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Abstract. We consider the minimal number of AND and OR gates in monotone circuits for
quadratic boolean functions, i.e. disjunctions of length-2 monomials. The single level conjecture
claims that monotone single level circuits, i.e. circuits which have only one level of AND gates, for
quadratic functions are not much larger than arbitrary monotone circuits. In this paper we disprove
the conjecture: there are quadratic functions in n variables whose monotone circuits have linear size
whereas their monotone single level circuits require size Ω(n2−ε).
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1. Preface. Every graph G = (V, E) defines a natural (boolean) quadratic func-

tion

fG(X) =
∨

uv∈E

xuxv.

We consider the complexity of computing such functions by monotone circuits over
the standard monotone basis {∨,∧, 0, 1} of fanin-2 AND and OR gates. Single level
circuits are circuits where every path from an input to the output gate contains at
most one AND gate.

Single Level Conjecture: For quadratic functions single level circuits are

almost as powerful as unrestricted ones.

This conjecture—first explicitly named the “single level conjecture” by Lenz and
Wegener in [12]—was considered by several authors, [11, 3, 4, 13, 12, 2] among oth-
ers. A strong support for this conjecture was given by Mirwald and Schnorr [13]: if
we consider circuits over the basis {⊕,∧, 0, 1} computing quadratic forms f⊕

G (X) =
⊕

uv∈E xuxv over GF(2) and if we count only AND gates, then every optimal (with
respect to the number of AND gates) circuit is a single level circuit.

In this paper we show that in the basis {∨,∧, 0, 1} the single level conjecture
is not even near to the truth: there are quadratic functions in n variables whose
monotone circuits have linear size whereas their monotone single level circuits require
size Ω(n2/ log3 n). Similar gaps are shown for the multiplicative complexity (when we
count only AND gates) as well as for boolean formulas. Finally, we give an indication
that the single level conjecture should also fail in the case of circuits with unbounded
fanin gates.
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2. Introduction and results. Given a graph G = (V, E) we associate to each
of its vertices v a boolean variable xv, and let X = {xv : v ∈ V }. A non-edge is
a pair uv of non-adjacent vertices. If G ⊆ U × W is a bipartite graph with parts
(or color classes) U and W , then a non-edge is a pair uv of non-adjacent vertices
with u and v belonging to different color classes; hence, in bipartite case, pairs of
vertices of the same color are neither edges nor non-edges. For convenience, we often
look at boolean functions f(X) as accepting/rejecting subsets of vertices S ⊆ V : the
function accepts/rejects a subset of vertices if it accepts/rejects the incidence vector
of this subset.

A boolean function (or a circuit) represents a graph if it accepts all edges and
rejects all non-edges; on other inputs the function can take arbitrary values.

The reason why (even monotone!) circuit complexity of graph representation is
interesting is the following. Every bipartite n×n graph G ⊆ U ×W with n = 2m and
U = W = {0, 1}m gives us a boolean function f (the characteristic function of G) in
2m variables such that f(uv) = 1 iff uv ∈ G. If we have a non-monotone circuit for f
then it is possible to replace its input literals by boolean sums (ORs of variables) so
that the resulting monotone circuit represents G (see [16, 9]). Since, as shown in [16]
(see Lemma 13 below) 4m = 4 logn boolean sums can be simultaneously computed
by a monotone circuits of size 12n, this implies that a lower bound 12n + nε on the
size of monotone circuits representing G would yield a lower bound nε = 2εm on the
non-monotone circuit size of an explicit boolean function in 2m variables.

It is clear that the quadratic function fG(X) =
∨

uv∈E xuxv represents the graph
G = (V, E). Moreover, for some graphs G, fG is the only monotone boolean function
representing G (see Fact 2 below). It is therefore important to better understand the
structure of circuits computing quadratic functions.

Mirwald and Schnorr [13] have investigated Cmult(f
⊕
G ), the multiplicative com-

plexity of (algebraic) quadratic forms, i.e. the minimal number of AND gates in
a circuit over the basis {⊕,∧, 0, 1} for f⊕

G (X) =
⊕

uv∈E xuxv and C1
mult(f

⊕
G ), the

multiplicative single level complexity of f⊕
G . They proved that, with respect to the

multiplicative complexity, the single level conjecture in this basis holds in the following
strong sense.

Theorem 1 (Mirwald–Schnorr [13]). C1
mult(f

⊕
G ) = Cmult(f

⊕
G ) for every graph G.

Moreover, each optimal (with respect to the number of AND gates) circuit for f⊕
G is

a single level circuit.

Motivated by this result, Lenz and Wegener [12] considered the multiplicative
complexity of quadratic forms fG over the basis {∨,∧, 0, 1}. Among many other
results (including the algorithmic aspects of estimating the circuit complexity of
quadratic functions) they observed that in this basis C1

mult(fG) is just the bipar-
tite clique covering number cc(G) of G, i.e. the minimal number of bipartite complete
subgraphs of G covering all edges of G. Hence, C1

mult(fG) ≤ n for every n-vertex
graph; in fact, C1

mult(fG) ≤ n − blog2 nc − 1 by a result of Tuza [19]. They also
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constructed a graph G such that Cmult(fG) = 3 but C1
mult(fG) = 4, and asked how

large can the gap

Gapmult(G) = C1
mult(fG)/Cmult(fG)

for n-vertex graphs be ([12], Problem 7). It turns out that this gap may be huge. We
will show that the gap may be huge also in the case when we count all gates (not just
AND gates) as well as in the case of formulas. We will also give an indication that
the single level conjecture fails even if we allow unbounded fanin gates.

We will show the corresponding gaps for graphs G whose representation is not
easier than the computation of fG. If a function f represents a graph G, then it may
(wrongly) accept some independent sets of G of size larger than two. The simplest way
to exclude this possibility is to “kill off” all such independent sets by “saturating” the
graph, i.e. by adding new edges. This is a well-known trick in the theory of boolean
functions to obtain so-called slice functions (see, e.g. [23]).

