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Abstract

It is known that a k-term DNF can have at most 2k − 1 prime implicants and this bound is sharp.

We determine all k-term DNF having the maximal number of prime implicants. It is shown that a

DNF is maximal if and only if it corresponds to a non-repeating decision tree with literals assigned

to the leaves in a certain way. We also mention some related results and open problems.

1. Introduction

Prime implicants of a Boolean function, or, in other words, maximal subcubes of a subset of

the n-dimensional hypercube, form a basic concept for the theory of Boolean functions and their

applications. Concerning the maximal number of prime implicants, it is known that an n-variable

Boolean function can have at most O( 3n√
n
) prime implicants, and there are n-variable Boolean

functions with Ω( 3n

n ) prime implicants (see, e.g., [4]).

∗This material is based upon work supported by the National Science Foundation under Grant Nos. CCR-0100036

and CCF-0431059.
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Figure 1: A non-repeating, unate-leaf decision tree (NUD)

Another case considered is the maximal number of prime implicants of Boolean functions repre-

sented by disjunctive normal forms (DNF) with a bounded number of terms. The result that a

k-term DNF can have at most 2k − 1 prime implicants was discovered independently by Chan-

dra and Markowsky [4], Levin [15] and McMullen and Shearer [17]. For a recent application in

computational learning theory, see Hellerstein and Raghavan [9]. It was shown by Laborde [14],

Levin [15] and McMullen and Shearer [17] that the bound is sharp, i.e., there are k-term DNF with

2k − 1 prime implicants (Chandra and Markowsky gave an example with more than 2k/2 prime

implicants). In view of these results, we call a DNF maximal if it has k terms and 2k − 1 prime

implicants for some k.

In this paper we complete the results of [4, 14, 15, 17] by determining all the maximal disjunctive

normal forms. In order to formulate the description, let us introduce the following definition.

By a tree we mean a rooted binary tree such that for every inner node, the edge leading to its left

(resp., right) child is labeled 0 (resp., 1). For a given k ≥ 2 and r ≥ 0, let us consider the variables

x1, . . . , xk−1, and the literals y1, . . . , yk and z1, . . . , zr (all variables in the list are assumed to be

different). A non-repeating, unate-leaf decision tree (NUD) T over these variables and literals is

constructed by taking a tree with k−1 inner nodes (and thus with k leaves), assigning to each inner

node a distinct variable xi, assigning to each leaf a distinct literal yj, and, in addition, assigning to

each leaf an arbitrary subset of the z literals. The set of leaves of T is denoted by L. If we want

to mention the number of x variables and y literals used in the construction, then we refer to T as

a k-NUD (the value r is irrelevant). Figure 1 gives an example of a 5-NUD (the labelling of the

edges is omitted for simplicity).

A k-NUD represents a k-term DNF, determined as follows. For a leaf ` ∈ L, let the term t` be

the conjunction of the x literals along the path leading to ` (where traversing an edge labeled 1

corresponds to an unnegated literal, and traversing an edge labeled 0 corresponds to a negated

literal) and of the y and z literals assigned to `. The k-term DNF represented by the k-NUD T is

ϕT =
∨

`∈L

t`.

For example, the 5-term DNF represented by the 5-NUD of Figure 1 is

x1 x2 x4 y1 z1 ∨ x1 x2 x4 y2 z2 z3 ∨ x1 x2 y3 z1 ∨ x1 x3 y4 z1 z4 ∨ x1 x3 y5 z2.
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The Boolean function represented by ϕT can also be thought of in the following way: given a truth

assignment a to all the variables, use the values of the x variables to determine a path from the

root to a leaf. The function value is 1 if a makes all the y and z literals assigned to this leaf true,

and it is 0 otherwise. It is clear from the definition that the input vectors accepted at a leaf `

are precisely those vectors which satisfy the term t`. The function ϕT is a generalized addressing

function or multiplexer [18, 23]. If a DNF ϕ comes from a NUD T , then T can be reconstructed

from ϕ. The y and z literals are those which are unate in ϕ, i.e., their negation does not occur in ϕ,

while the x variables are those which occur both negated and unnegated. Among the x variables,

the one labeling the root is the only one which occurs in every term (either unnegated or negated).

The left child is the only x variable which occurs in every term containing the negation of the root

variable, etc. In view of this correspondence, with some abuse of terminology, we can talk about a

DNF being a NUD, rather than being equivalent to a NUD. The maximal DNF of [14, 17] (resp.,

[15]) corresponds to a tree which is a single path (resp., a complete binary tree), without any z

literals. A NUD generalizes these examples by allowing for an arbitrary tree and for the additional

z literals. Now we can formulate the description of maximal DNF.

