Electronic Colloquium on Computational Complexity, Report No. 24 (2005)

Quantified Constraints: The Complexity of Decision and
Counting for Bounded Alternation

Michael Bauland!, Elmar Bohler?, Nadia Creignou®, Steffen Reith?, Henning Schnoor!, and
Heribert Vollmer!

! Theoretische Informatik, Universitit Hannover, Appelstr. 4, 30167 Hannover, Germany.
bauland|schnoor|vollmer@thi.uni-hannover.de
2 Theoretische Informatik, Universitit Wiirzburg, Am Hubland, 97072 Wiirzburg, Germany.
boehler@informatik.uni-wuerzburg.de
3 LIF (UMR 6616), Univ. Méditerranée, Marseille, France. creignou@lif.univ-mrs.fr
* Lengfelderstr. 35b, 97078 Wiirzburg, Germany. streit@streit.cc

Abstract. We consider constraint satisfaction problems parameterized by the set of allowed
constraint predicates. We examine the complexity of quantified constraint satisfaction prob-
lems with a bounded number of quantifier alternations and the complexity of the associated
counting problems. We obtain classification results that completely solve the Boolean case,
and we show that hardness results carry over to the case of arbitrary finite domains.

1 Introduction

Constraint satisfaction is recognized as a fundamental problem in computer science, since combina-
torial problems from many different application areas (artificial intelligence, databases, automated
design, etc.) can be expressed in a natural way by means of constraints. Informally, an instance
of a constraint satisfaction problem consists of a set of variables, a set of possible values for the
variables, and a set of constraints that restrict the combinations of values that certain tuples of
variables may take; the question is whether there is an assignment of values to variables that sat-
isfies the given constraints. Usually constraints are specified by means of relations. The standard
constraint satisfaction problem can therefore be parameterized by restricting the set of relations
S, thus defining the so called non-uniform constraint satisfaction problem CSP(S). The problem
of classifying the complexity of CSP(S) (and its many variants) as a function of the set S has
attracted much attention, not only because constraint satisfaction problems play an important
role in application areas as mentioned above, but also because these problems form the “nucleus”
of many complexity classes. Therefore, “by focusing on this restricted world one can present a
reasonably accurate bird’s eye view of complexity theory” [CKS01] and hope to contribute to the
study of complexity classes.

The Boolean case, i.e., the set S of constraint relations consists only of Boolean relations,
was first investigated by Thomas Schaefer [Sch78]. Schaefer showed that here, every CSP(S) is
either NP-complete or solvable in polynomial time, hence avoiding the infinitely many complexity
degrees that exist (under the assumption P # NP) in between (see [Lad75]). Since then, there
has been a growing body of classification results for related problems such as counting problems
or optimization problems for Boolean CSPs (see the monograph [CKS01] or the recent surveys
[BCRV03,BCRV04]). The simple change of allowing non-Boolean variables seems to increase the
expressive power of constraint satisfaction problems considerably. Feder and Vardi [FV98] con-
jectured that the dichotomy exhibited in the Boolean case continues to hold in the non-Boolean
case. Their conjecture, however, remains unresolved to this date. The most successful approach
so far has been the algebraic approach developed in [JCG97,Jea98,BJKO00], cf. also [BJK04] for a
survey. It has led to many wonderful results, in particular a complete classification of CSP over
the three-element domain [Bul02].

ISSN 1433-8092

Recently, quantified constraint satisfaction problems have raised a lot of attention. Quantified
constraint satisfaction problems are in PSPACE, and the Boolean quantified constraint satisfac-
tion problem QSAT is the prototypical PSPACE-complete problem (see [Pap94]). A dichotomy
theorem for the complexity of Boolean constraint satisfaction problems QCSP(S) was established
in [Sch78,Dal97,CKS01]. More recently researchers have embarked on an investigation of the com-
plexity of QCSP(S) over an arbitrary finite domain. Specifically, Borner et al. [BKBJ02,BBJKO03]
have extended the algebraic approach to the more general framework of quantified constraint sat-
isfaction problems. In this way they found sufficient conditions for tractability of QCSP(S) and
obtained a trichotomy result for those sets S that include all graphs of permutations. Chen [Che04]
identified further large classes of tractable quantified constraint problems.

Very recently Edith Hemaspaandra considered Boolean quantified constraint satisfaction prob-
lems in which the number of quantifier alternations is bounded, denoted by QCSP;(S) (for i — 1
alternations). These problems are prototypical for the polynomial hierarchy [MS72]; in particular,
QSAT; (i.e., QCSP; with no restriction on the set of allowed predicates) is complete for the class
¥, P. Hemaspaandra obtained a dichotomy result for Boolean QCSP;(S), identifying conditions for
S that make QCSP;(S) complete for ¥;P, and showing that the problem is tractable otherwise. The
proof given in [Hem04] uses implementations in the style of Schaefer [Sch78] and the monograph
[CKSO01] and makes no reference to the algebraic framework at all. Feder and Kolaitis [FKO05] con-
sidered quantified constraints with bounded number of quantifier alternations over arbitrary finite
domains. They exhibited interesting connections to finite model theory and managed to obtain a
dichotomy theorem for a variant of QCSP;(S) where the application of universal quantifiers as well
as the allowed predicates in S are restricted in a certain way.

The contributions of our paper are threefold:

1. Making use of the algebraic approach and the structure of Post’s lattice of Boolean clones
we obtain a very short re-proof of Hemaspaandra’s dichotomy.

