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Abstract

An error-correcting code is said to be locally testable if it has an efficient spot-checking
procedure that can distinguish codewords from strings that are far from every codeword, looking
at very few locations of the input in doing so. Locally testable codes (LTCs) have generated a
lot of interest over the years, in large part due to their connection to Probabilistically checkable
proofs (PCPs). The ability to correct errors that occur during transmission is one of the big
advantages of using a code. Hence, from a coding-theoretic angle, local testing is potentially
more useful if in addition to accepting codewords, it also accepts strings that are close to a
codeword (in contrast, local testers can have arbitrary behavior on such strings, which potentially
annuls the benefits of error-correction). This would imply that when the tester accepts, one can
follow-up the testing with a (more expensive) decoding procedure to correct the errors and
recover the transmitted codeword, while if the tester rejects, we can save the effort of running
the more expensive decoding algorithm.

In this work, we define such testers, which we call tolerant testers following some recent work
in property testing [13]. We revisit some recent constructions of LTCs and show how one can
make them locally testable in a tolerant sense. While we do not optimize the parameters, the
main message from our work is that there are explicit tolerant LTCs with similar parameters to
LTCs.

1 Introduction

Locally testable codes (LTCs) have been the subject of much research over the years and there has
been heightened activity and progress on them recently [10, 4, 12, 5, 6, 9]. LTCs are error-correcting
codes which have a testing procedure with the following property: given oracle access to a string
which is a purported codeword, these testers “spot check” the string at very few locations, accepting
if the string is indeed a codeword, and rejecting with high probability if the string is “far-enough”
from every codeword. Such spot-checkers arise in the construction of Probabilistically checkable
proofs (PCPs) [1, 2] (see the recent survey by Goldreich [9] for more details on the interplay between
LTCs and PCPs). Note that in the definition of LTCs, there is no requirement on the tester for
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input strings that are very close to a codeword. This “asymmetry” in the way the tester accepts and
rejects an input reflects the way PCPs are defined, where we only care about accepting perfectly
correct proofs with high probability. However, the crux of error-correcting codes is to tolerate and
correct a few errors that could occur during transmission of the codeword (and not just be able to
detect errors). In this context, the fact that a tester can reject received words with few errors is not
satisfactory. A more desirable (and stronger) requirement in this scenario would be the following:
we would like the tester to make a quick decision on whether or not the purported codeword is
close to any codeword. If the tester declares that there is probably a close-by codeword, we then
use a decoding algorithm to decode the received word. If on the other hand, we can say with high
confidence that the received word is far away from all codewords then we do not run our expensive
decoding algorithm. The current testers in the literature focus more or less exclusively on the latter
goal. As a concrete example of why we should accept received words with few errors, if the received
word is at most distance e away from a Reed-Solomon codeword where e is some quantity smaller
than half the minimum distance of the Reed-Solomon code, then it would be nice if the tester does
not reject the received word as we can uniquely decode it.

In this work we introduce the concept of tolerant testers, that is, we design testers for codes which
reject (w.h.p) received words far from any codeword (like the current testers) and accept (w.h.p)
close-by received words (unlike the current ones which only need to accept codewords). We will
refer to codes that admit a tolerant tester as a tolerant LTCs. In the general context of property
testing, the notion of tolerant testing was introduced by Parnas et al [13] along with the related
notion of distance approximation. Parnas et al also give tolerant testers for clustering. We feel
that codeword-testing is a particularly natural instance to study tolerant testing. (In fact, if LTCs
were defined solely from a coding-theoretic viewpoint, without their relevance and applications to
PCPs in mind, we feel that it is likely that the original definition itself would have required tolerant
testers.)

For any vectors u, v ∈ F
n
q , the relative distance between u and v, denoted dist(u, v), equals the

fraction of positions where u and v differ. For any subset A ⊂ F
n
q , dist(v, A) = minu∈Adist(u, v).

An [n, k, d]q linear code C is a k-dimensional subspace of F
n
q such that every pair of distinct elements

x, y ∈ C differ in at least d locations, i.e., dist(x, y) ≥ d/n. The ratio k
n is called the rate of the

code and d is the (minimum) distance of the code. We now formally define a tolerant tester.

Definition 1 For any linear code C over Fq of block length n and distance d, and 0 ≤ c1 ≤ c2 ≤ 1,
a (c1, c2)-tolerant tester T for C with query complexity p(n) (or simply p when the argument is clear
from the context) is a probabilistic polynomial time1 oracle Turing machine such that for every
vector v ∈ F

n
q :

1. If dist(v, C) ≤ c1d
n , T upon oracle access to v accepts with probability at least 2

3 (tolerance),

2. If dist(v, C) > c2d
n , T rejects with probability at least 2

3 (soundness),

3. T makes p(n) probes into the string (oracle) v.

A code is said to be (c1, c2, p)-testable if it admits a (c1, c2)-tolerant tester of query complexity p(·).
1In the usual definition of LTCs one omits the requirement that the tester be efficient. This is because the focus

usually is on testers which make O(1) queries and in this case an efficient implementation is obvious. We will be
interested in testers with sub-linear query complexities that grow with n (like nγ for small γ > 0) and therefore we
stipulate this requirement. Note that since our results are positive, i.e., we gives constructions of tolerant LTCs, this
only makes our results stronger.
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We will be interested in asymptotics and thus we implicitly are interested in a family of codes with
the stated properties in the above definition (and so, the notion of the tester being a polynomial
time machine, in particular, makes sense). We usually hide this for notational simplicity.

