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Abstract. We study the computational complexity of deciding the existence of a Pure Nash Equilib-
rium in multi-player strategic games. We address two fundamental questions: how can we represent a
game?, and how can we represent a game with polynomial pay-off functions? Our results show that
the computational complexity of deciding the existence of a pure Nash equilibrium in an strategic game
depends on two parameters: the number of players and the size of the sets of strategies. In particular
we show that deciding the existence of a Nash equilibrium in an strategic game is NP-complete when
the number of players is large and the number of strategies for each player is constant, while the prob-
lem is ¥5-complete when the number of players is a constant and the size of the sets of strategies is
exponential (with respect to the length of the strategies).
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1 Introduction

In recent times a lot of attention has been devoted to the computational aspects of fundamen-
tal concepts in game theory like Nash equilibria [16, 3,4, 11, 13]. However, classic books on game
theory [14] do not explore any connection with computability results.

The question that motivates the present work is which is the complexity of deciding whether a
game has a pure Nash equilibrium? This fundamental question posed by Papadimitriou [16] has
initiated a line of research towards understanding the complexity of computing a pure or a mixed
Nash equilibrium, see [7, 8, 6,10, 5, 9]. However in any of those references there is a lack of a clarity
and uniformity in the representation of games. Therefore there is a need for a framework that could
be used as a basis for analyzing the computational complexity of problems on games.

The main elements that form part of a game are the players and, for each player, their actions
and pay-off functions. We note that, for any problem on games to be computationally meaningful,
the number of players or the number of actions of each player or both should be large, furthermore
the set of actions and the payoff functions could be given in some implicit way. For any of those
elements we can consider explicit descriptions, by means of listing the set of actions and tabulating
the pay-off functions, what we call the standard form, or more succinct representations in which the
pay-off functions are described in terms of Turing machines. When considering a Turing machine
as part of a description, an additional element is needed in it, the time allowed to the machine. In
this way we obtain succinct descriptions of games that are non-uniformly described from Turing
machines. We can further describe the actions explicitly, by giving the list of the actions allowed to
each player, what we call the general form, or succinctly, by giving the length of the actions, what
we call the implicit form.

Another common notion that appears in the literature is that of a game with polynomial time
computable utilities [10,6]. A motivating example is the one of Congestion games proposed in [6]
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(see also [12]). Here, the game can be described by a Turing machine that can be used to compute
the pay-off functions for the different games that arise when we consider different number of players
as well as different number of resources. Thus, in contrast with our previous consideration here the
game is described uniformly from a Turing machine.

This notion leads us to consider families of games that can be defined uniformly in the sense
that there is a DTM working in polynomial time that gives the way of computing the utilities when
the game is played with different number of players and/or different sets of actions. In this case we
can again consider uniform families defined in general or implicit forms.

In this work we solve the fundamental question on the complexity of deciding the existence
of a pure Nash equilibrium (the SPN problem) for strategic games. In the case of non-uniform
game families we show that the SPN problem for games given in implicit and in general form is
computationally hard in the first case £5-complete and in the second NP-complete. When the game
is given in standard normal form the SPN problem is tractable. The following table summarizes our
results.

representation Exist PNE?
implicit Y P -complete
general NP-complete
standard AC?O

general with fixed number of players|P-complete

When we consider families of games defined uniformly and implicitly from a polynomial time
deterministic Turing machine M, we show that the SPN problem is in ¥%. Furthermore we show
that there are Turing machines for which the problem is ¥3-hard. Contrasting with this, when the
representation of the games is in general form the positive and hardness results are for the NP class.

The paper is organized as follows: Section 2 contains basic definitions. In Section 3 we study the
SPN problem for non-uniform families of games. Finally, Section 4 contains the results for uniform
families of games.