2. We generalize the hardness part of our algebraic proof for the dichotomy for Boolean
QCSP;(S) to arbitrary finite domains. In this way we show, e.g., that QCSP;(.S) is complete (under
logspace many-one reductions) for X;P if all closure properties of relations in S are essentially
unary or constant.

3. We generalize the complexity results we obtained for QCSP;(S) from decision problems to
counting problems, i.e., we consider the problem #QCSP;(S), given a quantified constraint satis-
faction instance with at most ¢ —1 alternations of quantifiers, to determine the number of satisfying
solutions it has. We introduce a new type of reductions that we call permutative reductions. These
are a generalization of subtractive reductions introduced in [DHKO0Q]. In the same way as sub-
tractive reductions, our reductions have the advantage that they are strict enough to close most
relevant counting classes and are wide enough to obtain hardness for a number of problems. We
believe that permutative reductions will turn out useful in other contexts, in particular for prob-
lems with symmetry properties. Using these reductions, we first obtain a complete classification of
the complexity of #QCSP;(S) for Boolean S: We show that these problems are either (a) solvable
in polynomial time or (b) complete for Valiant’s class #P or (¢) complete for the class #-X;P, the
counting analogue of ¥;P, and we obtain easy criteria to determine which case holds. Then we
turn to the case of arbitrary finite domains and show that #QCSP;(S) is complete for #-%;P if all
closure properties of S are constant or essentially unary.

The organization of the paper is as follows. In Sections 2—4 we introduce the reader to constraint
satisfaction problems, the algebraic framework, and quantified constraints, resp. In Sect. 5 we
examine the complexity of the problems QCSP;(S). This section contains our complete re-proof
of Hemaspaandra’s dichotomy as well as more general hardness results. In Sect. 6 we turn to the
problems #QCSP;(S). We first give a general introduction to counting problems and the reductions
that are useful in this context. Here, we also introduce permutative reductions. Then we obtain
our trichotomy for Boolean #QCSP;(S). The maybe technically most involved proof in our paper

then exhibits hardness results for #QCSP;(S) for non-Boolean relations. We conclude our paper
with a summary and a prospect for further research.

2 Constraint Satisfaction Problems

Throughout the paper we use the standard correspondence between predicates and relations. We
use the same symbol for a predicate and its corresponding relation, the meaning will always be
clear from the context. We say that the predicate represents the relation. The set D will represent

a finite domain of cardinality m > 2, D = {0,...,m — 1}. An n-ary logical relation R is a relation
of arity n defined over D. Let V be a set of variables. A constraint is an application of R to an
n-tuple of variables from V, i.e., R(x1,-..,T,). An assignment of values to the variables I: V — D

satisfies the constraint R(z1,...,2,) if (I(z1),...,I(z,)) € R holds.

Ezample 2.1. — Equivalence, =P is the binary relation defined by {(0,0),...(m — 1,m — 1)}.
Similarly the disequality, #7, is defined by D? \ =P.

— Given the ternary relation NAE? = D3\ {(0,0,0),...,(m —1,m — 1,m — 1)}, the constraint
NAEP(z, x5, x3) is satisfied if and only if not all variables are assigned the same value. We
write NAE™ for NAE® with |D| = m.

— The Boolean constraint R, /p,, (1, - . . ,) is satisfied if exactly n of the m variables are assigned
to 1.

Let S be a non-empty finite set of relations defined over D. An S-formula is a finite conjunction
of S-clauses, o = c1 A --- A ¢, where each S-clause ¢; is a constraint application of some logical
relation R € S. An assignment I satisfies ¢ if it satisfies all clauses ¢;. We denote by sat(yp) the
set of satisfying assignments of a formula ¢. We denote by CSP(S) the satisfiability problem for
S-formulas. For a relation R, we often write CSP(R) instead of CSP({R}).

Ezxample 2.2. — The well-known 3-SAT problem can be seen as the CSP problem over the set
S = {(z1 V&3 Vw3), (T V 25 V 23), (T2 V T2 V 23), (TL V T3 V T5) }-
— The 3-Colorability problem can be seen as the CSP problem using only the disequality relation
over the three-element domain.

Given a set S of relations, in order to study the complexity of CSP(S) we will be interested in
the expressive power of S, which can be measured by the set COQ(S) of all relations that can be
represented by formulas of the form

F(.’L’l,...,.’li'k) = EIylayQayl So(xla"'amkayla"'ayl)a

where ¢ is an S-formula. Such formulas are also called conjunctive-queries.

3 Closure Properties

Throughout the text we refer to different types of Boolean constraint relations following Schaefer’s
terminology [Sch78]. We say that a Boolean relation R is I-walid if (1,...,1) € R and it is 0-valid
if (0,...,0) € R, (dual) Horn if R can be represented by a conjunctive normal form (CNF) formula
having at most one unnegated (negated) variable in each clause, bijunctive if it can be represented
by a CNF formula having at most two variables in each clause, affine if it can be represented by
a conjunction of linear functions, i.e., a CNF formula with @-clauses (XOR-CNF), complementive
if for each (a1,...,an) € R, also (-aq,...,~a,) € R.

A set S of Boolean relations is called 0-valid (1-valid, Horn, dual Horn, affine, bijunctive,
complementive) if every relation in S has this property. Finally a set S of Boolean relations is
called Schaefer if it is either Horn, dual Horn, affine, or bijunctive.

