
Pseudorandom Walks in Biregular Graphs
and the RL vs. L Problem∗

PRELIMINARY VERSION

Omer Reingold† Luca Trevisan‡ Salil Vadhan§

February 4, 2005

Abstract

Motivated by Reingold’s recent deterministic log-space algorithm for UNDIRECTED S-T CONNEC-
TIVITY (ECCC TR 04-94), we revisit the general RL vs. L question, obtaining the following results.

1. We exhibit a new complete problem for RL: S-T CONNECTIVITY restricted to directed graphs
for which the random walk is promised to have polynomial mixing time.

2. Generalizing Reingold’s techniques, we present a deterministic, log-space algorithm that given a
directed graph G that is biregular (i.e., all in-degrees and out-degrees are equal) and two vertices
s and t, finds a path between s and t if one exists.

3. Using the same techniques as in Item 2, we give a “pseudorandom generator” for random walks on
“consistently labelled” biregular graphs. Roughly speaking, given a random seed of logarithmic
length, the generator constructs, in log-space, a “short” pseudorandom walk that ends at an almost-
uniformly distributed vertex when taken in any consistently labelled biregular graph.

4. We prove that if our pseudorandom generator from Item 3 could be generalized to all biregular
graphs (instead of just consistently labelled ones), then our complete problem from Item 1 can be
solved in log-space and hence RL = L.

∗Research supported by US-Israel Binational Science Foundation Grant 2002246.
†Incumbent of the Walter and Elise Haas Career Development Chair, Department of Computer Science, Weizmann Institute of

Science, Rehovot 76100, Israel. omer.reingold@weizmann.ac.il
‡U.C. Berkeley. luca@cs.berkeley.edu
§Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. Also supported by NSF grant

CCR-0133096, ONR grant N00014-04-1-0478, and a Sloan Research Fellowship. salil@eecs.harvard.edu

1

Electronic Colloquium on Computational Complexity, Report No. 22 (2005)

ISSN 1433-8092

1 Introduction

The research on derandomization of space-bounded computations deals with the tradeoff between two basic
resources of computations: memory (or space) and randomness. Can randomness save space in computa-
tions? Alternatively, can every randomized algorithm be derandomized with only a small increase in space?
These questions received the most attention in the context of log-space computations, and with respect to the
following complexity classes: L (the class of problems solvable in deterministic log-space), RL, and BPL

(the classes of problems solvable by randomized log-space algorithms making one-sided and two-sided er-
rors respectively). It is widely believed that L = RL = BPL and proving this conjecture is the ultimate
goal of this body of research.

It turns out that the derandomization of RL is related to determining the space complexity of one of
the most basic graph problems, UNDIRECTED S-T CONNECTIVITY: Given an undirected graph and two
vertices, is there a path between the vertices? (The corresponding search problem is to find such a path).
The space complexity of this problem and the derandomization of space-bounded computations have been
the focus of a vast body of work, and brought about some of the most beautiful results in complexity theory.
The connection between the two was made by Aleliunas et. al. [AKL+], who gave an RL algorithm for
UNDIRECTED S-T CONNECTIVITY. The algorithm simply runs a random walk from the first vertex s
for a polynomial number of steps, and accepts if and only if the walk visits the second vertex t. This
beautifully simple algorithm is undoubtedly one of the most interesting RL algorithms. It casts the space
complexity of UNDIRECTED S-T CONNECTIVITYas a specific example and an interesting test case for
the derandomization of space-bounded computations. (In particular, if RL = L, then UNDIRECTED S-
T CONNECTIVITY can be solved in deterministic log-space.) Since then progress on the general and the
specific problems alternated with a fluid exchange of ideas (as demonstrated by [Sav, AKS, BNS, Nis2,
Nis1, NSW, SZ, ATSWZ], to mention just a few highlights of this research). See the surveys of Saks [Sak]
and Wigderson [Wig] for more on these vibrant research areas.

The starting point of our research is a recent result of Reingold [Rei] that showed that UNDIRECTED

S-T CONNECTIVITYhas a deterministic log-space algorithm. On the other hand, the best deterministic
space bound on RL in general remains O(log3/2 n), established by Saks and Zhou [SZ]. In this paper, we
revisit the general RL vs. L question in light of Reingold’s results, and obtain the following results:

1. We exhibit a new complete problem for RL: S-T CONNECTIVITY restricted to directed graphs for
which the random walk is promised to have polynomial “mixing time,” as measured by a directed
analogue of the spectral gap introduced by Mihail [Mih].

2. Generalizing Reingold’s techniques, we present a deterministic, log-space algorithm that given a di-
rected graph G which is biregular (i.e. all indegrees and outdegrees are equal) and two vertices s and
t, finds a path between s and t if one exists. This involves a new analysis of the zig-zag graph product
of [RVW] that generalizes to biregular graphs and the directed analogue of the spectral gap, which
may be of independent interest.

3. Using the same techniques as in Item 2, we give a “pseudorandom generator” for random walks on
“consistently labelled” biregular graphs. 1 Roughly speaking, given a random seed of logarithmic

1A D-regular biregular graph is consistently labelled if the D edges leaving each vertex are numbered from 1 to D in such a way
that at each vertex, the labels of the incoming edges are all distinct. It turns out that every biregular graph has a consistent labelling,
but this does not imply that a pseudorandom generator that works for consistently labelled graphs also works for arbitrarily labelled
biregular graphs.

1

length, the generator constructs, in log-space, a “short” pseudorandom walk that ends at an almost-
uniformly distributed vertex when taken in any consistently labelled biregular graph.

4. We prove that if our pseudorandom generator from Item 3 could be generalized to all biregular graphs
(instead of just consistently labelled ones), then our complete problem from Item 1 can be solved in
log-space and hence RL = L.

Thus, the “only” obstacle to proving RL = L is the issue of consistent labelling. It remains to be seen
how difficult this is to overcome.

1.1 Techniques

In this section, we give an overview of our techniques,

Reingold’s algorithm. The algorithm of [Rei] can be seen as a logarithmic space reduction from the
st-connectivity problem in general undirected graphs to the st-connectivity problem restricted to graphs
such that each connected component is a regular constant-degree expander. The latter problem is easily
solvable deterministically in logarithmic space by observing that a constant-degree expander has logarithmic
diameter, and so one can test if two vertices are in the same connected component by enumerating all walks
of logarithmic length starting at one of the vertices.

More specifically, the reduction starts from a graph G, that we may assume without loss of generality
to be regular of constant degree and two vertices s and t, and it produces a new constant degree regular
graph G′ and vertices s′ and t′ such that (i) s′ and t′ are connected iff s and t are, and (ii) every connected
component of G′ is an expander.

The reduction works in phases: in each phase the size of the graph grows by a constant factor, the degree
remains the same, and the spectral gap (the difference between largest and second largest eigenvalues of
the transition matrix of the random walk on G) improves by a constant factor. Initially, in each connected
component the spectral gap is at least 1/poly(n), and so, afterO(log n) phases, the spectral gap is a constant,
which implies that the diameter of each connected component is logarithmic, and the size of the final graph
is polynomial. The final graph can be computed in space linear in the number of phases, and so logarithmic
space is sufficient to carry out such a reduction.

Each phase of the reduction consists, in turn, of two steps. In the first step, the (adjacency matrix of
the) graph is raised to a constant power, an operation that improves the spectral gap in each connected
component by a constant factor, at the cost of increasing the degree. In the second step, we take the zig-zag
graph product [RVW] with a constant-size constant-degree expander. This reduces the degree back to a
fixed constant, at the cost of increasing the number of vertices and making the spectral gap worse. If the
parameters are carefully balanced, then, as we said, each phase leaves the degree unchanged, increases the
number of vertices by a constant factor, and improves the spectral gap by a constant factor.

With an eye towards extending these techniques to all of RL, let us phrase the overall structure of the
argument more abstractly.

• Define a measure of expansion for undirected graphs. Specifically, consider the spectral gap γ(G),
the difference between largest and second largest eigenvalue of the transition matrix of the random
walk on G.

• Observe that if γ(G) = Ω(1) (andG is of constant degree), then deciding st-connectivity inG is easy.

2

• Note that for every undirected graph G on n vertices, γ(G) ≥ 1/poly(n).

• Introduce an operation (powering) that increases γ(G) but increases the degree.

• Introduce an operation (zig-zag with an expander) that reduces the degree while slightly reducing the
γ(G).

• Show that the graph obtained by applying O(log n) operations as above to G can be computed in
logarithmic space given G.

Generalizing to RL. Given the above view of [Rei], we explore how each of the steps can be generalized
to arbirary RL algorithms.

Measure of Expansion: We consider a generalization γ(G) of the spectral gap to directed graphs, intro-
duced by Mihail [Mih] and Fill [Fil], in the context of nonreversible Markov chains. However, in
general graphs, this parameter does not have all of the nice properties utilized in the logspace algo-
rithm for the undirected case. First, there are graphsG such that γ(G) is exponentially small. Second,
γ(G) being constant does not imply logarithmic diameter. Instead, it only implies that there is a path
of lengthO(log n) from s to t provided that t has probability mass at least 1/poly(n) in the stationary
distribution of the random walk on G. Fortunately, as discussed in the next item, we are able to show
that every RL problem can be reduced to solving S-T CONNECTIVITY on graphs where neither of
these difficulties occur.

A New Complete Promise Problem: We prove that the following promise problem, POLY-MIXING S-T
CONNECTIVITY, is complete for RL: we are given a directed graph G, two nodes s and t, and the
promise either that t is unreachable from s or that γ(G) ≥ 1/poly(n) and s and t have probability
mass at least 1/poly(n) in the stationary distribution of the random walk that starts at s.

Powering: We note that, just as in the undirected case, powering improves γ(G) and does not change the
stationary distribution (at the price of increasing the degree).

The Zig-Zag Product. By the above description, the main remaining challenge would be to show that
there is an operation that reduces the degree while not affecting by much the stationary distribution and
affecting only slightly the expansion γ. This turns out to be rather tricky, and in particular, for the zig-zag
product we are aware of examples where it does not work. Interestingly, the part that seems the hardest
(and fails miserably in the negative examples), is maintaining the nonnegligible probability of t under the
stationary distribution.

Solving the Biregular Case. One interesting case where we are able to show that the zig-zag product with
an expander satisfies the desired properties is when we start from a biregular directed graph. We note that
for biregular graphs, the stationary distribution is uniform and therefore it is easier to maintain its uniformity
(as long as we make sure to maintain biregularity). The analysis of expansion in the biregular case, how-
ever, requires a more general approach than the one taken in [RVW] (which exploits linear-algebraic and
geometric consequences of the symmetric adjacency matrices associated with undirected graphs). At the
same time, this analysis gives a much simpler proof for the bound on the zig-zag product needed for [Rei].

3

We are able to generalize the algorithm of [Rei] to a log-space deterministic algorithm that finds paths in
general biregular graphs (note that there is no promise in this problem).2 In addition, this algorithm implies
a log-space constructible universal traversal sequence for biregular graphs with consistent labelling. A
universal traversal sequence for a family of labelled graphs is a sequence of edge labels that leads a walk
from any start vertex of any graph in the family through all the other vertices of the graph. A labelling of the
edges of a graph is consistent if all the edge-labels that lead to any particular vertex are distinct. We note
that this is the least restrictive condition under which such universal traversal sequences are known even
for expander graphs [HW]. Furthermore, even when restricted to the undirected case, this condition on the
labelling is less restrictive than the one in the universal traversal sequences that are directly implied by the
algorithm of [Rei].

