
Algorithms for Counting 2-SAT Solutions and

Colorings with Applications

Martin Fürer? and Shiva Prasad Kasiviswanathan

Computer Science and Engineering, Pennsylvania State University
University Park, PA, 16802

{furer, kasivisw}@cse.psu.edu

Abstract. An algorithm is presented for counting the number of maximum weight
satisfying assignments of a 2SAT formula. The worst case running time of O(poly(n)·
1.2461n) for formulas with n variables improves on the previous bound of O(poly(n)·
1.2561n) by Dahllöf, Jonsson, and Wahlström . The weighted 2SAT counting algo-
rithm can be applied to obtain faster algorithms for many combinatorial counting
problems, including those of counting maximum weighted independent sets, exact
covers, weighted set packings. The above result when combined with a better par-
titioning technique for domains, leads to improved running times for counting the
number of solutions of binary constraint satisfaction problems. Also presented is
an improved algorithm for counting 3-colorings in a graph. The upper bound of
O(poly(n) · 1.7702n) for graphs with n vertices improves on the previous bound of
O(poly(n) · 1.7879n) by Angelsmark, and Jonsson.

1 Introduction

There has a been a growing interest in the analysis of algorithms for NP-hard problems,
such as satisfiability [6] or graph coloring [12]. Many important problems can be modeled
by these instances, and with Moore’s law playing its part, bigger instances of these prob-
lems can be solved efficiently. Improvements in the exponential bounds are critical, for
even a slight improvement from O(cn) to O((c− ε)n) can significantly change the range of
the problem being tractable. Also exhaustive algorithms are motivated by the fact that,
some of these problems like Maximum Independent Set are hard to approximate even with
in a factor of O(n1−ε) in polynomial time [14, 15]. Approximation algorithms for NP-hard
decision problems like satisfiability or graph k-colorability are nonsensical as pointed out
by [13].

Most of the super-polynomial algorithms known are only for decision problems. As an
natural extension we have counting problems, where we wish to not only decide the exis-
tence of solution, but to count the number of solutions. Counting problems are not only
mathematically interesting, but they also arise in many applications [21, 22]. In his seminal
work Valiant [23] proposed the class #P and showed that computing the permanent is
#P-complete.

The decision problem of weighted 2SAT is NP-hard. #2SAT is known to be #P-
complete [17, 24]. Earlier works on counting models for problems like SAT include papers
by Dubois [9], Zhang [26], Littman et al. [19]. The algorithm by Zhang[26] runs in time
O(1.6180n) for #2SAT, where as the algorithm by Littman et al. runs in time O(1.381n).

? Research supported in part by NSF Grant CCR-0209099

Electronic Colloquium on Computational Complexity, Report No. 33 (2005)

ISSN 1433-8092

In a recent paper Dahllöf et al. [5] improved the upper bound to O(1.2561n) for weighted
#2SAT (a.k.a. #2SATw). In this paper we extend the series of work done by Dahllöf et
al. [3–5] on this problem. Our algorithm for counting models and max-weight models uses
polynomial space and runs in time O(1.246069n). The improvements are achieved by using
a simpler and improved analysis of the framework introduced in [5]. Improving the worst
case bound automatically improves the previous best running times for interesting prob-
lems like #Maximum Independent Set, #Exact Cover, #Exact Hitting Set, #Weighted Set
Packing.

To understand our improvement in the running time, it is good to focus on the subprob-
lem of #2SAT with a restriction to at most three occurrences of every variable, i.e., the
corresponding graph is of degree at most three. Here, the decisive parameter determining
the running time is the number of degree 3 nodes. However, more progress in eliminating
degree 3 nodes is possible when there are many of them, i.e., when the average degree is
higher. For example, when the average degree is more than 12

5 , we can find a degree 3 vertex
with a neighbor of degree 3, and we can eliminate both at once. We take advantage of this
by choosing a different complexity measure above 12

5 . Our improved time bounds for degree
3 propagate to formulas of higher degrees, because the average degree has a tendency to
shrink during the iterative algorithm. This extension to higher degrees, is done with the
framework of Dahllöf et al. [5].

