
Speeding Up Approximation Algorithms for

NP-hard Spanning Forest Problems by

Multi-objective Optimization

Frank Neumann ? and Marco Laumanns ??

Abstract. We give faster approximation algorithms for the generaliza-
tion of two NP-hard spanning tree problems. First, we investigate the
problem of minimizing the degree of minimum spanning forests. Fischer
[4] has shown how to compute a minimum spanning tree of degree at
most b · ∆∗ + dlogb ne in time O(n4+1/ ln b) for any b > 1, where ∆∗

is the value of an optimal solution. We model our generalization as a
multi-objective optimization problem and give a deterministic algorithm
that computes for each number of connected components a solution with
the same approximation quality as the algorithm of Fischer and runs
in time O(n3+1/ ln b). After that, we take a multi-objective view on the
problem of computing minimum spanning trees with nonuniform degree
bounds, which has been examined by Könemann and Ravi [10]. Given
degree bounds Bv for each vertex v ∈ V , we construct an algorithm that
computes for each number of connected components a spanning forest
in which each vertex v has degree O(Bv + log n) and whose weight is at
most a constant times the weight of a minimum spanning forest obeying
the degree bounds. The total runtime of our algorithm is O(n3+2/ ln b) for
an arbitrary constant b > 1. Setting b = ek, k > 2/3 an arbitrary con-
stant, the runtime is by a factor n3−2/k log n less than the given bound
by Könemann and Ravi.

1 Introduction

In this paper we consider two NP-hard spanning forest problems. Given a con-
nected graph G = (V, E) with n vertices and m edges and positive integer weights
w(e) for each edge e ∈ E, we are searching (i) for minimum spanning forests of
minimum degree, and (ii) for minimum spanning forests obeying given degree
bounds on the vertices. A forest with i connected components is a cycle-free
subgraph of G that contains exactly n − i edges. A minimum spanning forest
with i connected components is a forest where the sum over all edge weights
is minimal among all spanning forests with i connected components. In a min-
imum spanning forest of minimum degree, the largest vertex degree is as small

? Institut of Computer Science, Christian-Albrechts-Univ. of Kiel, 24098 Kiel, Ger-
many, email: fne@informatik.uni-kiel.de

?? Institute of Operations Research, ETH Zürich, CH-8092 Zürich, Switzerland, email:
laumanns@ifor.math.ethz.ch

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 29 (2005)

ISSN 1433-8092

as possible. This generalizes the problem of computing minimum spanning trees
of minimum degree.

The problem of computing minimum spanning trees is one of the fundamen-
tal problems in computer science and can be solved in polynomial time by greedy
algorithms. The well-known algorithms due to Kruskal and Prim have worst-case
runtimes of O((n + m) log n) and O(n2), respectively (see, e.g., Cormen, Leis-
erson, Rivest, and Stein [3]). The problem of constructing spanning subgraphs
that satisfy given constraints has attained a lot of attention (see, e.g., [1, 2]). In
most cases, even simple constraints lead to NP-hard problems (see Garey and
Johnson [8]). The problem of minimizing the degree of spanning trees is NP-hard
as a spanning tree of degree 2 is a Hamiltonian path. Constrained spanning tree
problems have a lot of application in the area of network design.

1.1 Previous work and our results

Let ∆∗ be the degree of an optimal solution. When edge weights are not consid-
ered, or assumed uniform, a ∆∗ +1 approximation algorithm for minimizing the
degree of spanning trees has been obtained by Fürer and Raghavachari [7]. For
the weighted case, Fischer [4] has presented an approximation algorithm that
computes a minimum spanning tree of degree at most b · ∆∗ + dlogb ne in time
O(n4+1/ ln b) for any b > 1, which is the best-known algorithm for this problem
up to now. His algorithm is an adaptation of a local search algorithm of Fürer
and Raghavachari [6] to the weighted case. The idea of the local search is to
perform edge exchanges until the spanning tree is locally optimal. The crucial
point for bounding the runtime is the number of improvements that have to be
executed until the approximation guarantee can be given. Fischer has shown, by
a similar potential function argument as Fürer and Raghavachari [6], that the
number of improvements is bounded by O(n2+1/ ln b).

Könemann and Ravi [10] have considered the problem of approximating min-
imum spanning trees with nonuniform degree bounds. Given degree bounds Bv

for all vertices, they have presented a combination of the primal-dual method
and local search to compute a spanning tree in which the degree of each vertex v
is O(Bv + log n) and the weight is by at most a constant factor higher than the
weight of any spanning tree that obeys the given degree constraints. Their algo-
rithm runs in time O(n6 log n) and the analysis also uses the potential function
argument given in [6].