A tester has perfect completeness if it accepts any codeword with probability 1. As pointed out
earlier, the existing literature just consider (0, c2)-tolerant testers with perfect completeness. We
will refer to these as standard testers henceforth. Note that our definition of tolerant testers is per
se not a generalization of standard testers since we do not require perfect completeness for the case
when the input v is a codeword. However, all our constructions will inherit this property from the
standard testers we obtain them from.

Recall one of the applications of tolerant testers mentioned earlier: a tolerant tester is used to
decide if the expensive decoding algorithm should be used. In this scenario, one would like to set
the parameters c1 and c2 such that the tester is tolerant up to the decoding radius. For example,
if we have an unique decoding algorithm which can correct up to d

2 errors, a particularly appealing
setting of parameters would be c1 = 1

2 and c2 as close to 1
2 as possible. However, we would not be

able to achieve such large c1. In general we will aim for positive constants c1 and c2 with c2
c1

being
as small as possible while minimizing p(n).

One might hope that the existing standard testers could also be tolerant testers. We give a simple
example to illustrate the fact that this is not the case in general. Consider the tester for the
Reed-Solomon (RS) codes of dimension k + 1: pick k + 2 points uniformly at random and check if
the degree k univariate polynomial obtained by interpolating on the first k + 1 points agrees with
the input on the last point. It is well known that this is a standard tester [16]. However, this is
not a tolerant tester. Assume we have an input which differs from a degree k polynomial in only
one point. Thus, for

(

n−1
k+1

)

choices of k + 2 points, the tester would reject, that is, the rejection

probability is
(n−1

k+1)
( n

k+2)
= k+2

n which is greater than 1
3 for high rate RS codes.

Another pointer towards the inherent difficulty in coming up with a tolerant tester is the recent
work of Fischer and Fortnow [7] which shows that there are certain boolean properties which have
a standard tester with constant number of queries but for which every tolerant tester requires at
least nΩ(1) queries.

In this work, we examine existing standard testers and convert some standard testers into tolerant
ones. In Section 2 we record a few general facts which will be useful in performing this conversion.
The ultimate goal, if this can be realized at all, would be to construct tolerant LTCs of constant
rate which can be tested using O(1) queries (we remark that such a construction has not been
obtained even without the requirement of tolerance). In this work, we show that we can achieve
either constant number of queries with slightly sub-constant rate (Section 3) as well as constant
rate with sub-linear number of queries (Section 4). That is, something non-trivial is possible in
both the domains: (a) constant rate, and (b) constant number of queries. Specifically, in Section
3 we discuss binary codes which encode k bits into codewords of length n = k · exp(logε k) for any
ε > 0, and can be tolerant tested using O(1/ε) queries. In Section 4, following [5], we study the
simple construction of LTCs using products of codes — this yields asymptotically good codes which
are tolerant testable using a sub-linear number nγ of queries for any desired γ > 0. An interesting
common feature of the codes in Section 3 and 4 is that they can be constructed from any code
that has good distance properties and which in particular need not admit a local tester with sub-
linear query complexity. In Section 5 we discuss the tolerant testability of Reed-Muller codes — it
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turns out that existing results on low-degree testing of multivariate polynomials immediately imply
results on tolerant testing for these codes.

The overall message from our work is that a lot of the work on locally testable code constructions
extends fairly easily to also yield tolerant locally testable codes. However, there does not seem to
be a generic way to “compile” a standard tester to a tolerant tester for an arbitrary code.

2 General Observations

In this section we will fix some notations and spell out some general properties of tolerant testers
and subsequently use them to design tolerant testers for some existing codes.

We will denote the set {1, · · · , n} by [n]. All the testers we refer to are non-adaptive testers which
decide on the locations to query all at once based only on the random choices. In the sequel, we use
n to denote the block length and d the distance of the code under consideration. The motivation
for the definition below will be clear in Section 3.

Definition 2 Let 0 < α ≤ 1. A tester T is (〈s1, q1〉, 〈s2, q2〉, α)-smooth if there exists a set A ⊆ [n]
where |A| = αn with the following properties:

• T queries at most q1 points in A, and for every x ∈ A, the probability that each of these
queries equals location x is at most s1

|A| , and

• T queries at most q2 points in [n]−A, and for every x ∈ [n]−A, the probability that each of
these queries equals location x is at most s2

n−|A| .

As a special case a (〈1, q〉, 〈0, 0〉, 1)-smooth tester makes a total of q queries each of them distributed
uniformly among the n possible probe points.

The following lemma follows from the union bound:

Lemma 1 For any 0 < α < 1, a (〈s1, q1〉, 〈s2, q2〉, α)-smooth (0, c2)-tolerant tester T with perfect

completeness is a (c1, c2)-tolerant tester T ′, where c1 = nα(1−α)
3d max{q1s1(1−α), q2s2α} .

