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Disproving the single level conjecture *

Stasys Jukna |

Abstract

We consider the size of monotone circuits for quadratic boolean functions, that
is, disjunctions of length-2 monomials. Our motivation is that a good (linear in the
number of variables) lower bound on the monotone circuit size for a certain type of
quadratic function would imply a good (even exponential) lower bound on the general
non-monotone circuit size.

To get more insight into the structure of monotone circuits for quadratic functions,
we consider the so-called single level conjecture posed explicitely around 1990. The
conjecture claims that monotone single level circuits, that is, circuits which have only
one level of AND gates, for quadratic functions are not much larger than arbitrary
monotone circuits. In this paper we show that the conjecture was not even near to the
truth: there are quadratic functions whose monotone circuits have linear size whereas
their monotone single level circuits require almost quadratic size.

1 Introduction

A quadratic boolean function is a monotone boolean function whose all prime implicants
have length two. There is an obvious correspondence between such functions and graphs:
every graph G = (V| F) defines a natural quadratic function

fa(X) = \/ Ty Loy (1)
wel

and every quadratic function defines a unique graph. We consider the complexity of com-
puting such functions by monotone circuits, that is, by circuits over the standard monotone
basis {V, A, 0,1} of fanin-2 AND and OR gates. Single level circuits are circuits where ev-
ery path from an input to the output gate contains at most one AND gate. Note that
every quadratic boolean function f; in n variables can be computed by a trivial monotone
single-level circuit with at most n — 1 AND gates using the form

\/xu/\( \/ %) (2)
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where S C V is an arbitrary vertex cover of GG, that is, a set of vertices such that every
edge of GG is incident with a vertex in S.

SINGLE LEVEL CONJECTURE: For quadratic functions single level circuits are almost
as powerful as unrestricted ones.

Here “almost” means “up to a constant factor.” This conjecture—first explicitly framed
as the “single level conjecture” by Lenz and Wegener in [14]—was considered by several
authors, [12, 4, 5, 17, 14, 2| among others. That the conjecture holds for almost all
quadratic functions was shown by Bloniarz |4] more than twenty five years ago and, so far,
no (even constant) gap between the size of general and single level circuits for quadratic
functions was known.

In this paper we disprove the single level conjecture in a strong sense: there are
quadratic functions in n variables whose monotone circuits have linear size whereas their
monotone single level circuits require size Q(n?/log®n). A similar gap is also shown for
boolean formulas. We also discuss the single level conjecture in the case of monotone
circuits with unbounded fanin gates, and show that here the conjecture is true for a large
(and explcit) class of graphs including all regular graphs as well as all graphs of constant
degree with Q(n) edges.

Why should we care about monotone circuits for cheap quadratic functions, when we
already can prove high (even exponential) lower bounds for monotone circuits? There are
several reasons for this.

1. Any explicit n-vertex graph G, that cannot be represented (in a sense described later
in § 3) by a monotone circuit using fewer than cn gates for a sufficiently large constant ¢ > 0,
would give us an explicit ezponential lower bound for general (non-monotone) circuits. Let
us shortly sketch how does this happen. Every bipartite n x n graph G C U x W with
n=2"and U =W = {0,1}" gives us a boolean function f (the characteristic function
of G) in 2m variables such that f(uv) = 1 if and only if wv € G. Suppose now that we
have a non-monotone circuit F'(y, . .., Yomn) computing f whose inputs are variables y; and
their negations 7,; the rest of the circuit is monotone (consists of AND and OR gates).
Then, according to the so-called “magnification lemma” [10], it is possible to replace its
4m = 4logn input literals (both positive and negative) by boolean sums (ORs) of variables
in X = {x, : v e UUW} so that the resulting monotone circuit F(X) in |X| = 2n
variables represents G. It can be shown (see [21] or Lemma 3.6 below) that all these 4logn
boolean sums can be simultaneously computed by a monotone circuit of size cn with ¢ < 24.
Therefore, the size of F' cannot be much smaller than that of F,: size(F') > size(F) — cn.
Hence, a lower bound cn + n on the size of monotone circuits representing GG would yield
a lower bound n¢ = 2" on the non-monotone circuit size of an explicit boolean function
f in 2m variables.

2. Better yet, for some graphs G, fg is the only monotone boolean function represent-
ing G. Such are, in particular, complements of triangle-free graphs (see Observation 3.5
below). Hence, one could obtain large (even exponential) lower bounds for general non-
monotone circuits by proving a good (but only linear) lower bound on the monotone circuit
size of such quadratic functions.

3. Unlike boolean functions, graphs have been studied for a long time, and explicit

2



constructions of graphs with very special properties are already known. It is therefore a
hope to design a lower bound proof that is highly specialized for some particular graph or
some small class of graphs. This could (probably) lead to a lower bound proof which will
not fulfill the “largeness” condition in the notion of “natural proofs” [24].

4. When applied to quadratic functions, known lower bound arguments for monotone
circuits—Razborov’s method of approximations [22] and its modifications—cannot yield
lower bounds larger than n. The reason for this is that these arguments are lower bounding
the minimum of AND gates and that of OR gates needed to compute the function, and
(as we already noted above) every quadratic boolean function fs in n variables can be
computed by a trivial monotone single-level circuit with at most n — 1 AND gates.

We therefore need entirely new lower bound arguments for monotone circuits computing
quadratic functions. For this, it is important to better understand the structure of such
circuits. And the (long studied) single level conjecture seems to be a good starting point
in this direction.

2 Results

Let us first introduce some notation. By the size of a circuit we will always mean the
number of gates in it. For a monotone boolean function f, let C(f) denote the minimum
number of gates and Cg(f) the minimum number of AND gates in a monotone circuit
computing f. Let also C'(f) and C{(f) denote the single level counterparts of these
measures. Further, let L(f) and L'(f) denote the minimum length of a monotone (resp.,
of a monotone single level) formula computing f. Recall that a formula is a circuit where
all gates have fanout 1, i.e. the underlying graph is a tree; the length of the formula is the
number of leaves of this tree.