Finally, we give a generator with logarithmic seed length that produces in log-space a “pseudorandom
walk” for consistently labelled biregular graphs. This means that, from any start vertex, the walk produced
by the generator on a random seed converges to the (uniform) stationary distribution. A useful property is
that the generator produces shorter pseudorandom walks for graphs with better expansion. More precisely,
the length of the walk depends polynomially on 1/γ(G), but only logarithmically on the number of vertices
of the graph. This matches, up to a polynomial, the length of a truly random walk achieving comparable
mixing.

Derandomizing RL Reduces to the Biregular Case. As mentioned above, applying the techniques
of [Rei] to tackle the general RL case is challenging. Particularly, it is not clear what is an appropriate
analogue to the zig-zag product in the general case. That is, we do not have a candidate operation that could
reduce the degree while nearly preserving the expansion parameter and the weight of t under the station-
ary distribution. We therefore propose an alternative approach to reducing the general case to the biregular
case. This seems to be a non-trivial task (unlike st-connectivity in undirected graphs which easily reduces
to st-connectivity in regular graphs). Still we provide a method of solving the new complete problem for
RL using a generator with logarithmic seed length that produces in log-space a “pseudorandom walk” for
biregular graphs. As mentioned above, this paper obtains a pseudorandom generator for walks on biregular
graphs. Furthermore, most of the properties of this generator are more than sufficient for solving RL using
our reduction. The only deficiency of that generator is that it works under the assumption that the edge
labels are consistent rather than working for biregular graphs with arbitrary labelling.

On Alternative Measures of Expansion. It is natural to attempt the general framework of derandomiza-
tion studied here with a different measure of expansion. We also consider the combinatorial measure of
edge expansion. We show that edge expansion is preserved and degree is reduced, by taking a replacement
product with an expander graph. We show, however, that edge expansion is not necessarily improved by
powering in directed graphs, and it is not clear that there is any other “local” operation that increases edge
expansion.

1.2 Perspective

We feel that the combination of our two results regarding biregular graphs sheds promising light on the L vs.
RL problem: First, derandomizing general RL computations reduces to derandomizing (via pseudorandom
generators) the random walk on a biregular graph. This seems a closely related task to derandomizing

2We note that the decision problem in biregular graphs rather easily reduces to the undirected case, but this does not seem to be
the case for the search problem.

4

the random walk on an undirected graph. Secondly, the difficulty in derandomizing the random walk is
in the labelling of the graph. A possible explanation for the importance of the labelling is that for any
fixed sequence of labels, the corresponding walk on a graph with consistent labels cannot lose entropy (the
distribution of the final vertex has as much entropy as the distribution of the start vertex). On the other
hand, without the assumption on the labelling, entropy losses may occur. It is therefore harder to argue that
progress made in a pseudorandom walk (ie increase in entropy) will not be lost later in a walk.

1.3 Organization

We begin by defining notions of expansions for directed graphs and giving other technical preliminaries in
Section 2. We present in Section 3 our new RL-complete promise problem. The operations of powering,
replacement product and zig-zag graph product are defined for directed graphs in Section 4, and the effect of
powering and zig-zag product on biregular directed graphs is analysed in Section 5, leading to our algorithm
for finding paths in biregular graphs, to our construction of universal transversal sequences for biregular
consistently labeled graphs, and our pseudorandom walk generator for biregular consistently labeled graphs.
In Section 6 we prove that a pseudorandom walk generator for general biregular graphs would imply L =
RL. We conclude with a discussion of other measures of expansion in Section 7.

2 Preliminaries

2.1 Graphs and Markov Chains

In this paper, we allow graphs to be directed, have multiple edges, and have self-loops. A graph is out-
regular (resp., in-regular) if every vertex has the same number D of edges leaving it; D is called the
out-degree (resp., in-degree). A graph is biregular if it is both out-regular and in-regular.

Given a graph G on N vertices, we consider the random walk on G described by the transition matrix
MG whose (v, u)’th entry equals the number of edges from u to v, divided by the outdegree of v.3

We are interested in the rate at which random walks on G converge to a stationary distribution (i.e. a
probability mass function π : [N] → [0, 1] such that MGπ = π). In the case that G is undirected (i.e. the
Markov chain is time-reversible), it is well-known that the rate of convergence is characterized by the second
largest eigenvalue λ = λ(G) of the symmetric matrix M . (The spectral gap discussed in the introduction
is simply γ(G) = 1− λ(G).)

Following Mihail [Mih] and Fill [Fil], we consider a generalization of the parameter λ to the directed
case. For a probability mass function π : [N]→ [0, 1] on vertices, we define a normalized inner product on
R

N by:

〈x, y〉π def
=
∑

v∈[N]

x(v) · y(v)
π(v)

,

and a norm ‖x‖π def
=
√

〈x, x〉π. Note that this normalization makes π itself a unit vector (i.e. ‖π‖π = 1),
and also implies that x is orthogonal to π iff

∑

v x(v) = 0.

Definition 2.1 Let G be a directed graph, s a vertex from which all vertices of G are reachable, and π a
probability function on the vertices of G. We say that G has spectral expansion λ with respect to s and π if

3Often the transition matrix is defined to be the transpose of our definition. Our choice means taking a random walk corresponds
to left-multiplication by MG.

5

1. π is a stationary distribution of G, and

2. λs,π(G) ≤ λ, where

λs,π(G) = max
x∈RN :〈x,π〉π=0

‖MGx‖π
‖x‖π

,

If not all vertices in G are reachable from s, then we define λs,π(G) = λs,π(G′), where G′ is the
induced subgraph consisting of all vertices reachable from s. (In particular, we require that the support of
π is contained in G′.) We define λs(G) = minπ λs,π(G).

The reason that the above spectral expansion λ captures the convergence rate of the Markov chain is that
if α is our initial distribution (say concentrated at the start vertex s), then α − π is orthogonal to π (with
respect to the normalized inner product). Thus,

‖M tα− π‖π = ‖M t(α− π)‖π ≤ λs,π(G)t · ‖α− π‖π,

so the (normalized) `2-distance to π decreases exponentially fast, with a base of λs,π(G). In particular, if
λs,π(G) < 1, then π is the unique stationary distribution for which this holds, and we denote it by πs.

Just as in the undirected case, the spectral expansion can be bounded in terms of the sizes of cuts in the
underlying graph.

Definition 2.2 Let G be a directed graph on N vertices and π a stationary distribution of the random walk
on G. For a set of vertices A such that π(A) > 0, we define Φπ(A) = Pr[X ′ /∈ A|X ∈ A], where X is a
vertex chosen according to the stationary distribution π and X ′ is obtained by taking a random step in G
from X . The conductance of G with respect to π is defined to be

hπ(G)
def
= = min

A:0<π(A)≤1/2
Φπ(A).

Lemma 2.3 ([SJ, Mih, Fil]) Let G be a directed graph on N vertices in which at least half of the edges
leaving every vertex in G are self-loops (i.e. the random walk on G is “strongly aperiodic”), and let π be a
stationary distribution of G. Then for every vertex s in the support of π, λs,π(G) ≤ 1− hπ(G)2/2.

When the stationary distribution π is uniform on the vertices of G, then the conductance defined above
coincides exactly with the “edge expansion” of G, defined below. 4

Definition 2.4 Let G = (V,E) be a directed graph in which every vertex has outdegree D. Then the edge
expansion of G is defined to be

ε(G) = min
A

E(A,A)

D ·min{|A|, |Ā|} ,

where the minimum is taken over sets of vertices A and E(A,A) is the set of edges (u, v) where u ∈ A and
v /∈ A.

4To see that ε(G) = hπ(G) when π is the uniform distribution, note that the fact that the stationary distribution is uniform
implies that G is biregular, which in turn implies that E(A, A) = E(A, A).

6

2.2 Complexity Classes

L, RL, NL, BPL are the standard logspace complexity classes. prL, prRL, prBPL are the promise-
problem versions of these classes. Now we define search versions of logspace classes. An search problem
Π = (R,L) is specified by a relation R ⊆ Σ∗ × Σ∗ and a “promise language” L ⊆ {x : R(x) 6= ∅},
where R(x) = {y : (x, y) ∈ R}. The associated computational problem is: given x ∈ L, output any string
y ∈ R(x). Π is in searchNL if R is polynomially balanced and (x, y) ∈ R can be decided in logspace
given two-way access to x and one-way access to y. Π is in searchL if there is a logspace algorithm A
(with one-way access to its output) such that for every x ∈ L, A(x) ∈ R(x). (It can be verified that the
promise language L is in L.) R is in searchRL if it is in searchNL and there is a randomized logspace
algorithm A (with one-way access to its output) that outputs a sequence of of strings A(x) = (y1, . . . , yt)
such that for every x ∈ L, Pr [A(x) ∩R(x) 6= ∅] ≥ 1/2. Equivalently, there is a randomized logspace
algorithm A outputting a single string such that Pr [A(x) ∈ R(x)] ≥ 1/poly(n).

All reductions in this paper are logspace reductions. For search problems, the definition is a bit subtle.
A search problem Π = (R,L) reduces to search problem Π′ = (R′, L′) if there are functions f(x) and
g(x, z) such that if x ∈ L then f(x) ∈ L′, and if z ∈ R′(f(x)), then the sequence g(x, z) = (y1, . . . , y`)
contains at least one element of R(x). f should be computable in logspace with two-way access to x, and g
should be computable in logspace with two-way access to x and one-way access to z. It can be verified that
if Π ∈ searchNL reduces to Π′, then Π′ ∈ searchL⇒ Π ∈ searchL.

Proposition 2.5 prBPL = prL implies searchRL = searchL.

3 A New Complete Problem for RL

S-T CONNECTIVITY and its search version, FIND PATH, both defined below, are two of the most basic
problems in computer science.

S-T CONNECTIVITY:

• Input: (G, s, t), where G = (V,E) is a directed graph, s, t ∈ V

• YES instances: There is a path from s to t in G.

• NO instances: There is no path from s to t in G.

FIND PATH:

• Input: (G, s, t), where G = (V,E) is a directed graph, s, t ∈ V , and k ∈ N

• Promise: There is a path from s to t in G.

• Output: A path from s to t in G.

It is well-known that S-T CONNECTIVITY is complete for NL, and the same argument shows that FIND

PATH is complete for searchNL. Here we are interested in the complexity of restrictions of these problems.
The recent result of Reingold [Rei] shows that their restrictions to undirected graphs, UNDIRECTED S-T
CONNECTIVITY and UNDIRECTED FIND PATH, are in L and searchL, respectively.

It was known (see [Sak]) that a certain restriction of S-T CONNECTIVITY was complete for prRL,
specifically one where we look at the probability that a random walk of a particular length goes from s to t:

7

SHORT-WALK S-T CONNECTIVITY:

• Input: (G, s, t, 1k), where G = (V,E) is a directed graph, s, t ∈ V

• YES instances: A random walk of length k started from s ends at t with probability at least 1/2.

• NO instances: There is no path from s to t in G.

However, this problem does not seem to capture the properties of UNDIRECTED S-T CONNECTIVITY

used in Reingold’s algorithm [Rei]. As described in the introduction, his algorithm uses relies on a measure
of expansion, specifically the spectral gap, which refers to the long-term behavior of random walks in G (as
opposed to walks of a particular length k). We give a complete problem that seems much closer, specifically
by restricting to graphs of polynomial mixing time (as measured by λs(G)).

POLY-MIXING S-T CONNECTIVITY:

• Input: (G, s, t, 1k), where G = (V,E) is a out-regular directed graph, s, t ∈ V , and k ∈ N

• YES instances: λs(G) ≤ 1− 1/k, and πs(s), πs(t) ≥ 1/k.