We model the problem of computing minimum spanning forests of minimum
degree as a multi-objective optimization problem where one objective is to min-
imize the number of connected components and the other objective to minimize
the weight and degree. Our aim is to compute for each i, 1 ≤ i ≤ n, a minimum
spanning forest with i connected components that has the same approximation
quality as the algorithm of Fischer. We show that the total number of local im-
provements can be bounded by O(n1+1/ ln b), which is by a factor of n smaller
than in the algorithm of Fischer. Based on this analysis we are able to construct a
deterministic algorithm that computes a set of solutions containing a minimum

2

spanning forest for each number of connected components with the same ap-
proximation guarantee as provided by Fischer’s algorithm in time O(n3+1/ ln b).
Our algorithm can be seen as extension of Kruskal’s algorithm for the computa-
tion of minimum spanning trees. Note that during the run, Kruskal’s algorithm
computes solutions that are minimum spanning forests for each possible num-
ber of connected components. The working principle of our algorithm is also to
start with an empty graph and to compute the minimum spanning forests as
in the run of Kruskal’s algorithm one after another. After a new edge has been
introduced that leads to a minimum spanning forest with smaller number of
connected components, the degree of this minimum spanning forest is improved
by edge exchanges as long as we cannot guarantee our desired approximation
quality.

In the case of computing minimum spanning forests obeying given degree
bounds we take a similar view. Starting with the empty edge set, we compute in
time O(n3+2/ ln b) for each number of connected components a minimum span-
ning forest in which each vertex degree is O(Bv log n) for any constant b > 1.
Setting b = ek and k > 2/3, this improves the runtime bound given in [10] for
the computation of minimum spanning trees with nonuniform degree bounds by
a factor n3−2/k log n. Our algorithm uses an extension of the primal-dual ap-
proach given in [10] and our multi-objective view on the problem, which leads
to a better bound on the number of local improvements.

The paper is organized as follows. In Section 2, we introduce our model for
the computation of minimum spanning forests with minimum degree and give
a new algorithm for minimizing the degree of minimum spanning forests that
runs in time O(n3+1/ ln b). Section 3 applies our technique in combination with
an extension of the primal-dual method for minimum spanning trees [10] to
the problem of computing minimum spanning forests with nonuniform degree
bounds. We finish with some conclusions.

2 Minimizing the Degree of Minimum Spanning Forests

2.1 A Multi-objective Formulation

We take a multi-objective view on the computation of minimum spanning forests
with minimum degree. Let X = {0, 1}m be the search space. A search point x ∈
X describes the set of all edges ei where xi = 1 holds. Let c(x) be the number of
connected components of the solution x, w(x) be the weight of the chosen edges,
dj(x) be the number of vertices of degree j in x, and ∆(x) the maximum vertex
degree of x. The value of x is given by the vector f(x) = (f1(x), f2(x)), where
f1(x) = c(x) and f2(x) = (w(x), dn−1(x), . . . , d0(x)). Both objectives f1 and f2

have to be minimized. Minimizing the second objective means minimization with
respect to the lexicographic order. This model generalizes the function g(x) =
(c(x), w(x)) that has been examined by Neumann and Wegener [11] for the
computation of minimum spanning trees by randomized search heuristics. They
have shown that a multi-objective view leads to a more efficient optimization
process than in the case of a single objective one.

3

Let f(X) be the image of the search space under the objective function f
defined above. By intersecting the canonic order on f1(X) with the lexicographic
order on f2(X), both of which are total orders, a partial order on f(X) can be
defined as

f(x) � f(x′) :⇔ f1(x) ≤ f1(x
′) ∧ f2(x) ≤lex f2(x

′)

for all x, x′ ∈ X . This partial order represents our preference relation regarding
the solutions. The aim is to identify all minimal elements of (f(X),�), and with
each minimal element one of its pre-images from X .

As the edge weights are positive, a minimum spanning forest with i connected
components has a smaller weight than a minimum spanning forest with i+1 con-
nected components. Therefore, (f(X),�) has n minimal elements, representing
for each i, 1 ≤ i ≤ n, a minimum spanning forest with i connected components
and minimum degree. Our goal is to approximate the set of minimal elements as
good as possible. We want to compute for each i a minimum spanning forest with
i connected components that has degree at most b · ∆∗

i + dlogb ne, where ∆∗
i is

the smallest maximum degree of any minimum spanning forest with i connected
components.

2.2 Local Improvements

Fischer’s algorithm [4] for the computation of a minimum spanning tree with
degree at most b ·∆∗ + dlogb ne starts with an arbitrary minimum spanning tree
and improves the degree of high-degree vertices. The number of these improve-
ments is bounded by O(n2+1/ ln b). A better bound on the number of necessary
improvements would yield a better upper bound for the runtime of Fischer’s
algorithm. We consider the number of necessary improvements for our multi-
objective model and start with some general properties of minimum spanning
forests with i connected components.

Lemma 1. Let ∆∗
i , 1 ≤ i ≤ n, be the minimum degree of a minimum spanning

forest with i connected components. Then ∆∗
n ≤ ∆∗

n−1 ≤ . . . ≤ ∆∗
1 holds.

Proof. Suppose that ∆∗
i > ∆∗

i−1 holds for some i ∈ {2, . . . n}. Let F ∗
i−1 be

a minimum spanning forest with i − 1 connected components and minimum
degree. Then we can delete the heaviest edge from F ∗

i−1 to construct a minimum
spanning forest with i connected components whose degree is at most ∆∗

i−1. This
contradicts the assumption. 2

Let si be a solution with i connected components and minimal weight. We
call si locally optimal if there is no solution s′i with c(s′i) = c(si) and hamming
distance 2 that is better than si with respect to f2(si) when disregarding all
dj(si) with j < ∆(si) − dlogb ne. Otherwise, we say that s′i improves si. For the
case i = 1 Fischer has shown in [4] that if there is no improvement for s1 then
the minimum spanning tree has already degree at most b ·∆∗

1 + dlogb ne for any
b > 1. We generalize this approximation guarantee of local optimal minimum
spanning trees given by Fischer to locally optimal minimum spanning forests.

