Electronic Colloquium on Computational Complexity, Report No. 30 (2005)

An Improved Upper Bound for SAT

Evgeny Dantsin* Alexander Wolpert*
February 12, 2005

Abstract

We give a randomized algorithm for testing satisfiability of Boolean formulas in conjunctive
normal form with no restriction on clause length. Its running time is at most 2*(1=1/%) up to
a polynomial factor, where @ = In(m/n) + O(lnlnm) and n, m are respectively the number of
variables and the number of clauses in the input formula. This bound is asymptotically better
than the previously best known 27(1~1/108(2m)) bound for SAT.

1 Introduction

During the past few years there has been considerable progress in obtaining upper bounds on the
complexity of solving the Boolean satisfiability problem. This line of research has produced new
algorithms for k-SAT (the satisfiability problem for Boolean formulas in conjunctive normal form
with at most k literals per clause). These algorithms were further used to prove nontrivial upper
bounds for SAT (no restriction on clause length).

Upper bounds for k-SAT. The best known upper bounds for k-SAT are based on two ap-
proaches: the satisfiability coding lemma [7, 6] and multistart random walk [10, 11]. These tech-
niques give close upper bounds on the running time of solving k-SAT. The randomized algorithm
in [10] has the (2 — 2/k)"™ bound where n is the number of variables in the input formula; the
randomized algorithm in [6] has a slightly better bound. The multistart-random-walk approach is
derandomized using covering codes in [2], which gives the best known (2 — 2/(k + 1))” bound for
deterministic k-SAT algorithms. For small values of k, these bounds are improved: for example,
3-SAT can be solved by a randomized algorithm with the 1.324™ bound [5] and by a deterministic
algorithm with the 1.473" bound [1].

Upper bounds for SAT (with no restriction on clause length). The first nontrivial upper
bound for SAT is given in [8]: the 2(1~1/2V") bound for a randomized algorithm based on the
satisfiability coding lemma. A close bound for a deterministic algorithm is proved in [3]. A much
better bound for SAT is the 27(1=1/108(2m)) hound, where m is the number of clauses in the input
formula. This bound is due to Schuler [12] who gives a randomized algorithm that solves SAT
using the k-SAT algorithm [7] as a subroutine. Schuler’s algorithm is derandomized in [4]. The
derandomization gives a deterministic algorithm that solves SAT with the same bound.

*School of Computer Science, Roosevelt University, 430 S. Michigan Av., Chicago, IL 60605, USA. Email:

{edantsin,awolpert}@roosevelt.edu

ISSN 1433-8092

In this paper we improve the 27(1=1/108(2m)) 1ound. Namely, we give a randomized algorithm

that solves SAT with the following upper bound on the running time:
2n(1_1n(%)+é(lnlnm)) (1)

Idea of the algorithm. Our algorithm for SAT is basically a repetition of a polynomial-time
procedure P that tests satisfiability of an input formula F'. If F' is satisfied by a truth assignment A,
the procedure P finds A with probability at least p. A lower bound on p is given in Sections 4. As
usual, repeating P on the input formula O(1/p) times, we can find A with a constant probability.

When describing P, we view clauses as sequences (rather than sets) of literals. We divide each
clause into blocks of length k. More exactly, for a given integer k > 1, a clause l1,lo, ..., is divided
into b = [s/k]| blocks as follows:

‘lla--"lk’ ‘lk+1""a12ka lk(bfl)—kla---als

where each block (except the last one) consists of k literals. By the first block we mean the block
consisting of l1,ls,...,l,. We say that a block is true under an assignment A if at least one literal
in the block is true under A; otherwise we say that the block is false under A. If A is fixed, we
omit the words “under A”.

Let F consist of clauses C1, ..., Cy; let A be a fixed satisfying assignment to F'. The procedure
P is based on the following dichotomy:

Case 1. The input formula F' has “many” clauses in which the first block is false. We suppose
that the number of such clauses is greater than or equal to some d. If we choose a clause C;
from C1,...,Cy, at random, the first block in Cj is false with probability at least d/m. Then
we can simplify F' by assigning “false” to all literals occurring in the first block of C;.