Given a Boolean relation R the following well-known closure properties determine the structure
of R (operations are applied coordinate-wise on vectors, maj is the ternary majority function, which
yields 1 if and only if at least two of its arguments are 1).

— R is Horn if and only if m, m' € R implies m Am' € R.

— R is dual Horn if and only if m,m' € R implies mVm' € R.

— R is bijunctive if and only if m,m',m" € R implies maj(m,m',m") € R.
— R is affine if and only if m,m',m" € R implies m® m' ® m" € R.

The notion of closure property of a relation has been defined more generally, see for in-
stance [JCG97,Pip97]. Let f: DF¥ — D be a k-ary function. We say that R is closed under f,
or that f is a polymorphism of R, if for any choice of k vectors my,...,my € R, not necessarily
distinct, we have that

(F(malt - omalt)), £mif2],. . maf2)), ..., f(mfn),....miln])) € B,

i.e., the vector constructed coordinate-wise from m;, ..., my by means of f belongs to R.

We denote by Pol(R) the set of all polymorphisms of R and by Pol(S) the set of functions
that are polymorphisms of every relation in S. It turns out that Pol(S) is a clone for every
set of relations S, i.e., Pol(S) contains all projection functions and is closed under superposition
(composition of functions), see e.g. [Pip97].

An interesting Galois correspondence exists between the sets of functions Pol(S) and the sets
of relations S. An introduction to this correspondence can be found in [Pip97,P6s01] and a com-
prehensive study in [PK79]. This theory helps us to get elegant and short proofs for complexity
results concerning constraint satisfaction problems, see e.g. [JCG97], [BCRV04]. Indeed, it shows
that the smaller the set of polymorphisms is, the more expressive the corresponding conjunctive
queries are, which is the cornerstone for applying the algebraic method to complexity. The following
proposition can be found, e.g., in [Dal00].

Proposition 3.1. Let S; and Sy be sets of relations defined over D. If the inclusion Pol(S2) C
Pol(S1) holds, then COQ(S1) C COQ(S2 U {=P}).

This result was used in [JCG97] to obtain the following complexity result.

Theorem 3.2. Let S1 and Sy be sets of relations defined over D such that Sy is finite. If the
inclusion Pol(Sy) C Pol(S1) holds, then CSP(S1) is polynomial-time reducible to CSP(Sz).

A number of results on the complexity of CSP have been obtained via this approach (see e.g.,
[JCG97,Bul02]). In particular, the well-known Schaefer’s dichotomy theorem can be proved in this
way by using Post’s lattice (see e.g., [BCRV04]).

Theorem 3.3. [Sch78] Let S be a finite set of Boolean relations. If S is Schaefer, or 0- or 1-valid,
then CSP(S) is in P, otherwise CSP(S) is NP-complete.

4 Quantified Problems

In this paper we consider the more general framework of quantified constraint satisfaction problems,
which are defined as follows.

Let S be a finite set of relations defined over the domain D. An instance of QCSP(S) is a closed
formula of the form Q121Q2%2 ... Qpx,¢, where Qq,...,Q, are arbitrary quantifiers and ¢ is an
S-formula. The question is whether the sentence is true.

One can use an exhaustive algorithm to show that QCSP(.S) is always in PSPACE. The problem
of deciding, whether a given closed quantified Boolean formula is true, is PSPACE-complete [SM73].
This problem remains PSPACE-complete if we restrict the formulas to 3-CNF [Sto77]. It is worth
noticing that the Boolean case still displays a dichotomy for quantified satisfiability.

Theorem 4.1. [Sch78,Dal97,CKS01] Let S be a finite set of Boolean relations. If S is Schaefer,
then QCSP(S) is in P, otherwise QCSP(S) is PSPACE-complete.

In this paper, we are interested in quantified constraint satisfaction problems in which the
number of quantifier alternations is bounded. These problems are prototypical for the polynomial-
time hierarchy (PH for short), which was defined by Meyer and Stockmeyer [MST72]. Following the
notation of [Pap94], LoP = I,P = P and for all i > 0, $;;1P = NP¥¥ and II;;;P = coNP>",
The set QSAT; is the set of all closed, true Boolean formulas with ¢ — 1 quantifier alternations,
starting with an 3-quantifier. For all 4+ > 1, QSAT; is complete for ¥;P. This problem remains
¥;P-complete if we restrict the Boolean formula to be 3-CNF for i odd, and 3-DNF for ¢ even
[Wra77]. To generalize QSAT; to arbitrary sets of constraints S, and to arbitrary finite domains,
we adopt the following definition for QCSP;(S) from [Hem04]:

Let S be set a of relations over the domain D and let i > 1.

— A X¥;(S)-formula is a closed formula of the form & = 3AX VX, ... Q; X9,
— a II;(S)-formula is a closed formula of the form & =VX;3X,...Q;X;v,

where the X;, j = 1,...,4, are disjoint sets of variables and 4 is a quantifier-free S-formula defined
on |J; X, and is called the matrix of @. For i odd, a QCSP;(S)-formula is a X;(S)-formula, for
i even, a QCSP;(S)-formula is a II;(S)-formula. For 7 odd (even), QCSP;(S) is the problem of
deciding whether a given QCSP,(S)-formula is true (false).

Note that QCSP;(S) belongs to X;P for each ¢ > 1. Moreover, according to Wrathall’s result
[Wra77], QCSP;(S3) (see Example 2.2) is ¥;P-complete.