The decision problem for (d, l)-CSP is NP-complete and the corresponding counting
problem belongs to #P-complete even when restricted to binary CSP [21]. From [21], we
also know that for every fixed ε > 0, approximating the number of solutions to a binary
CSP within 2n1−ε

is NP-hard. Solving a CSP instance is equivalent to finding a homomor-
phism between graphs [16] and finding the number of graph homomorphisms has important
applications in statistical physics [10, 11, 25], e.g., computation in the Potts and hardcore
lattice gas model and the problem of counting q-particle Widom-Rowlinson configurations
in graphs, where q > 2 (See [10] for detailed description of these models). In artificial
intelligence, problems like approximate reasoning [21] can be viewed as #CSP-instances.
In this paper we extend the series of algorithms presented by Angelsmark et al. [1, 2] for
counting the number of solutions of binary CSPs. The algorithm presented by [1] partitions
the domains of the variables into sub domains of sizes between 2 and 5 elements and uses
#2SATw for solving these smaller instances. We use the same algorithm as in [1], however
the speedup (see Table 2 for numerical values) is due to improved #2SATw algorithm and
by using an improved partitioning for the domains.

We also provide an improved algorithm for counting the number of 3-colorings in a
graph, which runs in time O(1.7702n), an improvement over the O(1.7879n) algorithm
from [1]. Finding a k-coloring of a graph G is equivalent to finding a homomorphism from
G to a complete graph with k vertices. The speedup is achieved by exploiting problem
specific knowledge. The improvement is more important because it automatically improves
the running time of #k-coloring given by [1].

The paper is organized as follows: Sections 2 to 3 are devoted to the #2SATw problem.
In Section 2, we define some preliminaries and technical tools. In Section 3 we present the
algorithm for #2SATw and analyze its performance. Section 4, defines some interesting
problems whose running times have improved as a consequence. In Section 5, we present

2

an improved analysis for counting solutions to binary constraint satisfaction problems and
in Section 6, we present an improved algorithm for counting 3-colorings.

2 Preliminaries

#2SAT is the problem of computing the number of satisfying assignments or models for a
2SAT formula. With each literal l, a weight w(l) ∈ N and a count c(l) ≥ 1 is associated;
the vectors W and C are the corresponding vectors. Let L is the set of literals, we define
the weight of a model M as

W(M) =
∑

{l∈L | l is true in M}

w(l)

and cardinality of a model M as

C(M) =
∏

{l∈L | l is true in M}

c(l)

The problem is here to count the number of maximum weight models (a.k.a. MWM).
V ar(F) denotes the variable set of F and n(F) = |V ar(F)|. A variable which occurs
only as x or ¬x is called a monotone. Given a formula F , we define the constraint graph
G = (V ar(F), E), as an undirected graph where the vertex set is the set of variables and
the edge set is {(x, y) |x, y appear in the same clause F |}. The degree d(x) of a variable x
is the number of clauses in F containing x. We use d(F) to denote the maximum degree of
any variable in F and nd(F) is the number of variables of degree d in F . The neighborhood
of a vertex x in graph G, denoted by NG(x), is the set {y | (x, y) ∈ E} ∪ {x}. The size of
the neighborhood of x, S(x) =

∑

y∈NG(x) d(y). We define m(F) as

m(F) =
∑

x∈V ar(F)

d(x)

Both n(F) and m(F) are used as measures of formula complexity. For M being the set of
all MWM for F , define

#2SATw(F, C, W) =

(

∑

M∈M

C(M),W(M ′)

)

where M ′ is any MWM in M.