2 Strategic games

The following is the mathematical definition of an strategic game borrowed form [14]
Definition 1. An strategic game I' is defined by the following components:

— A set of players denoted by N = {1,...,n} with n being the number of players.
— A finite set of actions A; for each player i € N. The elements of A1 X ... X A, are called strategy

profiles.
— An utility (or payoff) function u; for each player i € N mapping A1 X ... x A, to the integers.

Given an strategy profile a € A; X ... x A, and given any action a; € A;, we denote by (a_;, a;)
the strategy profile obtained by replacing the ¢-th component of a by a;.

Definition 2. An strategy profile a* = (a3, a3, ..., a}) is an Strategic Pure Nash (PNE) equilibrium

if, for any player i and any a; € A; we have u;(a*) > u;(a*;,a;).

A Pure Nash equilibrium is an strategy profile in which no player can improve their utility
by changing their action. Determining whether Pure Nash Equilibria exist is a problem that have
attracted much research in computer science (see [16]). This problem can be formulated as follows:



Strategic Pure Nash (SPN)
Given an strategic game I', decide whether I" has a Pure Nash equilibrium.

All through the paper we use standard notation for computational complexity classes. See for
example [1,2,15].

3 Non-uniform families of games

In the context of computational complexity it is very important to define how an input game I"
is represented. In order to define an instance of the SPN problem we have to make clear how to
describe the set of players, and for each player their set of actions and pay-off functions. Depending
on the succinctness of the description of the action sets and depending on whether the pay-off
functions are described by Turing Machines or tables we define three families of games that differ
in their representation.

All the T™s appearing in the description of games are deterministic. We use the following
convention: there is a pre-fixed interpretation of the contents of the output tape of a T™ so that,
both when the machine stops or when the machine is stopped, it always computes a value. Let also
assume that X' is a pre-fixed alphabet. Hence we can describe the pay-off functions of a game by
giving a tuple (M, 1%) where M is a deterministic TM (DTM) and ¢ is a natural number bounding
its computation time. The interpretation is that given an strategy profile a and a natural number
i, the output of M on input (a,4) is the value of the pay-off function of the i-th player on input a.

First, we consider a way of describing the set of actions in which they are not given explicitly and
directly, by listing all their actions, but succinctly and implicitly. We are interested in descriptions
whose length does not depend dramatically on the number of the actions, but depends on the length
of the actions. Such descriptions are exponentially more succinct than the sets they describe. The
following definition captures this idea.

Strategic games in implicit form!. A game is a tuple I = (1*,1™, M, 1?). This game has
n players. For each player i, their set of actions is 4; = X™ and (M, 1*) is the description
of the pay-off functions.

The second family of games is defined by considering that the set of actions of each player is
given explicitly.

Strategic games in general form. A game is a tuple I' = (1", Ay, ..., A,, M, 1%). Tt has
n players, for each player 7, their set of actions A; is given by listing all its elements. The
description of their pay-off functions is given by (M, 1%).

Finally we consider a less succinct way to describe games. This is the usual description adopted
in basic books giving us a complete description in form of a bimatrix or trimatrix (set of bimatrices).

Strategic games in standard form. A game is a tuple I' = (1", Ay, ..., A, T). It has n
players, and for each player 7, their set of actions A; is given explicitly. T is a table with an
entry for each strategy profile ¢ and a player 7. In this case u;(a) = T'(a,1).

! In the games in implicit form we assume A; = X™, this is not a major restriction because we can also consider
A; C Y™ with just small modifications. In this case I' = (1",1™, M1, ... M,, M,1*) with M, ..., M,, M being
DTM. The game is played by n players. For each player ¢, M; is a succinct description of their set of actions
A; C XS™. We say that a; € A; iff M; accepts a; in at most ¢ steps. Given a and 7, u;(a) is the output of M(a, i)
after at most ¢ steps.



