: Any
331 theorem of VNL can be witnessed by an NL function.

It is intuitively true that for each of the classes mentioned above, we can develop a theory that characterizes
the class by adding to the “base” theory VO [4] an appropriate axiom corresponding to a complete problem
of the class. However, proving this characterization might not be an easy task, depending on the particular
class and the choice of the complete problem. Here, we choose the Graph Connectivity Problem, whose
formalization we find more convenient than other combinatorial problems. Also, under various settings
this problem becomes complete for the classes above in a very natural way: Computations of logspace
Turing machines (which can be non-deterministic, symmetric, etc.) can be modeled by polynomial-size
graphs (which will be directed, undirected, etc.) whose edge relations are precisely the “next configuration”
relations of the machines. Thus, proving that these theories capture the corresponding classes may require
minimal amount of work.

Note that the theories SE°9 and S¥°9 [3] also characterize L and NL, respectively. However these are
second—order theories, while our theories are two—sorted first—order. The subtle difference is that in our
setting, the binary string inputs are interpreted as the second sort objects, while in second-order theory the
inputs are interpreted by the first-order objects (i.e., numbers).

1.1 OQutline of the Paper

We introduce the theories in Section 2 and state the Main Theorem (2.9): the theories that we introduce
characterize the corresponding classes in the same way that the S} characterizes the polynomial time hier-
archy. In Section 3 we prove the Main Theorem for the class NL. The same arguments can be applied to
prove the Theorem for other classes. Then in Section 4 we show that VP is equivalent to Cook’s theory
TV, Section 5 and 6 conclude the paper.

2 The Theories

2.1 The Graph Connectivity Problems

The classes mentioned in the introduction share a common source for a complete problem: the Graph
Connectivity Problem (also known as the Reachability Problem). The problem is to decide, given a graph
G and its two specific vertices s (for “source”) and t (for “target”), whether there is a path from s to t.
Thus when G is a directed graph, we have STCONN, a complete problem for NL; when G is directed
and the outgoing degrees of the vertices of G are at most 1, we have the so-called 1-STCONN, a complete
problem for L; and when G is undirected, we have USTCONN, a complete problem for SL. For P we will
consider CVP, the Circuit Value Problem. Note that there is another interpretation of this problem, i.e.,
the connectivity problem in a rather complicated kind of graphs (called alternating graphs in [11, p55]). We
will not define these problems here, the readers may find them in many standard textbooks on complexity
theory.

In order to show that STCONN is hard for NL, we construct, for each nondeterministic logspace Turing
machine M and an input x, a graph G which represents the computation tree of M on z. More precisely,
each vertex of G is labeled with a configuration of M on z, and there is a directed edge (u,v) in G iff v is
labeled with a next possible configuration of the label of w. Here, a configuration of M consists of the state of
M, the content of its work-tapes (but not the input), and the corresponding tape heads (including the input

tape head). The configuration is encoded in the standard way, and since M works in logarithmic space, the
graph G has polynomially many vertices. Note that this construction is possible in AC®. Similar arguments
show that USTCONN and 1-STCONN are hard for SL and L, respectively.

In developing the theories, we will use the following straightforward polytime algorithm that solve these
problems. The idea is to evaluate, for each length k, all vertices that are reachable from the source s by a
path of length at most k. Let level k denote this set. Then level 0 consists of only s, and level a contains ¢
iff there is a path from s to ¢, where a is the number of vertices in G. Also, it is straightforward to compute
level k + 1 inductively from level k using the edge relation in G. The algorithm is presented in Figure 1
below. Here Vi and Eg are respectively the set of vertices and edges in G. The vertices on level k are
recorded on the row Z[*! of a 2-dimensional array Z. Note that Eg is the set of ordered pairs.