The following proposition states that the Galois connection between sets of relations and their
closure properties still applies to quantified problems with bounded alternations.

Proposition 4.2. Let S; and Sz be two sets of relations over the same finite domain D such that
Sy is finite, and let i > 1. If the inclusion Pol(S2) C Pol(S1) holds, then QCSP;(S1) is logspace
many-one reducible to QCSP;(S2).

Proof. If Pol(S2) C Pol(S1), then due to Proposition 3.1 one can express every relation from S; by
an existential SoU{=P}-formula. We locally replace every S;-constraint by its equivalent SoU{="}-
formula and move the additional existential variables to the right end of the quantifier sequence.
Since in every QCSP;(S)-formula the last quantifier is 3, we end with a QCSP;(S2U{=P"1})-formula
equivalent to the original formula.

We now remove the equality constraints. We check if there are variables x and y such that
y is V-quantified after = is quantified with an =-path from z to y. In this case, the formula is
false. Otherwise, all =-cliques of variables consist of variables of which at most the first one,
2 is universally quantified. We can rename all these variables to xz and delete the existential
quantifiers. The complexity of this procedure is dominated by undirected graph accessibility, which
is in logspace due to [Rei04].

Contrary to [BBJKO03, Theorem 4], we cannot restrict our attention to surjective polymor-
phisms, because in the context of bounded quantifier alternation, this does not yield sharp reduc-
tions.

5 Complexity Results in the Polynomial Hierarchy

Let us start with a completeness result in the Boolean domain.

Lemma 5.1. QCSP;(NAE?) is X;P-complete under logspace reductions.

Proof. Since Pol(Ry/3) = I» C Pol(S3), Proposition 4.2 states that QCSP;(S3) is logspace many-one
reducible to QCSP;(Ry3). Since QCSP;(S3) is complete for X;P, it suffices to show QCSP;(Ry/3) <
QCSP;(NAE?).

Let ¢ be a QCSP;(Ry/3)-formula, ¢ = @1 X5 ... 3X; /\;’Z1 Ri/3(j,,2j,, T ;). For each constraint
Ri/3(zj,,2j,,%;;), introduce the following conjunction of NAE? constraints:

R2/4(m]'17x1'27'r.7'37t) = /\ NAE2(mjaxk:t) A NAEQ(Z'J'Umjwmja)'
i#ke{d1 52,48}

Let (PI = Q1t7 Xl s EIX! /_17'):1 R2/4(-Z'j1) $j27xj37t)' Since R1/3(1', Y, Z) = R2/4(.Z', Y,z, 1)7 (pl[t/]']
is true iff ¢ is true. Since Ry/3(Z,9,2) = Rosu(2,y,2,0), ¢'[t/0] is true iff Ren(yp) is true, where
Ren(y) is obtained from ¢ by renaming all variables = by their negation Z. Finally, since Ren(yp)
is true iff ¢ is true, we proved that ¢ is true if and only if ¢’ is true.

More generally, it can be shown that the completeness result for NAE holds for any finite
domain:

Lemma 5.2. QCSP;(NAE™) is complete for ¥;P under logspace reductions.
Proof. The proof is nearly identical to the proof for Lemma 6.8 below.

This result allows to identify a larger class of 3;P-complete problems over finite domains,
namely the ones for which the set of polymorphisms consists only of constants or essentially unary
functions. A k-ary function f: DF — D is essentially unary if there is a non-constant unary function
g: D — D and some 1 < ¢ < k such that f(vi,...,v5) = g(v;) for all vy,..., v, € D.

Lemma 5.3. For every finite domain D, there erists a relation Ry defined over D such that
Pol(Ry) contains all essentially unary functions and all constants, and such that QCSP;(Ry) is
Y;P-complete under logspace reductions.

Proof. Let D be a finite domain of size m. Let Ry be the (m + 3)-ary relation
Ro = {(tl, PN 7tm,.’ll'1,$2,.’13'3)| |{t1, - -;tm}l S m—1or NAEm(xl,ZL’Q,Z‘g)}.

It is clear that Pol(Ry) contains all the constants. It is also easy to see that Ry is closed under unary
functions g (if g is injective, then the NAE-property is invariant under g, and if g is not injective,
then |{g(t1),...,9(tm)}| < m — 1), and therefore Ry is closed under essentially unary functions.
Now we prove that QCSP;(NAE™), which is complete for 3;P, can be reduced to QCSP;(Rp) in
logarithmic space.

'4
Let ¢ = Q1 X;...3X; /\ NAE™(zj,,%j,,2j,) be an instance of QCSP;(NAE™). Let ¢’ =

j=1

P

Q1 X1 ...VX; 1Vt ...V, 3X; /\ R(t1,-..,tm, %}, %j,, %) It is clear that ¢ is true if and only if
j=1

@' is true, concluding the proof of the lemma.

This lemma yields the following completeness result.

Theorem 5.4. Let S be a set of relations over a finite domain D. If Pol(S) consists only of essen-
tially unary functions and constants, then QCSP;(S) is X;P-complete under logspace reductions.

Proof. We have Pol(S) C Pol(Ry), where Ry is the relation exhibited in Lemma 5.3. Hence, the
conclusion follows from Proposition 4.2.

Theorem 5.4 settles the Boolean case completely, thus reproving via the algebraic approach a
result first obtained by E. Hemaspaandra [Hem04].