Theorem 1. A DNF is maximal if and only if it is a NUD.

A closely related class of DNF tautologies is obtained if we consider trees with the same kind of

inner nodes, but without any literals assigned to the leaves. In the case of the example of Figure

1, the corresponding DNF tautology is

x1 x2 x4 ∨ x1 x2 x4 ∨ x1 x2 ∨ x1 x3 ∨ x1 x3 .

Let us refer to this class of tautologies as nonrepeating decision tree tautologies, or ND ’s. The main

step in the proof of Theorem 1 is to show that for every DNF tautology the following two properties

are equivalent: a) any two of its terms have exactly one conflicting pair of literals (in other words,

the terms are pairwise neighboring), b) it is an ND. This result was proven recently, independently

from our work, by Kullmann [12, 13]. Kullmann’s proof uses the concept of Hermitian defect and

other concepts from linear algebra. It also uses the characterization of ND’s as strongly minimal

tautologies with the additional property that the number of terms is one more than the number of

variables (Aharoni and Linial [1], Davydov et al. [5] Kullmann [11]), proved using Hall’s theorem or

resolution techniques. (A tautology is strongly minimal if deleting any term, or adding any literal

to a term results in a non-tautology.) Our proof is an elementary combinatorial argument.

We note that ND’s come up in other contexts as well, e.g., in connection with the complexity of

analytic tableaux (Urquhart [22], referring to earlier unpublished work of Cook, and Arai et al.

[2]). Another related topic is the decision tree complexity of tautologies (Lovász et al. [16]), which

is discussed further in [21].

The characterization of ND’s as pairwise neighboring DNF tautologies is a direct consequence of the

following splitting lemma: if the n-dimensional hypercube is partitioned into subcubes of pairwise
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distance one, then there is a split of the whole cube into two half cubes such that every cube of

the partition is contained in one of the two halves. We also consider the question of what can be

said about cube partitions without the distance assumption. The goodness of a split into two half

cubes can be measured by the fraction of the total volume of subcubes contained in one of the two

halves (thus in the distance 1 case one always has a split of measure 1). It corresponds to a notion

of influence of the variable determining the split on the partition (for other notions of influence,

see, e.g., Hammer et al. [8] and Kahn et al. [10]). We give general lower and upper bounds for the

best achievable split. The upper bound uses a result of Savicky and Sgall [19] on DNF tautologies

with bounded occurrences of the variables.

Recent related work on the combinatorial aspects of the satisfiability problem (see Kullmann [13]

for a recent survey) makes use of the connection with partitioning complete graphs into complete

bipartite graphs (bicliques). This connection, and in particular, the Graham - Pollak theorem [7] is

used by Laborde [14] to show that a maximal k-term DNF contains at least 2 k−1 variables. (This

result, in turn, follows immediately from Theorem 1 above without using the Graham - Pollak

theorem.)

The paper is organized as follows. After some preliminaries in Section 2, the results of [4, 14, 15, 17]

are presented in Section 3. The proof of Theorem 1 is given in Section 4. The Splitting Lemma

is proved in Section 5. Section 6 contains the bounds for the general splitting problem. The

connection to the Graham - Pollak theorem is discussed briefly in Section 7. Section 8 contains

some further open problems on the number of prime implicants.

2. Preliminaries

A literal is a variable or a negated variable, a term is a conjunction (or a set) of literals, and a

disjunctive normal form (DNF) is a disjunction of terms. The empty conjunction (resp. disjunction)

is identically true (resp. false). It is assumed that terms do not contain both a variable and its

negation. The size of a term t, denoted by |t|, is the number of its literals. The number of conflicts

between two terms is the number of variables occurring unnegated in one term and negated in the

other. A DNF is disjoint if any two of its terms have at least one conflict. We write ψ ≤ ϕ if every

truth assignment satisfying ψ also satisfies ϕ, and ψ < ϕ if, in addition, there is a truth assignment

a with ψ(a) = 0 and ϕ(a) = 1. The set of vectors in {0, 1}n satisfying ϕ are denoted by T (ϕ). If

t is a term then T (t) is a subcube (or simply cube) in {0, 1}n, with |T (t)| = 2n−|t|. With an abuse

of notation, we usually write cube t instead of cube T (t). For a literal z, the z half cube of {0, 1}n

is the (n− 1)-dimensional subcube formed by the vectors for which z is true.