4

Lemma 2. Let si be a solution that is locally optimal and ∆i be its maximum

degree. Then ∆i ≤ b · ∆∗
i + dlogb ne holds for any constant b > 1.

Proof. Consider a locally optimal forest F described by si. Let Ui be the set of
vertices of degree at least i in F . The number of vertices in Ui is at most n for

each i. Hence, the ratio |Ui−1|
|Ui|

cannot be greater than b for logb n consecutive

values of i.
Consider a δ with ∆i − dlogb ne ≤ δ ≤ ∆i such that

|Uδ−1|
|Uδ |

≤ b. Deleting

all edges from F that are adjacent to vertices of Uδ yields a forest Fδ with at
least (δ − 1)|Uδ| + 1 + i connected components. As F is locally optimal, only
edges adjacent to vertices of Uδ−1 may participate in a minimum spanning forest
with i connected components. Hence, there must be at least (δ − 1)|Uδ| + 1 ≥
(δ− 1)(|Uδ−1|/b) + 1 edges adjacent to vertices of Uδ−1. The average degree of a

vertex in Uδ−1 is therefore at least (δ−1)|Uδ−1|+b
b·|Uδ−1|

, which implies ∆∗
i > δ−1

b . Using

δ ≥ ∆i − dlogb ne we get ∆i ≤ b · ∆∗
i + dlogb ne. 2

Lemma 3. The total number of local improvements until a minimum spanning

forest of degree at most b ·∆∗
i +dlogb ne has been computed for each i, 1 ≤ i ≤ n,

can be bounded by O(n1+1/ ln b).

Proof. Consider a situation where a minimum spanning forest with j connected
components and degree at most b ·∆∗

j + dlogb ne has been computed for each j,
i ≤ j ≤ n. We want to show that no more than 3 · (n− i) · µ local improvements
are necessary to reach this state, where µ = O(n1/ ln b). Setting i = 1 then proves
the lemma.

Let a potential function be defined as p(s) :=
∑dlogb ne+1

j=0 dr+j(s) · ej , where
r = max{∆(si)−dlogb ne, 0}. The empty edge set sn = ∅ is obviously a minimum
spanning forest with n components and minimum degree, and no improvements
are necessary to reach this. In addition p(sn) = 0 holds. For going from i to i−1
we introduce into si a lightest edge e that does not create a cycle. This yields a
minimum spanning forest with i−1 components, denoted as s′i−1. Introducing an

arbitrary edge into si increases the potential value p(si) by at most 2edlogb ne+1 ≤
2e2 · elogb n = 2e2 · eln(n)/ ln(b) =: µ, hence p(s′i−1) − p(si) ≤ µ, where µ =

O(n1/ ln b). Now, s′i−1 can undergo a number νi−1 of local improvements to arrive
at a new solution si−1 that is locally optimal or satisfies ∆(si−1) = ∆(si), which
can be achieved by reducing the whole potential p(s′i−1). Due to Lemma 1 and
2 in both cases the claimed approximation holds.

In a local improvement dk(s) decreases by at least 1 for some k ≥ r + 2.
The potential reduces by the smallest amount if dk(s) reduces by one, dk−1(s)
increases by three and dk−2(s) decreases by 2. This means that one local im-
provement step reduces the potential by at least e2−3e+2 > 1/3, i.e., a constant
amount.

Therefore, and because r cannot increase in this process, the relation p(si) ≤
p(si+1)−νi+1/3+µ holds for each i, 1 ≤ i ≤ n−1. Using this, the potential value
of a solution s′i that has been created by the introduction of a new edge into
si+1 can be bounded with respect to the cumulated number of all νj , i < j ≤ n,

5

1. Initialize: let i := n, si := ∅, S := {si}.
2. Create si−1 by introducing into si the lightest edge that does not create a cycle.
3. Improve the solution si−1 until it is locally optimal or ∆(si−1) = ∆(si) holds.
4. S := S ∪ {si−1}
5. i := i − 1
6. If i > 1 continue at 2., otherwise output S and stop.

Fig. 1. Minimum Spanning Forest Optimizer (MSFO)

previous improvement steps by p(s′i) ≤ (n − i)µ −
∑n

j=i+1 νj/3. As νi ≤ 3p(s′i),
∑n

j=i νj ≤ 3µ(n − i).
2

2.3 The Algorithm

The analysis in Section 2.2 has shown that the number of improvements in the
multi-objective model can be bounded by O(n1+1/ ln b), which is by a factor
n smaller than then the number of improvements in the algorithm of Fischer.
Based on this observation we give a deterministic algorithm that computes for
each i a minimum spanning forest with i connected components and degree at
most b · ∆∗

i + dlogb ne in time O(n3+1/ ln b) for any b > 1.
Let si be a minimum spanning forest of degree at most b ·∆∗

i +dlogb ne. Then
we can produce a minimum spanning forest si−1 with i−1 connected components
by introducing a lightest edge that does not create a cycle. If ∆(si−1) = ∆(si)
holds, si−1 has the desired approximation quality. Otherwise we have to im-
prove si−1. The pseudo-code of our algorithm called Minimum Spanning Forest
Optimizer (MSFO) is given in Figure 1.