• NO instances: There is no path from s to t in G.

POLY-MIXING FIND PATH:

• Input: (G, s, t, 1k), where G = (V,E) is a out-regular directed graph, s, t ∈ V , and k ∈ N

• Promise: λs(G) ≤ 1− 1/k, and πs(s), πs(t) ≥ 1/k.

• Output: A path from s to t in G.

The completeness of these two problems is given by the following theorem.

Theorem 3.1 POLY-MIXING S-T CONNECTIVITY is complete for prRL. POLY-MIXING FIND PATH is
complete for searchRL.

Proof: First, we show that these problems are in prRL and searchRL, respectively, by giving ran-
domized logspace algorithms for them. Given an instance (G, s, t, 1k), we take a random walk of length
m = k · ln(2k) from s, where N is the number of vertices in G. The searchRL algorithm simply outputs
this walk, and the prRL algorithm accepts if this walk ends at t. To analyze this algorithm, let α ∈ R

N be
the initial probability distribution, concentrated at s. Then, the probability that the walk ends at t is

(Mm
G α)(t) ≥ πs(t)− ‖Mm

G α− πs‖πs

≥ 1

k
− λs(G)m · ‖α− πs‖

≥ 1

k
−
(

1− 1

k

)m

· 1

≥ 1

k
− 1

2k
≥ 1

2k

The success probability of both algorithms can be boosted by repetitions as usual (outputting the sequence
of walks taken in the case of searchRL).

8

Now we show that every problem in prRL and searchRL, respectively, reduce to POLY-MIXING S-T
CONNECTIVITY and POLY-MIXING FIND PATH. Let M be a randomized logspace machine, running in
time at most p(n) ≤ poly(n). Given an input x of length n for M , we construct a graph G whose vertices
are of the form (i, τ), where i ∈ {1, . . . , p(n)} is a “layer”, and τ ∈ {0, 1} O(log n) describes a possible
configuration of M (i.e. the state, the contents of the work tape, and the position of the input head). We let
s = (1, α) where α is the unique start configuration of M , and t = (p(n), β) where β is the (wlog unique)
accepting configuration of M . (In the case of a searchRL algorithm, we have M accept if any of the
strings it outputs satisfy the relation R.) We create four outgoing edges from each vertex (i, γ). Two edges
are always self-loops. If i = p(n), then the other two edges go to s. If i < p(n), then the they go to vertices
of the form (i + 1, γ ′) and (i + 1, γ′′), for γ′, γ′′ as follows. If γ is a configuration where M reads a new
random bit, then we take γ ′ and γ′′ to be the two configurations that M would enter depending on the two
possible values of the random bit. If γ is a configuration where M does not read a new random bit, then we
set γ′ = γ′′ to be the unique next configuration in M ’s computation on x. If γ is a halting configuration of
M , then we set γ′ = γ′′ = γ.

Let us analyze the stationary distribution and mixing time of a random walk on G. It can be verified
that the following distribution π is on vertices (i, τ) is stationary for G: choose i uniformly at random from
{1, . . . , p(n)}, run M for i steps on input x, and let τ be M ’s configuration. We see that if x ∈ L, then
π(t) > 1/2p(n), and if x /∈ L, then π(t) = 0. In both cases π(t) = 1/p(n).

Because of the self-loops and the fact that π(s) > 0, we can bound λs,π(G) by computing the con-
ductance hπ(G) and applying Lemma 2.3. To lower-bound the conductance, we need to lower bound
Pr [X ′ /∈ A|X ∈ A] = Pr [X ∈ A ∧X ′ /∈ A] /π(A), where X is chosen according to π, X ′ is a random
step from X , and A is any set such that 0 < π(A) ≤ 1/2. To bound this, we consider a random walk
X1, . . . , Xr of length r = 3p(n) started in the stationary distribution π, and separate into two cases depend-
ing on whether s ∈ A.

If s /∈ A, then the following holds:

r · Pr
[

X ∈ A ∧X ′ /∈ A
]

≥ Pr [∃iXi ∈ A ∧Xi+1 /∈ A]

≥ Pr [X1 ∈ A, s ∈ {X2, . . . , Xr}]
≥ π(A) · (1− 2−Ω(p(n))) ≥ π(A)/2,

where the last inequality holds because a random walk of length 3p(n) (from any vertex) visits s with
probability 1 − 2−Ω(p(n)), as every edge out of layer p(n) goes to s and every step moves to the next layer
with probability at least 1/2.

If s ∈ A, then the following holds:

r · Pr
[

X ∈ A ∧X ′ /∈ A
]

= r · Pr
[

X /∈ A ∧X ′ ∈ A
]

≥ Pr [∃iXi /∈ A ∧Xi+1 ∈ A]

≥ Pr [X1 /∈ A, s ∈ {X2, . . . , Xr}]
≥ π(A) · (1− 2−Ω(p(n)))

≥ π(A) · (1− 2−Ω(p(n))) ≥ π(A)/2

Thus, we conclude that Pr [X ′ /∈ A|X ∈ A] ≥ 1/(2r) = 1/(6p(n)) for every A such that 0 < π(A) ≤
1/2, and hence hπ(G) ≥ 1/(6p(n)). By Lemma 2.3, λs,π ≤ 1− 1/(2 · (6p(n))2).

To conclude, in our reduction, we output (G, s, t, 1k), where k = 72p(n)2. From the analysis above, this
gives a logspace reduction from any problem in prRL to POLY-MIXING S-T CONNECTIVITY. Similarly,

9

it gives a reduction from any problem in searchRL to FIND PATH, because with one-way access to any
path from s to t inG, in logspace we can construct polynomially many computation paths ofM , at least one
of which is accepting, and this in turn, can be used to obtain a polynomially many strings y1, . . . , y` at least
of which is in R(x).

We note that the above proof can be modified to give a complete problem for prBPL, specifically where
the NO instances are replaced with instances such that λs(G) ≤ 1− 1/k, πs(s) ≥ 1/k and πs(t) ≤ 1/2k.

We also note that, following [AKL+], the randomized algorithm for POLY-MIXING S-T CONNECTIV-
ITY also gives a nonconstructive existence proof of polynomial-length universal traversal sequences for the
corresponding class of graphs.

Proposition 3.2 There is a polynomial p such that for everyN ,D, k, there exists a sequenceψ ∈ [D]p(N,D,k)

such that for every N -vertex labelled directed graph G of outdegree D and vertex s in G such that λs(G) ≤
1− 1/k, following the walk ψ from s visits all vertices v of G for which πs(v) ≥ 1/k.

4 Operations on Directed Graphs

Recall that, in this paper, we allow graphs to be directed, have multiple edges, and have self-loops. The edges
leaving and entering each vertex will typically labelled. Such a labelled graph with N vertices, maximum
outdegree Dout and maximum indegree Din can be specified by a rotation map RotG : [N] × [Dout] →
([N] × [Din]) ∪ {⊥}, where RotG(v, i) = (u, j) if the i’th edge leaving v is the j’th edge entering u, and
RotG(v, i) = ⊥ if V has fewer than i edges leaving it.

In this section, we define several operations on directed labelled graphs that are specified by rotation
maps. For readability, we often omit the ⊥ from the notation.

The first operation simply replaces the edge set with all walks of length t in the graph.

Definition 4.1 (powering) LetG be a labelled graph given by rotation map RotG : [N]× [D]→ [N]× [B].
The t’th power of G is the graph Gt with rotation map is given by RotGt : [N] × [D]t → [N] × [B]t

defined by RotGt
(v0, (k1, k2, . . . , kt)) = (vt, (`t, `t−1, . . . , `1)), where these values are computed via the

rule (vi, `i) = RotG(vi−1, ki) (and if any of these evaluations yield ⊥, then the final output is also ⊥).

Lemma 4.2 If G has spectral expansion λ with respect to vertex s and stationary distribution π, then Gt

has spectral expansion λt with respect to vertex s and stationary distribution π.

For simplicity, the next few definitions restrict to rotation maps where the outdegree bound D is the
same as the indegree bound B.

In the replacement product, we combine a graph G1 with N1 vertices and a rotation map of degree D1

with a graphG2 that hasD2 vertices and a rotation map of degreeD2. The product graph hasD1N1 vertices,
that we think of as being grouped into N1 “clouds” of size D 1, one cloud for each vertex of G1. Each cloud
is a copy of the graph G2. In addition, if the i-th outgoing edge from vertex v in G1 was the j-th incoming
edge in w (that is, if Rot(G1)(v, i) = (w, j), then, in the product graph, there is an edge from the i-th vertex
in the cloud of v to the j-th vertex in the cloud of w. The formal definition follows.

Definition 4.3 (replacement product) If G1 is a labelled graph on N1 vertices with rotation map RotG1
:

[N1] × [D1] → [N1] × [D1] and G2 is a labelled graph on D1 vertices with rotation map RotG2
: [D1] ×

[D2] → [D1] × [D2], then their replacement product G1©r G2 is defined to be the graph on [N1] × [D1]
vertices whose rotation map RotG1©r G2

: ([N1]× [D1])× [D2 +1]→ ([N1]× [D1])× [D2 +1] is as follows:

10

RotG1©r G2
((v, k), i):

1. If i ≤ D2, let (m, j) = RotG2
(k, i) and output ((v,m), j).

2. If i = D2 + 1, output (RotG1
(v, k), i).

3. If the computation of RotG2
or RotG1

yields ⊥, then the output is ⊥.

A variant, called the balanced replacement product in [RVW], gives equal weight to the edges coming
from G1 and from G2, by duplicating edges that go between clouds (ie edges of the type 2) D2 times, for a
total degree of 2D2.

The zig-zag product, introduced in [RVW], combines, as before, a graph G1 with N1 vertices and a
rotation map of degree D1 with a graph G2 that has D1 vertices and degree D2. The product graph has
N1D1 vertices as in the replacement product, but now there is an edge between two vertices if there is a
length-three path in the replacement product graph between them, and the middle edge in the path crosses
between two clouds. In particular, the degree of the zig-zag product graph is D2

2, instead of D2 + 1. The
formal definition is below.

Definition 4.4 (zig-zag product [RVW]) IfG1 is a labelled graph onN1 vertices with rotation map RotG1
:

[N1] × [D1] → [N1] × [D1] and G2 is a labelled graph on D1 vertices with rotation map RotG2
:

[D1]× [D2]→ [D1]× [D2], then their zig-zag product G1©z G2 is defined to be the graph on [N1]× [D1]
vertices whose rotation map RotG1©z G2

: ([N1]× [D1])× [D2
2]→ ([N1]× [D1])× [D2

2] is as follows:

RotG1©z G2
((v, k), (i, j)):

1. Let (k′, i′) = RotG2
(k, i).

2. Let (w, `′) = RotG1
(v, k′).

3. Let (`, j′) = RotG2
(`′, j).

4. Output ((w, `), (j ′, i′)).

5 Biregular Graphs

BIREGULAR S-T CONNECTIVITY and BIREGULAR FIND PATH are the problems obtained by restricting S-
T CONNECTIVITY and FIND PATH to biregular graphs. There is no additional promise. It is not difficult to
see that BIREGULAR S-T CONNECTIVITY reduces to UNDIRECTED S-T CONNECTIVITY, simply by mak-
ing all edges undirected (i.e., by bidirecting all edges). Whether or not s and t are connected is maintained
because, in a biregular graph, every cut has the same number of edges crossing in both directions. However,
note that this is not a reduction from BIREGULAR FIND PATH to UNDIRECTED FIND PATH. Nevertheless,
here we give a logspace algorithm for BIREGULAR FIND PATH by generalizing the ideas underlying Rein-
gold’s algorithm [Rei] to the directed case. We also obtain universal traversal sequences for bi-regular with
“consistent” labelling and generators of pseudorandom walks on such graphs. We discuss both below.