We analyze the complexity of the SPN problem in the different representations of games an-
swering in this way the question posed by Papadimitriou in [16] for the case of strategic games. In
the following we classify this problem and show that it is hard in all the representations for the
matching complexity class. The exception is the case of the standard form and the general form
when the number of players is constant when the problem can be solved in polynomial time. Before
presenting our results we would like to introduce a gadget that we will use in all the constructions
of games in the hardness proofs. The object is to associate an strategic game to a given property
in such a way that the game has a PNE only in the case that the property is true.

Gadget game: Let P be a property. We associate to P the strategic game I'p defined as
follows: It has players 1 and 2. Their action sets are the same, A; = As = {0,1}. And the
pay-off functions are

5 if P is true,

4 if Pisfalse Aag =0Aay =1,
ui(ai,a2) =<3 if Pisfalse Aa; =1Aas =1,

2 if Pisfalse Aai =1Aae =0,

(1 if Pisfalse Aag =0Aaz =0.

(5 if P is true,

3 if Pisfalse Aai =0Aas =1,
ug(ai,a0) =< 2 if Pisfalse Aai =1Aag =1,

1 if Pisfalse Aag =1Aag =0,

4 if Pisfalse Aai=0Aa2 =0

\

Proposition 1. Given a property P, the gadget game I'p has a PNE if and only if the property P
15 true.

Proof. When P is true, since the utility of each player is equal to the maximum value 5 indepen-
dently of their strategy, then no player has incentive to change their strategy. Hence, every strategy
profile of I'p is a Nash equilibrium.

Now let us assume that P is false, whatever is the strategy profile (a1, as), both players have
an incentive to change their strategy:

ifar =0Aag =0, ul(0,0) < ’u,1(1,0)
ifar =0Aag =1, UQ(O, 1) < ’U,Q(0,0)
ifar =1Aag =0, UQ(I,O) < ’U,Q(l, 1)
ifar =1Aag =1, ul(l, 1) < u1(0, 1)
Hence, no strategy profile of I'p is a Nash equilibrium. O

First we study the complexity of deciding whether a game in implicit form has a PNE. We show
that this problem is really hard since it is complete for the second level of the Polynomial Hierarchy.
Observe that the proof of Theorem 3.4 of [10] can be rewritten to show that the problem of deciding
whether a given strategy (of a game given in implicit form) is a Nash equilibrium is coNP-complete.
At first glance this fact seems to imply that the hardness of the SPN problem follows trivially from
the coNP-completeness and the additional existential quantification. It is worth noticing that this
approach is false in general as it is known that the equivalence problem for circuits is coNP-complete

4



while the isomorphisms for circuits is not ¥5-hard unless the polynomial hierarchy collapses to the
third level [17].

Theorem 1. The SPN problem for strategic games in implicit form is ¥5-complete.

Proof. Let I' = (1",1™, M, 1) be an strategic game in implicit form, the problem of deciding
whether I'" has a PNE can be formalized as follows:

I'eseNn& daj € Ay ...Jay € Ay Va1 € Ay ... Va, € A,
ui(a*q,a1) <wui(a*q,al) A... ANug(a®,,,a,) < uy(a*,,,al).

Hence we can define an Alternating Turing machine that guesses the strategy profile (aj,...,a;,)
and then using a universal state it can verify that this strategy profile is a Nash equilibrium. Since
the length of any action is bounded by m, and for each player %, u; can be computed in time ¢, then
the computation time of this Alternating Turing machine is bounded by a polynomial with respect
to max{n,m,t}. Then SPN € 5.

In order to prove the hardness of the SPN problem let us consider a restricted version of the
Quantified Boolean Formula, the Q2SAT problem, which is ¥f-complete. Recall that Q2SAT is
defined as follows:

Given @ = Jay,...,0n,V61,... Bn, F where F is a Boolean formula over the boolean variables
a1,y QnyyP1,- .., PBny, decide whether @ is valid.