MSFO can be seen as a variant of Kruskal’s algorithm where after each
insertion of an edge the degree of the current solution si−1 is improved as long
as we cannot guarantee the desired approximation quality. The algorithm of
Kruskal can be implemented in time O((m + n) log n). Hence, to bound the
runtime of MSFO it is necessary to bound the number of local improvements (as
done in Section 2.2) and the time to achieve such an improvement.

Lemma 4. Let si be a solution with i connected components that is not locally

optimal. Then an improvement can be found in time O(n2).

Proof. There are two possibilities to improve a solution si. Let F be the corre-
sponding minimum spanning forest. In the first case, the introduced edge con-
nects two components of F and an edge from the forest has to be removed. In the
second case, the improvement is achieved by introducing an edge e that creates
a cycle in F . Then an edge from this cycle has to be deleted to create a new
spanning forest with i connected components.

Let W1, . . . , Wk be the distinct weight classes for which there are edges in
F . For the first case, consider the edges of Wj for each j, 1 ≤ j ≤ k, in F and

6

compute the edge that reduces the value of the potential function of Lemma 3
by the largest amount. This computation can be done in time O(n) for all weight
classes because the computation of the reduction for a single edge e can be done
in constant time and there are at most n − 2 edges to consider. Let gj

min be the
smallest value that can be obtained by removing an edge ej of weight class Wj

from F . Now we consider each edge e′ ∈ E \F of weight class Wj and introduce
e′ if the result improves si. We consider in the process each edge at most once
and the computation of the desired potential difference can be implemented in
constant time. Hence, an improvement can be found in time O(n2) in this case.

For the second case we use the idea of Fischer and investigate a depth first
search traversal of the forest F represented by si from every vertex v ∈ V . Let w
be the current vertex of the traversal and Pw be the set of edges on the path from
v to w. We assign variables M1, . . . , Mk such that Mj , 1 ≤ j ≤ k, denotes the
maximum degree of those vertices adjacent to edges of weight class Wj in Pw.
For a depth first search traversal we can compute the Mi variables in constant
time per step using stacks. If there is an edge (v, w) ∈ E, let wi be its weight.
If Mi is at least two greater than the degree of v and w, and Mi is at least
∆(si) − dlogb ne, then adding (v, w) to si and deleting some edge from Pw of
weight class Wi adjacent to a vertex of degree Mi constitutes an improvement.
The computation of the n depth first search traversals can be carried out in time
O(n2) which completes the proof. 2

Using the bound on the number of necessary improvements and the time
bound to achieve such an improvement, we can give an upper bound on the
runtime of MSFO.

Theorem 1. The algorithm MSFO computes for any b > 1 in time O(n3+1/ ln b)
a set of solutions that includes for each i, 1 ≤ i ≤ n, a minimum spanning forest

with i connected components and degree at most b · ∆∗
i + dlogb ne.

Proof. Consider the time the solutions {sn, sn−1, . . . , si} ⊂ S have been pro-
duced. These solutions have the following properties. Each sj , i ≤ j ≤ n, is a
minimum spanning forest with j connected components. In addition, sj is locally
optimal or ∆(sj) = ∆(sj+1) holds. Obviously, sn is a locally optimal solution.
We introduce into si an edge e of minimal weight that does not create a cycle.
This can be easily done by checking each remaining edge in time O(m). Note that
the whole computation in step 2 in the run of the algorithm can be implemented
in time O((m+n) log n) using the ideas of Kruskal’s algorithm. After step 3, the
solution si−1 has minimal weight among all solutions with i−1 components. If e
is not incident to at least one edge of degree ∆(si), ∆(si−1) = ∆(si) holds. Oth-
erwise, the number of vertices with degree ∆(si)+1 is at most 2 and we have to
improve si−1 to reach a locally optimal solution or to achieve ∆(si−1) = ∆(si).

The number of local improvements in the run of MSFO is O(n1+1/ ln b) as
shown in Lemma 3 and an improvement of a non locally optimal solution can be
found in time O(n2) due to Lemma 4. Hence, the time until MSFO has achieved
the desired approximation can be bounded by O(n3+1/ ln b). 2

7

3 Minimum Spanning Forests with Nonuniform Degree

Bounds

Könemann and Ravi [10] have examined the case of non-uniform degree bounds
Bv for all vertices v ∈ V . They presented an algorithm that finds, in time
O(n6 log n), a spanning tree where the degree of each vertex is O(Bv + log n)
and whose total edge weight is at most a constant times the weight of any tree
that satisfies the degree constraints. The algorithm uses a combination of primal-
dual methods and local search, where in each local search step the normalized
degree of the high-degree vertices in a current spanning tree is reduced. We
generalize the primal-dual idea of Könemann and Ravi to the approximation
of minimum spanning forests with nonuniform degree bounds. The task is to
find for each i, 1 ≤ i ≤ n, a spanning forest with i connected components and
minimum total edge weight such that the maximum degree of each vertex v is
at most Bv. The algorithm presented here runs in time O(n3+2/ ln b), b > 1 an
arbitrary constant, and outputs for each i, 1 ≤ i ≤ n, a spanning forest Fi of i
connected components whose vertex degrees are O(Bv + log n) and whose total
weight is at most a constant times the total weight of any minimum spanning
forest with i connected components.