In Table 1 we summarize known upper and lower bounds on the mazimum possible
complexity of quadratic functions f; over all n-vertex graphs; the upper bounds here hold
for all graphs and the lower bounds for almost all graphs.

Table 1: Known bounds on the maximum complexity of quadratic functions

Upper bounds Lower bounds

C'(n) = O(n?/logn) ([4]) C(n) = Q(n?/logn) ([4])

L'(n) = O(n?/logn) (|27, 5, 21]) | L(n) = Q(n?/logn)

Ci(n) <n—llogn] +1 (27, 14]) | C¢(n) > n — clogn ([25])
Ce(n) = Q(n/logn) ([14])
Ce(n) = n) (2])

In this paper we are interested in the corresponding gaps between general and single
level complexities for individual graphs:

1. circuit gap Gap(G) = C(fq)/C(fc);



2. multiplicative gap Gap g (G) = C(fa)/Ce(fc);

3. formula gap Gap g (G) = L'(fa)/L(fa).

Note that the single level conjecture claims that Gap(G) = O(1) for all graphs G.
Table 1 shows that, for almost all graphs, the conjecture is indeed true.

An even stronger support for the single level conjecture was given by Mirwald and
Schnorr [17]: if we consider circuits over the basis {®, A, 0,1} computing (algebraic)
quadratic forms > o z,z, over GF(2) and if we count only AND gates, then every
optimal (with respect to the number of AND gates) circuit is a single level circuit. But
the case of circuits over the basis {V, A, 0, 1} remained unclear.

In the case of formulas, Krichevski [12] has proved that Gapg,,(K,) = 1 for the
complete graph K, on n vertices, even if negation is allowed as an operation. A graph
with Gap.,,,(G) > 8/7 was given by Bublitz [5|. In the case of multiplicative complexity,
a graph with Gap ¢ (G) > 4/3 was given by Lenz and Wegener [14]. Recently, this gap was
substantially enlarged to Gap g (G) = Q(n/logn) by Amano and Maruoka in |2]; this was
implicit also in [10]. Using a construction of Tarjan [26] (which, in its turn, was used by
Tarjan for disproving that AND gates are powerless for computing boolean sums), Amano
and Maruoka |2]| have also shown the gap Gap(F) > 29/28 for circuits computing a set F
of quadratic functions. However, even the existence of a single graph G with Gap(G) > 1
was not known.

Our main result is the following.

Theorem 2.1. There exist n-vertexr graphs G such that C(fg) = O(n) but C'(fg) =
Q(n%/log’n). Hence, Gap(G) = Q(n/log®n).

The graphs used in Theorem 2.1 are saturated extensions of Sylvester-type graphs,
that is, of bipartite graphs whose vertices are particular vectors in GF(2)", and where two
vertices are adjacent iff their scalar product over GF(2) is 1. The saturated ertension of
a bipartite graph H C U x W is a (non-bipartite) graph G = (V, E) with V. = UU W
such that £ N (U x W) = H and the induced subgraphs of G on U as well as on W are
complete graphs. The reason to consider graphs of this special form lies in the simple fact
(Lemma 3.8 below) that having a small circuits representing H we can construct a small
circuit computing fq.

To disprove the single level conjecture for formulas, we consider a bipartite version of
graphs introduced by Lovész [15] in his famous proof of Kneser’s conjecture [11]. A bipartite
Kneser n x n graph is a bipartite graph K C U x W where U and W consist of all n = 2"
subsets u of {1,...,7}, and wv € K iff unv = 0.

Theorem 2.2. If G is the saturated extension of a bipartite Kneser n x n graph, then
L(fg) = O(nlogn) but L*(fg) > n'* for a constant ¢ > 0. Hence, Gap,,, (G) = n¥W.

Next, we consider the single level conjecture for monotone unbounded fanin circuits
and formulas. Note that in this case single level circuits are precisely the X3 circuits: the
bottom (next to the inputs) level consists of OR gates, the middle level consists of AND
gates, and the top level consists of a single OR gate. For a monotone boolean function f,



let C.(f) (resp., L.(f)) be the minimum size of a monotone unbounded fanin circuit (resp.,
formula) computing f. Let also C!(f) and L!(f) denote the corresponding measures in a
class of monotone Y3 circuits (i.e. the single level versions of these measures). Note that,
also in the case of formulas, we now count the number of gates, not the number of leaves.

Single level circuits of unbounded fanin are interesting by at least two reasons.

1. The presence of unbounded fanin gates may exponentially increase the power of
single level circuits: if, say, GG is the saturated extension of an n to m matching, then
C(fa) = Q(n) but C(fe) = O(logn) (by Lemmas 3.8, 3.10 and 3.13 below).

2. By the reduction due to Valiant [28], a lower bound of the form n!) on the size of a
monotone Y3 formula representing an explicit n-vertex graph would give us a super-linear
lower bound on non-monotone (fanin-2) circuits of logarithmic depth, and thus, would
resolve an old and widely open problem in circuit complexity (see [10] for details).

The form (2) implies that C.(fg) = O(n) for all n-vertex graphs. On the other hand,
easy counting shows C,(fg) = Q(n) for almost all n-vertex graphs: every gate in a circuit
of size t can have at most 2’ possible sets of immediate predecessors, implying an upper
bound 2°*) on the total number of such circuits. Hence, also in the case of unbounded
fanin circuits, the single level conjecture holds for almost all quadratic functions. The
following theorem gives a stronger result: the conjecture holds for ezplicit (and large)
classes of quadratic functions.

Recall that a set S C V is a vertex cover of G = (V, E) if every edge of G is incident
with a vertex in S. Let 7(G) denote the minimum cardinality of a vertex cover of G.
Let also m(G) denote the maximum possible number m such that G contains a matching
with m edges as an induced subgraph. Note that for every n-vertex graph G = (V| E) of
maximum degree d we have' |E|/d < 7(G) =n — a(G) <n —1and m(G) > |E|/(2d).

Theorem 2.3. For every graph G we have
(a) m(G)+1<Culfe) < Li(fe) <2-7(G)+1<2n—1,
(b) Li(fe) =2 7(G)/d and Ci(fa) = \/7(G)/d,

where d is the mazximum degree of G.