A term t is an implicant of a DNF ϕ = t1 ∨ . . . ∨ tk if t ≤ ϕ. In this case we also say that ϕ is a

cover of t, as the union of the cubes T (ti) covers the cube T (t). Note that the variables occurring in

t and ϕ may differ. It may be assumed w.l.o.g. that by a truth assignment we mean an assignment
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of truth values to every variable occurring in t or ϕ. The term t is a prime implicant of ϕ, if t is an

implicant of ϕ, but every term obtained by deleting a literal from t is not an implicant of ϕ. The

DNF ϕ is a minimal cover of the term t, if ϕ is a cover of t (i.e., t is an implicant of ϕ), but every

DNF obtained from ϕ by deleting a term is not a cover of t.

Let t be a term, and ϕ = t1 ∨ . . .∨ tk be a DNF. Every term ti of ϕ can be uniquely written in the

form

ti = t′i ∧ t
′′
i , (1)

where t′i contains all the literals from ti which also occur in t, and t′′i contains the remaining literals

of ti.

Given a DNF ϕ, let V ar(ϕ) (resp., Lit(ϕ)) denote the set of variables (resp., literals) occurring in

any term of ϕ, and let

UL(ϕ) = {z ∈ Lit(ϕ) : z̄ 6∈ Lit(ϕ)} (2)

be the set of unate literals in ϕ, i.e. the set of those literals occurring in ϕ, for which their negation

does not occur in ϕ.

For a ∈ {0, 1}n, the vector a(z) is the vector obtained from a by flipping its component corresponding

to the literal z. Given x, y ∈ {0, 1}n, the smallest subcube containing both x and y is denoted by

Cube(x, y). It is obtained by including every literal corresponding to components where x and y

agree. The Hamming distance d(x, y) of x, y ∈ {0, 1}n is the number of components where x and y

differ. The graph of the n-dimensional cube has {0, 1}n as vertices, and edges (x, y) for every x, y

of Hamming distance 1. The distance of two subcubes C1 and C2 is min{d(x, y) : x ∈ C1, y ∈ C2}.

Note that the distance of T (t1) and T (t2) is equal to the number of conflicts between the terms t1

and t2. A partition of the cube into subcubes can also be viewed as a disjoint DNF tautology. A

partition of a cube into subcubes is pairwise neighboring, if any two subcubes in the partition have

distance 1. A set of terms forms a pairwise neighboring partition, if the corresponding set of cubes

forms a pairwise neighboring partition.

3. Prime implicants and k-term DNF

In this section we describe the results of [4, 14, 15, 17] on prime implicants of k-term DNF. We

give a complete presentation in order to make the paper self-contained, to clarify what are the

consequences of the separate assumptions of being an implicant, a prime implicant, resp. a minimal

cover, and to give an explicit formulation of results implicit in [14]. We use the notation introduced

above in (1) and (2).

Proposition 2. A term t is an implicant of a DNF ϕ if and only if
∨k

i=1 t
′′
i = 1.

Proof For the ⇐ direction, let a be a truth assignment such that t(a) = 1. Then t ′i(a) = 1 for

every i and t′′i (a) = 1 for some i, so ti(a) = 1 for some i, and thus ϕ(a) = 1.
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For the ⇒ direction assume
∨k

i=1 t
′′
i < 1, i.e.,

(

∨k
i=1 t

′′
i

)

(a) = 0 for some a. The literals occurring

in
∨k

i=1 t
′′
i do not occur in t, but it may be the case that the negation of such a literal occurs in

t. Let b be the truth assignment obtained from a by setting all the literals of t to 1. Then every

literal in
∨k

i=1 t
′′
i is either unchanged, or is changed to 0, thus

(

∨k
i=1 t

′′
i

)

(b) = 0, and so ϕ(b) = 0.

But t(b) = 1, contradicting the fact that t is an implicant of ϕ. 2

Proposition 3. If t is a prime implicant of ϕ then

a) t =
∧k

i=1 t
′
i,

b) Lit(t) ⊆ Lit(ϕ).

Proof For a), it follows from the definition that t ≤
∧k

i=1 t
′
i. Assume that a variable x in t does

not occur in any ti. Then x does not occur in ϕ at all, though x̄ may occur in some t′′i . But then t

is an implicant of the disjunction of those terms in ϕ which do not contain x̄, and so by deleting x

from t we still get an implicant of ϕ. Part b) follows trivially from a). 2

Proposition 4. If ϕ is a minimal cover of t then

a) Lit(t) ∩ Lit(ϕ) = UL(ϕ),

b)
∨k

i=1 t
′′
i is a minimal cover of 1.