We first adapt some results of [10] to the case of spanning forests. A feasible
partition of V is a set π = {V1, . . . , Vk} where Vi ∩ Vj = ∅ for all i 6= j, V =
V1 ∪ . . . ∪ Vk , and the induced subgraphs G[Vi] are connected. Let Gπ be the
graph obtained from G by contracting each Vi into a single vertex, Π be the
set of all feasible partitions of V , and x(e) be the variable indicating whether
edge e is included in the current solution, i.e., x(ei) = xi. We consider the
following integer linear program (IP) formulation for the problem of computing
the minimum spanning forest with i, 1 ≤ i ≤ n, connected components that
obeys all degree bounds Bv.

min
∑

e∈E

w(e)x(e) (1)

s.t.
∑

e∈E[Gπ]

x(e) ≥ |π| − i ∀π ∈ Π (2)

∑

e∈E:v∈e

x(e) ≤ Bv ∀v ∈ V (3)

x(e) ∈ {0, 1} ∀e ∈ E (4)

The dual of the linear programming relaxation (LP) of (IP) is given by

max
∑

π∈Π

(|π| − i) · yπ −
∑

v∈V

λvBv (5)

s.t.
∑

π:e∈E[Gπ]

yπ ≤ w(e) + λu + λv ∀e = (u, v) ∈ E (6)

y, λ ≥ 0 (7)

8

Könemann and Ravi have given a primal-dual interpretation of Kruskal’s
algorithm. Let (IP-SP) denote (IP) without constraints of type (3) its LP relax-
ation denoted by (LP-SP) and its dual be (D-SP). Kruskal’s algorithm can be
seen as a continuous process over time that starts with an empty edge set at time
0 and ends with a minimum spanning tree at time t∗. At any time t, 0 ≤ t ≤ t∗,
a pair (xt, yt) is kept, where xt is a partial primal solution for (LP-SP) and yt

is feasible solution for (D-SP). In the initialization step x(e)0 = 0 is set for all
e ∈ E, and yt

π = 0 for all π ∈ Π . Consider the forest F t that corresponds to the
partial solution xt and let πt be the partition induced by the connected compo-
nents of G[F t]. At time t the algorithm increases yt

π until a constraint of type
(6) becomes tight. If this happens for edge e, this edge e is included into the
primal solution. If more than one edge becomes tight, the edges are processed in
arbitrary order. We denote by MSFi a variant of this algorithm that stops when
a minimum spanning forest with i connected components has been computed in
the continuous process.

Let degF (v) be the degree of vertex v in the spanning forest F with i
connected components. The normalized degree of a vertex v is denoted by
ndegF (v) = max{0, degF (v) − 1 − bα · Bv}, where b and α are constants de-
pending on the desired approximation quality. Let ∆t the maximum normalized
degree of any vertex in the current spanning forest F t

i at a given time t and
denote by U t

j the set of vertices whose normalized degree is at least j at time t.
The following lemma was shown in [10].

Lemma 5. There is a dt ∈ {∆t − 2 logb n, . . . , ∆t} such that

∑

v∈Udt
−1

Bv ≤ b ·
∑

v∈Udt

Bv

for any constant b > 1.

Proof. Suppose that for all dt ∈ {∆t − 2 logb n, . . . , ∆t} the relation

∑

v∈Udt
−1

Bv > b ·
∑

v∈Udt

Bv

holds. We may assume Bv ≤ n−1 for any v, which implies
∑

v∈V Bv ≤ n(n−1).
Since there is at least one vertex of normalized degree ∆t, we have

∑

v∈U∆t
−2 logb n

Bv ≥ b2 logb n = n2,

a contradiction. 2

Our algorithm called Primal Dual Forest Optimizer (PDFO) is given in Fig-
ure 2. The idea of the algorithm is to start with an empty edge set and compute
the solutions with the desired approximation quality one after another. If we are

9

1. t := 0; λt
v := 0, ∀v ∈ V ; wt(e) = w(e), ∀e ∈ E;

2. i := n; (xt, yt) := MSFi(G, wt); S := {xt};
3. while i > 1 do

(a) i := i − 1; wt+1(e) = wt(e); (xt+1, yt+1) := MSFi(G, wt+1); t := t + 1;
(b) while ∆t > 2 logb n do

i. Choose dt ∈ {∆t − 2 logb n, . . . , ∆t} s.t.
P

v∈U
dt

−1
Bv ≤ b ·

P

v∈U
dt

Bv

ii. Choose εt and let λt+1
v := λt

v + εt if v ∈ U t
dt−1

and λt+1
v := λt

v otherwise

iii. wt+1(e) := wt(s)+εt if ((e ∈ F t
i)∧(e∩Udt 6= ∅)∨((e 6∈ F t

i)∧(e∩Udt−1 6= ∅))
and wt+1(e) := wt(e) otherwise

iv. (xt+1, yt+1) := MSFi(G, wt+1); t := t + 1;
(c) S := S ∪ {xt};