Hence, if we consider circuits with unbounded fanin gates then, by part (a) of this
theorem, the single level conjecture is true for a large class of graphs, including all regular
graphs as well as all graphs of constant degree with (2(n) edges: for all these graphs we
have C.(fg) = Q(n) and C}(fg) = O(n).

In the case of multiplicative complexity (where we count only AND gates) we have the
following gap.

Theorem 2.4 ([2]; implicit in [1, 10]). If G is the saturated extension of an n to n
matching, then Cy(fc) = O(logn) but C(fa) = Q(n). Hence, Gap(G) = Q(n/logn).

1 As customary, a((G) is the maximum cardinality of an independent set in G.



This result was implicit in [10] (and even in [1], cf. Lemma 3.10 below) where it was
shown that an n to n matching M (a bipartite n x n graph consisting of n vertex disjoint
edges) can be represented by a monotone CNF with O(logn) clauses. The proof in this
case is particularly simple, and we include it just for completeness. Amano and Maruoka
[2] have used a somewhat different argument to show the same gap.

Table 2: Summary of results concerning the single level conjecture

Known This paper
circuits Gap(F) >29/28 (]2]) Gap(G) = Q(n/log” n)
(all gates) (for a set of graphs; no known | Sylvester-type graphs
gap for a single graph) (main result)
formulas Gap gorm (K7) = 1 ([12]) Gap o (G) = nHV
(all gates) Gap o (G) > 8/7 ([5]) Kneser-type graphs
circuits Gap g (G) > 4/3 ([14)) Gap g (G) = Q(n/logn)

(AND gates) Gapg(G) = O(n/loglogn) ([2]) | perfect matchings
(also in [2]; implicit in [1, 10])
unbounded fanin Ci(fe) > m(G) + 1

(all gates) 7(@)/d < L:fe) <2-7(G)+1

Ci(fe) =2 V/7(G)/d

vV G of maximal degree d

The rest of the paper is organized as follows. In the next section we collect some
preliminary definitions and technical facts. We then use these facts to prove Theorems 2.1-
2.4 in §§ 4-7. We conclude with several open problems.

3 Preliminaries

In this section we first recall from [10| the notion of graph representation, expose some
properties of quadratic functions of saturated graphs and recall some results about boolean
sums. We then prove some general (graph theoretic) bounds on the circuit complexity of
quadratic function.

Graph representation We shall use standard graph theory notation. A set of vertices
is independent if no two of its vertices are adjacent. A non-edge is a pair of non-adjacent
vertices; if the graph is bipartite then a non-edge is a pair of non-adjacent vertices from
different parts (color classes), that is, pairs of vertices in one color class are neither edges
nor non-edges. If not stated otherwise, by a subgraph we will mean a spanning subgraph.

Every graph G = (V| E) gives us a set of boolean functions “representing” this graph
in the following sense. We associate to each vertex v a boolean variable x,, and consider
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boolean functions f(X) with X = {x, : v € V}. Such a function accepts/rejects a subset
of vertices S C V if it accepts/rejects the incidence vector of S. We are interested in the
behavior of such functions on edges and non-edges of GG, viewed as 2-element sets of their
endpoints.

Definition 3.1 ([10]). A boolean function represents a given graph if it accepts all edges
and rejects all non-edges.

Hence, f(X) represents the graph G if for every input vector a € {0, 1}* with precisely
two 1’s in, say, positions v and v, f(a) = 1 if wv is an edge, and f(a) = 0 if uv is a non-edge
of G. If uv is neither an edge nor a non-edge (in the bipartite case) or if a contains more
or less that two 1’s, then the value f(a) may be arbitrary.

Note that the quadratic function fg represents the graph G in a strong sense: for every
subset S C V, fo(S) = 0 if and only if S is an independent set of G. But, in general,
there may be many other boolean functions representing the same graph, because they do
not need to reject independent sets with more than two vertices. Hence, there are more
chances to design a small circuit representing a given graph than to (directly) design a
small circuit computing its quadratic function. We will use this possibility later to upper
bound the circuit size of quadratic functions.

A complete star around a vertex u in a graph with n vertices is a set of n — 1 edges
sharing v as one of their endpoints. If the graph is bipartite, then a complete star is a set
of edges joining all vertices of one part with a fixed vertex of the other part. A graph is
star-free if it contains no complete stars. The only property of star-free graphs we will use
later is given by the following simple

Observation 3.2. Any monotone boolean function representing a star-free graph must
reject all its single vertices.

This is true because f({u}) = 1 together with the monotonicity of f implies that f
must accept all edges of a complete star around wu.

Saturated graphs As noted above, besides the quadratic function fs, there may be
many other monotone boolean functions representing G—these functions may “wrongly”
accept some independent sets of GG of cardinality larger than two. The simplest way to
exclude this possibility is to “kill off” all such independent sets by “saturating” the graph,
i.e. by adding new edges. This way we come to the following

Definition 3.3. A graph G is saturated if it is star-free and has no independent sets with
more than two vertices, that is, if the complement of G is a triangle-free graph without
1solated vertices.

The first interesting property of quadratic functions of saturated graphs is that these
functions belong to a fundamental class of so-called “slice functions” were negation is almost
powerless (see, e.g., [30], §§ 6.13-6.14). Recall that a k-slice function is a monotone boolean
function f such that f(a) = 0 for inputs a with less than k ones, and f(a) = 1 for inputs
a with more than k ones, that is, f = f AT VT .
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Observation 3.4. If G is a saturated graph, then fqo is a 2-slice function.

Proof. Let G = (V, E) be a saturated graph, and S C V. If |[S| < 2 then f5(S5) = 0, by
the definition of quadratic functions (they cannot have prime implicants shorter that 2).
If |S| > 2 then S cannot be an independent set since G is saturated; hence, fg(S)=1. O

The next interesting property of saturated graphs is their unique function representa-
tion.

Observation 3.5. If G is a saturated graph, then fq is the only monotone boolean function
representing G.