Proof : The soundness follows from the assumption on T . Assume dist(v, C) ≤ c1d
n and let f ∈ C be

the closest codeword to v. Suppose that f differs from v in a set A′ of yd places among locations in
A, and a set B′ of (β−y)d places among locations in [n]−A, where we have β ≤ c1 and 0 ≤ y ≤ β.
The probability that any of the at most q1 (resp. q2) queries of T into A (resp. [n] − A) falls in

A′ (resp. B′) is at most s1yd
αn (resp. s2(β−y)d

(1−α)n ). Clearly, whenever T does not query a location in

A′ ∪ B′, it accepts (since T has perfect completeness). Thus, an easy calculation shows that the
probability that T rejects v is at most

c1d

n
max{s1q1

α
,

s2q2

1 − α
}

which is 1/3 for the choice of c1 stated in the lemma.
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The above lemma is not satisfactory unless the relative distance and the number of queries are
constants. Next we sketch how to design tolerant testers from existing robust testers with certain
properties. We first recall the definition of robust testers from [5].

A standard tester T has two inputs: an oracle for the received word v and a random string s.
Depending on s, T generates q query positions i1, · · · , iq, fixes a circuit Cs and then accepts if
Cs(vf (s)) = 1 where vf (s) = 〈vi1 , · · · , viq〉. The robustness of T on inputs v and s, denoted by
ρT (v, s), is defined to be the minimum, over all strings y such that Cs(y) = 1, of dist(vf (s), y). The
expected robustness of T on v is the expected value of ρT (v, s) over the random choices of s and
would be denoted by ρT (v).

A standard tester T is said to be c-robust for C if for every v ∈ C, the tester accepts with probability
1, and for every v ∈ F

n
q , dist(v, C) ≤ c · ρT (v).

The tolerant version T ′ of the standard c-robust tester T is obtained by accepting an oracle v on
random input s, if ρT (v, s) ≤ τ for some threshold τ . (Throughout the paper τ will denote the
threshold.) We will sometimes refer to such a tester as one with threshold τ . Recall that a standard
tester T accepts if ρT (v, s) = 0. We next show that T ′ is sound. For the rest of this section unless
mentioned otherwise, we will use parameter τ to denote the threshold.

The following lemma follows from the fact that T is c-robust:

Lemma 2 Let 0 ≤ τ ≤ 1, and let c2 = (τ+2)cn
3d . For any v ∈ F

n
q , if dist(v, C) > c2d

n , then the

tolerant tester T ′ with threshold τ rejects v with probability at least 2
3 .

Proof : Let v ∈ F
n
q be such that dist(v, C) > c2d

n . By the definition of robustness, the expected

robustness, ρT (v) is at least c2d
nc , and thus at least (τ + 2)/3 by the choice of c2. By the standard

averaging argument, we can have ρT (v, s) ≤ τ on at most a fraction 1/3 of the of the random
choices of s for T (and hence T ′). Therefore, ρT (v, s) > τ with probability at least 2/3 over the
choice of s and thus T ′ rejects v with probability at least 2/3.

We next mention a property of the query pattern of T which would make T ′ tolerant. Let S be
the set of all possible choices for the random string s. Further for each s, let pT (s) be the set of
positions queried by T .

Definition 3 A tester T has a partitioned query pattern if there exists a partition S1 ∪ · · · ∪ Sm

of the random choices of T for some m, such that for every i,

• ∪s∈Si
pT (s) = {1, 2, · · · , n}, and

• For all s, s′ ∈ Si, pT (s) ∩ pT (s′) = ∅ if s 6= s′.

Lemma 3 Let T have a partitioned query pattern. For any v ∈ F
n
q , if dist(v, C) ≤ c1d

n , where

c1 = nτ
3d , then the tolerant test T ′ with threshold τ rejects with probability at most 1

3 .

Proof : Let S1, · · · , Sm be the partition of S, the set of all random choices of the tester T . For
each j, by the properties of Sj ,

∑

s∈Sj
ρT (v, s) ≤ dist(v, C). By an averaging argument and by

the assumption on dist(v, f) and the value of c1, at least 2
3 fraction of the choices of s in Sj have

ρT (v, s) ≤ τ and thus, T ′ accepts. Recalling that S1, · · · , Sm was a partition of S, for at least 2
3 of

the choices of s in S, T ′ accepts. This completes the proof.
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3 Tolerant Testers for Binary Codes

One of the natural goals in the study of tolerant codes is to design explicit tolerant binary codes
with constant relative distance and as large a rate as possible. In the case of standard testers,
Ben-Sasson et al [4] give binary locally testable codes which map k bits to k · exp(logε k) bits for
any ε > 0 and which are testable with O(1/ε) queries. Their construction uses objects called
PCPs of Proximity (PCPP) which they also introduce in [4]. In this section, we show that a
simple modification to their construction yields tolerant testable binary codes which map k bits to
k · exp(logε k) bits for any ε > 0. We note that a similar modification is used by Ben-Sasson et
al to give a relaxed locally decodable codes [4] but with worse parameters (specifically they gives
codes with block length k1+ε).

3.1 PCP of Proximity

We start with the definition2 of of a Probabilistic Checkable proof of Proximity (PCPP). A pair
language is simply a language whose elements are naturally a pair of strings, i.e., it is some collection
of strings (x, y). A notable example is CIRCUITVAL = {〈C, a〉 | Boolean circuit C evaluates to 1
on assignment a}.

Definition 4 Fix 0 ≤ δ ≤ 1. A probabilistic verifier V is a PCPP for a pair language L with
proximity parameter δ and query complexity q(·) if the following conditions hold:

• (Completeness) If (x, y) ∈ L then there exists a proof π such that V accepts by accessing the
oracle y ◦ π with probability 1.

• (Soundness) If y is δ-far from L(x) = {y|(x, y) ∈ L}, then for all proofs π, V accepts by
accessing the oracle y ◦ π with probability strictly less than 1

4 .