Fig. 2. Primal Dual Forest Optimizer (PDFO)

considering a solution xt with i connected components that does not have the
desired approximation quality with respect to the degree bounds, we compute a
new solution xt+1 which improves xt with respect to the normalized degree. Let
F t

i be the forest corresponding to xt. We increase the weight of an edge e ∈ E by
εt if it is either in F t

i and adjacent to vertices of Udt , or in E \ F t
i and adjacent

to vertices of Udt−1. The weight increment εt is defined as the smallest weight
increase when deleting an edge adjacent to a vertex of Udt and inserting an edge
adjacent to vertices that are not contained in Udt−1 such that a new cyclefree
subgraph of G is constructed. After that, xt+1 is a minimum spanning forest
with i connected components with respect to the updated weight function wt+1.
We have also stated the computation of the dual variables corresponding to the
primal solutions in Figure 2 using the algorithm MSFi. The dual variables will be
used later to show the approximation quality of our algorithm, but it is not nec-
essary to carry out the computation of these variables in the run of the algorithm.

We want to show that the algorithm computes in time O(n3+2/ ln b) a solution
set that contains for each i, 1 ≤ i ≤ n, a spanning forest with i connected
components in which each vertex v has degree O(Bv +log n) and weight at most
a constant times the weight of an optimal solution obeying the degree bounds.
First, we consider the approximation quality of the solutions that are introduced
into the set S in step 3c. Here we use an extension of the arguments given in
[10] to the case of minimum spanning forest with given degree bounds.

Lemma 6. For all iterations t ≥ 0 where we are considering solutions with i
connected components in the algorithm PDFO, the relation

∑

π∈Π

(|π| − j)yt+1
π ≥

∑

π∈Π

(|π| − j)yt
π + εtα

∑

v∈Udt
−1

Bv (8)

holds for and all j, 1 ≤ j ≤ i.

Proof. We generalize the ideas in the proof of Claim 1 in [10]. Let F t
j = {et

1, . . . , e
t
n−j}

be the set of edges that would be produced by a run of the algorithm MSFj in

10

iteration t. The change of the dual objective function value in iteration t for a
specific value of j is given by

∑

π∈Π

(|π| − j) · (yt+1
π − yt

π) =

n−j
∑

l=1

(rt+1
l − rt

l)

where rt
l is the time at which the MSFj algorithm includes the edge et

l . Assume
that we are considering solutions with i connected components in iteration t.
Then we lengthen all edges e ∈ F t

i that are incident to vertices of normalized
degree at least dt. This implies that all these edges become tight εt time later.
Using that all edges of F t

i are also contained in each minimum spanning forest
F t

j for j ≤ i, we get

∑

π∈Π

(|π| − j) · (yt+1
π − yt

π) ≥ εt · |E(Udt) ∩ F t
i |.

Here E(Udt) denotes the set of edges that are incident to vertices from Udt . F t
i

is a minimum spanning forest with i connected components. This implies that
there are at most |Udt |− i edges in E(Udt) that are incident to two vertices from
Udt , therefore

εt · |E(Udt) ∩ F t
i | ≥ εt ·









∑

v∈Udt

(bα + 1/Bv) · Bv



 − (|Udt | − i)



 .

This leads to

∑

π∈Π

(|π| − j)(yt+1
π − yt

π) ≥ εtαb ·





∑

v∈Udt

Bv



 + i ≥ εtαb ·
∑

v∈Udt

Bv ,

and using Lemma 5 we get
∑

π∈Π

(|π| − j)(yt+1
π − yt

π) ≥ εtα ·
∑

v∈U
dt−1

Bv ,

which completes the proof. 2

Lemma 7. Let ω > 1 be a constant and α = max{ω/(ω − 1), ω}. For all itera-

tions t ≥ 0 where we are considering solutions with i connected components in

the algorithm PDFO, the relation

ω
∑

v∈V

Bvλ
t
v ≤ (ω − 1)

∑

π∈Π

(|π| − j) · yt
π (9)

holds for each j, 1 ≤ j ≤ i.

Proof. After initialization,
∑

v∈V Bvλ
0
v =

∑

π∈Π(|π|−j)·y0
π = 0 holds. Lemma 6

implies that the right hand side of (9) increases by at least (ω−1)·αεt
∑

v∈Ut

dt
−1

Bv .

The left hand side increases by ω · εt
∑

v∈Ut

dt
−1

Bv. Using α ≥ ω/(ω − 1), the

relation is maintained. 2

11

Lemma 8. For all iterations t ≥ 0 where we are considering solutions with i
connected components in the algorithm PDFO, the relation

∑

e∈F t
j

w(e) ≤ ω

[

∑

π∈Π

((|π| − j) · yt
π) −

∑

v∈V

(Bv · λt
v)

]

(10)

holds for each j, 1 ≤ j ≤ i.