Proof. Let f be an arbitrary monotone boolean function representing G. We have to show
that f(S) = fo(S) for all subsets S C V. If fg(S) = 1 then S contains both endpoints
of some edge. This edge must be accepted by f and, since f is monotone, f(S) = 1. If
fc(S) = 0 then S is an independent set of G, and |S| < 2 since G is saturated. Hence,
S is either a single vertex or a non-edge. In both cases we have that f(S) = 0 because f
must reject all non-edges and, by Observation 3.2, must also reject all single vertices. [

Boolean sums We shall also use the following two facts about the monotone com-
plexity of boolean sums. The disjunctive complexity of a collection of boolean sums
Vies, Tis- - Vjes, i (or of the corresponding family of sets Sy, ..., 5,,) is the minimum
size of a circuit consisting solely of fanin-2 OR gates and simultaneously computing all
these m boolean sums.

Lemma 3.6 (Pudlak—Roédl-Savicky [21]). For every m > k > 1, the disjunctive com-
plexity of any family of m subsets of {1,...,n} does not exceed kn-+k2I"™/*1¥1 " In particular,
any collection of klogn boolean sums in n variables can be simultaneously computed by a
circuit consisting solely of at most 3kn fanin-2 OR gates.

By this lemma, boolean sums may not necessarily be computed separately: one partial
sum computed at some OR gate may be used many times. Still, the overlap of gates cannot
be too large if the sums are “disjoint enough”. A family of sets is (h, k)-disjoint if no h + 1
of its members share more than £ elements in common.

Lemma 3.7 (Wegener [29], Mehlhorn [16]). Any (h, k)-disjoint family Si, ..., S,, has
disjunctive complezity at least

1 & m

— Si| — —.

kh ; [l h

Proof sketch. At least |S;| — 1 gates are necessary for computation of the i-th sum and at
least |S;|/k — 1 of the functions computed at these gates are boolean sums of more than
k summands. We only count these gates. Since the family is (h, k)-disjoint, each of these
gates can be useful for at most h outputs. Hence, we need at least > ", (|S;|/k — 1)/h
gates to compute all m sums.



Upper bounds for general circuits An extension of a bipartite graph H C U x W is
a (non-bipartite) graph G = (V, E) with V' = UUW such that EN(U x W) = H. Observe
that such an extension is a saturated graph if the induced subgraphs of G on U as well as
on W are complete graphs.

A useful property of saturated graphs of this special form is that the complexity of
computing fo cannot be much larger than the complexity of representing H: to determine
the value f(S) it is enough to additionally test whether S has more than two elements.

By the length of a CNF we mean the number of clauses in it.

Lemma 3.8. Let H C U x W be a bipartite n X n graph, G the saturated extension of
H, and f a monotone boolean function representing H. Then fo = (f A g) V h where g
is a monotone CNF of length 2 and h is an OR of O(logn) monotone CNFs of length 2.
Moreover, if H is star-free then fg = fV h.

Remark. Note that Cg(h) = O(logn), L(h) = O(nlogn) and C(h) = O(n). The first
two upper bounds are obvious. The third follows from Lemma 3.6.

Proof. Let g = (Vyep Zu) AN Vpew Tw) and h = T VTV where T (S) = 1iff |SNU| > 2,
that is, TV is a threshold-2 function on n variables {z, : u € U}. Since the edges of the
complete graph K, can be covered by m < [logn] bipartite cliques, each of the functions

TY and T," has the form N
\/(\/%)A(\/xv) (3)

=1 u€A; vEB;

with m < [logn] and A; N B; = ( for all i = 1,...,m. Hence, h can be computed by an
OR of m monotone CNFs of length 2. It remains to show that (f Ag)Vh coincides with fg.

If f¢(S) =1 then S contains both endpoints of some edge uv of G. This edge must be
accepted either by f A g (if wv € H) or by h (if both u and v are in the same color class).
Since both f A g and h are monotone, the function (f A g) V h accepts S.

If f(S) =0 then S is an independent set of G, that is, S is either a single vertex or a
non-edge of H. In both cases h(S) = 0 because none of the color classes can contain more
than one vertex from S. Moreover, g(S) = 0 if S is a single vertex, and f(S) =0if S is a
non-edge of H. Hence, the function (f A g) V h rejects S.

If H is star-free then the function f alone must reject all single vertices, implying that
in this case fo = f V h. O

Lemma 3.8 gives us a simple (but useful) tool to show that a quadratic function fg
of the saturated extension of a bipartite graph H can be computed by a small monotone
circuit: it is enough to represent H by a small circuit. To achieve this last goal, it is often
enough to show that H has small “intersection representation.”

Say that a graph G admits an intersection representation of size r if it is possible to
associate with every vertex u a subset A, of {1,...,r} so that A, N A, = 0 if wv is an
edge, and A, N A, # () if uv is a non-edge of G. Let int(G) denote the smallest r for which
(GG admits such a representation.



Let cnf(G) denote the minimum length of a monotone CNF representing the graph G,
and let cov(G) denote the minimum number of independent sets of G covering all non-edges
of G.

Lemma 3.9 ([9, 10]). For every graph G, cnf(G) = int(G) = cov(G).

The first equality was observed in [10], and the second in [9]. Both are easy to verify.
If a graph G can be represented by a CNF A[_; \/, g v, then the sets A, = {i : u ¢ S;}
give the desired intersection representation of G, the r sets [, = {u € V : i € A,} are
independent and cover all non-edges of GG, and the CNF of the form above with S; = V'\ [;
represents the graph G.

Alon [1] used probabilistic arguments to prove that cov(G) = O(d*logn) for every n-
vertex graph G of maximum degree d. Hence, we have the following general upper bound.

Lemma 3.10 (Alon [1]). For every n-vertex graph G of mazimum degree d, we have
cnf(G) = O(d?logn).

Another possibility to show that a graph H can be represented by a small monotone
circuit is to design a small non-monotone circuit representing H, and then use the fact
that negation is (almost) powerless in the context of graph representation.

Lemma 3.11. Let H be a bipartite n x n graph. If H can be represented by a circuit of
size L over the basis {V,\,—}, then H can be represented by a monotone circuit of size at
most 2L + O(n).