Input: G = (Vg, Eg) and s,t € Vg, |Vg| = a.
1. Z:= 0 (Z is the 2-dimensional array, the row Z[¥l keeps vertices on level &.)
2. 719 .= {5}
3. Fork=0. (a—1)do

o ZIk+1] .— 7lk]
e Foru € Z% v € Vg, if (u,v) € Eg then Z[+1 .= ZIk+1y {4}

4. If t € Zl°] then output YES; otherwise output NO.

Figure 1: A polynomial time algorithm for Connectivity

2.2 VL, VSL and VNL

We refer to [4] and [5] for the syntax and semantics of the two—sorted first—order logic that we are using. Note
that there are two sorts of variables: the number variables, denoted by x, v, z, .. .; and the string variables,
denoted by X,Y, Z, The number variables are intended to range over the set N of natural numbers, which
are interpreted as unary strings. The string variables are intended to range over the set of finite subsets of
N, which are represented by finite binary strings.

The theory V° serves as the “base” theory for all of our theories. It is axiomatized by (i) the set of defining
axioms for the symbols of the underlying vocabulary

£ = 0,1, 4, [;=1,=2,<, €]

and (ii) the comprehension aziom scheme over £ formulas, SE-COMP. Here Xf is the set of all formulas
whose quantifiers are bounded and are over numbers only. Then SF-COMP is the set of all formulas of
the form

AX <yVz <y(X(2) & 6(2))

for ¢ a £F formula, and X does not occur free in ¢.

Other important sets of formulas include £ and II5, the sets of formulas of the form 3X < #p(X) and
VX < fip(X) respectively, where p(X) is a £ formula.

We often use = for both =; and +3, the meaning will be clear from the context. Also, we will denote the
membership relation z € Z simply by Z(z). We will use (x,y) for the pairing function:

(T, y)=(@+y)lz+y+1)+x

We will simply use Z(z,y) for Z({x,y)). Using the pairing function, we can encode a 2—dimensional Boolean
array in a string variable as follows. The row k of an array Z, Z[* is defined as

|ZH) <1z A ZW(2) & Z(k, z)
Each of our theories is axiomatized by V° together with an appropriate axiom, the main part of which
encodes the algorithm described in Figure 1 in the following way. Suppose that there are a vertices in G,
i.e., |Vg| = a, then Vi can be represented simply by {0,...,a — 1} (and it suffices therefore to mention only
a). Also, the edge relation Eg is given by the string variable E: E(i, j) holds iff (i,j) € Eg. Then the levels

k, for 0 < k < n, are stored in a string variable Z which we view as coding a 2—dimensional array: The row
k of Z consists precisely of those numbers j which are on the level k¥ computed by the algorithm in Figure 1.

Without loss of generality, we identify the source s with 0, and the target ¢ with 1. The following formula
encodes the polytime algorithm given in Figure 1. (LC stands for Logspace Computation.)
Definition 2.1 (LC)

LC(a,E,Z) =|Z| < (a,a) A Z(0,0) AVi < a, 0 <iD-Z(0,i) A

Vk,i <a, Z(k+1,i) [Z(k,9)V3j < a, EG,i) A Z(k,5)]. @

It is easy to check that Z(k,) holds iff there is a path from 0 to 7 of length at most k. In other words, Z is
the string which “calculates” all vertices reachable from 0 in the graph E.

Note that given a and E, it is true that there exists Z that satisfies LC(a, E, Z). However this is not provable
in the theory V°. Nevertheless, V° proves that if such Z exists, it is unique.

Lemma 2.2 V° + (LC(2,E,Z1) NLC(2,E, Z1)) D Z1 = Z»

Proof The Lemma, follows easily from the fact that V° proves the number induction scheme on 2{? formulas,
i.e., the set of all formulas of the form

©(0) AVz < y(e(z) D w(y)) D ¢ly)

where ¢ is a £F formula. O

Now, the theories VL, VSL, VINL simply state the existence of Z given particular conditions on E:

Definition 2.3 (VL, VSL, VNL)

VL =gem V°+Vi<adlj<aE®,j)D3IZ LC(a,E,Z), (2)
VSL =gem VO +[Vi,j <a E(i,7) < E(j,i)] >3Z LC(a,E, Z), (3)
VNL =4en V°+3Z7 LC(a, E, 7). (4)

Note that the length of Z is bounded by (a,a). Therefore the theories are bounded. Also, V© is finitely
axiomatizable [7]. Therefore VL, VSL and VNL are all finitely axiomatizable.