For each @ we define a game I'(®) as follows. There are four players:

— Player 1, the existential player, assigns truth values to the boolean variables «;, ..., ay,. Their
set of actions is A1 = {0,1}"™ and a1 = (o, ... ayp,) € Aj.
— Player 2, the universal player, assigns truth values to the boolean variables 31, ..., 3,, and then

their set of actions is A = {0,1}" and a2 = (B1,...,0n,) € Aa.
— Players 3 and 4 avoid entering into a Nash equilibrium when the actions played by players 1
and 2 do not satisfy F'. Their set of actions are A3 = A4 = {0,1}.

Let us denote by F(a1,a9) the truth value of F' under the assignment given by a; and as. Now
it only remains to define the utility functions in such a way that they guarantee that @ is valid if
and only if I'(®) has a Nash equilibrium.

1 if F(al,ag) = 1,

{ 0 otherwise.

ul(alaa2aa‘3aa4) -

1 if F(al,ag) = O,

uz(ar, a2, 03,04) = 0 otherwise

5 if F(a1,a2) =1,

4 if F(a1,a2) =0Na3=0Aaq =1,
ug(a1,a2,a3,a4) =<3 if F(ay,a3) =0Aaz3=1Aag =1,

2 if F(aj,a2) =0Aaz3=1Aay =0,

(1 if F(ai,a2) =0Aa3=0Aas=0.



5 if F(a1,a9) =1

3 if F(a1,a2) =0ANaz3=0Aaq =1,
us(a1,a2,a3,a4) =< 2 if F(ay,a2) =0Aaz3=1Aag =1,

1 if F(aj,a2) =0Aaz3=1Aas =0,

(4 if F(a1,a2) =0Aa3 =0Aay4 =0.

Finally, we claim: @ is valid < I'(®) has a PNE.

Let us assume that & is valid. Then there exists a; € {0,1}"" such that for all ay € {0,1}"2,
F(ay,a2) = 1. In terms of the game I'(®) this means that if player 1 plays action ai, for all
as € Ay, a3 € As, and a4 € Ay, player 1 has no incentive to change their action: ui(a1, a9, as,as) >
u1(al, az,a3,a4) for any a} € A;. Moreover, for any as € Ay we have that us(a1,as,a3,a4) = 0.
Then player 2 neither has incentive to change her strategy when player 1 selects a1. Finally, since
F(ay,a2) = 1, then us(a1, a2,as3,a4) = us(ai,as,as,as) = 5. for any ag € As and for any a4 € Ay.
Hence, given ay, if we fix the values of a2, a3 and a4 arbitrarily, no player has incentive to change
her strategy. There will be at least as many pure Nash equilibria as the number of elements of
AQ X A3 X A4.

Now let us assume that @ is not valid. It means that for any a; € A; there exists as € As such
that F'(a1,a2) = 0. In the case that F'(a1,a2) = 0, we have that players 3 and 4 play the same role
than players 1 and 2 of the gadget game I'p being P equal F(a1,a2) = 1. Since P is false players 3
and 4 always have incentive to change their strategies as we have shown in the proof of proposition
1. Hence, if F(a1,a2) = 0 then for any as € Az and any a4 € A4, (a1,a2,a3,a4) is not a Nash
equilibrium in this case.

If F(a1,a2) = 1, since @ is not valid, there exists a}, € Ay such that F(a;,a}) = 0. There-
fore player 2 has incentive to change her strategy as to ah because us(ai,a2,as,a4) = 0 and
ug(a1,ah,as,as) = 1. But the strategy profile (a1,a),a3,as) is not a PNE either, as we have seen
before.

It remains to show that a description of the above game in implicit form can be obtained in
polynomial time. Note that the number of players is 4 and their set of actions can be described
succinctly with respect their length. It only remains to show that we can construct a DTM that
computes their pay-off functions in polynomial time with respect to number of variables of F'.