Proof. The proof is reminiscent of the proof, due to Berkowitz [3|, that negation is (almost)
powerless for slice functions (see also Theorem 13.1 in |30]).

Let F' be a circuit of size L over the basis {V, A, —} representing a bipartite graph
H C U x W. Using DeMorgan rules we can transform this circuit to an equivalent circuit
F’ of size at most 2L such that negation is used only on inputs. We then replace each
negated input 7, with v € U by a boolean sum g, = \/UGU\ (u} Lo and replace each negated
input 7, with w € W by a boolean sum h,, = \/vew\{w} Z,. Since all these boolean sums
can be simultaneously computed by a trivial circuit consisting of O(n) OR gates (see, e.g.
[30], p. 198 for a more general result), the size of the new circuit F, does not exceed
2L + O(n). Since the only difference of F, from the original circuit F' is that negated
inputs are replaced by boolean sums, it remains to show that on arcs ab € U x W these
sums take the same values as the corresponding inputs.

Take an arbitrary set S = {a,b} with a € U and b € W. The incidence vector of this
set has precisely two 1’s in positions a and b. Hence, g,(S) = 1 iff a # w iff ,(S) = 0 iff
Z,(S) = 1. Similarly, h,(S) = 1 iff b # w iff z,(5) = 0 iff 7,,(S) = 1. Hence, on edges
and non-edges of H the functions g, and h,, take the same values as the negated variables
T, and %, implying that F, represents H. 0

10



Lower bounds for single level circuits Given a covering E = J;", A; x B; of the
edges of a graph G = (V, ) by bipartite cliques, its size is the number m of cliques, and
its weight is the total number > " (|A;| + |Bi|) of vertices in these cliques. Let cc(G)
denote the minimum size and ccy(G) the minimum weight of a bipartite clique covering
of G. These measures were first studied by Erdés, Goodman and Pésa in [9], and now
are the subject of an extensive literature. In particular, it is known that the maximum of
cc(@) over all n-vertex graphs is n — ©(logn) [6, 27, 25], and that the maximum of ccy (G)
is ©(n?/logn) [4, 7, 5].

For a graph G, let u(G) be the minimum of (a + b)/ab over all pairs a,b > 1 such that
G contains a copy of a complete bipartite a X b graph K.

Lemma 3.12. For every graph G, C{ (fc) = cc(G) and L'(fg) > u(GQ) - |E|. Moreover, if
G is an extension of a bipartite graph H, then cc(G) > cc(H)/2 and ccy(G) > cey(H).

Proof. The equalities C§ (fg) = cc(G) and L'(fg) = ccy(G) follow immediately from the
fact (shown in [4, 14]) that monotone single level circuits for quadratic functions have the
form (3) where m is the number of AND gates in the circuit.

To show that ccy(G) > pu(G) - |E|, let E = A; x ByU---UA,, x B, be a bipartite
clique covering of G = (V| E) of minimal weight. Select subsets E; C A; x B; so that the
Es are disjoint and cover the same set E of edges. Then

m

cenl@) = S+ B = 3 3 LS 57 57 i) = i - .

i=1 i=1 eckE; i=1 eckE;

To prove the last claim, let G = (V| F) be an extension of H C U xW; hence, EN(UXxW) =
H.If A; x B;,i=1,...,mis a bipartite clique covering of GG, then (A; N U) x (B;NW),
(BiNnU) x (A;nW), i =1,...,m is a bipartite clique covering of H. The number of
bipartite cliques in this new covering is at most twice that in the original covering, and the
total number of vertices in the new covering does not increase at all. O

The case of circuits when we count all gates (not just AND gates) is a bit more com-
plicated because boolean sums (entering AND gates) may not necessarily be computed
separately: one partial sum computed at some OR gate may be used many times. Still,
by Lemma 3.7, we know that the overlap of gates cannot be too large if the sums are
disjoint enough. The disjointness of a collection of sums \/;,_g @i, ..., \/;cg i is naturally
related to the absence of large cliques in the incidence m x n graph of this collection where
i and j are adjacent iff j € S;: the collection of sums is (h, k)-disjoint precisely when this
graph has no copies of K11 x+1. Amano and Maruoka [2] used this relation to show that
C(fg) > |E| for any graph G = (V, E) with no copies of K5 »; in this case the correspond-
ing sums are (1, 1)-disjoint. Their argument can be easily extended to yield a lower bound
of the form C'(fg) > |E|/t°Y for K, ,-free graphs. However, we need super-linear lower
bounds on C!(fg) for graphs G which are saturated extensions of bipartite n x n graphs
H, and such graphs already have copies of K;; with ¢t = n/4, even if the graph H itself is
K o-free.
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To get rid of this problem, we use a tighter analysis of single level circuits to prove a
stronger result, namely, a lower bound the minimum size C'(H) of a monotone single level
circuit representing H. Then clearly C'(fg) > C'(H) just because edges/non-edges of H
are also edges/non-edges of GG, and hence, any circuit computing fo must also represent H.

Lemma 3.13. Let H C U x W be a bipartite star-free n x n graph with no copies of K.
Then CY(H) = Q(|H|/t3).

Proof. Take a minimal monotone single level circuit F' representing H. The circuit F' has
the form \/}", g; A h; where

gi:\/xuandhi:\/xv

uES; veT;

with S;,T; C U UW are boolean sums computed at the inputs of the i-th AND gate. Our
goal is to show that we need many OR gates to compute these sums. We cannot apply
Lemma 3.7 directly to these sums because the corresponding families may not be disjoint
enough. Still, we can use the absence of K, in H to show that the restriction of these
families to the left part U or to the right part W of the bipartition must contain a large
enough (t,t)-disjoint subfamily.

First, observe that S;NT; = () because the graph H is star-free (single variables represent
complete stars). Also, if for some i, both S; and 7; would entirely lie in the same part of
the bipartition, then we could just remove the i-th AND gate—the resulting circuit would
still represent H (recall that on pairs of vertices within one part of the bipartition the
circuit can take arbitrary values). So, we may assume that this does not happen. Hence,
H is the union of bipartite cliques

AiXBZ' = (SZQU)X(EQW)
Ax B = (LNU)x (SinW)

fori =1,...,m. We may assume w.l.o.g. that the union H’ of cliques A; x B;;i=1,...,m
contains at least |H'| > |H|/2 edges of H (if not, then take the remaining bipartite cliques).