Theorem 5.5. Let S be a set of Boolean relations. If S is Schaefer, then QCSP;(S) is in P,
otherwise QCSP;(S) is X;P-complete under logspace reductions.

Proof. The polynomial cases follow from Theorem 4.1. According to the closure properties of a
non-Schaefer set (see [BCRV04], Section 2), the case Pol(S) = N remains. Since N is the set of all
essentially unary Boolean functions and constants, the theorem follows from Proposition 5.4.

6 Complexity of Counting Problems

6.1 Introduction to Counting Problems

Let X, I' be alphabets and let R C X* x I'* be a binary relation between strings such that, for
each z € X*, the set R(z) = {y € I'* | R(x,y)} is finite. We write #R to denote the following
counting problem: Given a string z € X*, find the cardinality |R(z)| of the set R(z) associated
with x.

Valiant [Val79a,Val79b] was the first to investigate the computational complexity of counting
problems. To this end, he introduced the class #P of counting functions that count the number
of accepting paths of nondeterministic polynomial-time Turing machines. Toda [Tod91] has intro-
duced higher complexity counting classes using a predicate-based framework that focuses on the
complexity of membership in the witness sets. Specifically, if C is a complexity class of decision
problems, then #-C is the class of all counting problems whose witness relation R satisfies the
following conditions:

1. There is a polynomial p(n) such that for every xz and every y with R(x,y), we have that
ly| < p(|z|), where |z| is the length of z and |y| is the length of y.
2. The witness recognition problem “given z and y, does R(z,y) hold?” is in C.

Following Toda [Tod91], #-34P C #-II;P = #P**F C #.%;,, P holds for each k.

Several notions of reducibilities for counting problems have been defined. The strongest is the
one of parsimonious reduction [Val79a], which is a polynomial-time many-one reduction preserving
the number of witnesses. The aforementioned counting classes are closed under this reduction, but
it does not allow to prove completeness of many known #P-complete problems. Valiant [Val79b]
used so called counting reductions (essentially Turing-reductions with one oracle query) in his #P-
completeness proofs, but the aforementioned counting classes are not closed under these reductions
[TW92]. In fact, the closure of #P under counting reductions gives already #-PH (PH = U;3;P).

In [BCC*04] the notion of complementive reduction appeared to be useful for Boolean constraint
satisfaction problems involving complementive relations. More generally such reductions naturally
appear when the set of relations is invariant under permutations of the domain. Therefore we
generalize the notion of complementive reduction introduced in [BCC*04] to the one of permutative
reduction. On the one hand it will allow us to get completeness results, on the other hand it has
the advantage that #P and all higher complexity classes #-II;P, £k > 1 are still closed under
permutative reductions (see [BCCT04]). Thus, to use permutative reductions for hardness results
in the hierarchy of the classes #-X;P makes perfect sense. A problem complete for #-¥;1 P cannot
be in #-3;P, unless the polynomial-time hierarchy collapses to X;P.

Before we can state the definition of permutative reductions, we need some additional notions.
We enlarge every permutation 7 on I" to the strings in I'* by means of w(z1 - - - zx) = w(z1) - - - w(zy,)
for each string x; -- -2 € I'*. A set of strings £ C I'* over an alphabet I" is called permutative if
for all permutations IT on I' it holds that x € E implies II(z) € E. Given two alphabets X, I', a
binary relation B C X* x I'* is said to be permutative if the sets B(x) for each string z € X* are
permutative.

Definition 6.1. Let X, I' be two alphabets, m = |I'|, and let #A and #B be two counting prob-
lems determined by the binary relations A and B between the strings from X and I, where B is
permutative.

— We say that # A reduces to #B via a strong permutative reduction, if there exist f,g € FP
such that for every string x € X*:
e B(g(x)) C B(f())
o ml-|A(@)| = [B(f(x))| - |B(9())].
— A permutative reduction #A <., #B is the transitive closure of strong permutative and
parsimonious reductions.

Since permutative reductions are in a sense a generalization of complementive reductions from
the Boolean to the general case, it is an easy observation that all hardness results we give below
for Boolean #QCSP;(S) hold for complementive reductions.

In the Boolean case Creignou and Hermann [CH96] proved that the complexity of the counting
problem #CSP(S) of S-formulas is dichotomous: #CSP(S) is in FP, if S is a set of affine relations,
otherwise #CSP(S) is #P-complete. Bauland et al. [BCC*04] exhibited a trichotomy result, FP,
#P-complete and #-NP-complete, for the counting problem associated with conjunctive queries,
i.e., existentially quantified formulas.

6.2 Counting Problems Associated with Quantified Formulas

We are interested in the counting problem associated with QCSP;(S)-formulas. Therefore we con-
sider quantified formulas ¢ with free variables Y, (V) = 3X31V X, ... 33X (Y, X4, ..., X;), where
1 is quantifier-free. We are interested in the number of assignments for Y such that ¢(Y) holds,
we denote by #sat(p) this number (and by #unsat(p) the number of assignments for Y such that
»(Y) does not hold). Let us denote by #QSAT; the problem of counting the satisfying assignments
of a quantified Boolean formula with free variables and ¢ — 1 quantifiers alternations starting with
an F-quantifier. This problem is prototypical for #-X;P-complete problems under parsimonious
reductions. It remains #-X;P-complete when the formula is restricted to be 3-CNF for i odd, and
3-DNF for ¢ even [DHKO0]. Therefore, it is natural to define the counting problem associated with
QCSP;(S) as follows.