• (Query complexity) For any input x and proof π, V makes at most q(|x|) queries in y ◦ π.

Note that a PCPP differs from a standard PCP in that it has a more relaxed soundness condition
but its queries into part of the input y are also counted in its query complexity.

Ben-Sasson et. al. give constructions of PCPPs with the following guarantees:

Lemma 4 ([4]) Let ε > 0 be arbitrary. There exists a PCP of proximity for the pair language
CIRCUITVAL = {(C, x)|C is a boolean circuit and C(x) = 1} whose proof length, for inputs
circuits of size s, is at most s · exp(logε/2 s) and for t = 2 log log s

log log log s the verifier of proximity has

query complexity O(max{ 1
δ , 1

ε}) for any proximity parameter δ that satisfies δ ≥ 1
t . Furthermore,

the queries of the verifier are non-adaptive and each of the queries which lie in the input part x are
uniformly distributed among the locations of x.

The fact that the queries to the input part are uniformly distributed follows by an examination of
the verifier construction in [4]. In fact, in the extended version of that paper, the authors make
this fact explicit and use it in their construction of relaxed locally decodable codes (LDCs). To

2The definition here is a special case of the general PCPP defined in [4] which would be sufficient for our purposes.
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achieve a tolerant LTC using the PCPP, we will need all queries of the verifier to be somewhat
uniformly or smoothly distributed. We will now proceed to make the queries of the PCPP verifier
that fall into the “proof part” π near-uniform. This will follow a fairly general method suggested
in [4] to smoothen out the query distribution, which the authors used to obtain relaxed locally
decodable codes from the PCPP. We will obtain tolerant LTCs instead, and in fact will manage to
do so without a substantial increase in the encoding length (i.e., the encoding length will remain
k · 2logε k). On the other hand, the best encoding length achieved for relaxed LDCs in [4] is k1+ε

for constant ε > 0. We begin with the definition of a mapping that helps smoothen out the query
distribution.

Definition 5 Given any v ∈ F
n
q and ~p = 〈pi〉ni=1 with pi ≥ 0 for all i ∈ [n] and

∑n
i=1 pi = 1, we

define the mapping Repeat(·, ·) as follows: Repeat(v, ~p) ∈ F
n′

q such that vi is repeated b4npic times
in Repeat(v, ~p) and n′ =

∑n
i=1b4npic.

We now show why the mapping is useful. A similar fact appears in [4], but for the sake of com-
pleteness we present the proof.

Lemma 5 For any v ∈ F
n
q let a non-adaptive verifier T (with oracle access to v) make q(n) queries

and let pi be the probability that each of these queries probes location i ∈ [n]. Let ci = 1
2n + pi

2 and

~c = 〈ci〉ni=1. Consider the map Repeat(v,~c) : F
n
q → F

n′

q . Then there exists another tester T ′ for
strings of length n′ with the following properties:

1. T ′ makes 2q(n) queries on v′ = Repeat(v,~c) each of which probes location j, for any j ∈ [n′],
with probability at most 2

n′ , and

2. for every v ∈ F
n
q , the decision of T ′ on v′ is identical to that of T on v. Further, 3n < n′ ≤ 4n.

Proof : We first add q dummy queries to T each of which are uniformly distributed, and then
permute the 2q queries in a random order. Note that each of the 2q queries is now identically
distributed. Moreover, any position in v is probed with probability at least 1

2n for each of the
2q queries. For the rest of the proof we will assume that T makes 2q queries for each of which
any i ∈ [n] is probed with probability ci = pi

2 + 1
2n . Let ri = b4ncic. Note that ri ≤ 4nci and

ri > 4nci − 1. Recalling that n′ =
∑n

i=1 ri and
∑n

i=1 ci = 1, we have 3n < n′ ≤ 4n.

T ′ just simulates T in the following manner: if T queries vi for any i ∈ [n], T ′ queries one of the
ri copies of vi in v′ uniformly at random. It is clear that the decision of T ′ on v′ = Repeat(v,~c) is
identical to that of T on v. We now look at the query distribution of T ′. T ′ queries any j ∈ [n′],
where v′j = vi, with probability p′j = ci · 1

ri
. Recalling the lower bound on ri, we have p′j ≤ ci

4nci−1

which is at most 1
2n since clearly ci ≥ 1

2n . We showed earlier that n′ ≤ 4n which implies p′j ≤ 2
n′ as

required.

One might wonder if we can use Lemma 5 to smoothen out the queries made by the verifier of
an arbitrary LTC to obtain a tolerant LTC. That is, whether the above allows one to compile the
verifier for any LTC in a black-box manner to obtain a tolerant verifier. This does not seem likely,
and we discuss this further in subsection 3.3.

Applying the transformation of Lemma 5 to the proximity verifier and proof of proximity of
Lemma 4, we conclude the following.
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Proposition 1 Let ε > 0 be arbitrary. There exists a PCP of proximity for the pair language
CIRCUITVAL = {(C, x)|C is a boolean circuit and C(x) = 1} with the following properties:

1. The proof length, for inputs circuits of size s, is at most s · exp(logε/2 s), and

2. for t = 2 log log s
log log log s the verifier of proximity has query complexity O(max{ 1

δ , 1
ε}) for any prox-

imity parameter δ that satisfies δ ≥ 1
t .