Since H' has no copies of K;;, for every i = 1,...,m, at least one of the sets A; and
B; must have fewer than ¢ elements. Hence, if we set I = {i : |A;| < t} then |B;| < t for
all + ¢ I. We may assume that the bipartite graph

H1 = UAZ X Bz
iel
contains at least |Hy| > |H'|/2 > |H|/4 edges of H (if not, then let H; be the union of
bipartite cliques A; x B; with ¢ ¢ I and replace the roles of A;’s and B;’s).
This way we obtain a bipartite K;;-free graph H; C A x B with parts A = (J,.; 4
and B = (J,.; Bi, and with |H;| > |H|/4 edges. We are going to represent this graph by
a monotone (single level) circuit Fj of size not much larger than that of F, and to apply
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Lemma 3.7 in order to show that the size of F; must be large; this will yield the desired
lower bound on size(F).

To achieve the first goal, we collect the boolean sums h;,7 € I computed in F' into a
circuit Fi, by the following construction

F1<X):\/.Tu/\(\/ \/xv>:\/xu/\<\/hi>

u€A iel, veT; u€A 1€1y,

where I, = {i € I : u € A;}. For every vertex u € A, the circuit F; accepts an arc
w € Ax BiffveT,NW = B; for some ¢ € I such that u € A;. Hence, F} represents
the graph H;. Since all boolean sums h; with ¢ € I are already computed in F, we need

at most
SO =) 1A <t
ucA el

h;) with u € A. To compute the disjunction
|A;| < t-|I| additional OR gates. Hence,

new gates to compute all functions z, A (V,;
of these functions we need at most |A| < >
size(Fy) < size(F') + 2t - |I| < 3t - size(F).

On the other hand, by the construction, the circuit £} simultaneously computes all
boolean sums \/,_; h; with u € A using only fanin-2 OR gates. Hence, size(F) is at least
the disjunctive complexity of the family 7 = {T, : u € A} with T, = ., Ti- This, in
its turn, is at least the disjunctive complexity of the restriction 7/ = {7, "W : u € A} of
7T to the set W: having a circuit for 7 we can get a circuit for 7" just by setting to 0 all
variables x, with u & W. Observe that for every u € A,

el

T.nw=|J nw= ] B

i:ueAi i:uEAi

is the set of all neighbors of u in H;. Since H; has no copies of K;;, no ¢ vertices in A can
have t common neighbors. This means that the family 7’ must be (¢,¢)-disjoint (in fact,
even (t — 1, — 1)-disjoint). Since |H| =) ., |T. N W], Lemma 3.7 yields

Al _ [Hi] A

) 1
size(Fy) > o) Z T, NW| — - ” L

u€EA

Together with the previous estimate size(F;) < 3t - size(F'), this yields

1 H A H
size(F') > Fvl size(Fy) > ‘37;‘ — |372‘ > % — size(F).
Since |H,| > |H|/4, the desired lower bound size(F') = Q(|H|/t?) follows. O

Now we turn to the actual proof of Theorems 2.1-2.3.
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4 Circuits: proof of Theorem 2.1

In oder to prove the gap, claimed in Theorem 2.1, we need (by Lemma 3.13) a bipartite
n x n graph which 1. is dense, i.e., has (n?) edges,

2. has no copies of K, with ¢ about logn,

3.can be represented by a small (linear size) monotone circuit.

The existence of graphs, satisfying the first two conditions, is a classical result of
Erdés [8]. However, its proof is probabilistic and gives no idea on how to ensure the
third condition. To get rid of this problem, we just reverse the order of the argument: we
first choose an appropriate graph GG whose induced subgraphs satisfy the third condition.
Then we use the probabilistic argument to show that G must contain a sufficiently large
induced subgraph satisfying the first two conditions.

Let F = GF(2) and r be a sufficiently large even integer. With every subset S C F”
we associate a bipartite graph Hg C S x S such that two vertices u and v are adjacent if
and only if u - v = 1, where u - v is the scalar product over F. We will need the following
Ramsey-type property of such graphs.

Lemma 4.1 (Pudlak-Ro6dl [20]). Suppose that every vector space V- C F" of dimen-
sion [(r +1)/2] intersects S in less than t elements. Then neither Hg nor the bipartite
complement Hg contains K.

Proof sketch. The proof is based on the observation that any copy of K;; in Hg would give
us a pair of subsets X and Y of S of size ¢t such that x -y =1forallx € X and y € Y.
Viewing the vectors in X as the rows of the coefficient matrix and the vectors in Y as
unknowns, we obtain that the sum dim(X’) 4+ dim(Y”) of the dimensions of vector spaces
X’ and Y’, spanned by X and by Y, cannot exceed r + 1. Hence, at least one of these
dimensions is at most (r+1)/2, implying that either | X' NS| < ¢ or |Y'NS| < t. However,
this is impossible because both X’ and Y’ contain subsets X and Y of S of size t.

In the next lemma we use the following versions of Chernoft’s inequality (see, e.g.,
[18], § 4.1): if X is the sum of n independent Bernoulli random variables with the success
probability p, then Pr(|X| < (1 —¢)pn) < e P2 for 0 < ¢ < 1, and Pr (|X| > ¢pn) <
27" for ¢ > 2e.

Lemma 4.2. There erists a subset S C " of size |S| = 2'/2 such that neither Hg nor the
bipartite complement Hg contains a copy of K, .

Proof. Let N = 2", and let S C F” be a random subset where each vector u € F" is
included in S independently with probability p = 2'="/2 = 2/v/N. By Chernoff’s inequality,
|S| > pN/2 = 27/2 with probability at least 1 — e=XPN) =1 — o(1).