7

Case 2. The input formula F' has “few” clauses in which the first block is false. We suppose that
the number of such clauses is less than d. Then we find A as follows. First, we guess those
clauses in which the first block is false. Furthermore, we guess a true block in each such
clause. Now we know a true block for each clause: it is either the first block or the block
we have guessed. Let F' be the formula made up of these m true blocks. Obviously, F” is in
k-CNF. Therefore we can use a k-SAT algorithm to find A.

This dichotomy suggests that P is a recursive procedure that invokes a subroutine S for pro-
cessing Case 2. If the subroutine does not return a satisfying assignment, P simplifies the input
formula (Case 1) and recursively invokes itself on the simplified formula. Both P and S use k and
d as parameters. These procedures are described in detail in Sect. 3.

Clearly, the success probability of P depends on values of the parameters k and d. What values
of k and d maximize the success probability? We answer this question in Sect. 4. We show that if
we take k = log(m/n) + O(loglog(m)) and d =~ n/log® m then we obtain the following lower bound
on the success probability:

1
2_n(1_1n(%)+0(1n1nm))

Organization of the paper. Sect. 2 gives basic definitions and notation. In Sect. 3 we describe
the procedure P and the subroutine S. In Sect. 4 we give a lower bound on the success probability
of P and choose values of the parameters k and d that maximize this bound. Sect. 5 summarizes
the main result: we define our algorithm for SAT and prove bound (1) on its running time.

2 Definitions and Notation

Formulas and assignments. We deal with Boolean formulas in conjunctive normal form (CNF).
By a wvariable we mean a Boolean variable that takes truth values t (true) or f (false). A literal is
a variable x or its negation —x. If [is a literal then -/ denotes the complement literal, i.e. if [is z
then =/ denotes -z, and if [is -z then -/ denotes z. Similarly, if v denotes one of the truth values
t or f, we write —v to denote the complement truth value. A clause C is a sequence of literals
such that C contains no complement literals. A formula F is a set of clauses. If each clause in F
contains at most k literals, we say that F' is a k-CNF formula.

An assignment to variables z1,...,z, is a mapping from {z1,...,z,} to {t,f}. This mapping is
extended to literals: each literal —z; is mapped to the truth value complement to the value assigned
to z;. We say that a clause C is satisfied by an assignment A (or, C is true under A) if A assigns
t to at least one literal in C. Otherwise, we say that C is falsified by A (or, C is false under A).
The formula F is satisfied by A if every clause in F' is satisfied by A. In this case, A is called a
satisfying assignment for F'.

Let F be a formula and [4,...,ls be literals such that their variables occur in F. We write
F[l; =f1,...,l; = f] to denote the formula obtained from F' by assigning the value f to all of
l1,...,ls. This formula is obtained from F' as follows: the clauses that contain any literal from
=l1,...,-ls are deleted from F', and the literals l1,...,[; are deleted from the other clauses. Note

that F[l; =f,...,l;=f] may contain the empty clause or may be the empty formula.
Let A and A’ be two assignments that differ only in the values assigned to a literal [. Then we
say that A’ is obtained from A by flipping the value of I.

The SAT and k-SAT problems. By SAT we mean the following computational problem: Given
a formula F' in CNF, decide whether F' is satisfiable or not. The k-SAT problem is the restricted
version of SAT that allows only clauses consisting of at most & literals.

Notation. Here is a summary of the notation used in the paper.

e [denotes a formula; n and m denote, respectively, the number of variables and the number
of clauses in F’;

A denotes a satisfying assignment to F';

F[l;=f,...,ls=f] denotes the formula obtained from A by assigning f to all literals [, ..., s;

log x denotes log, x;

H(z) denotes the entropy function: H(z) = —z logz — (1 — z) log(1 — z).

3 Procedure P and Subroutine S

In this section we define the procedure P and the subroutine S outlined in Sect. 1. Both procedures
use the parameters £ and d (their values will be determined in the next section).

Description of S. Suppose that an input formula F' has a satisfying assignment such that F' has
only “few” (< d) clauses in which the first block is false under this assignment. Then the subroutine
S finds such an assignment (with some probability estimated in Sect. 4). The subroutine takes two
steps:

1. Reduction of F to a k-CNF formula F' such that any satisfying assignment to F” satisfies F.
2. Use of a k-SAT algorithm to find a satisfying assignment to F”.