Furthermore, the queries of the verifier are non-adaptive with the following properties:

1. Each query made to one of the locations of the input x is uniformly distributed among the
locations of x, and

2. each query to one of the locations in the proof of proximity π probes each location with prob-
ability at most 2/|π| (and thus is distributed nearly uniformly among the locations of π).

3.2 The Code

We now outline the construction of the locally testable code from [4]. The idea behind the con-
struction is to make use of a PCPP to aid in checking if the received word is a codeword is far away
from being one. Details follow.

Suppose we have a binary code C0 : {0, 1}k → {0, 1}m of distance d defined by a parity check
matrix H ∈ {0, 1}(m−k)×m that is sparse, i.e., each of whose rows has only an absolute constant
number of 1’s. Such a code is referred to as a low-density parity check code (LDPC). For the
construction below, we will use any such code which is asymptotically good (i.e., has rate k/m and
relative distance d/m both positive as m → ∞). Explicit constructions of such codes are known
using expander graphs [15]. Let V be a verifier of a PCP of proximity for membership in C0; more
precisely, the proof of proximity of an input string w ∈ {0, 1}m will be a proof that C̃0(w) = 1
where C̃0 is a linear-sized circuit which performs the parity checks required by H on w (the circuit
will have size O(m) = O(k) since H is sparse and C0 has positive rate). Denote by π(x) be the
proof of proximity guaranteed by Proposition 1 for the claim that the input C0(x) is a member of
C0 (i.e., satisfies the circuit C̃0). By Proposition 1 and fact that the size of C̃0 is O(k), the length
of π(x) can be made at most k exp(logε/2 k).

The final code is defined as C1(x) = (C0(x)t, π(x)) where t = (log k−1)|π(x)|
|C0(x)| . The repetition of the

code part C0(x) is required in order to ensure good distance, since the length of the proof part π(x)
typically dominates and we have no guarantee on how far apart π(x1) and π(x2) for x1 6= x2 are.

For the rest of this section let ` denote the proof length. The tester T1 for C1 on an input w =
(w1, · · · , wt, π) ∈ {0, 1}tm+` picks i ∈ [t] at random and runs the PCPP verifier V on wi ◦ π. It
also performs a few rounds of the following consistency checks: pick i1, i2 ∈ [t] and j1, j2 ∈ [m] at
random and check if wi1(j1) = wi2(j2). Ben-Sasson et al in [4] show that T1 is a standard tester.
However, T1 need not be a tolerant tester. To see this, note that the proof part of C1 forms a 1

log k

fraction of the total length. Now consider a received word wrec = (w0, · · · , w0, π
′) where w0 ∈ C0

but π′ is not a correct proof for w0 being a valid codeword in c0. Note that wrec is close to C1.
However, T1 is not guaranteed to accept wrec with high probability.
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The problem with the construction above was that the proof part was too small: a natural fix is
to make the proof part a constant fraction of the codeword. We will show that this is sufficient to
make the code tolerant testable. We also remark that a similar idea was used by Ben-Sasson et.
al. to give efficient constructions for relaxed locally decodable codes [4].

Construction 1 Let 0 < β < 1 be a parameter, C0 : {0, 1}k → {0, 1}m be a good 3 binary code and
V be a PCP of proximity verifier for membership in C0. Finally let π(x) be the proof corresponding
to the claim that C0(x) is a codeword in C0. The final code is defined as C2(x) = (C0(x)r1 , π(x)r2)

with r1 = (1−β) log k|π(x)|
m and r2 = β log k.4

For the rest of the section the proof length |π(x)| will be denoted by `. Further the proximity
parameter and the number of queries made by the PCPP verifier V would be denoted by δp and
qp respectively. Finally let ρ0 denote the relative distance of the code C0.

The tester T2 for C2 is also the natural generalization of T1. For a parameter qr (to be instantiated
later) and input w = (w1, · · · , wr1

, π1, · · · , πr2
) ∈ {0, 1}r1m+r2l, T2 does the following:

1. Repeat the next two steps twice.

2. Pick i ∈ [r1] and j ∈ [r2] randomly and run V on wi ◦ πj .

3. Do qr repetitions of the following: pick i1, i2 ∈ [r1] and j1, j2 ∈ [m] randomly and check if
wi1(j1) = wi2(j2).

The following lemma captures the properties of the code C2 and its tester T2.

Lemma 6 The code C2 in Construction 1 and the tester T2 (with parameters β and qr respectively)
above have the following properties:

1. The code C2 has block length n = log k·` with minimum distance d lower bounded by (1−β)ρ0n.

2. T2 makes a total of q = 2qp + 4qr queries.

3. T2 is (〈1, q〉, 〈2, 2qp〉, 1 − β)-smooth.

4. T2 is a (c1, c2)-tolerant tester with c1 = nβ(1−β)
6d max{(2qr+qp)β, 2(1−β)qp}

and c2 = n
d (δp + 4

qr
+ β).

Proof : From the definition of C2, it has block length n = r1m + r2` = (1−β)` log k
m · m + β log k · ` =

log k · `. Further as C0 has relative distance ρ0, C2 has relative distance at least r1ρ0m
` log k = (1− β)ρ0.

T2 makes the same number of queries as V which is qp in Step 2. In Step 3, T2 makes 2qr queries.
As T2 repeats Steps 2 and 3 twice, we get the desired query complexity.