Let now V C F" be a subspace of F" of dimension |(r + 1)/2] = r/2 (remember that
r is even). Then |V| = 2/2 = /N and we may expect p|V| = 2 elements in |S N V.
By Chernoff’s inequality, Pr (]S N V| > 2¢) < 27% holds for any ¢ > 2e. The number of
vector spaces in F” of dimension r/2 does not exceed (r;z) < 27/y/r. We can therefore
take ¢ = r/2 and conclude that the set S intersects some r/2-dimensional vector space V'
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in 2c = 7 or more elements with probability at most 2"~(°¢7)/2=" = =1/2 = 5(1). Hence,
with probability 1 — o(1) the set S has cardinality at least 2'/2 and |S N V| < r for every
r/2-dimensional vector space V. Fix such a set S’ and take an arbitrary subset S C S’ of
cardinality |S| = 2"/2. By Lemma 4.1, neither Hg nor Hg contains a copy of K. O

Now we turn to the actual proof of Theorem 2.1.

Proof of Theorem 2.1. Let S C F” be a subset of cardinality |S| = n = 2"/? guaranteed
by Lemma 4.2. We may assume that u - v = 1 holds for at least half of the pairs in §
(otherwise take the bipartite complement of Hg). Hence, H = Hg is a bipartite n x n
graph with n = |S| vertices in each part and with |H| > |S|?/2 = n?/2 edges. Moreover,
this graph contains no copy of K, , where r = 2logn.

Let now G be the saturated extension of H. By removing the centers of complete
stars, we obtain an induced star-free subgraph H’ of H. Since the graph H has no copies
of K, ,, it can have at most 2(r — 1) complete stars. Hence, the resulting subgraph H’
has |H'| > |H| — 2(r — 1)n = Q(n?) edges. Moreover, every circuit representing H must
also represent H', since all edges/non-edges of H' are also edges/non-edges of H. Hence,
CY(fe) > C'(H) > C'(H') and, by Lemma 3.13,

Cl(fa) = CH(H') = QH'|/r*) = Q(n*/log’ n).

To get an upper bound on C(fg), let us identify each vector w € S with the set of
1-coordinates of w. Hence, two vertices u and v are adjacent in H iff [uNwv| is odd. It is not
difficult to verify that (for even r) the graph H can be represented by a depth-2 formula

T

FX)= V =

=1 wESi

with S; = {w € S : i € w}. Indeed, the i-th clause \/, .4 ., accepts an arc uv € S x S
iff ueS;orves;iff i & unov. Hence, the formula F' accepts uv iff uv is accepted by an
odd number of clauses iff [{i : i ZunNov}| =7 —|unwv|isodd iff |[uNwo|is odd iff uv € H.

By Lemma 3.6, all r = 2logn boolean sums in the formula F'(X) above can be simulta-
neously computed by a circuit of linear (in n) size. Hence, the graph H can be represented
by a linear size circuit over the basis {V, A, -} and, by Lemma 3.11, can be represented
by a monotone circuit of linear size. Since G is the saturated extension of H, Lemma 3.8

implies that C(fg) = O(n). Hence, Gap(G) = C'(fc)/C(fc) = 2 (n/log’n).

5 Formulas: proof of Theorem 2.2

Let G be the saturated extension of the bipartite Kneser n x n graph K C U x V. Recall
that in this case U and W consist of all n = 2" subsets u of {1,...,r}, and wv € K iff
uNwv = 0. Since log,3 > 1.58, the graph K has |K| = Y ;2" [" = 3" > n%/?*¢ edges
with ¢ > 0.08. Moreover, the graph K can contain a complete bipartite a x b subgraph
) £ Ax B C K only if a < 2% and b < 2"* for some 0 < k < r, because then it must hold
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that (U,cau) N (Uyepv) = 0. Since a < o' and b < V' imply (a + b)/ab > (a' +V')/a'l,
we have S
iy 2 2227

By Lemma 3.12, L'(fq) = ccy(G) > cey(K) > p(K) - |K| > nite.

On the other hand, by its definition, the graph K admits an intersection representa-
tion of size r and, by Lemma 3.9, can be represented by a monotone CNF with int(K) <
r = logn clauses, and hence, by a monotone formula with O(nlogn) fanin-2 AND and
OR gates. Together with Lemma 3.8, this implies that L(fs) = O(nlogn). Hence,

Gap o (G) = L'(fa)/L(fe) = Q(n°/logn).

> 977/2 = 12,

6 Unbounded fanin circuits: proof of Theorem 2.3

The upper bound L!(fg) < 2-7(G) + 1 of part (a) follows immediately from the repre-
sentation (2). To prove the lower bound C!(fs) > m(G) + 1 we use the communication
complexity argument. By an observation due to Nisan (see [19] or [13], Lemma 11.2),
C.(fq) is at least the deterministic two-party communication complexity of fs under the
worst-case partition of its input variables (this holds for arbitrary, not necessarily quadratic,
functions and for arbitrary, not necessarily monotone, circuits). Let now M be an induced
matching in G with |M| = m(G) edges. By setting to 0 all the variables, corresponding
to vertices outside this matching, we obtain that C.(fg) > Ci(fa) (recall that M is an
induced subgraph of GG). The function fj itself has the form fy, = \/‘Zfl| x;Y;, 1.e., is the
negation of the set disjointness function, and its deterministic communication complexity
under the natural partition where one player gets all x;’s and the other gets all y;’s is well
known to be M|+ 1. Hence, C\(fe) > Ci(fu) > |M|+1=m(G) + 1.

This completes the proof of the first part of Theorem 2.3. For the proof of the second
part we need the following fact. Let cnf(fg) denote the minimum length of (i.e. the number
of clauses in) a monotone CNF computing fg.

Claim 6.1. For every graph G of mazimum degree d, cnf(fg) > 7(G)/d.