Theorem 5.1 BIREGULAR FIND PATH is in searchL.

11

5.1 Basic Facts

In a biregular graph of degree D, the rotation map RotG : [N] × [D] → [N] × [D] is a permutation. Note
that the uniform distribution is a stationary distribution of a random walk on a biregular graph. Thus, in this
section we always refer to spectral expansion with respect to the uniform distribution. Also, in biregular
graphs, if there is a path from u to v, then there is also a path from v to u, so the spectral expansion λs(G)
is independent of the choice of the start vertex s within a given connected component. Thus, we will often
omit s from the notation, just writing λ(G), in which case it should be understood that G is connected.

First, we note that biregular graphs have nonnegligible spectral gap, which can be proven by reduction
to the undirected case [AS] via [Fil].

Lemma 5.2 For every connected, aperiodic biregular graph G, λ(G) ≤ 1− Ω(1/DN 2).

5.2 Zig-zag Product

In this section, we generalize the Zig-Zag Theorem of [RVW] to biregular graphs:

Theorem 5.3 If λ(G1) ≤ λ1 and λ(G2) ≤ λ2, then λ(G1©z G2) ≤ f(λ1, λ2), where

f(λ1, λ2) ≤
√

λ2
1 + λ2

2 + λ1λ2 + λ4
2,

and
f(1− ε1, 1− ε2) ≤ 1− ε1ε2/8.

We have not attempted to optimize these bounds, and they can certainly be improved. For the purposes
of this paper, we only need the second bound (specifically, its consequence that for some constant ε2,
f(1− ε1, 1− ε2) = 1− Ω(ε1)).

As noted in [RVW], the above bound on the expansion of the zig-zag product also implies a bound on
the expansion of the replacement product and balanced replacement product, because the cubes of the latter
graphs contain the zig-zag as a regular subgraph. Specifically, for the replacement product we obtain a
bound like the above with f(1− ε1, 1− ε2) ≤ 1− Ω(ε1ε2/D2), where D2 is the degree of G2, and for the
balanced replacement we get f(1− ε1, 1− ε2) ≤ 1− Ω(ε1ε2).

Our algorithm, like [Rei], we will only use the following consequence of the second bound above: if G2

is a good expander in the sense that λ(G2) is bounded by a constant less than 1 and λ(G1) ≤ 1 − ε1, then
λ(G1©z G2) ≤ 1− Ω(ε1). We note that our proof of this 1− Ω(ε1) bound is significantly simpler than the
previous proofs of this bound in the undirected case, for either the zig-zag or replacement products.5

Proof: (of Theorem 5.3) Let M be the transition matrix of the random walk on G1©z G2. According
to Definition 2.1, we must show that, for every vector w ∈ R

N1·D1 orthogonal to the uniform distribution
uN1D1

, Mw is shorter than w by a factor of f(λ1, λ2).6

5The basic analysis of the undirected zig-zag product in [RVW] only gives a bound of 1−Ω(ε2
1). Only a much more complicated

and less intuitive analysis, that uses the undirectedness of G1 in additional ways, gives the 1 − Ω(ε1) bound. The Martin–
Randall [MR2] decomposition theorem for Markov chains also implies a 1−Ω(ε1) bound for the undirected replacement products,
but its full proof (relying on [CPS]) is also fairly involved.

6Here we already depart from the analysis of [RVW], which bounds maxw〈|〈Mw, w〉|/〈w, w〉, a quantity that is equal to
maxw ‖Mw‖/‖w‖ in case M is symmetric, but not in general. The bound f(1 − ε1, 1 − ε2) = 1 − Ω(ε1ε2) in [RVW] uses
symmetry in additional ways, e.g. to deduce that the matrix Ã defined below is a reflection in R

N1 .

12

Following [RVW], we relate M to the transition matrices of G1 and G2, which we denote by A and B,
respectively. First, we decompose M into the product of three matrices, corresponding to the three steps in
the definition of G1©z G2’s edges. Let B̃ be the transition matrix for taking a random G2-step on the second
component of [N1] × [D1], i.e. B̃ = IN1

⊗ B, where IN1
is the N1 × N1 identity matrix. Let Ã be the

permutation matrix corresponding to RotG1
. By the definition of G1©z G2, we have M = B̃ÃB̃.

For any vector v ∈ R
N1·D1 , we define v‖ to be the component of v that is constant on every cloud. That

is, v‖ = v ⊗ uD1
, where v ∈ R

N1 is defined by vv =
∑

i∈[D1] vv,i. We define v⊥ = v − v‖, so v⊥ is

orthogonal to uniform on every cloud. Since v⊥ ⊥ v‖, we have ‖v‖2 = ‖v‖‖2 + ‖v⊥‖2.
Now, recall that our aim is to show that ‖Mw‖ ≤ f(λ1, λ2) · ‖w‖ for every w ⊥ uN1D1

. In light of
the decomposition M = B̃ÃB̃, we define x = B̃w, y = Ãx, z = B̃y. Now, we make several observations
about the effect of these transformations:

• Since uD1
is the stationary distribution for B̃, we have x‖ = w‖, x⊥ = B̃w⊥, z‖ = y‖, and z⊥ =

B̃y⊥.

• By the expansion of G2, we have ‖x⊥‖ ≤ λ2 · ‖w⊥‖ and ‖z⊥‖ ≤ λ2 · ‖y⊥‖.

• By linearity, y‖ = (Ãx‖)‖ + (Ãx⊥)‖ and y⊥ = (Ãx‖)⊥ + (Ãx⊥)⊥.

• By the expansion of G1, we have |(Ãx‖)‖‖ ≤ λ1 · ‖x‖‖.

• Since Ã is a permutation matrix, we have ‖y‖ = ‖x‖, and

0 = 〈x‖, x⊥〉
= 〈Ãx‖, Ãx⊥〉
= 〈(Ãx‖)‖ + (Ãx‖)⊥, (Ãx⊥)‖ + (Ãx⊥)⊥〉
= 〈(Ãx‖)‖, (Ãx⊥)‖〉+ 〈(Ãx‖)⊥, (Ãx⊥)⊥〉.

That is, 〈(Ãx‖)‖, (Ãx⊥)‖〉 = −〈(Ãx‖)⊥, (Ãx⊥)⊥〉.

Given these observations, it is just a calculation to obtain the two desired bounds on the length of
z = Mw.

‖z‖2 = ‖z‖‖2 + ‖z⊥‖2
≤ ‖y‖‖2 + λ2

2 · ‖y⊥‖2
= ‖(Ãx‖)‖ + (Ãx⊥)‖‖2 + λ2

2 · ‖y⊥‖2
≤ ‖(Ãx‖)‖‖2 + ‖(Ãx⊥)‖‖2 + 2‖(Ãx‖)‖‖ · ‖(Ãx⊥)‖‖+ λ2

2 · ‖y⊥‖2
≤ λ2

1 · ‖x‖‖2 + ‖x⊥‖2 + 2λ1‖x‖‖ · ‖x⊥‖+ λ2
2‖x‖2

≤ λ2
1 · ‖w‖‖2 + λ2

2 · ‖w⊥‖2 + 2λ1‖w‖‖ · λ2‖w⊥‖+ λ2
2 · (‖w‖‖2 + λ2

2 · ‖w⊥‖2)
≤ (λ2

1 + λ2
2 + λ1λ2 + λ4

2) · ‖w‖2,

where in the last inequality we use the fact that ‖w‖‖2 + ‖w⊥‖2 = ‖w‖2.
For the second bound, we consider two cases.

13

Case I: ‖w⊥‖2 ≥ min{
√

1− λ2
1/(4λ2), 1/2} · ‖w‖2.

1− ‖z‖2 ≥ 1− ‖x‖2

≥ 1−
(

‖w‖‖2 + λ2
2 · ‖w⊥‖2

)

= (1− λ2
2) · ‖w⊥‖2

≥ min{(1− λ2
2) ·
√

1− λ2
1/(4λ2), (1− λ2

2)/2} · ‖w‖2

Case II: ‖w⊥‖ < min{
√

1− λ2
1/8λ2, 1/

√
2} · ‖w‖.

For notational convenience, we set δ1 so that δ21 = ‖(Ãx‖)⊥‖2/‖x‖‖2 ≥ 1− λ2
1.

1− ‖z‖2 ≥ (1− λ2
2) · ‖y⊥‖2

= (1− λ2
2) · ‖(Ãx‖)⊥ + (Ãx⊥)⊥‖2

= (1− λ2
2) ·
[

‖(Ãx‖)⊥‖2 + ‖(Ãx⊥)⊥‖2 + 2〈Ãx‖)⊥, (Ãx⊥)⊥〉
]

≥ (1− λ2
2) ·
[

δ21 · ‖x‖‖2 + 0− 2δ1 · ‖x‖‖ · ‖x⊥‖
]

≥ (1− λ2
2) ·
[

δ21 · ‖w‖‖2 − 2δ1 · ‖w‖‖ · λ2‖w⊥‖
]

≥ (1− λ2
2) ·
[

3δ21/4− 2δ1λ2 ·
√

1− λ2
1/(4λ2)

]

· ‖w‖2

≥ [(1− λ2
2) · (1− λ2

1)/4] · ‖w‖2.

Thus, we conclude that

1− f(λ1, λ2) ≥ (1− f(λ1, λ2)
2)/2

≥ 1

2
·min

{

(1− λ2
2) ·
√

1− λ2
1

4λ2
,
1− λ2

2

2
,
(1− λ2)

2 · (1− λ2
1)

4

}

≥ 1

2
min

{

ε2 ·
√
ε1

4(1− ε2)
,
ε2
2
,
ε2 · ε1

4

}

= ε1ε2/8,

as desired.

5.3 The Path Finding Algorithm

We have seen that powering and the zig-zag graph product has essentially the same affect on biregular graphs
as on undirected graphs. Therefore, both the decision and search versions of the st-connectivity algorithm
of [Rei] can be extended (without any substantial change) to biregular graphs. This implies Theorem 5.1,
which states that BIREGULAR FIND PATH is in searchL. As the algorithm here is essentially the same as
in [Rei], we only provide a sketch of the proof.

14

Proof Sketch: [of Theorem 5.1] We describe a log-space algorithm A that gets as input a D-biregular (i.e.
both the indegree and the outdegree of each vertex is D) graph G on N -vertices and two vertices s and t
and outputs a path from s to t if such a path exists (otherwise, it will output ‘not connected’).

The algorithm will rely on a constant size (undirected) expander graph H , given by its rotation map
RotH , with rather weak parameters. More specifically, H will be De-regular, for some constant De, it will
have (De)80 vertices (no attempt was made to optimize the constants), and λ(H) ≤ 1/2. The expander H
can be obtained via exhaustive search or any one of various explicit constructions.

The first step of the algorithm, will be to reduce the input G, s, t into a new input Greg, s
′, t′ where Greg

is (De)80-biregular on N · D vertices, every connected component of Greg is aperiodic, and s and t are
connected in G if and only if s′ and t′ are connected in Greg. Furthermore, a path from s′ to t′ in Greg can
be translated in log-space into a path from s to t in G. The reduction itself is quite standard: Each vertex
of G is replaced with a cycle with D vertices. In addition, the ith vertex (v, i) in the cycle that corresponds
to v is connected to (w, j) = RotG(v, i) in the cycle that corresponds to w. Up to now, both the indegree
and the outdegree of each vertex is three. Therefore, we add to each vertex (De)80 − 3 self loops (this also
guarantees that each connected component of Greg is aperiodic). The vertices s′ and t′ are arbitrary vertices
from the cycles that correspond to s and t. A path from s′ to t′ in Greg can easily be projected down to a
path from s to t in G.