By an extension of a bipartite graph H ⊆ U ×W we mean any graph G = (V, E)
with V = U ∪W and E∩ (U ×W ) = H. Such an extension is saturated if the induced
subgraphs of G on U as well as on W are complete graphs. A complete star in a graph
with n vertices is a set of n − 1 edges sharing one endpoint in common. If the graph
is bipartite, then a complete star is a set of edges joining all vertices of one part with
a fixed vertex of the other part. A graph is star-free if it contains no complete stars.

Fact 2. Let G be a saturated extension of a bipartite star-free graph. Then fG

is the only monotone boolean function representing G.

Proof. Let G = (V, E) be a saturated extension of a bipartite graph H ⊆ U ×W .
Suppose that H has no complete stars, and let f be a monotone boolean function
representing G. Take an arbitrary subset S ⊆ V of vertices. If fG(S) = 1 then S
contains both endpoints of some edge uv ∈ E. This edge must be accepted by f and,
since f is monotone, f(S) = 1. If fG(S) = 0 then S is an independent set of G.
But the only independent sets in G are single vertices and non-edges of H. Hence,
f(S) = 0 because f represents H and H contains no complete stars.

A perfect matching of size n (or an n to n matching) is a bipartite n × n graph
consisting of n vertex disjoint edges.

Theorem 3. If G is the saturated extension of a perfect matching of size n then

Cmult(fG) = O(log n) but C1
mult(fG) ≥ n/2. Hence, Gapmult(G) = Ω(n/ logn).

This lower bound is not very far from the maximal possible because C1
mult(G) ≤ n

for every graph G on n vertices. A better upper bound Gap mult(G) = O(n/ log log n)
was recently proved by Amano and Maruoka in [2].

The theorem itself is implicitly contained in [9] where it is shown that an n to
n matching can be represented by a monotone CNF with O(log n) clauses. Here we
state it explicitly. Theorem 3 was recently rediscovered in [2].

Recall that all these results concern the multiplicative complexity where we count
only AND gates. The status of the single level conjecture in the case of combinational
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complexity—where we count both AND and OR gates—remained unclear. In this
case very little was known on what the gap

Gap(G) = C1(fG)/C(fG)

really is (cf. Problem 6 in [12]). Krichevski [11] has proved that Gap(G) = 1 for the
complete graph G = Kn, even if negation is allowed as an operation. In the case of
formulas, a graph with gap 8/7 was given by Bublitz [4]. Amano and Maruoka [2] have
recently shown the gap of 29/28 for circuits computing sets of quadratic functions.
However, even the existence of a (single) graph G with Gap(G) > 1 was not known.

The following theorem disproves the single level conjecture in a strong sense.

Theorem 4. There exist n-vertex graphs G such that C(fG) = O(n) but C1(fG) =
Ω(n2/ log3 n). Hence, Gap(G) = Ω(n/ log3 n).

The graphs used in Theorem 4 are saturated extensions of Sylvester graphs, i.e.
of bipartite graphs whose vertices are vectors in GF(2)r, and where two vertices are
adjacent iff their scalar product over GF(2) is 1.

Next we consider the single level conjecture for formulas. Recall that a formula

is a circuit where all gates have fanout 1; its length is the number of input gates.
Let L(f) and L1(f) denote the minimum length of a monotone (resp., in a monotone
single level) formula computing f . Let

Gap form(G) = L1(fG)/L(fG).

As we already mentioned above, a graph G with Gap form(G) = 8/7 was given by
Bublitz [4]. However, it was open whether Gap form(G) = O(1) for all graphs G. That
this is true for a large class of graphs follows from

Theorem 5 ([9]). If a graph G = (V, E) has no triangles and no 4-cycles, then

L(fG) ≥ |E|/2.

Since, by the definition of fG, L1(fG) ≤ 2|E| for very graph G, this implies that
Gap form(G) ≤ 4 for a large class of graphs. Still, it turns out that also in the case of
formulas, the single level conjecture is not even near to the truth.

A bipartite Kneser n×n graph is a bipartite graph K ⊆ U ×W where U and W
consist of all n = 2r subsets u of {1, . . . , r}, and uv ∈ K iff u ∩ v = ∅.

Theorem 6. If G is the saturated extension of a bipartite Kneser n×n graph, then

L(fG) = O(n logn) but L1(fG) ≥ n1+c for a constant c > 0. Hence, Gap form(G) =
nΩ(1).

So far we considered circuits with AND and OR gates of fanin 2. But what
happens if we allow gates of arbitrary fanin—does the single level conjecture holds
for such circuits? In this case the single level circuits are precisely the Σ3 circuits.
Recall that these circuits consist of unbounded fanin AND and OR gates which are
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organized in three levels: the bottom (next to the inputs) level consists of OR gates,
the middle level consists of AND gates, and the top level consists of a single OR gate.

For a graph G, let C∗(fG) (resp., L∗(fG)) be the minimum size of a monotone
unbounded fanin circuit (resp., formula) computing fG. Let also C1

∗(fG) and L1
∗(fG)

denote the corresponding measures in a class of monotone Σ3 circuits (i.e. the single
level versions of these measures).

What are the gaps Gap∗(G) = C1
∗(fG)/C∗(fG) and Gap∗

form(G) = L1
∗(fG)/L∗(fG)?

The question is interesting because the presence of unbounded fanin gates may
exponentially increase the power of single level circuits: there are n-vertex graphs G
such that C1(fG) = Ω(n) but C1

∗(fG) = O(log n) (we will show this in § 7).

The following result gives an (indirect) indication that the single level conjecture
should fail also for unbounded fanin circuits or formulas.