Proof. For t = 0 this is obviously true. Let F t
j be the spanning forest produced

by the algorithm MSFj in the t-th iteration and let wt(F t
j) be the weight of this

spanning forest with respect to the weight function wt. As the weights can only
increase during the run of PDFO,

w(F t
j) ≤ wt(F t

j) =
∑

e∈F t
j

wt(e) =
∑

π∈Π

(|π| − j) · yt
π

holds. Using the invariant given in Lemma 7 we get

w(F t
j) ≤ ω

[

∑

π∈Π

((|π| − j) · yt
π) −

∑

v∈V

(Bv · λt
v)

]

2

Lemma 8 shows that in each iteration the weight of a spanning forest with j,
1 ≤ j ≤ i, is only a constant times the weight of an optimal solution. It remains
to show an upper bound on the runtime of PDFO. To do this we first consider
the time to produce a new solution xt+1 from the current solution xt.

Lemma 9. The solution xt+1 can be computed from xt in time O(n2).

Proof. If the computation of xt+1 is carried out in step 3a of the algorithm
introducing the lightest edge for the weight function wt+1 into xt that does not
create a cycle yields xt+1. This can be done in time O(n2) by inspecting every
edge at most once. In the other case xt is a minimum spanning forest with i
connected components with respect to wt and xt+1 is a minimum spanning forest
with i connected components with respect to the updated weight function wt+1.
To determine xt+1 we have to compute εt and execute the resulting exchange
operation. For the computation of dt we use an integer array of size n and store at
position j, 0 ≤ j ≤ n−1, the sum over the Bv-values with vertices of normalized
degree j in F t

i . This can be done in time O(n) using a breath first search traversal
on F t

i in which we compute the Bv value for the current vertex v in the traversal
and add the value to the value of the corresponding position in the array. After
that we determine the values

∑

v∈Uj
Bv , 0 ≤ j ≤ n − 1, one after another

starting with U0. Note that
∑

v∈U0
Bv =

∑

v∈V Bv. The value
∑

v∈Uj+1
Bv can

be computed by subtracting from
∑

v∈Uj
Bv the entry at position j in the array.

Each computation can be done in constant time based on the corresponding
array values. Hence, the value dt due to Lemma 5 can be determined in time

12

O(n). To compute the εt value we determine the exchange operation that leads to
a primal solution of MSFi(G, wt+1). Note that εt is the smallest weight increase
such that deleting an edge adjacent to at least one vertex of Udt and inserting
an edge adjacent to vertices that are not contained in Udt−1 yields a minimum
spanning forest with i components for the weight function wt+1. We consider
two possibilities for the exchange operation.

First we investigate the case where introducing an edge e connects two com-
ponents of the current forest F t

i . Then another edge from the resulting forest has
to be removed to create a solution with i connected components. Introducing
the edge e with smallest weight that is not incident to vertices of Udt−1 and
deleting the edge e′ ∈ F t

i that has the largest weight of all edges incident to
vertices of Udt in F t

i leads to the desired exchange operation with the smallest
weight increase. Each edge of G has to be examined once, which gives an upper
bound of O(n2) on the runtime in this case. Let εt′ be the value obtained by this
exchange operation.

The other possibility to get a smaller value than εt′ is to introduce into F t
i

an edge that creates a cycle. Then we have to delete one edge of this cycle. We
use a depth first search traversal of F t

i from every vertex v ∈ V . Let w be the
current vertex in this traversal. Assume that there is an edge e = (v, w) in E
and that v and w are not contained in Udt−1. Otherwise we can continue the
traversal since the pair (v, w) does not fulfill the properties for the exchange
operation. Let wi be the largest weight of an edge e′ in the path from v to w
that is incident to vertices of Udt . If no such edge edge e′ exists in the path from
v to w, e can not participate in the exchange operation we are looking for. The
weight increase of introducing e and deleting e′ can be computed in constant
time, and the wi variables can be maintained in constant time per step of the
traversal using stacks. Hence, we can determine the exchange operation with
the smallest weight increase in the second case in time O(n2). Let εt′′ be weight
increase of this exchange operation. Choosing εt = min{εt′ , εt′′} and computing
a primal solution of MSFt+1

i by executing the corresponding exchange operation
gives the stated upper bound. In addition we update the weight with respect to
wt+1 for the next iteration which can be done in time O(n2). 2

Theorem 2. The algorithm PDFO computes for any b > 1 and ω > 1 in time

O(n3+2/ ln b) a set of solutions that includes for each i, 1 ≤ i ≤ n, a minimum

spanning forest with i connected components in which each vertex degree is at

most b · α · Bv + 2 logb n + 1 and the total weight is at most ω · w(F ∗
i), where

α = max{ω/(ω−1), ω} and w(F ∗
i) is the minimum weight of any spanning forest

with i connected components satisfying the degree bounds.