Proof For the ⊆ part of a) note that if t contains a non-unate literal z of ϕ, then terms containing

z̄ can be deleted from ϕ and we still get a cover of t, contradicting the minimality of ϕ. For the

⊇ part of a), assume that a unate literal z is not contained in t. Then z̄ t is also an implicant of

ϕ, which is covered by the terms of ϕ not containing z. As these terms do not contain z̄ either,

their disjunction covers t as well, again contradicting the minimality of ϕ. Part b) follows from

Proposition 2. 2

Putting together Propositions 2, 3 and 4, we get the following.

Theorem 5. If t is a prime implicant of ϕ and ϕ is a minimal cover of t then

a) Lit(t) = UL(ϕ),

b)
∨k

i=1 t
′′
i is a minimal cover of 1. 2

Theorem 6. ([4, 15, 17])

Every k-term DNF has at most 2k − 1 prime implicants.

Proof Let ϕ be a k-term DNF and t be a prime implicant of ϕ. Consider a minimal set of terms

of ϕ covering t. Then, by Theorem 5 a), t is uniquely determined this set of terms. 2

The next result gives important structural information on maximal DNF’s.
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Theorem 7. ([14])

Let ϕ = t1 ∨ . . . ∨ tk be a k-term DNF with 2k − 1 prime implicants. Then

a)
∨k

i=1 t
′′
i is a minimal cover of 1,

b) t′′i and t′′j conflict in exactly one variable, for every 1 ≤ i < j ≤ k.

Proof By Theorems 5 and 6, every nonempty subset of the terms of ϕ is a minimal covering of

some prime implicant of ϕ. Part a) follows by applying Theorem 5 b) to all the terms.

Let us consider now ψi,j = ti ∨ tj . Again, this is a minimal cover of a prime implicant of ϕ. If ti

and tj do not conflict in any variable, then, by Theorem 5 a), the corresponding prime implicant

is the term formed by all the literals in ti and tj. But that term is not a prime implicant. Indeed,

it must be the case that ti 6= tj , and so ti ∧ tj < ti or ti ∧ tj < tj . If ti and tj conflict in more than

one variable, then we get a contradiction to Theorem 5 b), as a the disjunction of two terms with

at least two conflicts cannot be 1. 2

4. Proof of Theorem 1

In this section we prove Theorem 1. First we consider the ⇐ direction.

Lemma 8. Every NUD is maximal.

Proof Let T be a k-NUD, and let H be a nonempty subset of its leaves. Define the term

tH = UL({t` : ` ∈ H}).

Let a be a truth assignment satisfying tH . It follows by induction of the number of inner nodes

evaluated, that on input a we arrive to a leaf belonging to H, and it follows from the definition of

tH that a satisfies every literal assigned to that leaf. Thus tH is an implicant of ϕT .

Assume that we delete an x literal, say xε
i from tH , to get the term t′. As xε

i ∈ UL({t` : ` ∈ H}),

there is a leaf `1 belonging to H below the ε-child of the inner node xi, but no leaf below the

(1 − ε)-child of xi is in H. Let a be the vector satisfying all the literals in t`1 and tH , with every

variable not occurring in these terms set to 0. Let b = a(xi). On the input b we arrive to a leaf `2

below the (1 − ε)-child of xi. But the y literal assigned to `2 is set to 0 in b, and hence ϕT (b) = 0.

On the other hand, b still satisfies t′. Thus t′ is not an implicant.

Assume now that we delete a y literal, say yj, from tH , to get the term t′. Let ` be the leaf

containing yj. It follows from the definition of tH that ` ∈ H. Let a be a vector satisfying t` and

tH , and let b = a(yj). Then the input b leads to `, but as its yj component is 0, we get ϕT (b) = 0.

On the other hand, b still satisfies t′. Thus t′ is not an implicant. The case when we delete a z

literal, say zj, from tH is the same, except now there may be several leaves in H containing zj . We
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can choose any such leaf, and repeat the same argument as for yj. It again follows that the term

obtained after deleting the literal is not an implicant.

Thus the term tH is a prime implicant of ϕT . Terms corresponding to different subsets of L are

different, as each leaf has its unique y literal. Hence ϕT has at least 2k − 1 prime implicants, and

so it is maximal by Theorem 6. 2

The rest of this section contains the proof of the converse.