2.1 Estimation of Tree Size

The idea behind the algorithm is recursive decomposition based on the DPLL algorithm
[7], which itself was based on the Davis-Putnam algorithm [18]. The recurrent idea is to
choose a variable x ∈ Var(F) and to recursively count the number of satisfying assignments
where x is true or x is false, i.e., we branch on x. We follow the analysis of Kullmann [8].
In the implicit branching tree constructed, let v be a node with d branches labeled with
positive real numbers t1, . . . , td. The labels are the measures of the reduction in complex-
ity in the respective branch. The branching number is the largest, real-valued solution of
∑d

i=1 x−ti = 1. For a branching tuple (t1, . . . , td) the branching number is denoted by

3

Function Propagate(F, C, W)

1) if F contains an empty clause then F = {Ø}, c = 0 and w = 0
2) if there is a clause (1 ∨ . . .) then it is removed, Any variable a which gets

removed is handled according to cases
a) if w(a) = w(¬a) then c = c · (c(a) + c(¬a)); w = w + w(a).
b) if w(a) < w(¬a) then c = c · (c(¬a)); w = w + w(¬a).
c) if w(a) > w(¬a) then c = c · c(a); w = w + w(a).

3) if there is a clause of the form (0 ∨ . . .) remove 0 from it.
4) if there is a clause of the form (a) then remove it and c = c · c(a); w = w + w(a), and,

if a still appears in F then F = F [a = 1].
5)return(F, c, w)

Function Reduction(F, v)

Let F = F1 ∧ F2 with V ar(F1) ∩ V ar(F2) = v
1) let (ct, wt) = #2SATw(F1[v = 1], C, W) and (cf , wf) = #2SATw(F1[v = 0], C, W).
2) modify C as c(v) = ct · c(v), c(¬v) = cf · c(¬v), W as w(v) = wt + w(v), w(¬v) = wf + w(¬v)
3) return #2SATw(F2, C, W).

τ(t1, . . . , td). In this paper we only branch 2-fold.

In this paper the branch from F to Fi is labeled by t1 = 4f(F) = f(F)− f(Fi), where
f(F) is some algorithm specific measure of complexity. Defining fmax(n) = maxn(F)=nf(F),

ensures us a running time of O(poly(n)·αfmax(n)), where α is the largest branching number
occurring in any tuple in the tree. We will define the function f such that the worst case
branching number is τ(1, 1) = 2. In the special case where we make equal progress to F1

and F2 in a 2-fold branching, this means that 4f(F) = f(F) = f(Fi) = 1 (for i = 1, 2).
Let l, l′ and l′′ be some literals of F . In a step satisfying literal l ∈ F , we eliminate all the
clauses of the form (l∨ l′) and if we don’t, we eliminate all the clauses of the form (¬l∨ l′′).
We call a branching as maximally unbalanced if clauses of only one form occur.

2.2 Structures & Helper Function

We use similar functions and structures as in [5], some of which has been reproduced for
completeness. Integer variables c ≥ 0 and w ≥ 0 are used for keeping track of the contri-
bution to the number and weight of the models arising from the eliminated variables. We
also maintain a count vector (C) and a weight vector (W). The first function called Propa-
gate simplifies the formula by removing dead variables. It returns the updated formula F ′,
the weight w of the variables removed and count c for the eliminated variables. Another
function called Reduction reduces the input formula. It takes advantage of the fact that if
there exists a F that can be partitioned into F1 and F2 such that each clause belongs to
either of them, and |V ar(F1) ∩ V ar(F2)| = 1, then we can remove F1 while appropriately
updating c and w of the common variable. We apply both these routines to F as long as
applicable. A formula F is called a maximally reduced formula if neither of these routines
apply. It can be easily shown as in [5] that the value of #2SATw(F, C, W) is preserved
under both these routines.