Corollary 2.4 The theories VL, VSL and VNL are finitely axiomatizable.

The theory £F-Rec introduced by Zambella [14] is V° together with the following recursion scheme, which
asserts the existence of a path in a directed graph whose vertices have outgoing degrees at least 1. Formally
this can be taken as the set of all formulas of the form

Vi < adj < ap(i,j) D 3AZ, fval(0,2) = 0 AVw < ap(fval(w, Z), fval(w + 1, Z)). (5)

where ¢ is a BF formula not involving Z.

Here fval(w, Z) is the function that extracts the value at w of a function coded by Z. The coding scheme
should be simple, i.e., fval(z, Z) can be defined by an AC® formula. Here we will assume the following
coding scheme:

foal(z,2) = z & Z(z,2) ANVy < |Z|, Z(z,y) Dy =z.

It is not surprising that VL is the equivalent to £F-Rec, and thus VL exhibits a finite axiomatization of
5 Rec.

Lemma 2.5 VL = Eg—Rec.
Corollary 2.6 P Rec is finitely aziomatizable.

Proof of Lemma 2.5
a) VL C IF-Rec: Suppose that E is a string such that Vi < a 3'j < aE(i, j). We need to prove in ZF-Rec
that there exists Z such that LC(a, E, Z) holds.

Let ¢(i,j) = E(i,j), then the precondition of (5) is satisfied. Let Z' be the string whose existence is
guaranteed as in (5). Then fval(w, Z') is the only vertex that is reachable from the source 0 by a path of
length exactly w.

Now in the desired Z that satisfies LC(a, E, Z), level i consists of all vertices that are reachable from the
source by path of length at most i. Thus Z is defined from Z’ using SF-COMP as follows.

Z(’L,]) < dw <, g :fual('w,Z').

b) ZF-Rec C VL: Let ¢(i,5) be a & formula such that Vi < a3j < ay(i,j). We need to prove in VL the
existence of Z that satisfies (5). Note that for each i, there may be more than one j such that ¢(4,) holds.
Hence we will take the the smallest such j. Formally, using $Z-COMP, V° proves that

AE < (a,a), E(i,j) «i<aAj<aAp(i,j)AVE<j —p(i,l).

Let Z' be the string that satisfies LC(a, E, Z'). Then a vertex j is reachable from the source 0 by a path of
length exactly k iff it is in Z'(* but not in any Z'¥'] where k' < k. Thus the string Z of (5) is defined as
follows:

foal(w, Z) = z <+ Z'(w, 2) AVw' < w -~Z(w', 2).

Hence in V°, Z can be defined using SZ-COMP by:

|Z] < {a,a) A Nw,z < a, Z(w,z) + Z'(w,2) AVw' <w —~Z(w', 2)]

23 VP

Now we will define the theory VP for P using CVP, the Circuit Value Problem. This is the problem of
deciding, given a Boolean circuit and its input, whether the output of the circuit is 1. Here we restrict to
monotone circuits with unbounded fan-ins, but the problem remains equally hard.

The following polytime algorithm computes the output of a Boolean circuit G which has a gates. The gates
of G are labeled with 0,...,(a — 1), and the edges (i.e., wires) of G are given by Eg: (u,v) € Eg iff the
output of the gate labeled with v is connected to the input of the gate labeled with w.

The algorithm runs in a loops. The idea is to identify all the gates whose values are 1. In loop 0 we simply
single out the input gates with the value 1. In each subsequent loop &k + 1 we identify “as many more gates
as possible”: all gates that have been identified in loop k, together with all

e V—gates that have at least one input from the gates we have in loop k;
e A—gates that have all inputs from the gates we have in loop k.

(Note that we consider only monotone circuits.) The gates that we identify in loop & are stored in the row
ZI*] of an array Z. Also, assume that the output gate is labeled with 0.

Input: Circuit G with a gates labeled with 0,...,(a — 1), output gate is labeled with 0.