At the first step, S guesses all “bad” clauses for some satisfying assignment A, i.e. clauses in
which the first block is false under A. More exactly, the subroutine guesses a (possibly) larger set
of clauses: a set {Bi,...,Bg—1} such that all “bad” clauses are contained in this set. For each
clause B;, the subroutine guesses a true block in B;. Thus, the subroutine gets a true block for
each clause in F' — the guessed true blocks for By, ..., B4_1 and the first blocks for the other clauses
in F. These true blocks make up F’. It is obvious that A satisfies F”.

To test satisfiability of k&-CNF formulas at the second step, S uses a randomized polynomial-
time algorithm that finds a satisfying assignment with an exponentially small probability. We
choose Schoning’s algorithm [10] to perform this testing (we could choose any algorithm that has
at least the same success probability, for example the algorithm [6] based on the satisfiability coding
lemma). More exactly, we use “one random walk” of Schoning’s algorithm, which has the success
probability at least (2 —2/k)™™ up to a constant [11].

Note that if d = 1, i.e. there is no “bad” clause, then § simply finds a satisfying assignment
to the k-CNF formula made up of the m first blocks. Also note that the smaller d, the higher the
probability of guessing a formula consisting of true blocks.

Subroutine S

Input: Formula F' with m clauses over n variables, integers k£ and d.

Output: Satisfying assignment or “no”.

1. Reduce F to a k-CNF formula F’ as follows:
(a) Choose d — 1 clauses By,...,By_1 in F' at random.
Comment: Guess a set that contains all “bad” clauses.

(b) For each B;, choose a block in B; at random and replace B; by the chosen block.
Comment: Guess a true block in each B; and replace B; by this true block.

(c) Replace each clause not belonging to {B1,...,Bg_1} by its first block.
Comment: The first block in each “good” clause is assumed to be true.

2. Test satisfiability of F' using one random walk of length 3n (see [10] for details):

(a) Choose an initial assignment g uniformly at random;

(b) Repeat 3n times:

i. If F' is satisfied by the assignment a then return a and stop;

ii. Pick any clause C in F’ such that C is falsified by a. Choose a literal / in C' uniformly
at random. Modify a by flipping the value of /.

(c) Return “no”.

Description of P. The procedure first calls Subroutine S. The result of S depends on which
case of the dichotomy holds.

1.

The

For every satisfying assignment A (if any), the input formula F' has “many” (> d) clauses in
which the first block is false under A. Then the subroutine never finds A.

. For a satisfying assignment A, the input formula F' has “few” (< d) clauses in which the first

block is false. Then the subroutine returns a satisfying assignment with its success probability.

“no” answer from S is treated as Case 1 of the dichotomy. Therefore, the procedure P simplifies

F' and recursively invokes itself on the simplified formula. To simplify F', the procedure chooses a
clause C' at random from the “long” clauses in F, i.e. the clauses that have more than one block.
Then P assigns f to all literals in the first block of C and reduces F to F[ly =f,...,ly =f]. Why
can we restrict the choice to “long” clauses? Because if the input formula is satisfiable then all
one-block clauses must be true.

Procedure P

4.

5.

Input: Formula F' with m clauses over n variables, integers k& and d.

Output: Satisfying assignment or “no”.

. Invoke S on F, k, and d.

Comment: If there are less than d “bad” clauses, the subroutine returns a satisfying assign-
ment (with its success probability) and stops.

. Choose clause C at random from those clauses in F' that have more than one block.

Comment: We guess a “long” clause in which the first block is false.

. Simplify F' by assigning f to all literals of the first block in C. Namely, if the first block of C

consists of Iy, ...,lg, reduce F to F[l;=f,..., [, =f1].
Comment: We simplify F' by eliminating the guessed variables.

Recursively invoke P on F[l; =f1,... I, =f1].

Return “no”.

Note that Schuler’s algorithm [12] can be viewed as a special case of Procedure P. More exactly,
we obtain Schuler’s algorithm from P by taking d = 1, k = log(2m), and using a different method
for testing k-CNF formulas at step 2 in Subroutine S (the algorithm based on the satisfiability
coding lemma [7] instead of Schoning’s algorithm).