4

We have a main algorithm C2SAT which is split into two functions depending on d(F).
The main function C2SAT , is used whenever d(F) > 6. It has a helper routine: C2SAT6

which is used when d(F) =3,4,5 or 6. In all our algorithms (because of the bookkeeping
involved) the process of branching on a variable is lengthy, therefore we will use the phrase
branch on v as a shorthand for the following:

let (Ft, ct, wt) = Propagate (F [v = 1], C, W) and (Ff , cf , wf)=Propagate (F [v = 0], C, W).
let (c′t, w

′
t) = C2SAT (Ft, C, W) and (c′f , w′

f) = C2SAT (Ff , C, W).
let Wtrue = w(v) + wt + w′

t, Wfalse = w(¬v) + wf + w′
f , Ctrue = c(v) · ct · c′t, and

Cfalse = c(¬v) · cf · c′f . There are 3 cases:
if Wtrue = Wfalse, return(Ctrue + Cfalse, Wtrue).
else if Wtrue > Wfalse, return(Ctrue, Wtrue).
else Wtrue < Wfalse, return(Cfalse, Wfalse).

The proof of correctness of the algorithm C2SAT is straight forward and can be found in
[5].

3 Algorithm

In the analysis of C2SAT6 we use a continuous and piecewise linear function f(n, m) similar
to the one introduced by [5] as a measure of complexity. A branching variable is chosen to
optimize the progress in the next step. There is a worst case branching associated with each
value of m/n. Using a classical model of complexity, such as n(F), means that worst case
branching numbers are smaller near the top of the tree and increases as we go down. The
estimation of the running time as O(αfmax(n)) (with fmax = max{f(n, m) |m ∈ N}) is best
when the branching numbers are uniform throughout. The complexity measure introduced
by [5] incorporates the effects of decreasing the m/n quotient in the upper bound, leading
to better worst case running time estimates. We will find a sequence of worst cases as the
m/n quotient increases. Each worst case i is associated with a piecewise linear function
fi(n, m) = ain + bim, a lower limit ki for m/n below which it is possible that worse cases
appear and a upper limit ki+1 for the m/n above which that worst case can’t occur. There
could be still be vertices x with such bad neighborhoods, but the algorithm would not
select such an x to branch on. As in [5], we define the coefficient χi by χi = ai + kibi

implying f(n, m) = fi(n, m) = fi−1(n, m) = χin for m/n = ki. Now fi(n, m) can also be
expressed as fi(n, m) as χin + (m − kin)bi. We define a Section i as the range ki to ki+1.
The formal definitions of the functions are:

f(n, m) = fi(n, m) where ki < m/n ≤ ki+1, 0 ≤ i ≤ 18

fi(n, m) = ain + bim = χin + (m − kin)bi, 0 ≤ i ≤ 18

χ0 = 0

χi = χi−1 + (ki − ki−1)bi−1, 1 ≤ i ≤ 19

Following are some interesting properties of f(n, m) used in the analysis. The first two
properties can be observed from the Table 1 and Property 3 is from [5].
Properties:

1) f(n, m) > f(n − 1, m) if m > 3.75n.

2) f(n, m) > f(n, m − 1) if m > 2n.

3) f(n, m) ≥ f(n1, m1) + f(n − n1, m − m1) if 0 ≤ n1 ≤ n and 0 ≤ m1 ≤ m.

5

Algorithm C2SAT6(F, C, W)

Assume d(F) ≤ 6.
1) if F contains no clauses, return(1,0). If F contains empty clause return (0,0)

2) if F is not connected, return (c, w) where c =
Qj

i=0 ci, w =
Qj

i=0 wi and
(ci, wi) = C2SAT (Fi, C, W) for connected components F0, . . . , Fj .

3) if multiplier reduction applies, apply it, removing the Fi with the smallest f value.
4) Pick a variable x of maximum degree, with the maximum S(x). There are two sub cases

a) if N(x) is connected to the rest of the graph using only two external vertices y and z,
such that d(y) ≥ d(z), then branch on y.

b) else branch on x.

The values 1 of ki, χi, ai, bi are in Table 1. Also provided are the worst case recurrences
and the corresponding running times. O(poly(n) · 2χin) is the upper limit on the running
time for a formula F with m(F)/n(F) ≤ ki.