1. Z:=90
2. 7% := {input gates with value 1}
3. Fork=0..(a—1)do

o ZIk+1] .— 7lk]

e For0<u<a

— if u is an A—gate, and for all v such that (u,v) € Eg, v € Z* then
Zk+1] .= ZIkH1 Y (v}

— if u is a V-gate, and there is a v such that (u,v) € Eg and v € Z¥ then
ZEH1 .= ZIkH1y {4}

4. If 0 € Z!°l then output YES; otherwise output NO.

Figure 2: A polynomial time algorithm for CVP

Now we define ALC. Here E encodes the edge (i.e., wires) in a Boolean circuit where the gates have
unbounded fan-ins: E(i, j) holds iff the output of the node labeled j is connected to an input of the gate
labeled by i. We also assume that the A—gates are labeled by the even numbers, and the V—gates are labeled
by the odd numbers.

We can assume further that there is only one 1-bit input, and it is given at the input gate labeled with 1. In
the formula ALC below the 2-dimensional array Z is used to evaluate all gates of the circuit: Z(k,%) holds
iff the gate labeled ¢ is identified in the loop k of the algorithm. (Thus we deliberately give it the same name
with the array in the algorithm.)

Definition 2.7 (ALC)

ALC(a,E,Z) =|Z| < (a,a) A Z(0,1) AVi < ai#1D-Z(0,i) A
Vi k < a, Z(k+1,2i) < [Z(k,2i) VY] < a E(2i,7) D Z(k,7)] A (6)
Zk+1,2i+ 1) [Z(k,2i+1)VIj<a E2i+1,5) A Z(k,j)]

(Note that although Z(k,i) are also defined for a < ¢ < 2a, the values Z(k,i) where i > a are irrelevant.)
Definition 2.8 (VP) VP =4e, VO +3ZALC(a, E, 7).

Since Z has length bounded by (a,a), VP is a bounded theory. Also, since V? is finitely axiomatizable [7],
so is VP.

Note that P is the same as the class of languages computable by logspace alternating Turing machine.
Furthermore, evaluating the acceptance of a computation of an alternating Turing machine can be roughly

viewed as computing the output of a Boolean circuit. (For logspace ATMs, the circuit will be of polynomial
size.) The formula ALC encodes the above polytime algorithm for CVP in the same way that LC encodes
the polytime algorithm for STCONN given in Figure 1.

2.4 The Main Theorem

Recall that 3P and II? formulas are of the form 3X < #p(X) and VX < #p(X), respectively, where ¢ is
a XF formula. We say that a relation R(Z,X) is AP-definable in a theory T if there are a ¥ formula
o(&,X) and a IIB formula (&, X) such that

R(& X) iff ¢(# X), and Tt o@ X) o (@& X)

Also note that by Parikh’s Theorem, for each of our theories the class of ¥;—definable functions is the same
as the class of P -definable functions.

Theorem 2.9 (Main Theorem) For each class C of the classes L, SL, NL and P, the functions in
FC are precisely the 31 -definable functions of VC, and the relations in C are precisely the AP —definable
relations of VC.

In the next Section we will prove this Theorem for the case of NL (Corollary 3.12). Similar arguments can
be applied to other classes.

3 Characterizing NL by VNL

3.1 Defining NL Relations and Functions in VNL

Theorem 3.1 The NL relations are AE definable in VNL.

Proof Let R(Z, X) be an NL relation, which is decided by a non-deterministic logspace Turing machine
M. We can assume that M has only one accepting configuration (e.g, upon entering the accepting state,
it erases all of its work-tapes content). Then, there is an AC° relation (or equivalently, a & formula)
STEPw (%, X ,i,j) such that STEPw(Z, X, i, j) holds if and only if j codes a next configuration of M (on inputs
(%, X)) of the configuration coded by i. Note that STEP\ depends on the encoding of M’s configurations.
We do not go into the details of such encoding, but we assume that 0 always codes the starting configuration,
and 1 always codes the only accepting configuration. Furthermore, there is an £4 number term nconfsy (&, 7t)
that bounds the number of different configurations of M on input (&, X) where |X| = 7 (we write ty for
neonfsy (Z,]X])).