To show the smoothness of T2 we need to define the appropriate subset A ⊂ [n] such that |A| =
(1− β)n. Let A be the set of indices with the code part: i.e. A = [r1m]. T2 makes 2qr queries in A

3This means that m = O(k) and the encoding can be done by circuits of nearly linear size s0 = Õ(k).
4The factor log k overhead is overkill, and a suitably large constant will do, but since the proof length |π(x)| will

anyway be larger than |x| by more than a polylogarithmic factor in the constructions we use, we can afford this
additional log k factor and this eases the presentation somewhat.
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in Step 3 each of which is uniformly distributed. Further by Proposition 1, T2 in step 2 makes at
most qp queries in A which are uniformly distributed and at most qp queries in [n]−A each of which
are within a factor 2 of being queried uniformly at random. To complete the proof of property 3
note that T2 repeats step 2 and 3 twice.

The tolerance of T2 follows from property 3 and Lemma 1. For the soundness part note that
if w = (w1, · · · , wr1

, π1, · · · , πr2
) ∈ {0, 1}r1m+r2l is δ-far from C2 then (w1, · · · , wr1

) is at least
δn−r2`

n = δn−βn
n = δ − β far from the repetition code C ′ = {C0(x)r1 |x ∈ {0, 1}k}. For δ = c2d/n

with the choice of c2 in the lemma, we have δ − β ≥ δp + 4/qr. The rest of the proof just follows
the proof in [4] of the soundness of the tester T1 for the code C1– as in [4] one can show that one
invocation of Steps 2 and 3 results in T2 accepting w with probability strictly less than 1

2 . The two
repetitions of Steps 2 and 3 reduces this error to at most 1

4 .

Fix any 0 < δ < 1 and let β = δ
2 , δp = δ

6 , qr = 12
δ . With these settings we get δp + 4

qr
+ β = δ and

qp = O(1
δ ) from Proposition 1 with the choice ε = 2δ. Finally, q = 2qp + 4qr = O(1

δ ). Substituting

the parameters in c2 and c1, we get c2 = δn
d and

c1d

n
=

δ

24 max{δ(qr + qp/2), (2 − δ)qp}
= Ω(δ2) .

Also note that the minimum distance d ≥ (1 − β)ρ0n = (1 − δ
2)ρ0n ≥ ρ0

2 n. Thus, we have the
following result for tolerant testable binary codes.

Theorem 1 There exists an absolute constant α0 > 0 such that for every δ, 0 < δ < 1, there exists
an explicit binary linear code C : {0, 1}k → {0, 1}n where n = k ·exp(logδ k) with minimum distance
d ≥ α0n which admits a (c1, c2)-tolerant tester with c2 = O(δ), c1 = Ω(δ2) and query complexity
O(1

δ ).

The claim about explicitness follows from the fact that the PCPP of Lemma 4 and hence Proposi-
tion 1 has an explicit construction. The claim about linearity follows from the fact that the PCPP
for CIRCUITVAL is a linear function of the input when the circuit computes linear functions —
this aspect of the construction is discussed in detail in Section 8.4 of the extended version of [4].

3.3 Converting locally testable codes to tolerant testable codes

We now discuss whether the technique of repeating symbols in proportion to their query probability
as in the previous section (specifically, Lemma 5) can be used to convert a LTC into a tolerant LTC
(without, for example, the additional complexity of using a PCPP). We will now argue (informally)
that this technique alone will not work. Let C1 be an [n, k, d]q LTC with a standard tester T1 that
makes q identically distributed queries with distribution pi, 1 ≤ i ≤ n, such that pi ≥ 1/2n for
each i. Create a new [n + 1, k, d]q code C2 whose (n + 1)’th coordinate is just a copy of the n’th
coordinate, i.e., corresponding to each codeword (c1, c2, . . . , cn) ∈ F

n
q of C1, we will have a codeword

(c1, c2, . . . , cn, cn) ∈ F
n+1
q of C2. Consider the following tester T2 for C2: Given oracle access to

v ∈ F
n+1
q , with probability 1/2 check whether vn = vn+1, and with probability 1/2 run the tester

T1 on the first n coordinates of v. Clearly, T2 is a standard tester for C2.

Now, consider what happens in the conversion procedure of Lemma 5 to get (C ′, T ′) from (C2, T2).
Note that by Lemmas 5 and 3, T ′ is tolerant. Let ~q = (q1, . . . , qn+1) be the query distribution
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of T2. Since T2 queries (vn, vn+1) with probability 1/2, the combined number of locations of
v′ = Repeat(v, ~q) corresponding to vn, vn+1 will be about 1/2 of the total length n′. Now let v′ be
obtained from a codeword of C ′ by corrupting just these locations. The tester T ′ will accept such
a v′ with probability at least 1/2, which contradicts the soundness requirement since v ′ is 1/2-far
from C ′. Therefore, using the behavior of the original tester T2 as just a black-box, we cannot in
general argue that the construction of Lemma 5 maintains good soundness.

4 Tolerant Testers for Tensor Products of Codes

Tensor product of codes is simple way to construct new codes from any existing codes such that
the constructed codes have testers with sub-linear query complexity even though the original code
need not admit a sub-linear complexity tester [5]. We first briefly define product of codes and then
outline the tester of product of codes from [5].