Theorem 7. If the single level conjecture holds for unbounded fanin circuits or

formulas then C∗(fG) = Ω(
√

M/d) or L∗(fG) = Ω
(

M/d2
)

for every star-free graph

with M edges and maximum degree d.

The rest of the paper is organized as follows. In the next section we prove several
auxiliary lemmas, relating the circuit complexity of quadratic functions fG to some
combinatorial characteristics of their graphs G. We then use these lemmas to prove
Theorems 3, 4 and 6 in §§ 4-6. In § 7 we consider the single level conjecture in the case
of circuits with unbounded fanin AND and OR gates and give an indication that the
conjecture should fail also in this circuit model. We conclude with several problems.

3. Combinatorics of single level complexity. In this section we prove several
auxiliary lemmas allowing us to get small upper bounds for circuit complexity of
quadratic functions and large lower bounds on their single level complexity.

3.1. Upper bounds. A monotone CNF (conjunctive normal form) of length

r is an AND of r clauses, each being an OR of variables; the length of a CNF is
the number of clauses. CNFs of length at least three are simplest circuits violating
the single level restriction. Thus, graphs represented by short CNFs may be good
candidates to refute the single level conjecture. We will use such graphs in the proof
of Theorems 3 and 6.

Let cnf(G) be the minimum length of a monotone CNF representing the graph G.
As observed in [9], this number can be combinatorially described in terms of set-
intersections. Say that a graph G = (V, E) admits an intersection representation of

size r if it is possible to associate with every vertex u ∈ V a subset Au of {1, . . . , r}
so that Au ∩Av = ∅ if uv is an edge, and Au ∩ Av 6= ∅ if uv is an non-edge of G. Let
int(G) denote the smallest r for which G admits such a representation.

Erdős, Goodman and Pósa [7] observed that int(G) coincides with the clique
covering number of G, i.e. the minimum number of independent sets of G covering
all non-edges of G. It turns out that this number also captures the length of CNFs
representing G.
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Fact 8 ([9]). For every graph G, cnf(G) = int(G).

Proof. If a graph G can be represented by a CNF
∧r

i=1

∨

v∈Si
xv, then the sets

Au = {i : u 6∈ Si} give the desired intersection representation of G. Conversely,
having an intersection representation {Au : u ∈ V } of G, the CNF given above with
Si = {u : i 6∈ Au} represents the graph G.

The following lemma shows that negation is (almost) powerless in the context of
graph representation.

Lemma 9. Let H be a bipartite n× n graph. If H can be represented by a circuit

of size L over the basis {∨,∧,¬}, then H can be represented by a monotone circuit of

size at most 2L + O(n).

Proof. The proof is a reminiscent of the proof that negation is powerless for slice
functions (see, e.g. [23], p. 196).

Let F be a circuit of size L over the basis {∨,∧,¬} representing a bipartite graph
H ⊆ U×W . Using DeMorgan rules we can transform this circuit to a circuit F ′ of size
at most 2L such that negation is used only on inputs. We then replace each negated
input xu with u ∈ U by a boolean sum gu =

∨

v∈U\{u} xv, and replace each negated

input xw with w ∈ W by a boolean sum hw =
∨

v∈W\{w} xv. Since all these boolean

sums can be simultaneously computed by a trivial circuit consisting of O(n) OR gates
(see, e.g. [23], p. 198 for a more general result), the size of the new circuit F+ does
not exceed 2L + O(n). Since the only difference of F+ from the original circuit F is
that negated inputs are replaced by boolean sums, it remains to show that on arcs
ab ∈ U × W these sums take the same values as the corresponding inputs.

Take an arbitrary set S = {a, b} with a ∈ U and b ∈ W . The incidence vector
of this set has precisely two 1’s in positions a and b. Hence, gu(S) = 1 iff a 6= u iff
xu(S) = 0 iff xu(S) = 1. Similarly, hw(S) = 1 iff b 6= w iff xw(S) = 0 iff xw(S) = 1.
Hence, on edges and non-edges of H the functions gu and hw take the same values as
the negated variables xu and xw, implying that F+ represents H.

If a bipartite graph can be represented by a small circuit then the quadratic
function of its saturated extension cannot require large circuits: it is enough to addi-
tionally compute two threshold-2 functions. We make this simple observation explicit
in the following lemma.

Lemma 10. Let H ⊆ U ×W be a bipartite n×n graph, G the saturated extension

of H, and f a boolean function representing H. Then fG = (f ∧ g) ∨ h where g
is an AND of two monotone clauses and h is an OR of O(log n) monotone CNFs

of length 2. Hence, Cmult(fG) ≤ Cmult(f) + O(log n), C(fG) ≤ C(f) + O(n) and

L(fG) ≤ L(f) + O(n log n). Moreover, if H is star-free then fG = f ∨ h.

Proof. Let g =
(
∨

u∈U xu

)

∧
(
∨

w∈W xw

)

and h = T U
2 ∨ TW

2 where T U
2 (S) = 1

iff |S ∩ U | ≥ 2, i.e. T U
2 is a threshold-2 function on n variables {xu : u ∈ U}. Since

the complete graph Kn can be covered by m ≤ dlog ne bipartite cliques, each of the
functions T U

2 and T W
2 have the form

∨m
i=1

(
∨

u∈Ai
xu

)

∧
(
∨

v∈Bi
xv

)

. Hence, h can
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be computed by an OR of O(log n) monotone CNFs of length 2. This immediately
implies that Cmult(fG) ≤ Cmult(f) + O(logn) and L(fG) ≤ L(f) + O(n logn). That
h can be computed by a monotone circuit with O(n) gates follows from Lemma 13
stated below; this also follows from the fact that C(T n

k ) ≤ kn + o(n) for any constant
k ([8], see also [23], p. 152). It remains to show that (f ∧ g) ∨ h coincides with fG.