Consider the following T™ (which depends on F):

input ai,a2,a3,a4,1
if Eval(F,a1,a2)

then
if i <3 then u =1 else u =5 end if
else
if (i=3ANazs=0ANas=1)V (i=4 AN a3=0 A as =0) then u =4 end if
if(i=3ANas=1ANas=1)V (i=4 ANas=0 A ag=1) then u=3 end if
if(i=3ANazs=1ANas=0)V (i=4ANaz3=1A as=1) then u =2 end if
1f(z—3/\a3=0 ANas=0)V (i=4 AN as=1 A as =0) then u =1 end if
if ¢ < 3 then u =0 end if
end if
output u



where Eval is a ™™ that evaluates a CNF formula in time O((n + |F|)2. The overall running time
of the machine can be bounded by (n + |F|)3. Furthermore its representation can be computed in
polynomial time from F. O

In the previous proof, for the sake of clarity, the number of players has been selected to be four.
A similar game with only two players can be easily defined.

Given a formula @ = 3o, ..., an, VP, .. Bn, F where F' is a Boolean formula over the boolean
variables a1, ..., n,,B1,---,Fn,, we define a game I'(P) as follows. There are two players:

— Player 1, the ezistential player, assigns truth values to the boolean variables ay,...,a,, and
sets the value of the additional bit a3. Their set of actions is 4; = {0,1}™ 1.

— Player 2, the universal player, assigns truth values to the boolean variables 1, ..., 8, and sets
the value of the additional bit as. Then their set of actions is Ay = {0,1}"2*1.

Let us denote by F'(a1, as) the truth value of F' under the assignment given by a1 = (a1, ..., an,)
and ag = (f1,-..,0Fn,). Now it only remains to define the utility functions in such a way that they
guarantee that @ is valid if and only if I'(®) has a Nash equilibrium.

(5 ( )=1

4 ( )=0Aaz3=0Aas =1,
ui(ai,a2,a3,a4) = ¢3 if F(aj,a2) =0Aag=1Aas =1,

2 ( )=0Aag=1Aa4 =0,

|1 ( )=0Aa3=0Aas=0.

(

1
if F(a1,a2) =0ANaz3=0ANaq =1,
0

UZ(al,a25a3aa4): < /\a3=1/\a4=1,
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Each player controls with the additional bit the corresponding gadget game. Therefore we obtain
the same hardness result for the case of two players.

Corollary 1. The SPN problem for games in implicit form with k players is £5-complete, for any
k> 2.

Contrasting with the previous results, when we allow to describe the set of actions explicitly,
although the SPN problem remains hard, it is not as hard as the sPN problem for games where the
set of actions are described implicitly.

Theorem 2. The SPN problem for strategic games in general form is NP-complete.

Proof. Consider I' = (1", Ay, ..., Ap, M, 1*), We can conjecture a strategic profile (a?,...,a}) and
then check that for any ¢ and any a; € A; u;(a*) > u;(a*;,a;). Each computation of M takes time
at most ¢ and the overall number of tests to be performed is at most ), , |[4;|. As the sets of
actions are given explicitly the Nash equilibrium property can be checked in time polynomial in
the input size.

In order to prove the hardness let us reduce the Satisfiability of boolean formulae problem to
the SPN problem in general form. Given a formula F' in conjunctive normal form on n variables



with n > 2, we consider the game I'(F') defined as follows: We have n players, for each 1 <14 < n,
A; = {0, 1}. Therefore the set of strategic profiles coincides with the set of truth assignments. The
utilities are defined as follows:

Nar=0Aaz =1,

(5 (a) =1

4 (a) =0 ANa; =0Aaz =0,
ui(a) =¢3 ifFla)=0Aa; =1Aas =1, uz(a) =

2 (a)=0

(1 (a) =0

1
0
=0Aa; =0Aaz =1,
0
0

ANar =1ANags =0,
ANar =0ANae =0,

/\a1:1/\a2=1,
ANai =1ANag=0.

N W R Ot
—
anrY
/\/\EAA
\/\/\Q./\_/\/

And, for any 57 > 2
5 if F(a) =1,
uj(a) = { (@)

1 otherwise.