4 Success Probability of Procedure P

Given an input formula F' and some values of the parameters k and d, Procedure P finds a fixed
satisfying assignment A or returns “no”. What is the probability of finding A? In this section, we
give a lower bound on the success probability of P and choose values of & and d that maximize this
bound.

Let s(F,k,d) be the success probability of Subroutine S. More exactly, let s(F,k,d) be the
probability that S finds a satisfying assignment to a satisfiable input formula F' such that F' has
less than d clauses in which the first block is false. Similarly, let p(F, k, d) be the success probability
of Procedure P, i.e. the probability that P finds a satisfying assignment to a satisfiable formula F'.
We use the following notation:

e s(n,m,k,d) = ming{s(F,k,d)}, where the minimum is taken over all satisfiable formulas F'
with n variables and m clauses such that F has less than d clauses in which the first block is
false.

e p(n,m,k,d) = ming{p(F,k,d)}, where the minimum is taken over all satisfiable formulas F'
with n variables and m clauses.

In all next lemmas we assume that d > 2.

Lemma 1. For any n, k and d such that k(d— 1) < n, Subroutine S has the following lower bound
on the success probability:

) > R (e) 2 00

Proof. Let A be a fixed satisfying assignment to F. The probability of finding A is the product of
three probabilities s1, s, and s3. The probability s; is the probability that the set {B1,...,Bgq 1}
of chosen clauses contains all “bad” clauses (step la in §). The probability s is the probability
of guessing true blocks in all By,...,Bg_1 (step 1b in §). The probability s3 is the probability of
finding a satisfying assignment by one random walk (step 2 in S).

Since By, ...,Bg 1 are chosen at random from m input clauses, we have (using Stirling’s ap-
proximation as in [9, exercise 9.42]):

1

(4”1)

For further estimation we use the inequality log(1l + z) < z loge:

> (Vm/2) 27 1) m

81 2

s > Y grH(R)m
= Y g tog(gy) ~(m—dt) log(14 7 5)
S @ 9 (d-1) log(725) —(m—d+1) (m{;d}H) loge

_ Vm (em)f(dfl)

2 d—1

Each true block for a given B; is chosen at random from at most [n/k] blocks, hence

Sy 2> (ﬁ)d_l > (W)d_l _ (%)—(d—l) (l-l—%)_(d_l)

6

Here we use the inequality 1 + z < e® and our restriction on k£ and d:

s2 > (%)_(d_l)e_%(d_l) > (%)_(d_l)e_l

A lower bound on s3 is proved in [11]: 2 (2 — %)7n Using the inequality 1 — z < 27%1°8¢ e have

3
s3> 2(2-2)" = 22 (1-4)"
= 3 3
> 2™ = 29 n(1%%F)

The product of the above bounds for s1, s3, and s3 gives the following bound:

—(d—1 oz e
S1-89-83 > @ (%) (d-1) ()*(dfl) 1. (2/3) 2—n(1—1_,§_)
— ym (emn)_(d_l) 2—n(1—1%§—e)

3

3¢ \K(d—1)

1,138_3).

Finally, we relax the above bound to (v/m/3e) (emn) (@1 9 (1%
U

Our goal is to choose values of the parameters k£ and d as functions of n and m. The values
should be chosen so as to maximize the success probability of Procedure P. We will choose the
functions kg = ko(n,m) and dy = dy(n, m) in two steps. First, we will find a lower bound on the
success probability of P. The maximum of this bound is attained when k is a certain function of
n, m, and d. Then, substituting this function in the bound, we will find dy(n, m) that maximizes
the bound.

Lemma 2. For any n, m, k and d such that

n log (42)
d—1 2 k 2 1+ d—1)loge (2)
n

Procedure P has the following lower bound on the success probability:

p(n,m,k,d) > (@) (emn)*(dfl) 2—n(1—1£,§_5)

e

Proof. Let A be a fixed satisfying assignment to F. Suppose that Procedure P finds A with ¢
recursive calls, where ¢ is some integer in the interval 0 < ¢ < [n/k]. Then P simplifies formulas ¢
times. For each simplification, the probability of guessing a clause in which the first block is false
is at least d/m. Therefore, with probability at least (d/m)?, we get a formula G such that (i) G is
still satisfied by A, (ii) G has less than d clauses in which the first clause is false; and (iii) G has
at most n — kt variables. Using Lemma 1, we get the following lower bound on the probability of
finding A with ¢ recursive calls:

p(n,m,k,d) > (i)t (@) (em(n — kt))~(d-D) g=(n—kt)(1-"°)

