
Reviewing Bounds on the Circuit Size of the

Hardest Functions

Gudmund Skovbjerg Frandsen
Peter Bro Miltersen

BRICS∗

Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

Email: {gudmund,bromille}@daimi.au.dk

March 16, 2005

Abstract

In this paper we review the known bounds for L(n), the circuit
size complexity of the hardest Boolean function on n input bits.
The best known bounds appear to be

2n

n
(1 +

log n

n
−O(

1

n
)) ≤ L(n) ≤ 2n

n
(1 + 3

log n

n
+ O(

1

n
))

However, the bounds do not seem to be explicitly stated in the
literature. We give a simple direct elementary proof of the lower
bound valid for the full binary basis, and we give an explicit proof
of the upper bound valid for the basis {¬,∧,∨}.
Keywords: Computational complexity

1 Introduction

Shannon introduced the Boolean circuit size as a complexity measure [1],
and showed upper and lower bounds for the minimum number of gates,

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

1

Electronic Colloquium on Computational Complexity, Report No. 32 (2005)

ISSN 1433-8092

L(n), needed in a Boolean circuit for computing a hardest function in
Bn, the set of Boolean functions with n inputs and 1 output. Shannon
proved that for every ε > 0 and n sufficiently large [1]

(1− ε)
2n

n
< L(n) <

2n+2

n

The first improvement came when Lupanov showed a better upper bound
[2]:

L(n) ≤ 2n

n
(1 + O(

1√
n

))

Lupanov essentially closed the gap so that together with Shannons orig-
inal lower bound it was now known that

L(n) =
2n

n
± o(

2n

n
)

Later Lutz showed that for every real α < 1 and almost every n [3]

2n

n
(1 + α

log n

n
) < L(n)

Lutz really showed a much more general result, and we give in section 2
a simple direct proof that

2n

n
(1 +

log n

n
−O(

1

n
)) < L(n)

Our proof is robust in that a change of the basis or simple improve-
ments seem only to effect the O(1

n
) term. One might take this as an

indication that it is also possible to give tight bounds on the second
order term in the expression for L(n). It appears that several text
book authors have observed that one can make a tighter analysis of Lu-
panovs construction [4, 5, 6], and they more or less explicitly deduce that
L(n) ≤ 2n

n
(1 + O(log n

n
)). We present such a tight analysis in section 3

where we particularly seek to minimize the constant hidden under the
big-Oh notation obtaining the bound

L(n) ≤ 2n

n
(1 + 3

log n

n
+ O(

1

n
))

2

2 Lower bound

We will demonstrate the lower bound by showing how to transform a
Boolean circuit into a list of instructions for a simple stack machine and
then use a counting argument to bound the length of the latter.

Each instruction for the stack machine is either a push or a binary
Boolean operation. Only the push operation has an argument, which
is the number of an input or an (earlier) Boolean operation. Inputs are
numbered 1, . . . , n, and Boolean operations are numbered n+1, . . . , n+s
in a stack program with s Boolean operations. Execution of a push
operation places an input or an earlier computed bit designated by the
argument on top of the stack. Each Boolean operation removes the 2
topmost elements of the stack and writes a single element onto the stack.
After execution of all instructions, there should be exactly one element
left on the stack, namely the result.

Algorithm 1 Translation of circuit to stack program

Require: circuit C of size s described as set of gates {gi ← gi1 op gi2 | i =
n + 1, . . . , n + s} where g1, . . . , gn are inputs and gn+s is output gate

Ensure: Stack program P computes same function as C

1: Let P initially be empty
2: virtualPush(n + s)

Procedure virtualPush(i)
3: if gi is an input then

4: add program line “push i” to P
5: if gi is already computed by the jth Boolean operation in P then

6: add program line “push n + j” to P
7: if gate gi ← gi1 op gi2 is not computed so far then

8: virtualPush(i1)
9: virtualPush(i2)

10: add program line “operation op” to P

Algorithm 1 describes a recursive procedure virtualPush that given
the output gate of the circuit will construct a stack program computing
the same function as the circuit, and the number of gates in the circuit
will be equal to the number of Boolean operations in the stack program.

If the stack program contains s Boolean operations, then it contains
s+1 push operations. To see this observe that when executing the stack
program, each push operation increases the stack size by one and each

3

Boolean operation decreases the stack size by one. Since the stack is
initially empty and it contains only the single output value at the end,
there must be exactly s + 1 push operations.

The argument of a push operation can be represented by dlog(n+ s)e
bits. A single bit is needed to distinguish push operations from Boolean
operations, and 4 bits suffice to distinguish the Boolean operations. In
total the stack program can be described using at most (s+1)(c+log(n+
s)) bits, for c = 7. Since there are 22n

distinct Boolean functions on n
inputs, for some function the optimal circuit size s must satisfy that
(s + 1)(c + log(n + s)) ≥ 2n.