Given an [n, k, d]q code C, the product of C with itself, denoted by C2, is a [n2, k2, d2]q code such
that a codeword (viewed as a n × n matrix) restricted to any row or column is a codeword in C.
More formally, given the n × k generator matrix M of C, C2 is precisely the set of matrices in the
set {M ·X ·MT | X ∈ F k×k

q }. A very natural test for C2 is to randomly choose a row or a column
and then check if the restriction of the received word on that row or column is a codeword in C
(which can be done for example by querying all the n points in the row or column). Unfortunately,
it is not known if this test is robust in general (see the discussion in [5]).

Ben-Sasson and Sudan in [5] considered the more general product of codes C t for t ≥ 3 along with
the following general tester: Choose at random b ∈ {1, · · · , t} and i ∈ {1, · · · , n} and check if bth

coordinate of the received word (which is an element of F
nt

q ) when restricted5 to i is a codeword
in Ct−1. It is shown in [5] that this test is robust, in that if a received word is far from C t, then
many of the tested substrings will be far from Ct−1. This tester lends itself to recursion: the test
for Ct−1 can be reduced to a test for Ct−2 and so on till we need to check whether a word in F

n2

q

is a codeword of C2. This last check can done by querying all the n2 points, out of the nt points
in the original received word, thus leading to a sub-linear query complexity. As shown in [5], the
reduction can be done in log t stages by the standard halving technique.

We now give a tolerant version of the test for product of codes given by Ben-Sasson and Sudan
[5]. In what follows t ≥ 4 will be a power of two. As mentioned above the tester T for the tensor
product Ct reduces the test to checking if some restriction of the given string belong to C2. For the
rest of this section, with a slight abuse of notation let vf ∈ F

n2

q denote the final restriction being

tested. In what follows we assume that by looking at all points in any v ∈ F
n2

q one can determine
if dist(v, C2) ≤ τ in time polynomial in n2.

The tolerant version of the test of [5] is a simple modification as mentioned in Section 2: reduce
the test on Ct to C2 as in [5] and then accept if vf is τ -close to C2.

First we make the following observation about the test in [5]. The test recurses log t times to reduce
the test to C2. At step l , the test chooses an random coordinate bl (this will just be a random bit)

and fixes the value of the bth
l coordinate of the current C

t

2l to an index il (where il takes values in

the range 1 ≤ il ≤ nt/2l
). The key observation here is that for each fixed choice of b1, · · · , blog t,

5For the t = 2 case b signifies either row or column and i denotes the row/column index.
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distinct choices of i1, · · · , ilog t correspond to querying disjoint sets n2 points in the original v ∈ F
nt

q

string, which together form a partition of all coordinates of v. In other words, T has a partitioned
query pattern, which will be useful to argue tolerance. For soundness, we use the results in [5],
which show that their tester is C log t-robust for C = 232.

Thus, from Lemmas 2 and 3 we have the following result

Theorem 2 Let t ≥ 4 be a power of two and 0 ≤ τ ≤ 1. There exist 0 < c1 < c2 ≤ 1 with
c2
c1

= C log t(1+2/τ) such that the proposed tolerant tester for Ct is a (c1, c2)-tolerant tester with query

complexity N2/t where N is the block length of Ct. Further, c1 and c2 are constants (independent
of N) if t is a constant and C has constant relative distance.

Thus, Theorem 2 achieves the goal of a simple construction of tolerant testable codes with sub-linear
query complexity, as the following corollary records:

Corollary 1 For every γ > 0, there is an explicit family of asymptotically good binary linear codes
which are tolerant testable using nγ queries, where n is the block length of the concerned code. (The
rate, relative distance and thresholds c1, c2 for the tolerant testing depend on γ.)

5 Tolerant testing of Reed-Muller codes

In this section, we discuss testers for codes based on multivariate polynomials.

5.1 Bivariate polynomial codes

As mentioned in [5], there are no robust standard testers known for C2 in general. In this subsection,
we consider a special case when C = RS[n, k +1, d = n−k]q, that is, the Reed–Solomon code based
on evaluation of degree k polynomials over Fq at n distinct points in the field. We show that the
tester for C2 proposed in [5] is tolerant for this special case. It is well-known (see, for example,
Proposition 2 in [14]) that in this case C2 is the code with codewords being the evaluations of
bivariate polynomials over Fq of degree k in each variable. The problem of low-degree testing
for bivariate polynomials is a well-studied one: in particular we use the work of Polishchuk and
Spielman [14] who analyze a tester using axis parallel lines. Call a bivariate polynomial to be one
of degree (k1, k2) if the maximum degrees of the two variables are k1 and k2 respectively. In what
follows, we denote by Q′ ∈ F

n×n
q be the received word to be tested (thought of as an n×n matrix),

and let Q(x, y) be the degree (k, k) polynomial whose encoding is closest to Q′.

We now specify the tolerant tester T ′. The upper bound of 1 −
√

1 − d/n on τ comes from the
fact that this is largest radius for which decoding an RS[n, k + 1, d] code is known to be solvable in
polynomial time [11].

1. Fix τ where 0 ≤ τ ≤ 1 −
√

1 − d/n.

2. With probability 1
2 choose b = 0 or b = 1.

• If b = 0, choose a row r randomly and reject if dist(Q′(r, ·), P (·)) > τ for every univariate
polynomial P of degree k and accept otherwise.
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• If b = 1, choose a column c randomly and reject if dist(Q′(·, c), P (·)) > τ for every
univariate polynomial P of degree k and accept otherwise.