If fG(S) = 1 then S contains both endpoints of some edge uv ∈ E of G. This
edge must be accepted either by f ∧ g (if uv ∈ H) or by h (if both u and v are in
the same color class). Since both f ∧ g and h are monotone, the function (f ∧ g) ∨ h
accepts S.

If fG(S) = 0 then S is an independent set of G, that is, S is either a single vertex
or a non-edge of H. In both cases h(S) = 0 because none of the color classes can
contain more than one vertex from S. Moreover, g(S) = 0 if S is a single vertex, and
f(S) = 0 if S is a non-edge of H.

If H is star-free then the function f alone rejects all single vertices and non-edges
of H, implying that in this case fG = f ∨ h.

3.2. Lower bounds. A bipartite clique covering of G is a family of complete
bipartite subgraphs A1 × B1, . . . , At × Bt of G such that every edge of G is an edge
of at least one member of the family. The number t of subgraphs in such a covering
is the size and the total number

∑t
i=1(|Ai| + |Bi|) of vertices is the weight of the

covering.
Let cc(G) denote the minimum size and ccw(G) the minimum weight of a bipartite

clique covering of G. These measures were first studied by Erdős, Goodman and Pósa
in [7], and now are the subject of extensive literature. In particular, it is known that
the maximum of cc(G) over all n-vertex graphs is n − Θ(log n) [19, 18], and that the
maximum of ccw(G) is Θ(n2/ log n) [6, 4].

Let w(G) be the minimum of (a+b)/ab over all pairs a, b ≥ 1 such that G contains
a copy of Ka,b.

Lemma 11. For every graph G we have C1
mult(fG) = cc(G) and

L1(fG) = ccw(G) ≥ w(G) · |E|.

Moreover, if G is an extension of a bipartite graph H, then cc(G) ≥ cc(H)/2 and

ccw(G) ≥ ccw(H).

Proof. The equalities C1
mult(fG) = cc(G) and L1(fG) = ccw(G) follow immedi-

ately from a simple observation (made also in [3, 12]) that every single level circuit for
fG is of the form

∨t
i=1

(
∨

u∈Ai
xu

)

∧
(
∨

v∈Bi
xv

)

with Ai ∩ Bi = ∅ for all i = 1, . . . , t.
To prove that ccw(G) ≥ w(G) · |E|, let E = A1 ×B1 ∪ · · · ∪At ×Bt be a bipartite

clique covering of G = (V, E) of minimal weight
∑t

i=1(|Ai| + |Bi|). Select subsets
Ei ⊆ Ai × Bi so that the Eis are disjoint and cover the same set E of edges. Then

ccw(G) =

t
∑

i=1

(|Ai| + |Bi|) =

t
∑

i=1

∑

e∈Ei

|Ai| + |Bi|
|Ei|

≥
t

∑

i=1

∑

e∈Ei

w(G) = w(G) · |E|.
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To prove the last claim, let G = (V, E) be an extension of H ⊆ U × W ; hence,
E ∩ (U × W ) = H. If Ai × Bi, i = 1, . . . , t is a bipartite clique covering of G, then
(Ai ∩ U) × (Bi ∩ W ), (Bi ∩ U) × (Ai ∩ W ), i = 1, . . . , t is a bipartite clique covering
of H. The number of bipartite cliques in this new covering is at most twice of that in
the original covering, and the total number of vertices in the new covering does not
increase at all.

If we consider circuits with gates of arbitrary fanout, then ccw(G) may be larger
than C1(fG), because the collection of boolean sums (ORs of variables) on the first
level (before AND gates) may be not necessarily computed separately: one partial
sum computed at some OR gate may be used many times.

Let A = {A1, . . . , Am} be a family of subsets of {1, . . . , n}. The disjunctive

complexity of A is the minimum number of gates in a circuit over the basis {∨}
needed to simultaneously compute all m boolean sums

∨

i∈A1

xi, . . . ,
∨

i∈Am

xi.

Remark 12. For every subset I ⊆ {1, . . . , n}, the disjunctive complexity of the
restriction AI = {A1∩ I, . . . , Am∩ I} of A onto I does not exceed that of the original
family A: having a circuit for A we can get a circuit for AI just by setting to 0 all
variables xi with i 6∈ I.

Lemma 13 (Pudlák–Rödl–Savický [16]). Let A = {A1, . . . , Am} be a family of

subsets of {1, . . . , n}. Then the disjunctive complexity of A does not exceed n+k2m+1−
m− 2. In particular, the disjunctive complexity of A does not exceed kn + k2dm/ke+1

for every k ≥ 1.

Hence, the disjunctive complexity of some families may be much smaller than
∑m

i=1 |Ai|. Still, the overlap of gates cannot be too large if the sums are “disjoint
enough”. A family is (h, k)-disjoint if no h + 1 of its members share more than k
elements in common.

Lemma 14 (Wegener [22]). If A = {A1, . . . , Am} is (h, k)-disjoint then A has

disjunctive complexity at least

1

kh

m
∑

i=1

|Ai| −
m

h
.

Proof. [Sketch] At least |Ai| − 1 gates are necessary for computation of the i-th
sum and at least |Ai|/k − 1 of the functions computed at these gates are boolean
sums of more than k summands. We only count these gates. Since the family is
(h, k)-disjoint, each of these gates can be useful for at most h outputs. Hence, we
need at least

∑m
i=1(|Ai|/k − 1)/h gates to compute all m sums.
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Amano and Maruoka [2] used this lemma to prove that C1(fG) ≥ |E| for any
graph G = (V, E) with no copies of K2,2. The argument of [2] can be easily adopted
to obtain a lower bound C1(fG) ≥ Ω(|E|/t3) for graphs with no copy of Kt,t. However,
we need a similar result for graphs G which are saturated extensions of bipartite n×n
graphs, and such graphs already have copies of Kt,t with t = n/2. The following
lemma works also for graphs with large bipartite cliques.