Lemma 9. Every maximal DNF is a NUD.

Proof Let ϕ = t1 ∨ . . . ∨ tk be a k-term DNF with 2k − 1 prime implicants. Consider the term

t = UL(ϕ), and the decomposition ti = t′i ∧ t
′′
i of the terms of ϕ w.r.to t, as in (1). According to

Theorem 7, the terms t′′1, . . . , t
′′
k form a pairwise neighboring partition over the non-unate variables

occurring in ϕ, i.e., over {0, 1}s, where s = |V ar(ϕ) \ UL(ϕ)|.

The proof of the following lemma is given in Section 5.

Lemma 10. (Splitting Lemma) If a set of k ≥ 2 terms form a pairwise neighboring partition, then

there is a variable that occurs (unnegated or negated) in every term.

This lemma implies the characterization of nonrepeating decision tree tautologies mentioned in the

introduction.

Lemma 11. (ND Lemma) [12] A set of k ≥ 2 terms form a pairwise neighboring partition if and

only if it is an ND.

Proof Apply Lemma 10 to the pairwise neighboring partition to get a variable x1 occurring in

every term. It must be the case that x1 occurs both unnegated and negated, as otherwise the cubes

would not cover the whole cube. If the xε
1 half cube contains just one cube then we stop at that

branch, otherwise we use the lemma again to get a variable which occurs in every subcube of the

partition, belonging to the xε
1 half cube, etc. In this way we get a tree, where the inner nodes are

labeled with variables and there are k leaves `1, . . . , `k corresponding to the cubes in the partition.

(The tree constructed is (the dual of) a special search tree in the sense of [16] for the partition.)

The labels of the inner nodes are different, as the same label appearing twice would mean that

some pair of cubes have distance at least 2. Indeed, if variable xi occurs twice then let xj be the

variable labeling the least common ancestor of the two occurrences in the tree. By construction,

there are terms containing x̄i x̄j, resp. xi xj . Thus the partition is an ND. 2

Now we can complete the proof of Lemma 9. Lemma 11 gives a nonrepeating decision tree for the

pairwise neighboring terms t′′1, . . . , t
′′
k. We claim that by adding the literals in t′i to the leaf `i, we

get a k-NUD for ϕ. Consider any truth assignment a to the variables in ϕ. Evaluating the tree

on a, we arrive to a leaf corresponding to a term t′′i . As ϕ(a) = 1 iff t′i(a) = 1, the tree computes
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ϕ correctly. By construction, all the literals in the leaves are unate. Thus, in order to verify the

NUD-ity of the tree, it only remains to show that for every leaf there is a literal which occurs only

in that leaf (that literal will be its y literal). Assume that this is not the case, and every (unate)

literal assigned to leaf `i occurs in some other leaf. Let xε
j be the last literal on the path leading

to `i. Then x1−ε
j ∈ UL(ϕ \ ti). We claim that UL(ϕ \ ti) \ {x

1−ε
j } is an implicant of ϕ. Let a be a

truth assignment satisfying every literal in UL(ϕ \ ti) \ {x
1−ε
j }, and let us evaluate the tree on a.

If we arrive to a leaf other than `i, then ϕ(a) = 1 by construction. But ϕ(a) = 1 if we arrive to `i

as well, as all unate literals in `i occur in other leaves, and thus they must be set to 1 in a. Thus

UL(ϕ \ ti) is not a prime implicant of ϕ, contradicting Theorems 5 and 6. 2

5. Proof of the Splitting Lemma (Lemma 10)

Let u1, . . . , uk be terms forming a pairwise neighboring partition of {0, 1}s. For a literal z consider

the union of cubes T (ui) contained in the z half cube, i.e., put

Sz =
⋃

{i: z∈ui}
T (ui).

We show that Sz is always a cube, and that the largest Sz is the entire z half cube. As then Sz̄ is

the entire z̄ half cube, this implies the lemma.

Note that if neither z nor z̄ occur in a term u, then for every vector a it holds that a ∈ T (u) iff

a(z) ∈ T (u). If a vector a in the z half cube is not in Sz, then it is covered by a cube not containing

z or z̄, and so a(z) is covered by the same cube. Thus a(z) 6∈ Sz̄. Therefore, for every vector a in

the z half cube it holds that

a ∈ Sz ⇔ a(z) ∈ Sz̄. (3)

Lemma 12. For every literal z it holds that Sz is a cube.