Let us show that F is satisfiable iff I'(F) has a PNE. If F' is satisfiable, any strategy profile
that satisfies F' is a PNE since all the players have the maximum utility value when they play this
strategy profile. If F' is not satisfiable, then no player 7, for 3 < ¢ < n has any incentive to change
their strategy, the utility value is always equal to 0. But now players 1 and 2 play the same role
of the players of the gadget game I'p being P equal to (Ja F(a) = 1). Since such a does not exist,
then P is false and then players 1 and 2 always have incentive to change their strategy. Hence, in
this case I'(F') does not have a PNE.

Notice that I'(F) can be represented in general form by (1",{0,1}...{0,1}, MF 1(n+FD?)
where M ¥ is a T™ that on input (a, i), evaluates the formula F on input a. Afterwards it implements
the utility function of the i-th player. Since we can construct M in polynomial time and its
computation time is also polynomial, always respect to |F|, we have that the representation of
I'(F) in general form can be constructed in polynomial time with respect to |F|. O

The hardness in the above proof is obtained by constructing a game in which the number
of allowed actions for each player is two. Hence we obtain the same hardness result even in the
restricted case of considering a two actions for each player.

Corollary 2. The SPN problem for strategic games in general form is NP-complete, even in the
case that the number of actions of each a player is some constant k, for any k > 2.

Contrasting with the previous hardness results, by analyzing the case of strategic games in
general form when the number of players is fixed, we can see that the SPN problem becomes
tractable.

Theorem 3. For any k > 2, the SPN problem for strategic games in general form with k-players
1s P-complete.

Proof. For the membership part let us consider a game I'y = (A1, ... Ay, M, 1) with k players, being
k a constant. We assume for simplicity that each A; has m actions each one coded in O(logm) bits,
therefore Iy has size O(kmlogm + t + |M|). Since the number of strategies for each player is at
most m and the number of players is a constant k, verify that an strategy profile of I}, is a PNE
can be done in time O(tmk). Hence we can construct a DTM such that on input (A;,... Ag, M,1%)
verifies whether at least one of their strategy profiles is a PNE. Since there are at most m* strategy
profiles the total computation time of this machine is O(m*tmk).



For the hardness we consider the Circuit Value Problem (cvP). Recall that its instances are
pairs (C, z) being C a description of a boolean circuit with n input gates and one output gate, and
z an assignment of 0,1 values to C’s input gates. Let us consider the gadget game I'p considering
that P is equal to (C'(z) = 1), i.e. the circuit C on input z evaluates to 1. Hence by the proposition
1 we have that (C,z) € cvp iff I'p has a PNE.

It remains to show that the general representation of the game I'p can be computed in loga-
rithmic space with respect to the length of (C, z). Note that we can represent I'p in general form
as ({0,1},{0,1}, M, 1), where M is the following T™:

input ai1,a2,?

if EvalC(C, z)
then output 5
else

if(i=1ANai=0Aa2=1)V (=2 A a1 =0 A a2 =0) then output 4 end if
if(i=1ANa1=1ANax=1)V (i=2 A a1 =0 A a2 =1) then output 3 end if
if(i=1ANa1=1ANa2=0)V (=2 A a1=1 A a2 =1) then output 2 end if
ifi=1ANa1=0Aa2=0)V (=2 A a1 =1 A a2 =0) then output 1 end if

end if.

where EvalC is a polynomial time T™™ that on input (C,z) computes C(z) in O(n?) time and the
time allowed is t = |(C, z)|3.

Hence, it is easy to see that the representation of I'p in general form can be computed in
logarithmic space with respect to |(C, z)|. ]

Finally, we provide lower complexity bounds for the SPN problem when games are given in
standard form.

Lemma 1. The SPN problem for strategic games in standard form is in AC°.