Lemma 15. Let H ⊆ U × W be a bipartite n × n graph with no copies of Kt,t

and let G be an extension of H. Then

C1(fG) = Ω

( |H| − tn

t3

)

.

Moreover, if H is star-free then C1(fG) = Ω
(

|H|/t3
)

.

Proof. Take a minimal monotone single level circuit F representing H. Any circuit
computing the quadratic function fG of an extension of H must clearly represent H,
implying that C1(fG) must be at least the size, size(F ), of F . Since the graph H
has no copies of Kt,t, it can have at most 2(t − 1) complete stars. By setting to 0
all variables corresponding to centers of these stars we obtain a single level circuit
F1 representing an induced star-free subgraph H1 of H with |H1| ≥ |H| − 2tn edges.
Moreover, size(F ) ≥ size(F1).

The circuit F1 has the form
∨m

i=1 gi ∧ hi where m is the number of AND gates in
F1, and

gi =
∨

u∈Si

xu and hi =
∨

v∈Ti

xv

are boolean sums computed at the inputs of the i-th AND gate with Si, Ti ⊆ U ∪W .
Our goal is to show that we need many OR gates to compute these sums. We cannot
apply Lemma 14 directly to these sums because the corresponding families may be
not disjoint enough. Still, we can use the absence of Kt,t in H1 to show that the
restriction of these families onto U or onto W must contain a large enough (t, t)-
disjoint subfamily.

First, observe that Si ∩Ti = ∅ because the graph H1 is star-free. Also, if for some
i, both Si and Ti would entirely lie in the same part of the bipartition, then we could
just remove the i-th AND gate—the resulting circuit would still represent H1. So, we
may assume that this does not happen. Hence, H1 is the union of bipartite cliques
(Si ∩U)× (Ti ∩W ) and (Ti ∩U)× (Si ∩W ) for i = 1, . . . , m. We may assume w.l.o.g.
that the union H ′

1 of cliques

Ai × Bi = (Si ∩ U) × (Ti ∩ W ),

i = 1, . . . , m contains at least |H ′
1| ≥ |H1|/2 edges of H1 (if not, then take the

remaining bipartite cliques).
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Since H ′
1 has no copies of Kt,t, for every i = 1, . . . , m, at least one of the sets Ai

and Bi must have fewer than t elements. Hence, if we set I = {i : |Ai| < t} then
|Bi| < t for all i 6∈ I. We may assume that the bipartite graph

H2 =
⋃

i∈I

Ai × Bi

contains at least |H2| ≥ |H ′
1|/2 ≥ |H1|/4 edges of H1 (if not, then let H2 be the union

of bipartite cliques Ai ×Bi with i 6∈ I and replace the roles of Ai’s and Bi’s). We now
collect the boolean sums hi, i ∈ I computed in F1 into a circuit F2, by the following
construction

F2(X) =
∨

u∈A

xu ∧
(

∨

i∈Iu

hi

)

where A =
⋃

i∈I Ai and Iu = {i ∈ I : u ∈ Ai}. For every u ∈ A and v ∈ W , the circuit
F2 accepts the arc uv iff v ∈ Ti ∩ W = Bi for some i ∈ I such that u ∈ Ai. Hence,
F2 represents the graph H2. For every u ∈ A, the sub-circuit

∨

i∈Iu
hi computes the

boolean sum
∨

v∈Tu
xv with Tu =

⋃{Ti : i ∈ Iu}. Hence, size(F2) is at least the
disjunctive complexity of the family T = {Tu : u ∈ A} which, in its turn, is at least
the disjunctive complexity of the restriction T ′ = {Tu ∩ W : u ∈ A} of T onto the
set W . Moreover, we have that |H2| =

∑

u∈A |Tu ∩ W | since Tu ∩ W is the set of all
neighbors of u in H2. Since H2 has no copies of Kt,t and the circuit H2 must reject
all non-edges of H2, the family T ′ must be (t, t)-disjoint. By Lemma 14,

size(F2) ≥
1

t2

∑

u∈A

|T ′
u| −

|A|
t

=
|H2|
t2

− |A|
t

.

It remains to show that the size of F2 is not much larger than the size of the original
circuit F . Since all boolean sums hi with i ∈ I are already computed in F1, we
need at most

∑

u∈A |Iu| =
∑

i∈I |Ai| ≤ t · |I| new gates to compute all functions

xu ∧
(
∨

i∈Iu
hi

)

with u ∈ A. To compute the disjunction of these functions we need
at most |A| ≤ ∑

i∈I |Ai| ≤ t · |I| additional OR gates. Hence, size(F2) ≤ size(F1) +
2t · |I| ≤ 3t · size(F1), implying that

size(F1) ≥
1

3t
· size(F2) ≥

|H2|
3t3

− |A|
3t2

≥ |H2|
3t3

− size(F1).

Since |H2| ≥ |H1|/4 ≥ |H|/4 − tn/2 and size(F ) ≥ size(F1), the desired lower bound
size(F ) = Ω(|H|/t3 − n/t2) follows.

Now we turn to the actual proof of our main results. We first prove Theorem 3
(multiplicative complexity of circuits) and Theorem 6 (combinational complexity of
formulas); the proofs here are relatively simple. We then turn to the proof of Theo-
rem 4 (combinational complexity of circuits).
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4. Multiplicative complexity: proof of Theorem 3. Let G be a saturated
extension of an n to n matching Mn ⊆ U × W . Then, by Lemma 11, C1

mult(fG) =
cc(G) ≥ cc(Mn)/2 = n/2. On the other hand, as shown in [9], Mn can be represented
by a monotone CNF with O(logn) clauses: let r = 2 log n and associate with each
vertex ui on the left side its own r/2-element subset Ai of {1, . . . , r}, and assign to
the unique matched vertex vi on the right side the complement Bi = Ai of this subset.
It is clear that then Ai ∩ Bj = ∅ iff i = j. By Fact 8, cnf(Mn) = int(Mn) ≤ r =
2 log n. Together with Lemma 10, this implies that Cmult(fG) = O(log n). Hence,
Gapmult(G) = Ω(n/ logn).