Definition 3.2 For each non-deterministic logspace Turing machine M, GRAPHM(QZ"’,X:, E) is the following
8 formula:

GRAPHw(%,X,E) = |E| < (tm,tm) AVi,j < tw E(i,§) ¢ STEPw(Z, X, i, j). (7)
And Graphy (%, X) is the AC® function whose graph is GRAPH y :

Graphy (2, X)(i,7) ¢ i <tm Aj < tu A STEPu(Z, X, i, 5) (8)

Then, R(Z,|X|) is represented by the following $8 and ITP formulas

R(#|X|) < 3E,Z, GRAPH\w(&,X,E)ANLC(t,E,Z) A Z(t,1) 9)
& VE,Z, (GRAPHW(%,X,E)ALC(t,E, Z)) D Z(t,1) (10)

(Note that the lengths of E, Z are bounded, see (1) and (7).)
It remains to show that the two formulas in (9) and (10) are equivalent in VNL.

(9) = (10) E is unique because E = Graphy (&, X). The uniqueness of Z follows from the uniqueness of E
and Lemma 2.2.

(10) = (9) E exists because E = Graphy (%, X). Z exists using LC (1). O
Theorem 3.3 The NL functions are P definable in VNL.

Before proving this theorem, we prove the following lemma, which states that VINL proves the existence of
“combined” computations and “combined” evaluations, i.e., the existence of multiple £ and multiple Z as
in (9).

Lemma 3.4 For each non-deterministic logspace Turing machine M that works on input (z, T, X),

VNL + 31Ey, 71 Vz < a, [GRAPHw (2, &, X, E¥Y A LC(a, EF,). (11)

In other words, for each value of z, EF] is the graph of computations of M on input (z,Z, X), and Zl{z] is the

reachability relation of Eﬁ]: Z{Z] (k,i) holds if and only if there is a path of length < k from 0 to i in the
graph EEZ].
Proof of Lemma 3.4 The uniqueness of E; and Z; can be proved in similar way as in Lemma 2.2. We
will prove their existence. Indeed, Ek] is just Graphy(z,#,X), therefore Ey can be defined in V° using
SB_.COMP, ie.

Ei(z,i,j) @ z<ali<aAj<aA Graph(z, &, X)((i,]))

Now we prove the existence of Z;. Note that for each z, by definition (4), a string Z exists which calculates
the vertices reachable from 0 in the graph E{Z]. Hence we need to show the existence of all of them in the

“combined” string Z;. For this, we create a “big graph” E' which has a copy of each “small graph” EEZ], for
all 0 <€ z < a. We also connect the source of each of these copies with a single source in E’. Then in general,
there is a path of length £ in EF] from the source to v iff there is a path of length k + 1 from the source (of

E'") to the copy of v in E'. (This is true except for EP]: there is a path of length % in EP] from the source
to v iff there is a path of length & from the source (of E') to the copy of v in E'.)

The “big graph” E' is obtained by concatenating the rows of E;. The edge (¢,7) is in E{z] iff the edge
(az +i,az + j) is in E'. Also, (0,az) € E', for 0 < z < a. Formally E' is defined as

Vz,i,j < a, E'(az +i,az +j) & E&z](i,j)] A [Vz < a, E'(0,az)].
Note that |E'| < (a?,a?). Let Z’' be the string existed that satisfies LC(a?, E', Z'). Then, for k < a,i < a:
Z%k,i) & Z'(k,i) and ZF(k,d) © Z'(k+1,az+1), for 1 <z < a.

Since VINL proves the existence of Z', it also proves the existence of Z;. d

Proof of Theorem 3.3 We consider the cases of string functions and number functions separately.