Proof. In order to prove that the SPN problem is in AC® we show that the property that defines
the problem can be expressed as a formula in First Order Logic in the following way:

SPN = \V  IS-SPN(a"),
a*€EA1X...XAp

where IS-SPN(a*) = (a* is a PNE). This last predicate can be expressed as
IS-SPN(a /\ BR(a

where BR(a*,%) = (Va; € A; ui(a”;,af) > u;(a’;,a;)). Hence, we can express BR as follows:

—Z’

BR(a*,i) = /\ GEQ(a*,i,a;) and
a;EA;
GEQ(a*,i,ai) = \/ (N (wilaZya))ll] = wi(aZ;, a:)[l])
1<k<s k<I<s
Aui(a’y, a7)[k] = 1 Aui(aZ;, ai)[k] = 0),

where s is the maximum length of the utility values and u;(a)[k] denotes the k-th bit of u;(a).
O



4 Uniform families of strategic games with polynomial time computable
utilities

In the previous section we have analyzed the representations of the strategic games as potential
inputs of the SPN problem. Here we are interested in families of strategic games that arise when the
utility functions are computable in polynomial time. Thus we are interested in families of games
defined uniformly by Turing machines. But, what does exactly mean that a game has polynomial
time computable pay-off functions? Even though in many papers studying the computational com-
plexity of some specific games, it is assumed that the utilities are computable in polynomial time
(see for example [6,10,7-9]) and this assumption has had different interpretations.

For instance, Gottlob et al. consider that “each player has a a polynomial time computable
real valued utility function” however a machine computing such function is not given as part
of the description of a game [10]. Fotakis et al. [6] consider congestion games with a different
representation. A congestion game is defined by n players, a set E of resources, and a delay function
d mapping E x {1,...,n} to the integers. The action for each player are subsets of E. The pay-off
functions can be computed as follows:

uia1,...,an) = —(D_ d(e, f(ay,...,an,€)))

eca;

being f(a1,...,an,e) = |{i | e € a;}|-

In the second case, they consider a uniform family of games in the sense that the different
instances are given by considering different number of players, action sets and delay functions, but
in each of them the pay-off functions can be computed by a DT™M which works in polynomial time
with respect to n and m, being m the maximum length of the actions a;.

Following the same spirit of Fotakis et al., for each DT™M M we define uniform families of
strategic games in such a way that the pay-off functions of each game in the family are computed
by M. Moreover, as in the previous section, we consider further refinements according to the input
representation.

Let M be a DTM and let us assume that an alphabet X' is fixed. We define the following uniform
families of games associated to M:

M-implicit form family?. It is an implicit description of the family of games in which
the pay-off functions are computed by the bT™M M. Each instance of the family specifies
the number of players n and their set of actions in an succinct way. We consider that a
description of a set is succinct when the length of the description is at most polynomial with
respect to its length. Formally, the M-implicit form family is defined as follows:

{(am, 1™, ...,1™) | n,mq,...,m, € N}.

In the game described by (17,1™, My,..., M,), if a is an strategy profile of such game, and
1 <i < m, then the utility of the i-th player on a is defined as u;(a) = M(a,1).

M-general form family. It is a general form description of the family of games in which
the pay-off functions are computed by M. Each instance of the family describes a game
by giving the number of players n and the set of actions of each player. Here, every set of

% In the games in implicit form we assume 4; = ¥<™i. We can also consider A; C ¥<™i_ In this case the machine
M has to be able to recognize whether a given action a; belongs to A;.
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actions is given by listing all its elements. Formally, the M-general form family is defined as
follows:

{(1", Ay,..., A,) | n,m € NAV: A; is given by listing all its elements in X*}

As in the M-implicit form, in the game described by (1", A;,..., A,), if a is an strategy
profile of such game, and 1 < ¢ < n, then the utility of the i-th player on a is defined as
ui(a) = M(a,1).

Hence, given a family of games defined from a polynomial time DTM M, we can also pose the
question of determining whether a game of this family has a Nash equilibrium.