Section ki, ki+1 Worst Case χi bi ai Running Time 2

0 0, 2 0 0 0 O(poly(n))
1 2, 2.4 τ (4a1 + 12b1, 4a1 + 12b1) 0 1/4 -1/2 O(1.071773n)
2 2.4, 2+2/3 τ (2a2 + 8b2, 4a2 + 14b2) 0.1 0.188329 -0.351991 O(1.109739n)
3 2+2/3, 3 τ (a3 + 6b3, 4a3 + 16b3) 0.150221 0.155676 -0.264914 O(1.150382n)
4 3, 3.2 τ (2a5 + 10b5, 5a5 + 18b5) 0.202113 0.090158 -0.068363 O(1.164850n)
5 3.2, 3.5 τ (a5 + 8b5, 5a5 + 20b5) 0.220145 0.089883 -0.067481 O(1.186825n)
6 3.5, 3.75 τ (a6 + 8b6, 5a6 + 22b6) 0.247107 0.075935 -0.018665 O(1.202545n)
7 3.75, 4 τ (a7 + 8b7, 5a7 + 24b7) 0.266091 0.065244 0.021424 O(1.216218n)
8 4, 4+4/29 τ (a8 + 10b8, 6a8 + 26b8) 0.282402 0.036544 0.136223 O(1.220475n)
9 4+4/29, 4+4/9 τ (a9 + 10b9, 6a9 + 28b9) 0.287442 0.032416 0.153328 O(1.228908n)
10 4+4/9, 4+4/7 τ (a10 + 10b10, 6a10 + 30b10) 0.297377 0.028781 0.169460 O(1.232025n)
11 4+4/7, 4.8 τ (a11 + 10b11, 6a11 + 32b11) 0.301031 0.025915 0.182562 O(1.237093n)
12 4.8, 5 τ (a12 + 10b12, 6a12 + 34b12) 0.306955 0.023227 0.195464 O(1.241083n)
13 5, 5+5/47 τ (a13 + 12b13, 7a13 + 36b13) 0.311600 0.006557 0.278814 O(1.241683n)
14 5+5/47, 5+1/3 τ (a14 + 12b14, 7a14 + 38b14) 0.312297 0.006069 0.281303 O(1.242869n)
15 5+1/3, 5.5 τ (a15 + 12b15, 7a15 + 40b15) 0.313675 0.005561 0.283724 O(1.243675n)
16 5.5, 5+5/8 τ (a16 + 12b16, 7a16 + 42b16) 0.314610 0.005177 0.286132 O(1.244605n)
17 5+5/8, 5+5/6 τ (a17 + 12b17, 7a17 + 44b17) 0.315688 0.004669 0.289421 O(1.245444n)
18 5+5/6, 6 τ (a18 + 12b18, 7a18 + 46b18) 0.316661 0.004336 0.291363 O(1.246069n)

Table 1. Parameter Table

3.1 Worst Case Branching

In this subsection we discuss about the worst case branching situation for C2SAT6. The
following lemma says that if we start with formula F with average density m/n in Section
i and after branching the maximally reduced F1 has its average density m1/n1 lying in
different Section j it is only better. Therefore, the worst case occurs only when both m/n
and m1/n1 are in the same Section.

1 Numbers were generated using Mathematica
2 We hide a poly(n) factor throughout

6

Lemma 1. Let f(n, m) and ai, bi, m1, n1 be defined as above. Then,

4f(n, m) = f(n, m) − f(n1, m1) ≥ 4fi(n, m) = fi(n, m) − fi(n1, m1) if ki < m/n ≤ ki+1

Proof. The equality holds if k1 < m1/n1 ≤ ki+1. The proof for m1/n1 ≤ ki is omitted and
can be found in [5]. Now assume that m1/n1 > ki+1. By inductive arguments it is enough
to focus on the transition of a single barrier, i.e., m/n ≥ ki belongs in Section i, where as
m1/n1 ≥ ki+1 belongs to Section i + 1. We want to check that fi(n1, m1) ≥ fi+1(n1, m1).