5. Formulas: proof of Theorem 6. Let G be the saturated extension of the
bipartite Kneser n × n graph K ⊆ U × V . Recall that in this case U and W consist
of all n = 2r subsets u of {1, . . . , r}, and uv ∈ K iff u ∩ v = ∅. Since log2 3 > 1.58,
the graph K has

|K| =
∑

u∈U

d(u) =
∑

u∈U

2r−|u| =
r

∑

i=0

(

r

i

)

2r−i = 3r ≥ n3/2+c

edges with c ≥ 0.08. Moreover, the graph K can contain a complete bipartite a × b
subgraph ∅ 6= A × B ⊆ K only if a ≤ 2k and b ≤ 2r−k for some 0 ≤ k ≤ r,
because then it must hold

(
⋃

u∈A u
)

∩
(
⋃

v∈B v
)

= ∅. Since a ≤ a′ and b ≤ b′ imply
(a + b)/ab ≥ (a′ + b′)/a′b′, we have

w(K) ≥ 2k + 2r−k

2r
≥ 2−r/2 ≥ n−1/2.

By Lemma 11, L1(fG) = ccw(G) ≥ ccw(K) ≥ w(K) · |K| ≥ n1+c.
On the other hand, by its definition, the graph K has intersection representation

of size r and, by Fact 8, can be represented by a monotone CNF with int(K) ≤
r = log(n + 1) clauses. Hence K, can be represented by a monotone formula with
O(n logn) fanin-2 AND and OR gates. Together with Lemma 10, this implies that
L(fG) = O(n logn). Hence, Gap form(G) = L1(fG)/L(fG) = Ω(nc/ logn).

6. Circuits: proof of Theorem 4. Let F = GF(2) and r be a sufficiently large
even integer. With every subset S ⊆ F

r we associate a bipartite graph HS ⊆ S × S
such that two vertices u and v are adjacent if and only if u · v = 1, where u · v is
the scalar product over F. We will need the following Ramsey-type property of such
graphs.

Lemma 16 (Pudlák–Rödl [15]). Suppose every vector space V ⊆ F
r of dimension

b(r + 1)/2c intersects S in less than t elements. Then neither HS nor the bipartite

complement HS contains Kt,t.

Proof. [Sketch] The proof is based on the observation that any copy of Kt,t in GS

would give us a pair of subsets X and Y of S of size t such that x ·y = 1 for all x ∈ X
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and y ∈ Y . Looking the vectors in X as the rows of the coefficient matrix and vectors
in Y as unknowns, we obtain that the sum dim(X ′) + dim(Y ′) of the dimensions of
vector spaces X ′ and Y ′, spanned by X and by Y , cannot exceed r + 1. Hence, at
least one of these dimensions is at most (r + 1)/2, implying that either |X ′ ∩ S| < t
or |Y ′ ∩ S| < t. However, this is impossible because both X ′ and Y ′ contain subsets
X and Y of S of size t.

Together with a simple probabilistic argument, this lemma yields

Lemma 17. There exists a subset S ⊆ F
r of size |S| = 2r/2 such that neither HS

nor the bipartite complement HS contains a copy of Kt,t with t = ω(r).

Proof. Let N = 2r, and let S ⊆ F
r be a random subset where each vector u ∈ F

r

is included in S independently with probability p = 21−r/2 = 2/
√

N . By Chernoff’s
inequality, |S| ≥ pN/2 = 2r/2 with probability at least 1 − e−Ω(pN) = 1 − o(1).

Let now V ⊆ F
r be a subspace of F

r of dimension b(r + 1)/2c = r/2 (remember
that r is even). Then |V | = 2r/2 =

√
N and we may expect µ = p|V | = 2 elements in

|S ∩ V |. By Chernoff’s inequality (see, e.g. [14], Theorem 4.1),

Pr {|S ∩ V | ≥ (1 + λ)µ} ≤ e−min(λ2,λ)µ/3

holds for any λ ≥ 0. The number of vector spaces in F
r of dimension r/2 does

not exceed
(

r
r/2

)

≤ 2r/
√

r. Hence, we can take λ = 3r/2 and conclude that the

set S intersects some r/2-dimensional vector space V in t = (1 + λ)µ = 3r + 2 or
more elements with probability at most er−(ln r)/2−r ≤ r−1/2 = o(1). Hence, with
probability 1 − o(1) the set S has size at least 2r/2 and |S ∩ V | < t for every r/2-
dimensional vector space V . Fix such a set S and take an arbitrary its subset S ′ ⊆ S
of size |S′| = 2r/2. By Lemma 16, neither HS′ nor HS′ contains a copy of Kt,t with t
larger than O(r).

Now we turn to the actual proof of Theorem 4.
Let S ⊆ F

r be a subset of size |S| = n = 2r/2 guaranteed by Lemma 17. We
may assume that u · v = 1 holds for at least half of the pairs in S (otherwise take
the bipartite complement of HS). Hence, H ′ = HS is a bipartite n × n graph with
n = |S| vertices in each part and with |H ′| ≥ |S|2/2 = Ω(n2) edges. Moreover, this
graph can contain a copy of Kt,t only if t = O(r) = O(log n).

Let G be the saturated extension of H ′. By Lemma 15,

C1(fG) = Ω

( |H ′|
t3

− n

t2

)

= Ω

(

n2

log3 n

)

.