= (;)t (42 (emm) (-0 (1=) 14V gon(1-te) (1)
= B(n,m,k,d) - (%)t (- —t)_(d_l) 2’“(1_1%%_6)

1
— Bn,m,k d)_2—t log(2) — (d—1) log(1—&t) + kt(1-1o8)

where 3 denotes the lower bound in the claim:
B(n,m,k,d) = (@) (emn)—(@-1) g-n(1-"*)

Note that the S bound is the same as the bound given by Lemma 1. Since log(l — z) < —zloge
for all 0 < z < 1, we have

p(n,m,k,d) > PB(n,m,k,d)-2" (— log()+24=D) 1og e k—log)
— B(n,m,k,d) - 2t (F(1+=5E) log(<p))
> min [,B(n,m, k,d) -2 (k (1105) —log (<))
=

where the minimum is taken over all ¢ such that 0 < ¢ < [n/k|. The second inequality in (2) is
equivalent to

k (1 + K—Ld_lnloge) —log () > 0.

Therefore, the minimum is attained when ¢ = 0, which proves the claim.
O

It follows from Lemma 2 that Procedure P has the following lower bound on the success prob-
ability:

p(n,m,k,d) > mtin B(n,m,k,d) -2 ((1+M) —log(<)) (3)

What value of £ maximizes this bound for given n, m, and d? A more thorough analysis shows
that this bound is maximum when the inequality on k is replaced by the equality:

log (°7*)

E= —o2d’
d—1)lo
14 (@-Lloge

Consider the bound obtained from (3) by substituting this value for k. Differentiation by d shows
that this bound is maximum when d is close to n/log3(em). However, k and d must be integers,
so we take the ceilings of those values of k and d.

Lemma 3. For any n and m such that 10 <n < em < 2 Vn/ 2 take the following values of k and

d:
_ log()+3loglog(em)
ko - 1+ loge
log3 (em)
do = [10g37gem)-‘
Then

p(n,m ko, do) > (%2) 27”<1’é_3%)

Proof. First, we show that Lemma 2 can be applied for ky and dj, i.e. we show that (2) holds. It
is straightforward to check the first inequality in (2). For the second inequality we have

ko (1 + M) —log (%) =
ko (1 + M) —log(em) + logdy >

log() + 3log log(em) — log(em) + log (W) - 0.

8

Next, we substitute ky and dy in the bound given by Lemma 2. Note that dy = n/log®(em) + &

where 0 < § < 1. Then we have (using n < em)

_ 2)_ _loge
2 n (i)~ (0155°)

p(n,m,ko,do) > (%) (emn) (%=1 (-1
= (4Z) (emn) =+ (emn) em 2" (1)
o () (emn) T o " ()
= (gz) o () i) o (%)
o () o () CE) -0 (1)
(5)

It remains to prove that

2 1 1

2n n+n0g62—n< _ oge)
log”(em) ko ko +2
This inequality is equivalent to

loge loge S 2
ko ko+2 = log?(em)

ko \? 2
1+—) <1
(log(em)) (+ ko) = 08¢

Our assumption em < 2 V/n/2 implies kg < log(em). Indeed,

which, in turn, is equivalent to

ko < log (%) + 3loglog(em) + 1

log(em) — [log (g) — log(log®(em))

< log(em)

Therefore, the first factor in (4) is less than 1 under the assumption. To make sure that the second
factor is less than loge ~ 1.44, we notice that kg > 5. Indeed, if n > 10 then kg > 3loglog(em) >

3loglog(10) > 5.

5 Main Result

O

This section summarizes the contents of Sect(s). 3 and 4. We define the main algorithm (as a
repetition of the procedure P) and we give an upper bound on its running time (using the lower

bound on the success probability of P).

Algorithm A
Input: Formula F in CNF with m clauses over n variables.
Output: Satisfying assignment or “no”.