Proof. As long as the algorithm has not achieved a solution with i connected
components such that the vertex degree is at most b·α·Bv +2 logb n+1, the right
hand side of (10) is ω times the optimal value of the dual objective function.
This implies that the weight of a minimum spanning forest with i connected
components for the weight function wt is at most ω times the value of an optimal
solution obeying the degree bounds for each j, 1 ≤ j ≤ i. Hence, the solutions

13

introduced into the set S in step 3c of PDFO have the stated approximation
quality. As each possible value of i is considered in the run of PDFO, the set
S includes after termination for each i, 1 ≤ i ≤ n, a solution with i connected
components that has the desired approximation quality.

In the following we give an upper bound of O(n3+2/ ln b) on the runtime
until the algorithm terminates. A new solution xt+1 can be computed from the
current solution in time O(n2) due to Lemma 9. It remains to bound the number
of primal solutions xt that have to be computed until the algorithm terminates.
The number of solutions that are computed in step 3a of the algorithm is at
most n− 1 as the number of connected components is bound by n. In the inner
while-loop we compute for the solution with i connected components new primal
solutions as long as we have not reached a solution with i connected components
that has the desired approximation quality.

We consider a modification of the potential function p introduced in Lemma
3. Consider a solution s, let ∆̂(s) be the maximum normalized degree of s, and

let d̂i, 0 ≤ i ≤ n − 1, be the number of vertices with normalized degree i in this

solution. The potential of a solution s is given by p′(s) :=
∑d2 logb ne+1

j=0 d̂r+j(s) ·

ej , where r = ∆̂(s) − d2 logb ne. Assume the a minimum spanning forest with
i, 2 ≤ i ≤ n, has been computed. After initialization this is true for i = n.
The solution of MSFi−1(G, wt) differs from MSFi(G, wt) by one single edge
that is additionally introduced into MSFi−1(G, wt) at any time t. Introducing
this edge into si, a solution s′i−1 with p′(s′i−1) − p′(si) = O(n2/ ln b) is created.
Each iteration of the inner while-loop reduces the potential by at least 1/3.
Hence, we can upper bound the number of improvements in the run of PDFO
by O(n1+2/ ln b) using the ideas of Lemma 3. 2

Note that choosing b as a constant large enough the runtime of PDFO approx-
imates the upper bound O(n3). For b = e, b = e2, . . . , b = ek, where e = 2.71...
and k is a constant, we get runtimes O(n5), O(n4), . . . , O(n3+2/k). The degrees
of the produced solutions are bounded by O(Bv log n), and the weight of a solu-
tion with i connected components introduced into the set S in step 3c is at most
a constant times the weight of any minimum spanning forest with i connected
components obeying the degree bounds.

4 Conclusions

We have given faster approximation algorithms for the generalization of two NP-
hard spanning tree problems. These algorithms are based on the multi-objective
view which enables use to reduce the number of necessary improvements until
the approximation guarantee can be given. Based on these observations we have
given an algorithm that computes for each i, 1 ≤ i ≤ n, a minimum spanning
forest with i components and degree at most b · ∆∗

i + dlogb ne in a total time
of O(n3+1/ ln b). In the case of nonuniform degree bounds we have presented an
algorithm that runs in time O(n3+2/ ln b) and computes for each i, 1 ≤ i ≤ n, a
spanning forest in which each vertex has degree O(Bv + log n) and the weight

14

is a most a constant times the weight of a minimum spanning forest with i
components obeying the given degree bounds.

References

1. Camerini, P. M., Galgiati, G, and Maffioli, F. (1980). Complexity of spanning tree
problems. European Journal on Operation Research, 5: 346-252.

2. Caro, Y., Krasikov, I., and Roditty, Y. (1991). On the largest tree of a given
maximum degree in a connected graph. Journal of Graph Theory, 15: 7-13.

3. Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2001). Introduction to Algo-
rithms. 2nd Edition, McGraw Hill, New York.

4. Fischer, T. (1993). Optimizing the Degree of Minimum Weight Spanning Trees.
Technical Report 93-1338, Department of Computer Science, Cornell University,
Ithaca, NY, USA.

5. Fürer, M., and Raghavachari, B. (1990). An NC approximation algorithm for the
minimum degree spanning tree problem. In Proc. of the 28th Annual Allerton Conf.
on Communication, Control and Computing, 274-281.

6. Fürer, M., and Raghavachari, B. (1992). Approximating the Minimum-Degree Span-
ning Tree to within One from the Optimal Degree. In Proc. of the third annual
ACM-SIAM symposium on Discrete algorithms (SODA), 317-324.

7. Fürer, M., and Raghavachari, B. (1994). Approximating the Minimum-Degree
Steiner Tree to within One of Optimal. Journal of Algorithms 17, 409-423.

8. Garey, M. R., Johnson, D. S. (1979). Computers and Intractability: A Guide to
the Theory of NP-completeness. Freeman, New York.

9. Goemans, M. X., and Williamson, D. P. (1995). A general approximation technique
for constrained forest problems. SIAM J. Comput. 24, 296-317

10. Könemann, J., and Ravi, R. (2003). Primal-dual meets local search: approximating
MST’s with nonuniform degree bounds. In Proc, ACM Symposium on Theory of
Computing (STOC), 389-395

11. Neumann, F. and Wegener, I. (2005). Minimum spanning trees made easier via
multi-objective optimization. Accepted for GECCO 2005.

15

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