Definition 6.2. Let S be a set of relations. Then, #QCSP;(S) is the counting problem to de-
termine, for a QCSP;(S)-formula ¢ with free variables, #sat(p) for i odd, and Funsat(y) for i
even.

Observe that #QCSP;(S) is the same as the problem #SAT-COQ(S) studied in [BCCT04].
Note that #QCSP;(S) € #-X;P, and that according to the remark above #QCSP;(S3) is #-3;P-
complete. Our goal is to study the complexity of #QCSP;(S) for all possible sets S. A central
result for our development is the following easy consequence of Proposition 3.1.

Proposition 6.3. Let S; and Sy be two sets of relations over the same finite domain D, such that
S1 is finite. If the inclusion Pol(Sy) C Pol(Sy) holds, then there exists a parsimonious reduction
from #QCSP;(S1) to #QCSP;(Ss).

Proof. This is trivial, since the last quantifier in our formulas is always 3, and therefore we can
just use the co-clone closure properties.

Our work will essentially follow the same line as the one for the corresponding decision problems
in the previous section.

Proposition 6.4. #QCSP;(Ry/3) is #-X;P-complete under parsimonious reductions.

Proof. #QCSP;(S3) is #-X;P-complete under parsimonious reductions. Now apply Proposition 6.3
(remember Inv(R,/3) = I»).

Proposition 6.5. #QCSP;(NAE?) is #-X,;P-complete under permutative reductions.

Proof. We show that #QCSP;(R1/3) can be reduced to #QCSP;(NAE?). The construction is very
similar to the one in the proof of Proposition 5.1.

Let ¢(Y') be a QCSP;(R; /3)-formula with free variables Y (suppose Y = y1,...,y,) and p(Y) =
Q1X1...VX;_13X;Cy A--- A Cyy such that each Cj is of the form Cj = Ry /3(vj,,v5,,vj,) for some
Vjy,Vjs, Vs € Y U Xy U---UX;. Consider now the formula

(pl(Y,’U,,’U) = Q1X1 VX 3XG /\ Cj N R1/3(u,u,v),
j=1

where u and v are two new variables. Observe that #sat(¢;) = #sat(y) and #Funsat(p;) =
27+2 _ #sat(p). Now, let ¢t be an additional new variable, and construct the formula @5 (Y, u,v) =
Q1 X;.. . VX;_13X;3t /\;”:1 Ra/4(vj, V5,55, 1) ARaja(u, u,v,t), where each relation Ry 4(a, b, ¢, d)
stands for the equivalent conjunction of NAE?-clauses. We get a QCSP;(NAE?)-formula ¢ (Y, u, v)
such that #sat(ps) = 2#sat(p) and #unsat(ps) = 2"+2 — 2#sat(¢p).

Now consider the formula ¢3(Y,u,v) = NAE?(u,u,v) A /\;.l:1 NAE?(u,v,y;). Observe that
unsat(3) C unsat(ips), and that #unsat(p3) = 2"+, For i odd, we construct ¢, (Y, u,v) from p(Y).
This is a QCSP;(NAE?)-formula which verifies #sat(y) = #sat(y;)/2. For i even we construct the
pair (@o(Y,u,v), p3(Y,u,v)) of QCSP;(NAE?)-formulas, which verify unsat(ys) C unsat(yps) and
#unsat(p) = #”"sat(‘p”;#”"sat(‘”). Thus, in both cases we have a permutative reduction from

Lemma 6.6. There exists a Boolean relation Ry such that N C Pol(Ry) and #QCSP;(Ry) is
#-3;P-complete under polynomial-time reductions.

Proof. Observe that the reduction provided in the proof of Lemma 5.3 is parsimonious. Thus, the
conclusion follows from Proposition 6.5.

We are now in a position to prove the following complexity classification, which completely
classifies the #QCSP;(S) problem for the Boolean case.

Theorem 6.7. Let S be a non-empty finite set of Boolean relations and i > 1.

— If S is affine, then #QCSP;(S) is in FP.

— Else if S is bijunctive, or Horn, or dual Horn, then #QCSP;(S) is #P-complete under counting
reductions.

— Otherwise, #QCSP;(S) is #-X;P-complete under permutative reductions.

Proof. If S is affine, then the Gaussian elimination algorithm given in [CH96] for #CSP(S) can
also be used to construct a corresponding polynomial-time algorithm for #QCSP;(.5).

If S is Horn, dual Horn, or bijunctive, then QCSP(S) (and a fortiori QCSP;(S)) is in P (see
Theorem 4.1) and therefore #QCSP;(S) is in #P. Moreover, we know from [CH96] that in this
case #CSP(S) is #P-hard. Hence, the trivial reduction from #CSP(S) to #QCSP;(S) shows that
#QCSP;(S) is #P-complete.

The case Pol(S) = N follows from Lemma 6.6 and Proposition 6.3.

We have seen that the clone containing all essentially unary or constant functions gives rise
to hard constraint satisfaction problems in the decision problem, and in the Boolean counting
problem. We now show this hardness result also holds for arbitrary finite domains.

Lemma 6.8. #QCSP;(NAE™) is complete for #-3;P under permutative reductions.