To analyze T ′ let R∗(r, ·) be the closest degree k univariate polynomial (breaking ties arbitrarily)
for each row r. Similarly construct C∗(·, c). We will use the following refinement of the Bivariate
testing lemma of [14]:

Lemma 7 ([14, 6]) There exists an universal constant c0 ≤ 128 such that the following holds. If
8k ≤ n then

dist(Q′, C2) = dist(Q′, Q) ≤ c0 · (dist(R∗, Q′) + dist(C∗, Q′))

The following proposition shows that the standard tester version of T ′ (that is T ′ with τ = 0) is a
robust tester:

Proposition 1 T ′ with τ = 0 is a 2c0 robust tester, where c0 is the constant from Lemma 7.

Proof : By the definition of the row polynomial R, for any row index r, the robustness of the tester
with b = 0 and r, ρ(Q′, 〈b, r〉) = dist(Q′(r, ·), R∗(r, ·)). Similarly for b = 1, we have ρ(Q′, 〈b, c〉) =
dist(Q′(·, c), C∗(·, c)). Now the expected robustness of the test is given by

ρ(Q′) = Pr[b = 0]
n

∑

i=1

Pr[r = i] · dist(Q′(r, ·), R∗(r, ·)) + Pr[b = 1]
n

∑

j=1

Pr[c = j] · dist(Q′(·, c), C∗(·, c))

=
1

2
(dist(Q′, R∗) + dist(Q′, C∗)) .

Using Lemma 7, we get dist(Q′, Q) ≤ 2c0ρ(Q′), as required.

From the description of T ′, it is clear that it has a partitioned query pattern. There are two parti-
tions: one for the rows (corresponding to the choice b = 0) and one for the columns (corresponding
to the choice b = 1).

Thus, Lemmas 2 and 3 show that T ′ is a tolerant tester:

Theorem 3 Let c0 being the constant from Lemma 7. For τ ≤ 1 −
√

1 − d/n, the tester T ′ with
threshold τ is a (c1, c2,

√
N)-tolerant tester for C2 (where C = RS[n, k + 1, d]) where c1 = nτ

3d ,

c2 = 2nc0(τ+2)
3d and N is the block length of C2.

5.2 General Reed-Muller codes

We now turn our attention to testing of general Reed-Muller codes. That is, given a function
f : F

m
q → Fq as a table of values, one has to test if f is (close to) a m-variate polynomial of

total degree k. (The results of the previous section were for polynomials which had degree in each
individual variable bounded by some value; here we study the total degree case.) Let us denote
by RM(k, m, q) the linear code consisting of evaluations of degree k m-variate polynomials at all
points in F

m
q . Our starting point is the following natural and by now well-studied test which we call

the lines test (its analysis appears among other places in [8]): pick a random line in F
m
q and check
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if the restriction of f on the line is a univariate polynomial of degree at most k. For any x, h ∈ F
m
q ,

a line passing through x in direction h is given by the set Lx,h = {x + th|t ∈ Fq}. Further define

P f
x,h(·) to be the univariate polynomial of degree at most k which is closest (in Hamming distance)

from the restriction of f on Lx,h. We will use the following result.

Theorem 4 ([8]) There exists a constant c such that for all k, if q is a prime power that is at least
ck, then given a function f : F

m
q → Fq with

ρ
def
= Ex,h∈Fm

q
Prt∈Fq

[P f
x,h(t) 6= f(x + th)] ≤ 1

9
,

there exists an m-variate polynomial g of total degree at most k such that dist(f, g) ≤ 2ρ.

The above result clearly implies that the line test is robust which we record in the following corollary.

Corollary 2 There exists a constant c such that the line test for RM(k, m, q) with q ≥ ck is
9-robust.

The line test picks a random line by choosing x and h randomly. Consider the case when h is fixed.
It is not hard to check that for there is a partition of F

m
q = X1 ∪ · · · ∪ Xq where each Xi has size

qm−1 such that ∪x∈Xi
Lx,h = F

m
q . In other words:

Proposition 2 The point line test has a partitioned query pattern.

The proposed tolerant tester for RM(k, m, q) is as follows: pick x, h ∈ F
m
q uniformly at random

and check if the input restricted to Lx,h is τ -close to some univariate polynomial of degree k. If so
accept, otherwise reject. When the threshold τ satisfies τ ≤ 1−

√

k/q, the test can be implemented
in polynomial time [11]. From Corollary 2, Proposition 2, Lemmas 2 and 3, the above is indeed a
tolerant tester for RM(k, m, q) as recorded below.

Theorem 5 For 0 ≤ τ ≤ 1−
√

k/q and q = Ω(k), RM(k, m, q) is (c1, c2, p) testable with c1 = nτ
3d ,

c2 = 3(τ+2)n
d and p = n1−1/m where n = qm and d are the block length and the distance of the code.

6 Concluding remarks

Obtaining non-trivial lower bounds on the the block length of codes that are locally testable with
very few (even 3) queries is an extremely interesting question. This problem has remained open
and resisted even moderate progress despite all the advancements in constructions of LTCs. The
requirement of having a tolerant local tester is a stronger requirement. While we have seen that
we can get tolerance with similar parameters to the best known LTCs, it remains an interesting
question whether the added requirement of tolerance makes the task of proving lower bounds more
tractable. This seems like a good first step in making progress towards understanding whether
asymptotically good locally testable codes exist, a question which is arguably one of the grand
challenges in this area. For interesting work in this direction which proves that such codes, if they
exist, cannot also be cyclic, see [3].
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