Proof Suppose that Sz is not a cube. We show below that there is a path (a, b, c) in the graph of

the z-half cube such that a, c ∈ Sz and b 6∈ Sz. Then b = a(x), c = b(y), for some variables x 6= y.

Consider the cubes T (u) (resp., T (u′)) containing a (resp., c). These cubes must be different, as

otherwise b would be in the same cube, and thus in Sz as well. By the definition of Sz, both u and

u′ contain z. We know that u and u′ have a conflict. As a ∈ T (u) and a(x,y) ∈ T (u′), the conflicting

variable must be x or y. Assume w.l.o.g. that x ∈ u and x̄ ∈ u′. Using (3) we get a(z) ∈ Sz̄ and

b(z) 6∈ Sz̄. Let a(z) be covered by the cube T (u′′). By the definition of Sz̄, the term u′′ contains z̄,

and furthermore, b(z) 6∈ T (u′′). As a(z) and b(z) only differ in their x component, it must be the

case that x ∈ u′′. Thus z̄, x ∈ u′′ and z, x̄ ∈ u′, so u′′ and u′ conflict in at least two variables, a

contradiction.

We still need to show that, as claimed above, if Sz is not a cube then there is a path (a, b, c) in the

z-half cube such that a, c ∈ Sz and b 6∈ Sz. First we note that if a set is not a cube then this fact
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can be certified by three points (see, e.g., [9] for a precise definition of a certificate and applications

of this notion, and [20] for related results).

Proposition 13. If a set A is not a cube, then there are a0, c0 ∈ A and b0 6∈ A such that b0 ∈

Cube(a0, c0).

Proof Let ∧ (resp. ∨) of a set of vectors denote their componentwise ∧ (resp. ∨). For any two

vectors a0, c0 it holds that a0∧c0 ∈ Cube(a0, c0) and a0∨c0 ∈ Cube(a0, c0). Thus if the proposition

is false then A = Cube
(
∧

a∈A a,
∨

a∈A a
)

, a contradiction. 2

Therefore, if Sz is not a cube then there are three vectors a0, b0, c0 in the z half cube such that

a0, c0 ∈ Sz, b0 6∈ Sz and b0 ∈ Cube(a0, c0). Let T (u) (resp., T (u′)) be the cube containing a0 (resp.,

c0). The two cubes must be different, as otherwise b0 would be in the same cube, and thus also in

Sz. The terms u and u′ have exactly one conflict. We now observe that there is a shortest path

between a0 and c0, which is contained in the union of the two cubes. This is a special case of a

more general result of Ekin et al. [6].

Proposition 14. [6] Let u and u′ be terms conflicting in exactly one variable. If a0 ∈ T (u) and

c0 ∈ T (u′), then T (u ∨ u′) contains a shortest path connecting a0 and c0.

Proof Write w.l.o.g. a0 = 0a1a2a3a4 and c0 = 1c1c2c3c4, where the first component corresponds

to the variable where the two terms conflict, the second subvector corresponds to literals common in

the two terms, the third subvector to literals only occurring in u, the fourth to literals only occurring

in u′, and the fifth to literals that do not occur in either of the two terms. Then a required shortest

path can be built by completing the sequence a0, 0a1a2c3c4 ∈ T (u), 1c1a2c3c4 ∈ T (u′) and c0,

noting that a1 = c1. 2

Thus so far we know that a0, c0 ∈ Sz, b0 6∈ Sz and b0 ∈ Cube(a0, c0) and there is a shortest path in

T (u ∨ u′) connecting a0 and c0. The shortest path, therefore, is in Sz ∩ Cube(a0, c0) (it is in Sz as

T (u ∨ u′) ⊆ Sz, and it is in Cube(a0, c0) as any shortest path between a0 and c0 is in this cube).

Based on this information, we would like to find a path (a, b, c) such that a, c ∈ Sz and b 6∈ Sz.

Given a path (p, q, r) in a cube, there is a unique vertex q ′ 6= q such that (p, q′, r) is also a path.

For example, if p = 000, q = 100 and r = 110 then q ′ = 010. A subset of the cube is closed under

switches if for every path (p, q, r) in the set, the vertex q ′ also belongs to the set.

Proposition 15. Assume that a set B ⊆ {0, 1}v contains a shortest path between two opposite

vertices of {0, 1}v , and is closed under switches. Then B is the whole cube.