To get an upper bound on C(fG), let us identify each vector w ∈ S with the set
of 1-coordinates of w. Hence, two vertices u and v are adjacent in H ′ iff |u ∩ v| is
odd. It is not difficult to see that (for even r) the graph H ′ can be represented by a
depth-2 formula

F (X) =

r
⊕

i=1

∨

w∈Si

xw
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with Si = {w ∈ S : i 6∈ w}. Indeed, the i-th clause
∨

w∈Si
xw accepts an arc uv ∈ S×S

iff u ∈ Si or v ∈ Si iff i 6∈ u ∩ v. Hence, the formula F accepts uv iff uv is accepted
by an odd number of clauses iff |{i : i 6∈ u ∩ v}| = r − |u ∩ v| is odd iff |u ∩ v| is odd
iff uv ∈ H ′.

By Lemma 13, all r = 2 log n boolean sums in the formula F (X) above can be
computed using O(n) fanin-2 OR gates. Hence, the graph H ′ can be represented by a
circuit over the basis {∨,∧,¬} consisting of O(n) fanin-2 gates and, by Lemma 9, can
be represented by a monotone circuit of size O(n). Since G is the saturated extension
of H ′, Lemma 10 implies that C(fG) = O(n). Hence, Gap(G) = C1(fG)/C(fG) =
Ω

(

n/ log3 n
)

.

7. Unbounded fanin circuits: proof of Theorem 7. First we show that
the presence of unbounded fanin gates may exponentially increase the power even of
single level circuits. For a graph G, let C∗(G) (resp., C∗(G)) be the minimum size of
a monotone unbounded fanin circuit (resp., single level circuit) representing G.

Fact 18. Let H be a bipartite n × n graph of maximal degree d < n, and G be

its saturated extension. Then C1
∗(fG) ≤ C1

∗(H) + O(log n) and C1
∗(H) ≤ cnf(H) =

int(H) = O(d2 log n).

Proof. The first claim is a direct consequence of Lemma 10. The inequality
C1

∗(H) ≤ cnf(H) is trivial, and the equality cnf(H) = int(H) is Fact 8. The upper
bound int(H) = O(d2 log n) follows from the upper bound O(d2 log n) on the clique
covering number of the complement of H, due to Alon [1], and an observation that
this number coincides with int(G) made by Erdős, Goodman and Pósa in [7].

This fact implies that C1
∗(fG) is exponentially smaller than C1(fG) for a large

class of graphs: if, say, G is the saturated extension of a constant degree bipartite n×n
graph H without isolated vertices, then C1(fG) ≥ Ω(|H|) = Ω(n) (by Lemma 15) but
C1

∗(fG) = O(logn) (by Fact 18). Hence, the presence of unbounded fanin gates can
indeed exponentially increase the power of single level circuits. This also shows that,
for some graphs G, C1

∗(fG) may be exponentially smaller than the number of variables
the function fG depends on.

Theorem 7 is a direct consequence of the following general lower bound on the
size of single level circuits with unbounded fanin gates.

Since the quadratic function of any bipartite complete graph A × B can be
computed by a monotone CNF

(
∨

u∈A xu

)

∧
(
∨

v∈B xv

)

of length 2, we have that
L1
∗(fG) ≤ 3 · cc(G) + 1 holds for all graphs G. On the other hand, if G has maximum

degree d then |E|/d2 is a trivial lower bound on cc(G). It turns out that this is also
a lower bound on L1

∗(fG).

Theorem 19. If G = (V, E) is a star-free graph of maximum degree d, then

L1
∗(fG) ≥ |E|/d2 and C1

∗(fG) ≥
√

|E|/d.

For the proof we need the following lemma. Let cnf(fG) denote the minimum
length of (i.e. the number of clauses in) a monotone CNF computing fG.
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Lemma 20. If H is a star-free graph with M edges and maximum degree d, then

cnf(fH) ≥ M/d2.

Proof. Let F be a monotone CNF of length t = cnf(fH) computing fH . Since H
has no complete stars, this CNF must contain at least two clauses. Take any of these
clauses C =

∨

u∈S xu and consider the shrinked CNF F ′ = F \ {C}. Since C must
accept all edges of H, each of these edges must have at least one endpoint in S. But
any one vertex in S can be an endpoint of at most d edges, implying that |S| ≥ M/d.

Since F is a shortest CNF computing fH , the shrinked CNF F ′ must make an
error, i.e. it must (wrongly) accept some independent set of H. That is, there must
be an independent set I such that every clause of F ′ contains a variable xv with v ∈ I.
Since F ′ has only t − 1 clauses, we may assume that |I| ≤ t − 1. This error must be
corrected by the clause C, implying that every vertex u ∈ S must be adjacent (in H)
with at least one vertex in I, for otherwise F would wrongly accept the independent
set I ∪ {u} of H. Hence, at least one vertex v ∈ I must have at least |S|/|I| ≥ M/td
neighbors in H. Since the degree of v cannot exceed d, the desired lower bound
t ≥ M/d2 follows.

Proof of Theorem 19. We first consider the case of formulas. Let F be a smallest
monotone Σ3 formula computing fG. This formula is an OR F = F1 ∨ · · · ∨ Fs of
monotone CNFs, and size(F ) ≥ ∑s

i=1 ri where ri is the length of the i-th CNF Fi.
The CNFs Fi, i = 1, . . . , s compute quadratic functions of subgraphs Gi = (V, Ei) of
G such that E1 ∪ · · · ∪ Es = E. Since each of these subgraphs is star-free and has
maximum degree at most d, Lemma 20 yields size(F ) ≥ ∑s

i=1 ri ≥ ∑s
i=1 |Ei|/d2 ≥

|E|/d2.