fi(n1, m1) − fi+1(n1, m1) = (ai − ai+1)n1 + (bi − bi+1)m1

= (χi − χi+1 − kibi + ki+1bi+1)n1 + (bi − bi+1)m1

= ki+1(bi+1 − bi)n1 + (bi − bi+1)m1 ≥ 0

The last step follows because m1/n1 ≥ ki+1 implying that |(bi − bi+1)m1| ≥ |ki+1(bi+1 −
bi)n1|. Also bi is decreasing with i. ut

Worst case branching is when branching is maximally unbalanced. If d(F) = 2 in Case
4a then F is a cycle and we are done after one branching. Thus assume that we are in Case
4a with d(F) ≥ 3. In both branches, we eliminate at least y by assignment and N(x) by
Reduction. It can be seen that in the worst case, in one branch we have 4n1 = d(x) + 2,
4m1 ≥ S(x) + 6. Also in the worst case the other branch will have 4n2 = d(x) + 4,
4m2 ≥ S(x) + 10.

The Case 4b of the algorithm is the more interesting case and needs special attention.
Let x ∈ F be the variable we branch on to get maximally reduced formulas F1 and F2.
In the worst case, in one branch we have 4n1 = 1+#degree 2 nodes in NG(x), 4m1 =
2 · (d(x)+#degree 2 nodes in NG(x)). Also in the worst case the other branch will have

4n2 = d(x) + 1, 4m2 ≥ 2dS(x)+3
2 e (Lemma 2). We use these bounds as our worst cases

throughout the paper. If m > 3.75n (when both ai and bi are positive) it is obvious from
the properties of f that Case 4b is harder than Case 4a. In m ≤ 3.75n one can easily verify
with the given ai and bi that 4a always has a worst case branching less than 2. Also long
chains of degree 2 nodes don’t hurt because |2bi| ≥ |ai| when m ≤ 3.75n and long chains
are beneficial if m > 3.75n. So from now on we will only be focusing on Case 4b.

Lemma 2. Let x ∈ F be the variable we branch on, in Case 4b of the Algorithm C2SAT6.
In a worst case branching, i.e., the branching is maximally unbalanced, we reduce m(x) by

at least 2dS(x)+3
2 e in at least one of the branchings.

Proof. Omitted in this extended abstract. The proof idea is by observing to achieve max-
imally unbalanced branching we delete all the edges incident on NG(x) in one branching
step. The proof follows by showing that change in m(x) is at least S(x) + 3 when S(x) is
odd, and S(x) + 4 when S(x) is even. ut

We also use the following lemma from [5] that makes a connection between the values
of m(F)/n(F) and worst-case branchings.

Lemma 3. (Dahllöf et al. [5]) Let F be a non-empty formula such that m(F)/n(F) = k,
and define α(x) and β(x) such that

α(x) = d(x) + |{y ∈ N(x) | d(y) < k}|

β(x) = 1 +
∑

{y∈N(x) | d(y)<k}

1

d(y)

there exists some variable x ∈ V ar(F) such that d(x) ≥ k and α(x)/β(x) ≥ k.

7

3.2 Proofs

We can proceed to prove upper bounds on the performance of C2SAT6. The proof will be
divided according to the values of m(F)/n(F). In all lemmas, except for the case when
m ≤ 3n, we use Lemma 3 to generate the ki values. We branch on some variable x ∈ F ,
eventually resulting in two maximally reduced formulas F1 and F2. It is shown that in each
Section i the worst case branching number is 2. It is possible to end up with more than
two maximally reduced formulas, then the above applies to all connected components Fi

and by Property 3 the total work is smaller. The next lemma talks about the simple case
where m ≤ 2n. The proof is omitted but is a straight forward consequence of applying
Reduction [5].