Proof The claim is trivial for v = 2. For v ≥ 3, assume w.l.o.g. that the two opposite vertices are

0v and 1v , and that the shortest path is 1i0v−i (0 ≤ i ≤ v). It follows by induction that (a, 0) ∈ B

for every a ∈ {0, 1}v−1. Building a similar chain from the i’th unit vector to 1v , it again follows by
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induction that every vector having 1 at the i’th position (1 ≤ i ≤ v−1) is in B. Finally, 0v−11 ∈ B

follows from 0v−3101, 0v−3111, 0v−3011 ∈ B. 2

Now let us apply this proposition to the set Sz ∩ Cube(a0, c0) in the cube Cube(a0, c0). We know

that it contains a shortest path between two opposite vertices, and it is not the whole cube. By

the proposition, Sz ∩ Cube(a0, c0) is not closed under switches. Thus there is a path (a, b, c) in

Sz ∩ Cube(a0, c0) such that a, c ∈ Sz and b′ 6∈ Sz. Hence (a, b′, c) is a path with the required

properties. This completes the proof of Lemma 12. 2

Now we return to the proof of the Splitting Lemma. Consider a literal z such that |Sz| is as large

as possible. We show by induction that Sz is the entire z half cube, which, as noted above, implies

the lemma. The statement is trivial for n = 1, 2. For n > 2, if |Sz| = 2n−1 then we are done.

Otherwise Lemma 12 implies that

|Sz| ≤ 2n−2. (4)

Apply the induction hypothesis to the z-half cube. The restriction of the terms u1, . . . , uk to this

cube is again a pairwise neighboring partition. Assume that every term of the restricted partition

contains y or ȳ. Assume w.l.o.g. that |Sy∩Sz| ≤ |Sȳ∩Sz| (where Sy refers to the original partition).

By definition, Sy contains all the points in Sy ∩ Sz. Also, by (3), for every a 6∈ Sz in the quarter

cube (y = 1, z = 1), Sy contains both a and a(z). Thus, using (4) one gets

|Sy| ≥ |Sy ∩ Sz| + 2
(

2n−2 − |Sy ∩ Sz|
)

= 2n−1 − |Sy ∩ Sz| ≥ 2n−1 − 2n−3 > 2n−2,

which contradicts the choice of z. 2

6. The general splitting problem for cube partitions

According to the Splitting Lemma (Lemma 10), for every pairwise neighboring cube partition, the

whole cube can be split into two halves in such a way that every cube of the partition is contained

in one of the halves. In this section we consider the following question: what can be said without

the pairwise neighboring property? Given an arbitrary cube partition of the whole cube and a split

into two halves, let us say that a cube in the partition is good, if it is contained in either one of

the halves. We would like to find a split such that the good cubes contain many points.

Thus we consider the following quantities. Given a cube partition ϕ over the variables x1, . . . , xn

and a variable xj, let

vϕ,j =
∑

{

2−|t| : t ∈ ϕ, xj ∈ t or x̄j ∈ t
}

be the fraction of the volume of good cubes in ϕ w.r.to the xj split of the cube, and let

αn = min
ϕ

max
1≤j≤n

vϕ,j ,
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where ϕ ranges over all cube partitions, or in other words, over all disjoint DNF tautologies. Note

that as ϕ is a partition it holds that
∑

t∈ϕ

2−|t| = 1. (5)

Theorem 16.

log n− log log n

n
≤ αn ≤ O

(

n−
1

5

)

.

Proof Let ϕ = t1 ∨ . . . ∨ tr be a disjoint DNF tautology over the variables x1, . . . , xn. If the term

ti contains xj or x̄j, then ti contributes 2−|ti| to vϕ,j . Thus

n
∑

j=1

vϕ,j =
r

∑

i=1

|ti| · 2
−|ti|,

and there is a variable xj with

vϕ,j ≥
1

n

r
∑

i=1

|ti| · 2
−|ti|.

Let s denote the size of the shortest term in ϕ. As every term has size at least s, it follows from

(5) that

1

n

r
∑

i=1

|ti| · 2
−|ti| ≥

s

n

r
∑

i=1

2−|ti| =
s

n
.

On the other hand, for every variable xj occurring in a shortest term ti it holds that vϕ,j ≥ 2−s.

Thus

αn ≥ min
( s

n
, 2−s

)

,

and the lower bound follows by taking s = log n− log log n.