The next step is a reduction of Greg, s
′, t′ to a new input Gexp, s′′, t′′ of BIREGULAR FIND PATH, such

that each connected component of Gexp is an expander (and in particular has a logarithmic diameter), and
s′ and t′ are connected in Greg if and only if s′′ and t′′ are connected in Gexp. Furthermore, this is a log-
space reduction and a path from s′′ to t′′ in Gexp can be translated in log-space into a path from s′ to t′ in
Greg. This step is the heart of the algorithm, and it essentially completes the algorithm. All that is left to do
is enumerate all logarithmically-long paths from s′′ in Gexp and output one of them if it reaches t′′ (after
translating it in two steps to a path from s to t in G).

The transformation from Greg to Gexp is defined recursively. Set G0 to equal Greg, and for i > 0 define
Gi recursively by the rule:

Gi = (Gi−1©z H)40.

Finally, define Gexp = G` for ` = O(log(N · D)) (that will be determined by the analysis). It follows
inductively that each Gi is a (De)80-biregular graph over [N] × [D] × [(De)80]i. In particular, the zig-zag
product of Gi and H is well defined. In addition, since De is a constant, and ` is logarithmic then G` has
poly(N ·D) vertices.

Assume that Greg is connected, then by Lemma 5.2, λ(Greg) ≤ 1 − 1/poly(N · D). By Lemma 4.2
and Theorem 5.3 (properties of powering and the zig-zag product for biregular graphs), we have that unless
λ(Gi) is already smaller than some fixed constant then λ(Gi) ≤ (λ(Gi−1))

2. This means that for some
` = O(log(N · D)), we have that λ(G`) is guaranteed to be smaller than some fixed constant. In other
words, Gexp is an expander. What if Greg has several connected components? Since both powering and the
zig-zag product operate separately on each connected component, we have that for every S ⊆ [N] × [D],
if S contains the vertices of a connected component of Greg then S × [(De)80]` contains the vertices of a
connected component of Gexp, and the subgraph of Gexp induced by these vertices is an expander. By this
argument, it is natural to select s′′ to be any vertex in {s′} × [(De)80]` and similarly regarding t′′. This
choice indeed satisfies the requirements of the reduction.

It remains to argue that the transformation of Greg to Gexp is log-space and that a path on Gexp trans-
lates in log-space into a path onGreg. The intuition is that taking a step onGi translates to a constant number
of operations, some of which are taking a step on Gi−1 and the rest require constant space. As the space
used for each one of these operations can be reused for the subsequent operations, the space needed to walk

15

on Gi is only larger by a constant than the space needed to walk on Gi−1. Furthermore, this evaluation in
particular translates a step on Gi to a path of constant length between the corresponding vertices of Gi−1.
The space-efficiency requirements follow by induction. 2

5.4 Universal Traversal Sequences

We now show how the BIREGULAR FIND PATH algorithm described above also implies a log-space con-
structible universal traversal sequence for “consistently labelled” biregular graphs. Here we refer to biregular
graphs of degree D in which only the outgoing edges from each vertex are numbered from 1 to D. We call
such a labelling consistent if all the edges coming into any vertex of the graph have distinct labels, i.e. no
vertex v can be both u’s ith-neighbor and w’s ith-neighbor (for any distinct vertices u and w). In other
words, if we use the same labels to number the edges incoming at each vertex (if (u, v) is the i’th edge leav-
ing u, we consider it to be the i’th edge entering v), we obtain a legal labelling of incoming edges (in that
each label in [D] will get used exactly once at each vertex). Every biregular graph has a consistent labelling;
this is equivalent to the fact that every D-regular bipartite graph is the union of D perfect matchings. .
(However, finding a consistent labelling may not be feasible in log-space.)

Consistent labelling is the weakest restriction for which efficiently constructible universal traversal se-
quences are known even for undirected expander graphs [HW]. For general graphs, in the undirected case,
the st-connectivity algorithm of [Rei] directly gives efficiently constructible universal traversal sequences
under stronger restriction on the labelling. So in fact, the generalization to biregular graphs is useful even
from the point of view of undirected graphs. Our first step is to argue that the universal traversal sequences
for expanders given by Hoory and Wigderson [HW] can be extended to the biregular case.

Definition 5.4 Let D and N be two integers and let G be a subset of the labelled D-biregular connected
graphs on N vertices. We say that a sequence of values in [D] is a universal traversal sequence for G, if for
every graph G ∈ G, and every vertex s ∈ [N], the walk that starts in s and follows the edges of G according
to the sequence of labels visits all the vertices of the graph.

Lemma 5.5 For every two constants D and λ where D is a positive integer and λ < 1, there exists a log-
space algorithm that on input 1N produces a universal traversal sequence for all connected, consistently
labelled D-regular graphs G on N -vertices with λ(G) ≤ λ.

Proof Sketch: The universal traversal sequence of Hoory and Wigderson [HW] works just as well in the
biregular case. The only properties used in their analysis are that (1) A walk that starts at two distinct vertices
and follows the same set of labels ends in two distinct vertices (this is where the consistent labelling is used).
(2) For two sets of verticesA andB one of sizeK and the other of sizeN−K, either the intersectionA∩B
or the number of edges from A to B are Ω(min{K,N −K}) (this is where the expansion is used). Both of
these properties also hold in the biregular case. 2

Theorem 5.6 There exists a log-space algorithm that on input 1N , 1D produces a universal traversal se-
quence for all connected, consistently labelled D-regular graphs G on N -vertices.

Proof Sketch: Consider some connected, consistently labelledD-regular graphsG onN -vertices. We will
show a log-space algorithmA that produces a universal traversal sequence for {G}. We will then argue that
the algorithm does not need access to G which will imply the theorem (as the output of A will be good for
any such graph G).

16

The crucial observation is that, as noted above, given a consistently labelled graph G, we can assume
without loss of generality that every edge (u, v) has the same label as an out going edge from u and as an
incoming edge to v. Observe that, for the purpose of universal traversal sequence, the only labels that matter
are the outgoing labels from each vertex (the incoming labels, which define the rotation map of the graph,
are ignored during the walk - therefore any legal labelling will do). In other words, we can assume without
loss of generality that whenever (u, j) = RotG(v, i) we have that i = j. From now on, our proof follows
the same lines as the construction of universal traversal sequence in [Rei], and is therefore only sketched
here.

Consider the two graphs Greg and Gexp that are obtained from G (and do depend on RotG) in the proof
of Theorem 5.1. By the analysis in that proof, Gexp is an expander. Furthermore, as powering and the
zig-zag product preserve the property of consistent labeling, we have thatGexp is also consistently labelled.
Lemma 5.5 now implies that there exists a universal traversal sequence ~a for {Gexp} and its log-space
construction is independent of G. Now consider the walk on Gexp, following ~a from some vertex (s, 1`+1),
where s ∈ [N]. This walk covers all of the vertices of Gexp. By the construction of Gexp, the sequence of

labels ~a can be translated in log-space (again, without access to G) into a sequence ~b of labels, such that the
walk from (s, 1) (for any s ∈ [N]) which follows these labels, visits all the vertices of Greg.

The next step is to translate~b into a universal traversal sequence for {G}. Consider the walk from (s, 1)
on Greg. We want to simulate this walk without knowing s and without access to G. On the other hand,
at each step all we want to know is a value c ∈ [D] such that we are now at some vertex (v, c). To begin
with c is set to one. It is easy update c (one up or one down) when taking a step on one of the cycles in the
definition of Greg. Labels that correspond to self loops can be ignored. We are left with edges that cross
between two different cycles (that correspond to two vertices of G). By our assumption above, in such a
case c remains unchanged. Furthermore, the values of c when an edge between cycles is taken, are exactly
the labels of edges in G that are traversed by the projection on G of the walk defined by ~b. To conclude,
the sequence ~c is simply the sequence of values of c in the simulation described above, when edges between
cycles are traversed. 2

5.5 A Pseudorandom Generator

In this section we show that the path finding algorithm also implies a generator with logarithmic seed length
that produces in log-space a “pseudorandom walk” for consistently labelled biregular graphs. This means
that from any start vertex, following the pseudorandom walk leads to an almost uniformly distributed vertex.
In other words, just as the random walk, the pseudorandom walk converges to the stationary distribution.
This seems to be a result of independent interest. In particular, we show in Section 6 that a similar pseudo-
random generator (or even weaker), that works for biregular graphs with arbitrary labels, would prove that
RL = L.

The intuition for the generator is as follows. In the path-finding algorithm, an expander graph Gexp is
constructed. In this graph a short random walk converges to the uniform distribution. As in the proof for
the universal traversal sequences, the sequence of labels of the (random) walk on Gexp can be translated to
a (pseudorandom) sequence of labels for a walk on G. Furthermore, this sequence of labels is independent
of G (and can be computed in log-space without access to G). Note that all nodes of the original graph
G are expanded to “clouds” of equal size. Therefore, the pseudorandom walk converges to the uniform
distribution on the vertices of G (which is the projection on G of the uniform distribution on the vertices of
Gexp). Formalizing the above arguments will indeed imply a generator that produces a pseudorandom walk
of length polynomial in the size of the graph. However, a truly random walk will converge faster if G has a

17

larger eigenvalue gap. Theorem 5.7 takes this into account and implies, in this case, a pseudorandom walk
that is shorter as well.

Theorem 5.7 For every N,D ∈ N, δ, γ > 0, there is a generator PRG = PRGN,D,δ,γ : {0, 1}r → [D]`

with seed length r = O(log(ND/δγ)), and walk length ` = poly(1/γ) · log(ND/δ), computable in space
O(log(ND/δγ)) such that for every consistently labelled (N,D, 1−γ) biregular graphG and every vertex
s in G, talking walk PRG(Ur) from s ends at a vertex that is distributed δ-close to uniform (in variation
distance).

Proof Sketch: LetG be a consistently labelled (N,D, 1−γ) biregular graph and s any vertex ofG. We will
construct a distribution on a sequence of labels such that taking a walk from s onG according to these labels,
ends at a vertex that is distributed δ-close to uniform (in variation distance). Since the distribution of labels
will be independent of G and s (and will only depend on N,D, δ, and γ) this will imply a pseudorandom
generator.

As in the proof of Theorem 5.1, we consider in our analysis two additional graphsGreg andGexp. Their
definition will be slightly modified here. First, Greg will be obtained by a zig-zag product (or a replacement
product) with a constant degree expander on D vertices. Adding self loops we get an (ND, (De)80, 1 −
Ω(γ)) biregular graph. The advantage of doing that (instead of a replacement product with a cycle as in the
proof of Theorem 5.1), is that the eigenvalue gap of Greg is only smaller by a constant than the eigenvalue
gap of G. We now define Gexp similarly to the proof of Theorem 5.1, by recursively applying the zig-zag
product and powering. However, since we start with a stronger guarantee on the eigenvalue gap of Greg

we only need ` = O(log(1/γ)) levels of recursion to bring spectral gap to a constant. The size of the final
expander Gexp is thus Nfin = N ·D · 2O(`) = ND · poly(1/γ).