Lemma 4. (Dahllöf et al. [5])For a maximally reduced formula F with m ≤ 2n,
C2SAT6(F, C, W) runs in time O(poly(n)).

x x x x

Fig. 1. Sample cases with d(F) = 3

Lemma 5. Let F be a maximally reduced formula with m ≤ 3n and d(F) = 3, then
C2SAT6(F, C, W) runs in time O(poly(n) · 2χ4n).

Proof. If n3(F) = 0, then we are in the 2-regular case and only polynomial time is required
using Propagation and Reduction. So the interesting case is when d(F) = 3. We divide this
case into worst cases depending on the number of degree 3 nodes (0,1,2 or 3) adjacent to
x (Figure 1). ki to ki+1 captures the range of m/n where each worst case can appear. For
example, if no degree 3 nodes are adjacent to one another, then the worst case is a bipartite
graph with 2n/5 degree 3 nodes on one side and 3n/5 degree 2 nodes on the other side.
This leads to a value of 12/5 (3*2/5+2*3/5) for k2. This lemma uses f1(n, m) to f4(n, m)
as measures.
Section 1: m/n ∈ (2, 12/5], d(F) = 3. In this case we focus on the number of degree
3 variables n3(F). We will decrease this number by 4 in one step (in the worst case).
Therefore, we actually use n3(F)/4 as a measure, i.e., b1 = 1/4 and a1 = −1/2. If F is
maximally reduced then n3(F) = m(F)− 2n(F). We can show that 4n3(F) ≥ 4 along any
branch by proving that 4m ≥ 24n + 4. Let V and V1 ⊆ V be the set of variables in F
and F1 respectively. The reduction 4m in m is

∑

v∈V −V1

d(v) + |{ clauses C ′ in F |C ′ involves variables from both V − V1 and V1}|

Since d(v) = 3 and there are no singleton variables in F , the first term is at least 24n + 1,
and since Reduction does not apply, the second term is at least 2. Taking them together
and also noting the fact that m(F) is even, we have 4m ≥ 24n + 4, so 4n3(F) ≥ 4. The
same argument also works for F2. Also, χ2 = χ1 + (12/5− 2)b1 = 0.1.
Section 2: m/n ∈ (12/5, 2 + 2/3], d(F) = 3. In this case x has at least one degree 3 node
as its neighbor. There are two worst case recursions to be considered in this case.

8

1. S(x) = 10. In this case x has exactly one degree 3 node as its neighbor. The worst case
branching is when the branching is maximally unbalanced, with branching number of
τ(3a2 + 10b2, 4a2 + 14b2) < 2.

2. S(x) = 11. In this case x has exactly two degree 3 nodes as its neighbor. The worst
case branching is when the branching is maximally unbalanced, with branching number
of τ(2a2 + 8b2, 4a2 + 14b2) = 2. As given in Table 1 we have b2 ≈ 0.188329 and
a2 ≈ −0.351991 and χ3 = χ2 + (8/3− 12/5)b2 ≈ 0.150221.

Section 3: m/n ∈ (2 + 2/3, 3], d(F) = 3. In this case x has three degree 3 nodes as its
neighbors. The worst case branching number is τ(a3 + 6b3, 4a3 + 16b3) = 2. As given in
Table 1 we have b3 ≈ 0.155676 and a3 ≈ −0.264914 and χ4 = χ3 +(3− 8/3)b3 ≈ 0.202113.
As we see the worst case branching number is 2 and the worst case running time for C2SAT6

with maximum degree 3 and m ≤ 3n is O(poly(n) · 2χ4n) ≈ O(poly(n) · 1.150382n). ut

Lemma 6. Let F be a maximally reduced formula with m ≤ 3n and 4 ≤ d(F) ≤ 6, then
C2SAT6(F, C, W) runs in time O(poly(n) · 2χ4n).