Proof. We use ideas from the proof for Proposition 4.1 in [BKBJ02]. Observe that z # y can be
expressed as NAE(z,z,y) over any domain. The proof is by induction. The case m = 2 follows
from Proposition 6.5. We now show #QCSP;(NAE™) <, #QCSP;(NAE™). Let ¢ be a NAE™-
formula with n free variables X = {z1,...,z,}, existentially quantified variables Y = {y1,...,yn,}
and universally quantified variables Z = {z1,...,2,,}. We add free variables zp41,-..,Zntm
with disequality constraints between any two of them. We call the result ¢,,, and observe that
#sat(pm) = m! - #sat(p). We construct a formula ¢, 1 as follows:

— Copy the formula ¢,, and replace every relation symbol NAE™ with NAE™*! and add a new
free variable w.

— For each free or 3-quantified variable v € X U {z,41,...,Zntm UY, add a constraint v # w.

— For each universally quantified variable z;, change Vz; to Vz}, and add 3¢;1, ..., t;,m—1,2; to the
next 3- block, add disequality constraints ¢; ; # t; for j # k and (2; # t;;) AN (2] # tij) N (w #
t;;) forall j € {1,...,m —1}.

Note that the set of satisfying assignments to these formulas is closed under permutations of the
domain, and every solution assigns exactly m different values to the free variables z1,...,Zn1m.
We call two assignments Iy and I; equivalent if there is a permutation I of the domain such that
Io(x;) = II(I;(x;)) for all i. For each equivalence class I, let I° be one canonical representative that
does not use the value m, for example the one of minimal lexicographic order. It can be verified
that for these assignments I° |= ¢, holds if and only if (I° U {w = m}) E @41 holds.

Since each I° represents m! (resp. (m + 1)!) satisfying assignments of ¢, (resp. @, +1) - one
for each permutation of the domain (note that the value for w is fully determined by the values
for £p41,...,%n+m and therefore the additional variable w does not add another factor), we have

#sat(pmi1) = (m + 1) - #sat(pm) = (m + 1)! - #sat(e).

Also observe that this gives us a parsimonious reduction, if we consider the number of satisfying
(or unsatisfying) assignments up to permutations of the domain.
Now we make a case distinction between ¢ odd and 4 even:

i odd In this case, we are interested in the number of satisfying assignments. Let g := z1 # 1,
then obviously ¢ is unsatisfiable, and the following holds:

— (m+ 1)!- #sat(p) = #sat(pm1) — #sat(g)
— sat(g) C sat(y)
i even Here we count the number of unsatisfying assignments.

Ltgi= A\ @i#sA@ A0) A A @i £ 0).

n+1<i<j<n+m
Since all clauses of g appear in ., 1, we have unsat(g) C unsat(@;,+1). It holds that #sat(g) =
(m + 1)! - m™: There are (m + 1)! possibilities for the variables z,41,...,%ntm, which leaves
only one value for w, and the variables z1,...,%, can take any combination of values from
{0,...,m}\ {w}.
Now, let d := #sat(p), and observe that the following holds:
#unsat(¢p) =m" — #sat(p) =m" —d
frunsat(pmi1) = (m+ 1) — dsat(ppy1) = (m +)™ — (m +1)! - d
#unsat(g) = (m + 1)™T+ — #sat(g) = (m +)™ — (m + 1)1 - m™.

This implies #unsat(y,,+1) — #unsat(g) = (m + 1)! - #unsat(p.,).

10

Therefore, in both cases we have a permutative reduction.

Corollary 6.9. Let S be a finite set of relations such that Pol(S) only contains constants and
essentially unary functions. Then #QCSP;(S) is complete for #-X;P under permutative reductions.

Proof. #QCSP;(NAE™) is complete for #-%;P due to Lemma 6.8. Now use the same reduction as
in Lemma 5.3, which is parsimonious.

7 Conclusion

We examined the complexity of the problems QCSP;(S) and #QCSP;(S). For sets S of relations
over the Boolean universe we presented complete classifications. For non-Boolean universes we
obtained a number of quite general hardness results. Contrasting our results with the tractable
cases presented in [BBJK03,Che04], an already quite detailed picture of the complexity of quantified
constraints emerges.

Our trichotomy for Boolean #QCSP;(S) can easily be generalized to the case of an unbounded
number of alternations. Denoting this problem by #QCSP(.S), a classification completely analogous
to Theorem 6.7, but replacing #-3;P by #PSPACE, is obtained. Here, #PSPACE in the sense of
Valiant [Val79a] denotes #PFSPACE Tt is easy to observe that #PSPACE coincides with Ladner’s
class fPSPACE [Lad89]. (Caveat: What Ladner denotes by #PSPACE is a different class.) Ladner
proves that #PSPACE = PSPACE additionally coincides with FPSPACE(poly), the class of
all polynomially length-bounded functions computable in polynomial space, and he observes that
#QSAT is complete in this class under parsimonious reductions.

The main open problem is certainly to obtain a finer or even complete classification for the
problems #QCSP;(S) and #QCSP(S) for non-Boolean universes. Bulatov’s results [Bul02] may be
a hint that in the case of a 3-element universe this is no hopeless pursuit.

References

[BBJKO03] F. Borner, A. Bulatov, P. Jeavons, and A. Krokhin. Quantified constraints: algorithms and
complexity. In Proceedings 17th International Workshop on Computer Science Logic, volume
2803 of Lecture Notes in Computer Science, Berlin Heidelberg, 2003. Springer Verlag.