The upper bound follows from a construction of Savicky and Sgall [19]. They constructed a disjoint

DNF tautology over n = 4` variables, having 23`
terms of size 3`, such that every variable occurs

in at most a
(

3

4

)`

fraction of the terms. The bound then follows by a direct calculation. 2

In view of Theorems 1 and 16 it may be of interest to consider the quantity αd
n, which is defined

as αn, except that ϕ is restricted to cube partitions with pairwise distances bounded by d. In the

construction of [19] the maximal distance grows linearly with n.
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7. Partitions of complete graphs into complete bipartite graphs

Given a set of pairwise disjoint cubes in {0, 1}n, corresponding to terms t1, . . . , tr, one can construct

a covering

G = {G1, . . . , Gn}

of the r-vertex complete graph Kr by complete bipartite graphs, where Gu has an edge connecting

vertices vi and vj if terms ti and tj conflict in the variable xu. If the set of cubes is pairwise

neighboring, then this covering is a partition, as the complete bipartite graphs are edge disjoint.

Conversely, given a covering G = {G1, . . . , Gn} ofKr by complete bipartite graphs, we can construct

a set of pairwise disjoint cubes t1, . . . , tr of {0, 1}n. For every Gu fix arbitrarily one of the sides as

the left side. The term ti contains xu (resp. x̄u), if vertex vi is contained in the left (resp. right)

side of Gu. If G is a partition, then it follows that the ti’s are pairwise neighboring. The cubes thus

constructed do not necessarily form a partition of {0, 1}n.

The Graham - Pollak theorem [7] states that every partition of Kr into complete bipartite graphs

consists of at least r − 1 graphs. A large class of such partitions, which can be called recursive

partitions, is obtained as follows: take a complete bipartite graph on the whole vertex set, and

recursively add similar partitions of the complete graphs formed by the two sides of this bipartite

graph (see, e.g., [3]).

Consider a partition G = {G1, . . . , Gn} of Kr into complete bipartite graphs. Let the degree of a

vertex v w.r.to G, denoted by dG(v), be the number of Gi’s containing v, and let the volume vol(G)

of the partition be defined as

vol(G) =
∑

v

2−dG(v).

In view of the translation into a set of pairwise disjoint cubes in {0, 1}n described above, vol(G) ≤ 1

for every G, as dG(vi) = |ti| for every i = 1, . . . , r, and vol(G) = 1 if and only if the cubes

form a partition of {0, 1}n. For example,the partition of K4 into the 3 complete bipartite graphs

({1}, {3, 4}), ({2}, {1, 4}), and ({3}, {2, 4}) (mentioned in [14]) has volume 7
8 . This partition of K4

is not recursive. (It was actually this example which suggested Lemma 10.) As a corollary to the

Splitting Lemma (Lemma 10) one gets the following characterization of recursive partitions.

Corollary 17. A partition G is recursive if and only if vol(G) = 1.

Proof The ⇒ direction follows directly by induction on the number of vertices by considering the

bipartite graph from G which contains all the vertices.

For the ⇐ direction, one only has to note that the set of terms t1, . . . , tr constructed above is

pairwise neighboring, and by the volume condition it is also a partition of the whole cube.

Applying Lemma 10 we get that there is a variable which occurs (unnegated or negated) in every

term. This means that the corresponding bipartite graph contains all the r vertices. The remaining
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partitions of the two sides of this bipartite graph have total volume 2, and thus each side must

have volume 1. The statement then follows by induction. 2

The corollary shows that among partitions of Kr into complete bipartite graphs, recursive ones

have the largest possible volume. Among the partitions of Kr into r− 1 complete bipartite graphs,

which ones have minimal volume?

8. Other open problems

The k-term DNF

x1x̄2 ∨ x2x̄3 ∨ . . . xk−1x̄k ∨ xkx̄1,

which is false for 0k and 1k, and true everywhere else, has k(k − 1) prime implicants, namely xix̄j

for every i 6= j. These prime implicants are all shortest prime implicants. How many shortest

prime implicants can a k-term DNF have in general?

Another question concerns the maximal number of prime implicants of a Boolean function which is

true at a given number of points. As noted by Levin [15], every implicant is determined by the top

and bottom of the corresponding subcube (which may also be identical). Thus if a function is true

at m points, then it has O(m2) prime implicants. It is also noted in [15] that the n-variable function

which is true for vectors of weight between n
3 and 2n

3 , has mlog 3−o(1) prime implicants. (This is the

function with the largest known number of prime implicants among n-variable functions.) Thus

the maximal number of prime implicants is polynomial in m, and the question is to get sharper

bounds for the exponent.
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