First, suppose that F(Z, X) is an NL string function, i.e., F is p-bounded by an £? term s, and there is a
non-deterministic logspace Turing machine M that computes the bit graph R(z, Z, X) of F. Let Ey, Z; be the
strings which exist by Lemma 3.4, where a = maz{s, nconfs\(Z,|X|)}. Then for each “bit 27, z € F(Z, X)

iff M accepts the input (z, 7, X), i.e., in the “small graph” EF] there is a path from the source 0 to the target
1. In other words, F' can be defined as follows

F(#X)=Y & Vz<s [YV(2) & 2, 1)]
It follows that VNL can ¥ define F.

Now, suppose that f(Z, X) is an NL number function. Suppose that f(Z, X) < s(&, |X [), and the graph
R(y,#, X) of f is computable by a non-deterministic logspace Turing machine M. Let E;, Z; be the strings
as in (11) (where a = maz{s(&, |X|), nconfs\(Z,|X|)}). The f is defined by the formula

y=1#&X) & 20 a,1)

Thus f is 31—definable in VNL. O

3.2 The Vocabulary Lni, of NL Functions

Let Fsrconn be the (partial) function whose graph is LC, i.e.,
FSTCONN(-'L';E) =7 < LC(.{L‘,E,Z) (12)
Then, intuitively, Fsrcony is complete for NL. Consequently, the AC? closure of Fgrcony represents

precisely the NL functions. We will formally prove this claim. Define LNy, as follows.

Definition 3.5 (LnL) £nNL s the smallest vocabulary that contains Lyaco U{FsTconn} such that for each
open formula a(z,#,X) over Lni, and term t = t(&, X) of L%, there is a string function F,; and a number
function fo i of Ln1 with defining aziom(s)

Foi(Z,X)(2) & 2 <tAa(z,Z X) (13)
far(@, X) < (&, X) (14)
fau(®X) <t D alfar(# X), 7, X)) (15)
2 < fau(Z X) D —a(z, &, X) (16)

Lemma 3.6 A relation is in NL if and only if

a) it is represented by an open Lnr, formula;
b) it is represented by a £F(Ln1) formula.

Proof Suppose that R(#,X) is an NL relation. Recall the definition of the AC® function Graphy, in (8).
It is evident from the proof of Theorem 3.1 that R is represented by the following open formula over £n1.:

R(#,X) & Fsrconn (t, Graphy(Z, X))(t, 1),

where M is a non-deterministic Turing machine that computes R, and t = nconfsy, (Z, X) is the upper bound
on the number of different of configurations of M.

It remains to show that any 3¢ (Lnr) formula o(Z, X) can be evaluated by NL machines. This is proved by
induction on the structure of ¢. The base case is straightforward. For the induction step, we need to use the
fact that NL is closed under (i) negation, (ii) Boolean operations, and (iii) bounded number quantifications.
Note that (i) follows from the Immermann-Szelepcsényi result [10, 13], and (ii) and (iii) are straightforward.
O

Corollary 3.7 The functions in Ln1, represent precisely the NL functions.

Proof Let F(&#, X) be an NL string function. Then by definition,
F(# X)(i) e i <pAR(G,Z X)

for some polynomial p and some NL relation R. By Lemma 3.6, there is an open LNy formula ¢ that
represents R. Consequently, F is the function of Lnr, defined by (13).

The case of NL number function is similar. O

3.3 The Open Theory VNL and The Witnessing Theorem for VNL

Note that LC (1) is not an open formula. Therefore, the defining axiom for Fsrconn (12) is not really
an open formula. However, the existential quantifier in LC can be eliminated using the following technique
from [5]. Let fro be the AC? function defined by

fro(k,i,a, E,Z) =min{z : z < a, and E(z,i) A Z(k,2)}.
(Thus fre(k,i,a,E,Z) = fq,, where a = E(z,i) A Z(k, 2); see (14), (15), (16).) Now we have
3j < a E(G,i)AZ(k,§) & fro(ki,a,E,Z)<a
Therefore we obtain the following open formula (in £% U {fr¢}) which is equivalent to LC:

LC'(a,E,Z) =Z(0,0) A [i <aD=Z(0,i)] A

k<ani<a D [Z(k+1,i) ¢ (Z(k,i)V fre(k,i,a, E, Z) < a)]. a7

Definition 3.8 (VNL) VNL is the theory over LnL, where Fsrconn has the defining aziom using LC'
(17), and other functions are defined according to Definition 3.5.