Consider now a random walk of length mfin = O(log(Nfin/δ)) = O(log(ND/δγ)) in Gexp. Such a
walk starting from any vertex in the vertices in Gexp which correspond to s will converge to the uniform
distribution on the vertices of Gexp, up to variation distance δ. As in the proof of Theorem 5.6, this walk
projects to a walk on G. Since the uniform distribution on vertices of Gexp projects to the the uniform
distribution on vertices of G, we get that the walk in G also converges to the uniform distribution on the
vertices of Gexp, up to variation distance δ. As in the proof of Theorem 5.6, we note that we can assume
without loss of generality that in the rotation map of G the label of an edge (u, v) is identical both as an
outgoing edge from u and as an incoming edge to v. This implies (as in that proof), that the edge labels
taken by the walk on G are actually independent of G and s and can be computed in the required small
space, just knowing N , D, γ, and δ.

We make the following observations:

• The randomness required is r = O(mfin) = O(log(ND/δγ)).

• The walk length is ` = mfin · 2O(`) = log(ND/δγ) · poly(1/γ) = log(ND/δ) · poly(1/γ).
2

6 Reducing the General Case to Biregular Graphs

In this section, we prove that if there exists a pseudorandom generators for walks on biregular graphs whose
edges are arbitrarily labelled, then RL = L and also searchRL = searchL. Theorem 5.7 implies
a generator for walks on biregular graphs with the additional restriction that the labelling of the edges is
consistent. Lifting this restriction would imply that RL = L. In fact, such a generator would also imply
BPL = L. However, we concentrate in this preliminary version on the case of RL.

18

Theorem 6.1 There is a universal constant α > 0 such that the following holds for every constant a ∈ N.
Suppose that for every N,D ∈ N, δ, γ > 0, there is a generator PRG = PRGN,D,δ,γ : {0, 1}r → [D]`

with seed length r = a log(ND/δγ), and walk length ` = (1/(γδ))a · (ND)α, computable in space
a log(ND/δγ) such that for every (N,D, 1 − γ) biregular graph G = (V,E) and every vertex s ∈ V
and every subset T ⊆ V of density at least δ, the walk from s following the labels PRG(Ur) visits T with
probability at least (δγ)a/(ND)α. Then RL = L and searchRL = searchL.

Note that the above theorem requires that the length ` of the pseudorandom walks have limited de-
pendence on N and D, being bounded by (ND)α rather than being polynomial or even linear in ND.
Still, this is a much milder requirement than what is achieved by our generator for consistently labelled
graphs (Thm. 5.7), which achieves logarithmic dependence. We also note that a pseudorandom generator
for logspace algorithms with logarithmic seed length would imply the above theorem, because a truly ran-
dom walk of length O(1/γ) ·O(log(ND/δ)) would end at T with probability at least δ/2, and such a walk
can be implemented in space O(log(ND/δγ)).

Roughly speaking, we will prove Theorem 6.1 by showing that for every poly-mixing graph G, there
exists a biregular graph Greg such that the correctness of the generator on Greg implies the correctness of (a
modification of) the generator on G. The construction of Greg from G is given by the following lemma. We
stress that this construction is only done in the analysis, and thus need not be computable in log-space.

Lemma 6.2 There is a universal constant c such that the following holds. Let G = (V,E) be any d-
outregular graph on n vertices with vertices s, t ∈ V and stationary distribution π such that π(s) ≥ 1/k,
π(t) ≥ 1/k, and λπ(G) ≤ 1 − 1/k. Then for every ε > 0, if we set Nreg = (ndk/ε)c, Dreg = c ·Nreg/ε,
γ = 1/(ndk)c, there is a (Nreg, d · Dreg, 1 − γ)-biregular graph Greg such that the following holds. The
vertex set of Greg can be decomposed into “clouds” Vreg =

⋃

v∈V Cv with |Cs|, |Ct| ≥ |Vreg|/2k. There
is a bad set of edge labels B ⊆ [d] × [Dreg] of density ε such that for every u ∈ V , vertex û ∈ Cu and
edge label (i, j) ∈ ([d] × [Dreg]) \ B, the (i, j)’th neighbor of û in Greg is in cloud Cv where v is the i’th
neighbor of u in Greg.

Before proving this lemma, let’s see how it implies Theorem 6.1.

Proof of Theorem 6.1: Let (G, s, t, 1k) be any instance of POLY-MIXING FIND PATH, where G is d-
outregular, has n vertices, and has (promised) stationary distribution π with π(s), π(t) ≥ 1/k and λπ(G) ≤
1 − 1/k. Set δ = 1/2k, and ε = 1/(ndk)b for a large constant b to be specified later, and let Nreg =
(ndk/ε)c, Dreg = c · Nreg/ε, γ = 1/(ndk)c be the parameters of the biregular graph guaranteed by
Lemma 6.2. Let PRG = PRGNreg,d·Dreg,δ,γ : {0, 1}r → ([d] × [Dreg])

` be the generator hypothesized in
Theorem 6.1, with seed length r = a log(NregDreg/δγ) = O(abc log(ndk)). and walk length

` = (1/γδ)a · (Nreg · dDreg)
α = (ndk)O(ac) · (ndk/ε)O(αc) = (ndk)O(ac)/εO(αc)

Without loss of generality we may assume that each component in PRG(Ur) is uniformly distributed in
[d]× [Dreg]. (Shift each component of the output by adding a random element s← [d]× [Dreg]. This only
increases the seed length by a constant factor and preserves the pseudorandomness of the output because it
is equivalent to shifting all labels in the biregular graph by −s.)

The algorithm for POLY-MIXING FIND PATH works as follows. We enumerate the 2r = (nkd)O(abc)

seeds of PRG, for each obtaining a walk ŵ ∈ ([d] × [Dreg])
` of length ` = (nkd)O(abc). Taking the first

components of each step in ŵ, we obtain an induced walk w ∈ [d]`, which we perform on G, starting at s.
If any of these walks end at t, we output that walk.

19

To analyze this algorithm, we consider a walk ŵ ← PRG(Ur) taken in Greg, starting at any vertex of
Cs. Since λ(Greg) ≤ 1 − γ, Ct has density at least 1/2k, and δ = 1/2k, such a walk will end in Ct with
probability at least

(1/δγ)a · (Nreg · dDreg)
α = εO(αc)/(ndk)O(ac).

We now argue that the induced walk w in G will end at t with nearly the same probability. By the properties
of Greg, this will be the case provided the walk ŵ does not use any edge label from B. Since B has density
at most ε and each edge label in ŵ is uniformly distributed, the probability any label from B is used is at
most

` · ε = (ndk)O(ac) · ε1−O(αc).

Thus the walk w in G ends at t with probability at least

εO(αc)

(ndk)O(ac)
− (ndk)O(ac) · ε1−O(αc) > 0,

provided α ≤ c/κ and ε ≤ (1/ndk)b for a b > κac, where κ is a sufficiently large universal constant. In
particular, there exists a seed of PRG that will produce a walk from s to t.

On mixing vs. hitting

For the proof Lemma 6.2 we will need the following two lemmas, showing that polynomial mixing time
(i.e. inverse polynomial spectral gap) is equivalent to the existence of a vertex s such that a random walk of
polynomial length from any vertex hits s with high probability.

Lemma 6.3 LetG be a directed graph in which at least half of the edges leaving every vertex are self-loops.
Suppose there is a vertex s and a number ` ∈ N such that from every vertex v reachable from s, a random
walk of length ` from v visits s with probability at least 1/2. Then G has a stationary distribution π such
that λs,π(G) ≤ 1−1/8`2 and π(s) ≥ 1/2`. Moreover, a random walk from s of length O(`2 log(`/ε)) ends
at a vertex distributed ε-close to π (in variation distance).

Proof: Let G′ be the induced subgraph of G consisting of all vertices reachable from s. Let π be a
stationary distribution of the random walk on on G′. We bound λs,π(G) (and π(s)) via conductance in a
manner similar to the proof of Theorem 3.1. Because of the self-loops and the fact that π(s) > 0 (since
every vertex in G′ has a path to s), we can bound λs,π(G) by computing the conductance hπ(G) and
applying Lemma 2.3. To lower-bound the conductance, we need to lower bound Pr [X ′ /∈ A|X ∈ A] =
Pr [X ∈ A ∧X ′ /∈ A] /π(A), where X is chosen according to π, X ′ is a random step from X , and A is any
set such that 0 < π(A) ≤ 1/2. To bound this, we consider a random walk X1, . . . , X` of length ` started in
the stationary distribution π, and separate into two cases depending on whether s ∈ A.

If s /∈ A, then the following holds:

` · Pr
[

X ∈ A ∧X ′ /∈ A
]

≥ Pr [∃iXi ∈ A ∧Xi+1 /∈ A]

≥ Pr [X1 ∈ A, s ∈ {X2, . . . , X`}]
≥ π(A) · (1/2),

where the last inequality holds because a random walk of length ` (from any vertex in G′) visits s with
probability at least 1/2 by hypothesis.

20

If s ∈ A, then the following holds:

` · Pr
[

X ∈ A ∧X ′ /∈ A
]

= ` · Pr
[

X /∈ A ∧X ′ ∈ A
]

≥ Pr [∃iXi /∈ A ∧Xi+1 ∈ A]

≥ Pr [X1 /∈ A, s ∈ {X2, . . . , X`}]
≥ π(A)/2

≥ π(A)/2

Thus, we conclude that Pr [X ′ /∈ A|X ∈ A] ≥ 1/(2`) for every A such that 0 < π(A) ≤ 1/2, and
hence hπ(G) ≥ 1/(2`). By Lemma 2.3, λs,π ≤ 1− 1/(2 · (2`)2).

To lower bound π(s), we note that the expected number of times s is visited inX1, . . . , X` equals π(s)·`
on one hand, and is at least 1/2 on the other. Thus π(s) · ` ≥ 1/2.

Let π0 be the distribution concentrated at s, M = MG, and λ = λs,π. We are interested in the variation
distance between M tπ0 and π, which is smaller than their `1 distance, which equals:

|M tπ0 − π|1 =
∑

x

|(M tπ0)(x)− π(x)|
√

π(x)
·
√

π(x)

≤
(

∑

x

|(M tπ0)(x)− π(x)|2
π(x)

)1/2

·
(

∑

x

π(x)

)1/2

= ‖M tπ0 − π‖π · 1
≤ λt · ‖π0 − π‖π

≤ λt ·

(1− π(s))2

π(s)
+
∑

w 6=s

π(w)2

π(w)

≤ λt · (1/π(s))

≤ (1− 1/(8`)2)t · (2/`) ≤ ε

for t = O(`2 · log(`/ε)).

Lemma 6.4 LetG be a directed graph onN vertices in which each vertex has outdegree at mostD. Suppose
that G has a stationary distribution π and a vertex s such that λs,π(G) ≤ 1 − γ and π(s) ≥ p. Then for
every vertex v reachable from s, a random walk of length ` = O((N/γp) · logD) visits s with probability
at least 1/2.

Note that there always exists a vertex s such that π(s) ≥ 1/N , in which case ` is indeed polynomial.

Proof: First we bound the probability q that a random walk from v of length t ends at s. LettingM = MG,
λ = λs,π(G) ≤ 1− γ, and π0 be the probability distribution concentrated at v, we have:

|π(s)− q| ≤ π(s) · ‖M tπ0 − π‖π
≤ π(s) · λt · ‖π0 − π‖π

21

≤ π(s) · λt ·

(1− π(v))2

π(v)
+
∑

w 6=v

π(w)2

π(w)

≤ π(s) · λt · (1/π(v))

≤ π(s) · (1− γ)t ·DN

≤ π(s)/2,

for t = O((N/γ) · logD). Thus a random walk of length t ends at s with probability q ≥ π(s)/2 ≥ p/2.
Taking O(1/p) such walks in succession (for a total walk length of ` = O(t/p)), we visit s with probability
at least 1/2.