M-Strategic Pure Nash (M-SPN)
Given an strategic game I', whose pay-off functions are defined by M, decide whether I" has
a Pure Nash equilibrium.

As we have seen in the previous section, depending on whether the games are described in
implicit or general form we obtain different hardness results. In the following we show that the
M-sPN problem for the implicit form games is £5-complete for a particular polynomial time DTM
M, while the M'-sPN problem for the general form games is NP-complete for another polynomial
time DTM M. Since we are considering uniform families of games, the main difference with respect
to the proofs of the analogous results in the previous section is that the DTM computing the utilities
of the game defined in each one of the reductions is not parameterized by the quantified boolean
formula @ in the case of the ¥5-hardness results, or by the boolean formula F in the case of the
NP-hardness results. Now these formulae will be part of the input of the machines as a strategy for
some player.

Theorem 4. There exists a polynomial time DTM M for which the M-SPN problem for games in
the M -implicit form family is ¥ -complete.

Proof. Following the same arguments of the membership proof of theorem 1, for any fixed polyno-
mial time DTM M, the problem of deciding whether a game I" in M-implicit form has a PNE can
be solved by an Alternating T™M, with 2 alternations, existential and universal, in polynomial time.
Hence M-sPN €X5.

In order to prove the hardness, we have to define first the polynomial time DTM M. Let M be
the T™ such that on input (P, a1, a2,as,a4,i) being & = Jay,...,0n,Yp1,... By, F an instance of
the Q2SAT problem, a; € A; = {0,1}", as € Ay = {0,1}™ and asz,as € {0,1}, computes the
utilities defined in the proof of theorem 1, but now we consider that the quantified boolean formula
@ is an element of the input. It is easy to see that M works in polynomial time with respect to the
input length.

Once we have defined M, we can show that Q2SAT can be reduced to M-SPN in implicit form.
For each @ we define a game I'(®) with five players. Players 1, 2, 3 and 4 are defined exactly equal
to the four players of the game defined in the theorem 1. The difference is that now we have an
additional player, player 0 who has a unique action that defines the rules of the game, i.e. Ay = {®}.
As we have shown in theorem 1, @ is valid if and only if I'(®) has a PNE, and the description of
I'(®) in implicit form can be obtained in polynomial time. O

From the previous proof it is easy to show that for any polynomial time DT™M M the M-SPN
problem for games in M-implicit form is in 5.
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Corollary 3. For any polynomial time DTM M, the M-SPN problem for games in the M -implicit
form family is in ¥5.

Using similar arguments we can modify the proof of theorem 2 in order to obtain the following
result. We only have to consider an additional player whose set of actions contains only the input
formula for the reduction.

Theorem 5. There exists a polynomial time DTM M for which the M-SPN problem for games in
the M -general form family is NP-complete.

Corollary 4. For any polynomial time DTM M, the M-SPN problem for games in the M-general
form family is in NP.

If we consider the results presented in [10], they propose to study, among many other problems,
the complexity of the SPN problem for games in

U M-general form family,
MepolyTM

where polyTM is the class of T™M working in polynomial time. They assume that the utility functions
of their games are polynomially computable functions and they show that deciding whether a game
in general form has a PNE is NP-complete. To prove the membership in NP, they strongly need
to make use of the assumption that the utilities are polynomial time computable. However, in
their hardness result, they construct polynomial time computable utilities, but the utilities are
non-uniform in the sense that for each instance they get a different utility function.

Our contribution is different, for the uniform families our reduction produce a Turing machine
for all the game instances. Furthermore, in the previous section, for non-uniform families of games,
we give a general way of describing all the games with “computable utilities”. In order to prove
our complexity results, we do not have to assume that the description of the pay-off functions can
be given as polynomial time DTM, we represent any ’computable’ pay-off function by giving a DTM
and a natural number ¢ (in unary) bounding its computation time.
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