1. Compute kg, dy, and r as follows:

log(en) +3log log(em)
kO = + loge
log3(em)
_n
dO Irlog3 (em) -‘

- [(3%) 2"(1‘11—38%“

2. Repeat the following r times:

(a) Run P(n,m, ko, dp);
(b) If a satisfying assignment is found, return it and stop.

3. Return “no”.

Theorem 1. Algorithm A runs in time

_loge
O(n3m) 2n(k0+2)
For any satisfiable input formula such that 10 <n < em < 2 V/n/ 2 Algorithm A finds a satisfying
assignment with probability greater than 1/2.

Proof. To prove the first claim, we need to estimate the running time of Procedure P. The procedure
recursively invokes itself at most [n/ko]| times. Each call scans the input formula and eliminates
at most kg variables. Therefore, the procedure performs O(n) scans. Algorithm A repeats the
procedure at most r times, which gives the bound in the claim. Note that we can write this bound
as

I B
O(an) 2"(1 1n(%)+0(1nlnm))
Let p4(n,m) be the success probability of Algorithm A. Then
pA(n’ m) > 1- (1 - p(na m, kOa dO))T

The second claim follows from Lemma 3 and the inequality (1 — z)" < e *".
O

Remark 1. For formulas with a constant clause density, i.e. if m is linear in n, our bound is better
than in the general case:
2” (1_ O(lnlln m))

Remark 2. Our algorithm can be viewed as a generalization of Schuler’s algorithm [12]. The latter
is derandomized with the same upper bound on the running time [4]. It would be natural to try to
apply the same method of derandomization to our algorithm. However, the direct application gives
a deterministic algorithm with a much worse upper bound. Is it possible to derandomize Algorithm
A with the same or a slightly worse upper bound?

10

References

1]

[2]

[10]

[11]

[12]

T. Brueggemann and W. Kern. An improved local search algorithm for 3-SAT. Theoretical
Computer Science, 329(1-3):303-313, December 2004.

E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P. Raghavan,
and U. Schoning. A deterministic (2 —2/(k 4+ 1))™ algorithm for k-SAT based on local search.
Theoretical Computer Science, 289(1):69-83, October 2002.

E. Dantsin, E. A. Hirsch, and A. Wolpert. Algorithms for SAT based on search in Hamming
balls. In Proceedings of the 21st Annual Symposium on Theoretical Aspects of Computer Sci-
ence, STACS’ 0/, volume 2996 of Lecture Notes in Computer Science, pages 141-151. Springer,
March 2004.

E. Dantsin and A. Wolpert. Derandomization of Schuler’s algorithm for SAT. In Proceedings of
the 7th International Conference on Theory and Applications of Satisfiability Testing, SAT 04,
pages 69-75, May 2004.

K. Iwama and S. Tamaki. Improved upper bounds for 3-SAT. In Proceedings of the 15th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 04, page 328, January 2004. A
preliminary version appeared in Electronic Colloquium on Computational Complexity, Report
No. 53, July 2003.

R. Paturi, P. Pudldk, M. E. Saks, and F. Zane. An improved exponential-time algorithm for
k-SAT. In Proceedings of the 89th Annual IEEE Symposium on Foundations of Computer
Science, FOCS’98, pages 628—637, 1998.

R. Paturi, P. Pudldk, and F. Zane. Satisfiability coding lemma. In Proceedings of the 38th
Annual IEEE Symposium on Foundations of Computer Science, FOCS’97, pages 566-574,
1997.

P. Pudlak. Satisfiability — algorithms and logic. In Proceedings of the 23rd International
Symposium on Mathematical Foundations of Computer Science (MFCS’98), volume 1450 of
Lecture Notes in Computer Science, pages 129-141. Springer-Verlag, 1998.

O. Patashnik R. Graham, D. Knuth. Concrete Mathematics: A Foundation for Computer
Science. Addison-Wesley, 2nd edition, 1994.

U. Schoning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In Pro-
ceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, FOCS’99,
pages 410-414, 1999.

U. Schéning. A probabilistic algorithm for k-SAT based on limited local search and restart.
Algorithmica, 32(4):615-623, 2002.

R. Schuler. An algorithm for the satisfiability problem of formulas in conjunctive normal
form. Journal of Algorithms, 54(1):40-44, January 2005. A preliminary version appeared as a
technical report in 2003.

11

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc

ECCC ISSN 1433-8092
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