Lemma 3.9 1. For each 8 (Ln1) formula o, there is an open Lxr—formula o' such that
VNLF ¢ <o

2. VNL I 8 (Ln1)-COMP.

Proof 1) is proved by structural induction on . The case of quantifier in the induction step is proved by
the same method that we have used to eliminate the quantifier in LC.

2) follows from 1) and the fact that
Z =Fuy ¢ |Z] <tAVz<tZ(z) ¢ a(z)

(See (13).) O

10

Lemma 3.10 VNL is a conservative extension of VNL.

Proof To show that VNL extends VNL, we show that VINL proves the existence of Z in (4). This is
immediate, since Z = Fsrconn (a, E).

It remains to show that VINL is conservative over VNL. It suffices to show that VNL F £F (£n1,)-COMP.
Note that the functions of £n1, are X;-definable in VNL (Theorem 3.3). Consider a ¥ (£Ln1.) formula
(z). By Lemma 3.6 it represents an NL relation, i.e., the bit graph of an FNL function F. By Theorem 3.3,
F is X P—definable in VINL, thus VNL proves the comprehension axiom for ¢(z). O

Theorem 3.11 (Witnessing Theorem for VNL) XZ theorems of VNL are witnessed by NL functions.

Proof Suppose that HYgo(a'r’,X ,Y) is a £8 theorem of VNL. Then by Lemma 3.10, it is also a theorem of
VNL. Since YNL is_,a, universal theory, by the Herbrand Theorem, there is a function of Lnr such that
VNL + (&, X, F(z, X)). O

Corollary 3.12 A function is in FNL if and only if it is P -definable in VNL. A relation is in NL if
and only if it is AP -definable in VNL.

4 VP =TV

In [5] Cook introduces the theory TV, and shows that it characterizes P. He also shows that TV? is
equivalent to V? + SZ-BIT-REC, where S¥-BIT-REC, the bit-recursion scheme for £ formulas, is the

following scheme:
3X < aVz < a, X(2) & p(z, X<7), (18)

where ¢ is £, and X <% is the AC? function defined by

X<"(z) & 2 <z AX(2).
Here we will show that TV® = VP, and this verifies the claim in [5] that TV? is finitely axiomatizable.
Theorem 4.1 VP = TV?,
Corollary 4.2 ([5]) TV is finitely aziomatizable.
Proof of Theorem 4.1 Note that 3ZALC(a, E, Z) (see Definition 2.8) is a special form of the F-BIT-REC

axioms. Hence VP is a sub-theory of TV. Tt remains to show that the XF-BIT-REC axioms hold in VP.

Let ¢(x, Z) be a £F formula. We need to prove in VP the existence of X that satisfies (18). We will construct
a monotone circuit encoded by a string variable E so that from the string Z which satisfies ALC(a, E, Z)
we can extract the required value of X. We will show how to construct such monotone circuit C'; encoding
of C' by a string F is straightforward, and is omitted.

Note that (18) gives a recursive definition of the initial segments of X. The circuit C has a special gates
named go,...,ga—1, With g; outputs 1 iff X (x) holds, for 0 < z < a. Each gate g, is the output of a
monotone sub-circuit C,, whose inputs are from gg, ..., g, 1. Note that these gates also provide the unary
representation of | X <?|, i.e., | X<%| =14 maz{z < z: X(2)}.

11

Notice that ¢ may contain nested occurrences of Z. Any atomic sub-formula of ¢(z, Z) that contain nested
occurrences of Z must be of the form Z(t|Z|), for some £%-term ¢. This can be replaced by Ju < a(u =
|Z| A Z(t(u)). Therefore we can assume without loss of generality that Z does not occur nested in p(z, Z).

Also, using the De Morgan’s rules we can push the negations in ¢(z, Z) so that they appear only in front of
the atomic sub-formulas. We use literal to refer to either an atomic sub-formula or its negation, of p(z, Z).