The last inequality implies that s > 2n/n · (1 + log n/n − c/n) for n
sufficiently large. We will argue this lower bound by way of contradiction,
so we assume that s ≤ 2n/n · (1 + log n/n − c/n), which by a simple
rewriting is equivalent to n + s ≤ 2n/n · (1 + log n/n − c/n + n2/2n).
Using that log(1+x) ≤ x log e, the assumption implies that log(n+ s) ≤
n− log n + (log n/n− c/n + n2/2n) log e. Combining with the inequality
of the previous paragraph, we see that

2n ≤ (s + 1)(c + log(n + s))

≤ 2n

n
(1 +

log n

n
− c

n
+

n

2n
)(n− log n + c + (

log n

n
− c

n
+

n2

2n
) log e)

≤ 2n

n2
(n + log n− c +

n2

2n
)(n− log n + c + (

log n

n
− c

n
+

n2

2n
) log e)

≤ 2n

n2
(n2 − log2 n + O(log n))

< 2n for n sufficiently large

Thus we have a contradiction proving that s > 2n/n · (1+ log n/n− c/n)
for n sufficiently large.

Note that the two most significant terms in the bound seem robust.
Simple restrictions on the basis or any simple improvements in the stack
representation seem only to influence the value of c. One might also try
to improve the lower bound by using that many stack programs com-
pute the same Boolean function. By changing the order of lines 8 and
9 in Algorithm 1 (and changing the Boolean operation in line 10 corre-
spondingly), one may generate up to 2s distinct stack programs that all
compute the same Boolean function. However, a formalisation of this
argument will only influence the value of c, and cannot change the two
most significant terms in the bound.

We have shown

4

Theorem 1

L(n) ≥ 2n

n
(1 +

log n

n
− O(

1

n
))

3 Tight analysis of Lupanovs upper bound

Recall the (k, s)-Lupanov representation of a Boolean function f on n
bits as it is described by Savage [6].

This representation has the form

f(x) =
p∨

i=1

∨

v

f
(r)
i,v (a) ∧ f

(c)
i,v (b)

where input x = (x1, . . . , xn) is divided in two parts a = (x1, . . . , xk)
and b = (xk+1, . . . , xn). The 2k possible a-tuples of bits are divided into
p = d2k/se lists A1, . . . , Ap containing s tuples each (though Ap may

contain fewer tuples). v ranges over bit tuples of length s. f
(c)
i,v (b) = 1

precisely when v describes the table of function values f(a,b) arising

when a runs through the tuples in Ai. f
(r)
i,v (a) = 1 precisely when there

is some j such that a is the jth tuple in Ai and the jth bit of v is 1.
A circuit for f may be constructed in three steps. In the first step,

we use 2(2k + 2n−k) gates to compute all minterms over a and b. In the

second step we use p2n−k or-gates to compute f
(c)
i,v for all i,v, and we use

p2s or-gates to compute f
(r)
i,v for all i,v. In the third step f is computed

using 2p2s gates.
Arguments for these bounds are given by both Wegener [5] and Savage

[6] except for our bound p2s on the computation of f
(r)
i,v , where they

mention only the weaker bound 2k+s. To see that our bound is valid,
observe that we may compute f

(r)
i,v separately for each i. This accounts

for the factor p. For a fixed i we first compute those f
(r)
i,v where v contains

a single 1-bit, then those where v contains two 1-bits, etc. In this way
we need only use one or-gate per v, implying the stated bound.

By the above arguments we need at most 2(2k +2n−k)+ p2n−k +3p2s

gates to compute f . We may eliminate p from the expression, when
using that p ≤ 1 + 2k/s. This results in the upper bound 2n/s + 2 · 2k +
3(2n−k + 2s + 2k+s/s) on the number of gates. Taking k = d2 log ne and
s = dn − 3 log ne, all terms but the first are bounded by O(2n/n2) and
we may bound the first term separately

2n

s
≤ 2n

n− 3 log n

5

=
2n

n
(1 +

3 log n

n− 3 log n
)

=
2n

n
(1 + 3

log n

n
+ O(

log2 n

n2
))

Combining the bounds, we have shown

Theorem 2

L(n) ≤ 2n

n
(1 + 3

log n

n
+ O(

1

n
))

Acknowledgment

We would like to thank the anonymous referee for comments that greatly
improved the presentation of the results.

References

[1] C. E. Shannon, The synthesis of two-terminal switching circuits, Bell
System Tech. J. 28 (1949) 59–98.

[2] O. B. Lupanov, The synthesis of contact circuits, Dokl. Akad. Nauk
SSSR (N.S.) 119 (1958) 23–26.

[3] J. H. Lutz, Almost everywhere high nonuniform complexity, J. Com-
put. System Sci. 44 (2) (1992) 220–258.

[4] R. G. Nigmatullin, Slozhnost bulevykh funktsii, Kazan. Gos. Univ.,
Kazan′, 1983.

[5] I. Wegener, The complexity of Boolean functions, Wiley-Teubner Se-
ries in Computer Science, John Wiley & Sons Ltd., Chichester, 1987.

[6] J. E. Savage, Models of Computation, Addison Wesley, 1998.

6

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