Defining the biregular graph Greg

Proof of Lemma 6.2: Let n be the number of vertices in G, d the out-degree of G, and π = πs be
the stationary distribution of G (actually the induced subgraph on vertices reachable from s). By adding
self-loops and applying Lemma 6.4, we may assume that G has the following properties:

1. π(s) ≥ 1/k, π(t) ≥ 1/k.

2. At least half of the edges leaving each vertex are self-loops.

3. For any vertex v reachable from s, a random walk of length ` = O(n · k2 · log d) from v visits s with
probability at least 1/2.

The desired biregular graph Greg will essentially be a blow-up of G, with each vertex of G repeated a
number of times proportional to its stationary probability, with small “corrections” to remove low-probability
vertices and to fix slight irregularities (due to round-off errors).

We construct Greg in several phases.

Step 1: Make all state probabilities nonnegligible. Let ε be the given error parameter. Without loss
of generality, we will assume that ε < 1/poly(n, k, d, `) for a polynomial to be specified later. Then let
D′ = poly(n, `, 1/ε) for a polynomial to be specified later. Define a graph G′ = (V,E′) on the same vertex
set as G, but with degree d ·D′. For every vertex v and edge label (i, i′) ∈ [d] × [D′], we set the (i, i′)’th
neighbor of v in G′ to be the i’th neighbor of v in G, except that we modify up to n of the edges leaving s
in order to ensure that every vertex reachable from s has at least one incoming edge directly from s. (The
edges to modify should be chosen so as to maintain the property that at least half of the edges from s are
self-loops.) Thus a random step on G′ is identical to a random step on G, except with probability at most
n/D′ when at vertex s.

Observe that Property 3 of G also holds in G′, because any walk from a vertex v in G that visits s also
visits s in G′. Thus, by Lemma 6.3, we have λs,π′(G′) ≤ 1 − 1/8`2 for some stationary distribution π′.
Moreover, if we take `′ = O(`2 log(`/ε)), then a random walk of length `′ from s in G (resp., G′) ends at a
vertex distributed ε-close to π (resp., π′). Thus,

π′(t) ≥ Pr [r.w. in G′ of length `′ from s ends at t]− ε
≥ Pr [r.w. in G of length `′ from s ends at t]− `′ · (n/D′)− ε
≥ π(t)− ε− ε− ε
≥ 1/2k,

22

provided we take ε ≤ 1/6k and D′ ≥ `′n/ε. Similarly, we have π′(s) ≥ 1/2k. And for every vertex v
reachable from s, we have π′(v) ≥ (1/2k) · (1/D′) since there is at least one edge from s to v.

To summarize, we have established the following properties of G′ = (V,E′):

1. For any vertex v reachable from s, a random walk of length ` = O(n · k2 · log d) from v visits s with
probability at least 1/2.

2. λs,π′(G′) ≤ 1− 1/8`2.

3. π′(s) ≥ 1/2k, π′(t) ≥ 1/2k.

4. At least half of the edges leaving each vertex are self-loops.

5. For every vertex v reachable from s, π′(v) ≥ 1/(2kD′)

6. For every vertex v and every edge label (i, i′) ∈ [d] × [D′], the (i, i′)’th neighbor of v in G′ equals
the i’th neighbor of v in G, unless v = s and (i, i′) ∈ B′ where B′ ⊆ [d] × [D′] is a set of labels of
density at most n/D′ ≤ ε.

Step 2: Blow up G′ to a nearly biregular graph G′′ We blow up each vertex v of G′ to a “cloud”
Cv consisting of Nv = dπ′(v)Ne vertices, for a sufficiently large N = O(kD′/ε). By Property 5 of
G′, we have Nv ∈ [π′(v) · N, (1 + ε) · π′(v) · N]. The vertex set of G′′ is V ′′ =

⋃

v Cv for a total of
N ′′ =

∑

v Nv ∈ [N, (1 + ε) ·N] vertices. Every vertex in G′′ has degree d ·D′ ·D′′, for a sufficiently large
D′′ = O(N/ε). For (i, i′, i′′) ∈ [d]× [D′]× [D′′], the (i, i′, i′′)’th edge leaving any vertex in Cu goes to the
(i′′ mod Nv)’th vertex of Cv, where v is the (i, i′)’th neighbor of u in G′.

We now argue that G′′ is nearly biregular, in the sense that all of the indegrees are close to d ·D ′ ·D′′.
Consider any vertex v̂ in cloud Cv. Each edge (u, v) in G′ induces either Nu · bD′′/Nvc or Nu · dD′′/Nve
edges into v̂. Note that D′′/Nv ≥ D′′/((1 + ε)N) ≥ 1/ε, if we choose D′′ ≥ (1 + ε)N/ε. So the indegree
of v̂ is at most

∑

(u,v)∈E′

Nu ·
(

D′′

Nv
+ 1

)

≤
∑

(u,v)∈E′

Nu · (1 + ε) · D
′′

Nv

≤
∑

(u,v)∈E′

[(1 + ε)π′(u)N] · (1 + ε) · D′′

π′(v)N

=
(1 + ε)2D′′

π′(v)
·
∑

(u,v)∈E′

π′(u)

=
(1 + ε)2D′′

π′(v)
· (d ·D′ · π′(v))

= (1 + ε)2 · d ·D′ ·D′′ = (1 +O(ε)) · d ·D′ ·D′′

By Property 3 of G′, we observe that |Cs| ≥ π′(s)N ≥ (1 + ε) ·N ′′/2k and similarly |Ct| ≥ (1 + ε) ·
N ′′/2k.

We now enumerate the properties of G′′ established above.

1. Every vertex in G′′ has out-degree d ·D′ ·D′′ and in-degree at most (1 +O(ε)) · d ·D′ ·D′′.

23

2. For every vertex û in cloud Cu and every (i, i′, i′′) ∈ [d]××[D′]× [D′′], the (i, i′, i′′)’th edge leaving
û leads to a vertex v̂ in cloud Cv, where v is the (i, i′)’th neighbor of u in G′. By Property 6 of G′,
v also equals the i’th neighbor of u in the original graph G unless u = s and (i, i′, i′′) ∈ B′′, where
B′′ = B × [D′′] is a set of labels of density at most ε.

3. The number of edges between any two such vertices û and v̂ equals either euv · bD′′/Nvc or euv ·
dD′′/Nve, where euv is the number of edges between u and v in G′.

4. Cs and Ct are both of density at least 1/2k.

Step 3: Add edges toG′′ to make a biregular graphGreg. Property 1 ofG′′ implies that we can make the
graph biregular by addingO(ε·d·D′·D′′) edges leaving each vertex. Specifically, we obtain a biregular graph
Greg on the same vertex set asG′′, in which every vertex has outdegree d·Dreg forDreg = (1+O(ε))·D′·D′′.
Each edge leaving a vertex has a label (i, j) ∈ [d]× [Dreg], and the edges with j ≤ D′ ·D′′ are identical to
the edges of G′′. We let Breg = [d]× ([Dreg] \ [D′ ·D′′]) be the set of remaining edge labels.

Let πreg denote the uniform distribution on the set of vertices reachable fromCs. SinceGreg is biregular,
this is a stationary distribution for Greg. We now enumerate the properties of G′′.

1. The vertex set of Greg is Vreg =
⋃

v∈V Cv, and the outgoing edges are labelled by elements of
[d]× [Dreg]

2. Greg and G′′ differ in at most O(εdDreg) edges leaving and entering each vertex.

3. Cs and Ct are both of density at least 1/2k.

4. There is a set B ⊆ [d] × [Dreg] of density O(ε) such that for every vertex û ∈ Cu and every edge
label (i, j) ∈ ([d]× [Dreg]) \ B, the (i, j)’th neighbor of û in Greg is in cloud Cv where v is the i’th
neighbor of v in G. (Namely, take B = Breg ∪B′′.)

5. For every ŝ ∈ Cs, we have λŝ,πreg
(Greg) ≤ 1− 1/16`2.

All of these items follow from the previous discussion, except Property 5 bounding the expansion, which
we proceed to do below.

Step 4: Analyze expansion of biregular graph. For this, it is useful to introduce a third Markov chain
G′′′ on vertex set V ′′′ = V ′′ = Vreg, which is more closely related to random walks on G′. From any vertex
û ∈ Cu, the Markov chain G′′′ chooses a random neighbor v of u in G′, and goes to a uniformly selected
vertex v̂ ∈ Cv. It can be verified that the distribution π′′′ that assigns each vertex v̂ ∈ Cv probability mass
π′′′(v̂) = π(v)/Nv is stationary for G′′′. Moreover,

λŝ,π′′′(G′′′) = λs,π′(G′) ≤ 1− 1

8`2
,

for any ŝ ∈ Cs.
We use this fact, and the fact that M ′′′ is “close” to G reg to bound λ(Greg). Specifically, let Mreg, M ′′,

and M ′′′ denote the transition matrices for Greg, G′′, and G′′′, respectively. Let ρ = Dreg/(D
′ · D′′) =

1 + O(ε) be the ratio between the degrees of Greg and G′′. We consider the two “error” matrices E 1 =
ρMreg −M ′′, and E2 = M ′′−M ′′′. To bound λŝ,πreg

(Greg), let x be any vector whose support is reachable
from Cs such that 〈x, πreg〉πreg

= 0, i.e.
∑

i xi = 0. We need to show that ‖Mregx‖πreg
≤ λreg · ‖x‖πreg

,

24

where λreg = 1 − 1/16`2. Note that since πreg is uniform, ‖ · ‖πreg
is simply a scaling of the standard

Euclidean norm. We bound ‖Mregx‖πreg
as follows.

‖Mregx‖πreg
≤ ‖ρMregx‖πreg

≤ ‖M ′′′x‖πreg
+ ‖E1x‖πreg

+ ‖E2x‖πreg
.

We bound each term separately. To bound the first, we first observe that the norms ‖ · ‖πreg
and ‖ · ‖π′′′

differ by a factor of at most (1 + ε), because πreg and π′′′ almost identical. Specifically, for every vertex
v̂ ∈ Cv, we have π′′′(v) = π′(v)/Nv, πreg(v) = 1/Nreg. These two quantities can be related as follows.

π′(v)

Nv
≥ 1

(1 + ε)N
≥ 1

(1 + ε)Nreg

and
π′(v)

Nv
≤ 1

N
≤ 1 + ε

Nreg
.

Thus, πreg(v̂) ≤ (1 + ε) · π′(v̂) and π′(v̂) ≤ (1 + ε) · πreg(v̂). This implies that the corresponding norms
differ by a factor of at most (1 + ε). Therefore,

‖M ′′′x‖πreg
≤ (1 + ε) · ‖M ′′′x‖π′′′

≤ (1 + ε) ·
(

1− 1

8`2

)

· ‖x‖π′′′

≤ (1 + ε)2 ·
(

1− 1

8`2

)

· ‖x‖πreg
.

For the second term, involving E1, we note that E1 equals 1/(dD′D′′) times the adjacency matrix A of
Greg \G′′. Every vertex in this graph has outdegree dDreg − dD′D′′ = Θ(εdD′D′′), and indegree at most
O(εdD′D′′) (by Property 2). This implies that ‖Ax‖πreg

≤ O(εdD′D′′) · ‖x‖πreg
. (One way to see this is

to consider the the vector y assigning each edge (u, v) in Greg \G′′, the value xu. The squared length of y
equals the squared length of x times the outdegree Θ(εdD′D′′). Then we obtain Ax by summing the entries
of y incoming at each vertex. By Cauchy-Schwartz, this increases squared length by at most the maximum
indegree O(εdD′D′′).) Therefore, we have

‖E1x‖πreg
=≤ 1

dD′D′′
· ‖Ax‖πreg

= O(ε) · ‖x‖πreg
.