Now the monotone sub-circuit C;, is as follows. A part of C;, is the monotone circuit CJ, that computes ¢(z, Z)
given the values of the literals (the output gate of CJ is g,). This part is constructed in a straightforward
way, e.g., the V connectives and 3z < t quantifiers correspond to J-gates, etc. It remains to evaluate the
literals inputs to C.,, and this is the remaining part of C,.

Note that the atomic formulas are of the forms
s=t s<t Z(t)

where s,t may contain |Z|. Any literal that does not contain |Z| is either TRUE or FALSE. For others, it
suffices to evaluate an arbitrary term t(|Z|), where |Z| is given by a unary string, as noted earlier. This can
be done in uniform TC®, e.g., as shown in [1]. O

5 Conclusions

We introduce the two—sorted first—order theories VL, VSL, VINL and VP that characterize L, SL, NL and
P, respectively. Each of these theories is obtained from V° by adding an axiom that encodes a polytime algo-
rithm for solving the complete problem of the corresponding class. Here our choices of the complete problems
are the st—Connectivity Problem and the Circuit Value Problem. Our theories are finitely axiomatizable
because V? is.

We prove the characterization of the classes by following the method developed in [5]. Here we introduce
universal theories that are conservative extensions of the original theories, and show that these universal
theories characterize the corresponding classes. (Note that in [5], VPV is also a universal theory over the
language of polytime functions. The universal theory VP defined in the same way that VNL is defined
(Definition 3.8) has a different style.)

Our theories are “minimal” in the sense that they have universal, conservative extensions over the language
of the functions in the corresponding classes. Nevertheless, we show that VL = ZF-Rec and VP = TVO.
And it has been shown recently that VNL = VI-KROM [12]. Similar arguments would show that VSL =
V1. SymKROM.

An issue that we have not discussed is the connections between our theories and the propositional proof
systems, i.e., the propositional translation of the proofs in our theories. This is a subject of further investi-
gation.

6 Acknowledgments

I benefit greatly from discussions with Steve Cook. I would like also to thank him for reading a draft of this
paper.

12

References

[1] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On Interpolation and Automatization for Frege
Systems. STAM Journal on Computing, 29(6):1939-1967, 2000.

[2] Samuel Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986.

[3] Peter Clote and Gaisi Takeuti. Bounded Arithmetic for NC, ALOGTIME, L and NL. Annals of Pure
and Applied Logic, 56:73-117, 1992.

[4] Stephen Cook. Proof Complexity and Bounded Arithmetic. = Course Notes for CSC 2429S.
http://www.cs.toronto.edu/ sacook/.

[6] Stephen Cook. Theories for Complexity Classes and Their Propositional Translations. manuscript.

[6] Stephen Cook. Feasibly Constructive Proofs and the Propositional Calculus. In Proceedings of the Tth
Annual ACM Symposium on the Theory of Computing, 1975.

[7] Stephen Cook and Antonina Kolokolova. A Second-order System for Polytime Reasoning Based on
Gréadel’s Theorem. Annals of Pure and Applied Logic, pages 193-231, 2003.

[8] Stephen Cook and Antonina Kolokolova. A Second-order Theory for NL. In Logic in Computer Science
(LICS), 2004.

[9] Erich Gradel”. Capturing complexity classes by fragments of second order logic. Theorectical Computer
Science, 101:35-57, 1992.

[10] Neil Immerman. Nondeterministic space is closed under complementation. STAM J. Comput., 17(5):935—
938, 1988.

[11] Neil Immerman. Descriptive Complexity. Springer, 1999.

[12] Antonina Kolokolova. Systems of Bounded Arithmetic from Descriptive Complexity. PhD thesis, Uni-
versity of Toronto, 2004.

[13] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta Informatica,
26:279-284, 1988.

[14] Domenico Zambella. End Extensions of Models of Linearly Bounded Arithmetic. Annals of Pure and
Applied Logic, 88:263-277, 1997.

ECCC ISSN 1433-8092
13 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