[BCCT04] M. Bauland, P. Chapdelaine, N. Creignou, M. Hermann, and H. Vollmer. An algebraic approach
to the complexity of generalized conjunctive queries. In Proceedings 7th International Conference
on Theory and Applications of Satisfiability Testing, pages 181-190, 2004.

[BCRV03] E. Bohler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks, part I: Post’s
lattice with applications to complexity theory. SIGACT News, 34(4):38-52, 2003.

[BCRV04] E. Bohler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks, part II: Con-
straint satisfaction problems. SIGACT News, 35(1):22-35, 2004.

[BJKO00] A. Bulatov, P. G. Jeavons, and A. A. Krokhin. Constraint satisfaction problems and finite alge-
bras. In Proceedings 27th International Collogium on Automata, Languages and Programming,
volume 1853 of Lecture Notes in Computer Science, pages 272-282, Berlin Heidelberg, 2000.
Springer Verlag.

[BJKO04] A. Bulativ, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints using finite
algebrais. URL: http://web.comlab.ox.ac.uk/oucl/work/andrei.bulatov/finalg.ps, 2004.

[BKBJ02] F. Borner, A. Krokhin, A. Bulatov, and P. Jeavons. Quantified constraints and surjective
polymorphisms. Technical Report PRG-RR-02-11, Computing Laboratory, University of Oxford,
UK, 2002.

[Bul02] A. Bulatov. A dichotomy theorem for constraints on a three-element set. In Proceedings 43rd
Symposium on Foundations of Computer Science, pages 649—658. IEEE Computer Society Press,
2002.

11

[CH96] N. Creignou and M. Hermann. Complexity of generalized satisfiability counting problems. In-
formation and Computation, 125:1-12, 1996.

[Che04] H. Chen. The computational complezity of quantified constraint satisfaction. PhD thesis, Cornell
Universtiy, 2004.

[CKS01] N. Creignou, S. Khanna, and M. Sudan. Complezity Classifications of Boolean Constraint Sat-
isfaction Problems. Monographs on Discrete Applied Mathematics. STAM, 2001.

[Dal97] V. Dalmau. Some dichotomy theorems on constant-free quantified boolean formulas, 1997.

[Dal00] V. Dalmau. Computational complezity of problems over generalized formulas. PhD thesis,
Department de Llenguatges i Sistemes Informatica, Universitat Politécnica de Catalunya, 2000.

[DHKO00] A. Durand, M. Hermann, and P. G. Kolaitis. Subtractive reductions and complete problems for
counting complexity classes. In 25th International Symposium on Mathematical Foundations of
Computer Science, volume 1893 of Lecture Notes in Computer Science, pages 323—-332. Springer-
Verlag, 2000.

[FK05] T. Feder and P. G. Kolaitis. Closures and dichotomies for quantified constraints. URL:
http://theory.stanford.edu/~tomas/clodi.ps, 2005.

[FV98] T. Feder and M. Y. Vardi. The computational structure of monotone monadis SNP and con-
straint satisfaction: a study through Datalog and group theory. SIAM Journal on Computing,
28(1):57-104, 1998.

[Hem04] E. Hemaspaandra. Dichotomy theorems for alternation-bounded quantified boolean formulas.
CoRR, cs.CC/0406006, 2004.

[JCGY97] P. G. Jeavons, D. A. Cohen, and M. Gyssens. Closure properties of constraints. Journal of the
ACM, 44(4):527-548, 1997.

[Jea98] P. G. Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200:185-204, 1998.

[Lad75] R. Ladner. On the structure of polynomial-time reducibility. Journal of the ACM, 22:155-171,
1975.

[Lad89] R.Ladner. Polynomial space counting problems. SIAM Journal on Computing, 18(6):1087-1097,
1989.

[MS72] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with
squaring requires exponential time. In Proceedings 13th Symposium on Switching and Automata
Theory, pages 125-129. IEEE Computer Society Press, 1972.

[Pap94] C. H. Papadimitriou. Computational Complezity. Addison-Wesley, Reading, MA, 1994.

[Pip97] N. Pippenger. Theories of Computability. Cambridge University Press, Cambridge, 1997.

[PK79] R. Poschel and L. A. KaluZnin. Funktionen- und Relationenalgebren. Deutscher Verlag der
Wissenschaften, Berlin, 1979.

[P6s01] R. Pdschel. Galois connection for operations and relations. Technical Report MATH-LA-8-2001,
Technische Universitdt Dresden, 2001.

[Rei04] O. Reingold. Undirected st-connectivity in log-space. Technical Report TR04-094, ECCC Re-
ports, 2004.

[Sch78] T. J. Schaefer. The complexity of satisfiability problems. In Proccedings 10th Symposium on
Theory of Computing, pages 216-226. ACM Press, 1978.

[SM73] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In Proceedings
5th ACM Symposium on the Theory of Computing, pages 1-9. ACM Press, 1973.

[Sto77] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1-22, 1977.

[Tod91] S. Toda. Computational Complexity of Counting Complezity Classes. PhD thesis, Tokyo Insti-
tute of Technology, Department of Computer Science, Tokyo, 1991.

[TW92] S. Toda and O. Watanabe. Polynomial time 1-Turing reductions from #PH to #P. Theoretical
Computer Science, 100:205-221, 1992.

[Val79a] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8:189-201, 1979.

[Val79b] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal of
Computing, 8(3):411-421, 1979.

[Wra77] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer Science,
3:23-33, 1977.

12

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