Finally, we consider the third term, involving E2. We argue that each entry of E2 = M ′′ −M ′′′ is small.
For vertices û ∈ Cu, v̂ ∈ Cv, the (û, v̂)’th entry of M ′′′ equals (euv/(dD

′)) · (1/Nv), by definition of
G′′′, where euv is the number of edges between u and v in G′. On the other hand, by Property 3 of G′′,
the (û, v̂)’th entry of M ′′ is in the interval [euv · bD′′/Nvc/(dD′D′′), euv · dD′′/Nve/(dD′D′′)], which is
contained in the interval [euv/(dD

′Nv)−1/D′′, euv/(dD
′Nv)+1/D′′], since euv ≤ dD′. Thus, each entry

of E2 has absolute value at most 1/D′′. This implies that

‖E2x‖πreg
≤
√
N ′′

D′′
· ‖x‖πreg

≤ ε · ‖x‖πreg
,

where the last inequality comes by recalling that N ′′ ≤ (1 + ε) ·N and D′′ ≥ N/ε.
Putting all of the above together, we have

‖Mregx‖πreg

‖x‖πreg

≤ (1 + ε)2 ·
(

1− 1

8`2

)

+O(ε) + ε ≤ 1− 1

16`2
,

provided ε ≥ c · `2 for a sufficiently large constant c.

25

7 Combinatorial Measures

Other ways in which we can measure progress rather than spectral gaps are combinatorial measures such as
edge expansion or vertex expansion.

Edge expansion is roughly preserved in the replacement product, but can deteriorate quite a bit when the
graph is powered.

Theorem 7.1 Let G = (V,E) be a directed graph with n edges, such that every vertex has outdgree Dout

and every indegree is at most D. Let ε be the edge expansion of G. Let H be a biregular directed graph with
D vertices, degree d, and edge expansion δ. Then G′ := G©r H has edge expansion at least

1

4
· ε · Dout

D
·min

{

1

d+ 1
,
δd

d+ 1

}

Concretely, we would use the replacement product using an inner graph H of constant degree and
constant expansion, and Dout would be close to D in the outer graph, so that the expansion of G©r H would
be Ω(ε).

Proof: [Of Theorem 7.1] Recall that, for a vertex v of G, the cloud of v is a set Cv of D vertices of G′ that
“correspond to” to v in the replacement product.

Let A be a set of less than nD/2 vertices of G′. We want to prove that there are at least

|A| · d ·
(

1

4
· ε · Dout

D
·min

{

1

d
, δ

})

edges from A to Ā.
The intuition for the analysis is similar to the intuition in the analysis of the zig-zag graph product in

[RVW]: if A is a disjoint union of clouds, then the expansion follows from the expansion of G, and if each
cloud contains only a few elements of A then the expansion follows from the expansion of H . For a general
set A, our analysis will use the expansion of G if most elements of A are concentrated in “half full” clouds;
our analysis will use the expansion of G if most elements of A belong to “half empty” clouds.

Let B ⊆ A be the subset of vertices of A that belong to “half-empty” clouds. That is, a vertex w ∈ A
is in B if it belongs to a cloud Cv such that at most D/2 elements of Cv are in A. For an half-empty cloud
Cv, define av = |A ∩ Cv|.

We consider the following two cases.

1. If B > |A|εDout/4D, then each cloud Cv, v ∈ S, contributes at least av · δ · d to the cut between A
and Ā. (Here we are using the expansion of H .) Overall, the number of edges in the cut is at least

∑

v∈S

avδd ≥ |B|δd ≥ |A|εδdDout/4D

2. If |B| ≤ |A|εDout/4D, then let T be the set of vertices v of G such that the cloud Cv contains at least
D/2 elements of A. (These are the “half-full” clouds.) Note that |T | ≥ (|A| − |B|)/D > |A|/2D.

Now we have to consider two sub-cases:

26

(a) If |T | ≤ 3n/4, then we claim that are at least |A|εDout/2D edges in G from T to T̄ . We prove
the claim using the expansion of G. If |T | ≤ n/2, then the number of edges from T to T̄ is at
least |T |εDout ≥ |A|εDout/2D. If n/2 ≤ |T | ≤ 3n/4, then the number of edges from T to T̄
is at least |T̄ |εDout ≥ nεDout/4 ≥ |A|εDout/2D.
Those edges correspond to edges in G′ that go from a vertex in a half-full cloud to a vertex in
a half-empty cloud. We will argue that a reasonable fraction of such edges actually go from
vertices in A to vertices in Ā.
We first note that there are at most |B| ≤ |A|εDout/4D edges in G′ going to vertices in A that
belong to half-empty clouds. Therefore, there are at least |A|εDout/4D edges in G′ that have
their first endpoint in a half-full cloud and their second endpoint in Ā.
Let us now look at a half-full cloud Cv inG′ from which there are, say, kv outgoing edges whose
second endpoint is a vertex in Ā in another cloud, and call cv = |Cv − A|. We note that the
cloud contributes at least (kv − cv) + δdcv ≥ kv min{1, δd} edges to the cut between A and Ā.
This is because, of the kv edges leaving Cv and going to a vertex in Ā, at least kv − cv originate
from a vertex in A, and because the number of edges from A ∩ Cv to Cv − A in Cv is at least
cvδd because of the expansion of H .
Summing over all the clouds, we get a contribution that is at least

∑

v

kv min{1, δd} ≥ |A|εmin{1, δd}Dout/4D

(b) If |T | ≥ 3n/4, then we have 3n/4 or more half-full clouds, each one containing between D/2
and D elements of A, even though |A| ≤ nD/2. This means that of the |T | half-full clouds,
at least n/2 must contain at most 3D/4 elements of A. (If we let c be the number of half-full
clouds with at most 3D/4 elements of A, we get nD/2 ≥ |A| ≥ c ·D/2 + (|T | − c) · 3D/4,
which, together with |T | ≥ 3n/4, simplifies to c ≥ n/2.) In each such cloud, the number of
edges between A and Ā is at least Dδd/4, so that the total number of edges between A and Ā is
at least nDdδ/8, which is at least |A|dδ/4.

For directed graphs, as can be seen by the following example, the edge expansion does not necessarily
improve by powering.

Proposition 7.2 There is a directed graph G such that for every constant t > 1, the edge expansion of Gt

is no better than that of G:
ε(Gt) ≤ ε(G)

Proof: We describe an unlabeled graph G because the labels are irrelevant in our case. Let G be the
directed path on vertices {1, . . . , 2n} together with an additional edge from every vertex to 1. Formally, the
edges ofG are (i, i+1) for all i < 2n and also (i, 1) for all i. To make the outdegree 2 everywhere duplicate
the edge (2n, 1). The edge expansion of this graph is obtained on the set A = {1, . . . , n}. There is exactly

one edge leaving this set in G, and since G is strongly connected the edge expansion is E(A,Ā)
2|A| = 1/2n.

The number edges leaving A in Gt is the number of length-t paths leaving A in G. For t < n, this
number is equal to t. Since the out-degree of Gt is 2t, the edge expansion of G (being the minimum over all

choices of A) is bounded by E(A,Ā)
2t|A| = t

2t·n ≤ 1/2n.
Note that G can easily be made to have bounded in-degree, by ‘spreading’ the edges pointing to 1 to

point somewhere among the first say n/2 vertices.

27

Acknowledgments

We are grateful to Irit Dinur for her invaluable collaboration during the early stages of this work and for her
contribution to the results of Section 7. We also thank David Zuckerman for helpful discussions.

References

[AKS] M. Ajtai, J. Komlós, and E. Szemerédi. Deterministic Simulation in LOGSPACE. In Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing, pages 132–140, New York
City, 25–27 May 1987.

[AKL+] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff. Random walks, universal
traversal sequences, and the complexity of maze problems. In 20th Annual Symposium on Foun-
dations of Computer Science, pages 218–223, San Juan, Puerto Rico, 29–31 Oct. 1979. IEEE.

[AS] N. Alon and B. Sudakov. Bipartite Subgraphs And The Smallest Eigenvalue. Combinatorics,
Probability & Computing, 9(1), 2000.

[ATSWZ] R. Armoni, A. Ta-Shma, A. Wigderson, and S. Zhou. An O(log(n)4/3) space algorithm for (s,t)
connectivity in undirected graphs. Journal of the ACM, 47(2):294–311, 2000.

[BNS] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom generators for
logspace, and time-space trade-offs. Journal of Computer and System Sciences, pages 204–232,
15–17 May 1989.

[CPS] S. Caracciolo, A. Pelissetto, and A. Sokal. Two Remarks on Simulated Tempering. Unpublished
manuscript (see [MR1]), 1992.

[Fil] J. A. Fill. Eigenvalue bounds on convergence to stationarity for nonreversible markov chains
with an application to the exclusion process. Annals of Applied Probability, 1:62–87, 1991.

[HW] S. Hoory and A. Wigderson. Universal Traversal Sequences for Expander Graphs. Inf. Process.
Lett., 46(2):67–69, 1993.

[MR1] N. Madras and D. Randall. Markov chain decomposition for convergence rate analysis. Annals
of Applied Probability, 12:581–606, 2002.

[MR2] R. A. Martin and D. Randall. Sampling Adsorbing Staircase Walks Using a New Markov Chain
Decomposition Method. In Proceedings of the 41st Annual Symposium on Foundations of Com-
puter Science, pages 492–502, Redondo Beach, CA, 17–19 Oct. 2000. IEEE.

[Mih] M. Mihail. Conductance and convergence of markov chains: a combinatorial treatment of ex-
panders. In In Proc. of the 37th Conf. on Foundations of Computer Science, pages 526–531,
1989.

[Nis1] Nisan. RL ⊆ SC. In Proceedings of the twenty-fourth annual ACM symposium on Theory of
computing, pages 619–623, 1992.

[Nis2] N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

28

[NSW] N. Nisan, E. Szemeredi, and A. Wigderson. Undirected connectivity in O(log1.5n) space. In
Proceedings of the 30th FOCS, pages 24–29, Research Triangle Park, North Carolina, 30 Oct.–1
Nov. 1989. IEEE.

[Rei] O. Reingold. Undirected ST-Connectivity in Log-Space. Technical Report TR04-94, Electronic
Colloquium on Computational Complexity, November 1998. Extended abstract to appear in
STOC ‘05.

[RVW] O. Reingold, S. Vadhan, and A. Wigderson. Entropy Waves, the Zig-Zag Graph Product, and
New Constant-Degree Expanders. Annals of Mathematics, 155(1), January 2001. Extended
abstract in FOCS ‘00.

[Sak] M. Saks. Randomization and Derandomization in Space-Bounded Computation. In IEEE 11th
Annual Conference on Structure in Complexity Theory, 1996.

[SZ] M. Saks and S. Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of Computer and System
Sciences, 58(2):376–403, 1999. 36th IEEE Symposium on the Foundations of Computer Science
(Milwaukee, WI, 1995).

[Sav] J. Savitch. Relationship between nondeterministic and deterministic tape complexities. Journal
of Computer and System Sciences, 4(2):177–192, 1970.

[SJ] A. Sinclair and M. Jerrum. Approximate counting, uniform generation and rapidly mixing
Markov chains. Inform. and Comput., 82(1):93–133, 1989.

[Wig] A. Wigderson. The complexity of graph connectivity. In In Proceedings of the 17th Mathematical
Foundations of Computer Science, pages 112–132, 1992.

29

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