Proof. Let F' be a monotone CNF of length ¢ = cnf(fs) computing fg. Since fg has
no prime implicants of length 1 (by its definition (1)), this CNF must contain at least
two clauses. Take any of these clauses C' = \/ ., and consider the shrinked CNF
F' = F\ {C}. Since C must accept all edges of G, each of these edges must have at least
one endpoint in S. Hence, S must be a vertex cover of GG, implying that |S| > 7(G).
Since F' is a shortest CNF computing f, the shrinked CNF F’ must make an error, i.e.
it must (wrongly) accept some independent set of G. That is, there must be an independent
set I such that every clause of F’ contains a variable z, with v € I. Since F” has only t — 1
clauses, we may assume that |I| < ¢ — 1. This error must be corrected by the clause C,
implying that every vertex u € S must be adjacent (in G) with at least one vertex in I,
for otherwise F' would wrongly accept the independent set I U {u} of G. Hence, at least
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one vertex v € I must have at least |S|/|I| > 7(G)/t neighbors in S. Since the degree of
v cannot exceed d, the desired lower bound ¢ > 7(G)/d follows. O

Take now an arbitrary graph G = (V, E') of maximum degree d, and let F' be a smallest
monotone Y3 circuit computing f;. We first consider the case when F' is a formula, i.e.
all gates have fanout 1. This formula is an OR F' = F} V - - -V F} of monotone CNFs, and
size(F') > >~7 | r; where r; is the length of the i-th CNF F;. The CNFs F}, i = 1,...,s
compute quadratic functions of subgraphs G; = (V, E;) of G such that £y U---U E, = F.
Note that 7(G) < Y77, 7(G;). Since each of these subgraphs has maximum degree at
most d, Claim 6.1 implies that the entire formula F' must have size at least Y .  r; >
Yoo 7(Gy)/d > 7(G)/d. If F is not a formula (some OR gates on the bottom level have
fanout larger than 1), then we still have that size(F) > t = max{s,r,...,7rs}. Take a
CNF F; for which 7(G;) > 7(G)/s. By Claim 6.1, F; has length r; > 7(G;)/d > 7(G)/sd.
Since both r; and s do not exceed t, this yields t* > 7(G)/d, and the desired lower bound
t > /7(G)/d on the number of gates in F' follows.

7 Multiplicative complexity: proof of Theorem 2.4

Let G be the saturated extension of an n to m matching M. Then, by Lemma 3.12,
Ci(fa) = cc(G) > ce(M)/2 = n/2. On the other hand, M can be represented by a
monotone CNF of length O(logn). This follows from a more general Lemma 3.10, but can
also be shown directly (see [10]): let » = 2logn and associate with each vertex w; on the
left side its own r/2-element subset A; of {1,...,r}, and assign to the unique matched
vertex v; on the right side the complement B; of A;. It is clear that then A; N B; = 0 iff
i = j. Hence, cnf (M) = int(M) < r = 2logn. Together with Lemma 3.8, this implies that
Ci(fe) = O(logn). Hence, Gap g (G) = Q(n/logn).

8 Concluding remarks and open problems

As we already mentioned in § 2, the unbounded fanin version of the single level conjecture
is true for almost all graphs. Better yet, Theorem 2.3 implies that the conjecture is true
for all regular graphs as well as for all graphs of constant degree. However, we do not know
whether the conjecture remains true for other (highly irregular) graphs. In particular, we
could not exclude a (rather unlikely) possibility that the conjecture holds for saturated
graphs.

Problem 8.1. Does there exist n-vertex graphs G of mazimal degree d with L.(fq) =
o(7(G)/d) or Ci(fa) = o(y/7(G)/d)?

What can be said about the single level conjecture in the context of graph representa-
tion, that is, if we consider circuits representing graphs instead of circuits computing their
quadratic functions? That for circuits with fanin-2 gates the conjecture remains false also
in this context was shown in § 4. But what about circuits with unbounded fanin gates?
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For a graph G, let C,(G) be the minimum size of a monotone unbounded fanin circuit rep-
resenting G, and let C}(G) be the single level version of this measure. Note that, for some
graphs, C!(G) may be exponentially smaller than C!(fg). If, say, G is a regular n-vertex
graph of constant degree, then C!(fg) = Q(y/n) (by Theorem 2.3) but C}(G) = O(logn)
(by Lemma 3.10). This also shows that, in the context of graph representation, Claim 6.1
does not hold anymore.

Problem 8.2 (Pudlak—Rodl-Savicky [21]). Prove that C1(G) may be much larger
than C.(G).

Easy counting shows that C(G) = Q(y/n) for almost all n-vertex graphs.
Problem 8.3. Ezhibit an explicit n-vertex graph G with C}(G) = n®W.

As mentioned in § 2, this would yield a super-linear lower bound for non-monotone
log-depth circuits.

Problem 8.4. When compared with C(fg), how much smaller can C(G) be?

An indication that, in the case of formulas (fanout 1 circuits), L(G) can be much
smaller than L(fg), is given in [10] where a lower bound L(fg) = Q(n*?) for an explicit
n-vertex graph G is proved; the proof uses the rank argument suggested by Razborov [23].
Hence, if we would have that L(G) > L(fg)/n'/?>~ for some constant 0 < e < 1/2, then
we would have a lower bound L(G) = Q(n'"¢) which (as noted in [10], § 7) would yield an
explicit exponential lower bound on the non-monotone formula size.

The case of circuits is more difficult because (as mentioned in the introduction) known
lower bounds for monotone circuits—the method of approximations due to Razborov [22],
and its derivatives—cannot yield lower bounds larger than n.

Problem 8.5. Prove C(fg) > n'*c for an explicit n-vertex graph G.

Although we already can prove lower bounds L(fg) = Q(n*?) for some explicit graphs
G (see [10]), doing this for saturated graphs is a much more difficult task. Bloniarz [4] used
counting arguments to show that C(fg) = Q(n?/logn) for almost all n-vertex graphs G
this remains true also in the class of saturated graphs. The problem, however, is the
explicitness: we want a lower bound for explicitly constructed graphs. As mentioned in
the introduction, a lower bound C(fg) > ¢n for a sufficiently large constant ¢ > 0 would
have great consequences in circuit complexity. A (potentially) less ambitious problem is
to do this for formulas.

Problem 8.6. Ezhibit an explicit saturated star-free graph on n vertices with L(fg) =
Q(nlog"n).

Since, by Observation 3.5, for such graphs we have the equality L(G) = L(fq), this
would yield an explicit boolean function in m = ©(logn) variables requiring non-monotone
formulas of size Q(m") (see [10] for details).
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