If F is not a formula (some OR gates on the bottom level have fanout larger than
1), then we still have that size(F ) ≥ t = max{s, r1, . . . , rs}. To get the desired lower
bound t ≥

√

|E|/d, take a CNF Fi whose graph Gi = (V, Ei) contains the maximal
number of edges. By Lemma 20, Fi has length ri ≥ |Ei|/d2 ≥ |E|/sd2. Since both ri

and s do not exceed t, this yields t2 ≥ |E|/d2, and the desired lower bound t ≥
√

|E|/d
on the number of gates in F follows.

Since L∗(fG) ≤ |E| + 1 for every graph G = (V, E), Theorem 19 implies that
Gap∗

form(G) = O(d2) for every star-free graph G of maximum degree d. This means
that, also in the case of unbounded fanin formulas, the single level conjecture holds
for many graphs (e.g. for graphs of constant degree)—for such graphs we have
Gap∗

form(G) = O(1). However, if this would hold for all graphs, then we would have
a consequence (stated in Theorem 7) that for every star-free graph G = (V, E) of
maximum degree d, the quadratic function fG cannot be computed by a circuit using
fewer than Ω(

√

|E|/d) unbounded fanin AND and OR gates and cannot be computed
by a formula using fewer than Ω(|E|/d2) such gates. This gives an (indirect) indica-
tion that the single level conjecture should fail also for unbounded fanin circuits or
formulas. Still, we cannot exclude this (rather unlikely) general lower bound on the
size of monotone unbounded fanin circuits for quadratic functions.
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Problem 21. Exhibit a star-free n-vertex graph G with L∗(fG) = o
(

|E|/d2
)

or

C∗(fG) = o(
√

|E|/d) (or prove a mere existence of such graphs).

8. Open problems. Besides the problem above, there are many other interest-
ing problems concerning the circuit complexity of graphs and their quadratic func-
tions. Here we describe some of them.

In Theorem 4 we show a mere existence of a graph G with Gap(G) = Ω(n/ log4 n).

Problem 22. Exhibit an explicit n-vertex graph G with Gap(G) = nΩ(1).

For a graph G, let C(G) be the minimum size of a monotone circuit represent-
ing G. This measure is interesting because it is related to the non-monotone com-
plexity of boolean functions. As we already mentioned in the introduction, lower
bounds on the size of monotone circuits representing a graph G yield lower bounds
on the non-monotone circuit size of their characteristic functions. In particular, a
lower bound C(G) ≥ 12n + nε for an explicit bipartite n × n graph G would yield a
lower bound 2εm on the non-monotone circuit size of an explicit boolean function in
2m variables (see [16, 9]). It is therefore not surprising that the measure C(G) is not
easy to deal with. Note that, by easy counting, C(G) = Ω(n2/ log n) for almost all
bipartite n × n graphs. The problem, however, is the explicitness: we want a lower
bound for explicitly constructed graphs.

The monotone complexity of quadratic functions fG is a more tractable measure
(cf. Theorem 5). Even more, for some graphs (like saturated ones), fG is the only
monotone boolean function representing G. Hence, proving lower bounds on C(fG)
for saturated graphs is of particular interest. For this, it would be interesting to better
understand the connection between these two measures, C(G) and C(fG). Since fG

represents G, we have that C(G) ≤ C(fG) holds for any graph G and, by Fact 2,
C(G) = C(fG) for saturated graphs.

Problem 23. For what graphs G, besides the saturated extensions, do we have

that C(G) = Ω(C(fG))?

Note, however, that for some graphs G, it may be much easier to represent G then
to compute fG. For example, if M is an n to n matching, then cnf(M) = O(logn)
(see § 4) but, by Theorem 19, every monotone Σ3 circuit for fM requires size

√
n.

Hence, C1
∗(M) is exponentially smaller than C1

∗(fM ).

Explicit constructions of bipartite n × n graphs G without a copy of K2,2 and
with Ω(n3/2) edges are well known (see, e.g. [10]). For these graphs Theorem 5 yields
a lower bound L(fG) = Ω(n3/2). However, proving lower bounds on the monotone
size of quadratic functions in the case of circuits (arbitrary fanout) is a more difficult
task. Razborov’s argument [17] works well only if both minterms and maxterms are
short enough. In the case of quadratic functions this is not the case: here minterms
have length 2 but maxterms may be very large. Hence, for functions of the form fG

we need some new arguments.
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Problem 24. Prove C(fG) = Ω(n1+ε) for an explicit n-vertex graph G.

It is an interesting open question on whether the single level conjecture holds in
the context of graph representation. If we allow only fanin-2 gates, then the conjecture
is false: in § 6 we have shown that there are bipartite n×n graphs H such that C(H) =
O(n) and C1(H) = Ω(n2−ε). But what happens if we allow gates of unbounded fanin?

Problem 25 (Pudlák–Rödl–Savický [16]). Prove that C∗(G) may be much

smaller than C1
∗(G) .

Unlike for quadratic functions fG (cf. Theorem 19), proving non-trivial lower
bounds on C1

∗(G) seems to be a much more difficult task.

Problem 26 ([9]). Exhibit an n-vertex graph G with C1
∗(G) = nΩ(1).

By a well-known result of Valiant [20] this would yield a super-linear lower bound
for non-monotone log-depth circuits (see [9] for details), thus solving an old problem
in circuit complexity.
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[7] Erdős, P., Goodman, A. W. and Pósa, L. (1966): The representation of a graph by set inter-

sections, Can. J. Math. 18, 106–112.
[8] Dunne, P. (1984): Techniques for the analysis of Boolean networks, PhD Thesis, Univ. War-

wick.
[9] Jukna, S. (2004): On graph complexity, Electronic Colloq. on Comp. Complexity, Re-

port Nr. 5, 18 pp.
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