Proof. First we consider the case d(F) = 4. There are 5 types of worst cases (Figure 2)
depending on the number of degree 2 nodes (0 to 4) adjacent to the selected vertex x, i.e.,
S(x) varies from 12 to 16. Bigger values of S(x) are better as 4n stays the same, but 4m
increases. The numbers are generated using bounds as given above.

x x x

xx

Fig. 2. Sample worst cases with d(F) = 4

1. 4n1 = 5,4m1 = 16,4n2 = 5,4m2 ≥ 16.
2. 4n1 = 4,4m1 = 14,4n2 = 5,4m2 ≥ 16.
3. 4n1 = 3,4m1 = 12,4n2 = 5,4m2 ≥ 18.
4. 4n1 = 2,4m1 = 10,4n2 = 5,4m2 ≥ 18.
5. 4n1 = 1,4m1 = 08,4n2 = 5,4m2 ≥ 20.

In all these cases, the branching number is less than 2 for any one of the f1 to f3. For
d(F) = 5 there are 6 types of worst case branchings again depending on the number of
nodes(0 to 5) adjacent to the selected vertex x.

1. 4n1 = 6,4m1 = 20,4n2 = 6,4m2 ≥ 18.
2. 4n1 = 5,4m1 = 18,4n2 = 6,4m2 ≥ 20.
3. 4n1 = 4,4m1 = 16,4n2 = 6,4m2 ≥ 20.
4. 4n1 = 3,4m1 = 14,4n2 = 6,4m2 ≥ 22.
5. 4n1 = 2,4m1 = 12,4n2 = 6,4m2 ≥ 22.
6. 4n1 = 1,4m1 = 10,4n2 = 6,4m2 ≥ 24.

Again, for all these cases 3 the branching number is less than 2 for any one of the f1 to f3.
Using the same idea to generate the worst cases when d(F) = 6 we get:

3 One can eliminate a few cases by noting that |2bi| ≥ |ai| in this range

9

1. 4n1 = 7,4m1 = 24,4n2 = 7,4m2 ≥ 22.
2. 4n1 = 6,4m1 = 22,4n2 = 7,4m2 ≥ 22.
3. 4n1 = 5,4m1 = 20,4n2 = 7,4m2 ≥ 24.
4. 4n1 = 4,4m1 = 18,4n2 = 7,4m2 ≥ 24.
5. 4n1 = 3,4m1 = 16,4n2 = 7,4m2 ≥ 26.
6. 4n1 = 2,4m1 = 14,4n2 = 7,4m2 ≥ 26.
7. 4n1 = 1,4m1 = 12,4n2 = 7,4m2 ≥ 28.

One can repeat the same exercise as above to verify that the claim holds true even if
d(F) = 6. The worst case running time of C2SAT6 with m ≤ 3n is is O(poly(n) · 2χ4n) ≈
O(poly(n) · 1.150382n). ut

Lemma 7. For a maximally reduced formula F with 3n < m ≤ 4n, C2SAT6(F, C, W)
runs in time O(poly(n) · 2χ8n).

Proof. In this case we have d(F) = 4, 5 or 6. We use the measures of f4(m, n) to f7(m, n).
If d(F) = 5 or 6 we have no guarantees on S(x). First we consider the case d(F) = 5. The
worst cases are same as in the previous lemma. It can be again checked that in all these
cases the branching number is less than 2 for f4(n, m) to f7(n, m). The same argument
works for d(F) = 6 too. If we have the case d(F) = 4, Lemma 3 guarantees that there will
be a variable x with α(x)/β(x) > 3. The minimum value of S(x) satisfying this property
is 15. Even though we know that for the chosen variable x, S(x) ≥ 15 we don’t have the
guarantee that α(x)/β(x) > 3.
Section 4: m/n ∈ (3, 3.2]. d(F) = 4. In this case we have neighbors with degrees 2, 3, 3, and
3. The worst case recursion is τ(2a2 +10b2, 5a2 +18b2), solving which we get b4 ≈ 0.090158
and a4 ≈ −0.068363 and χ5 = χ4 + (3.2 − 3)b4 ≈ 0.220145. Since cases with S(x) = 15
can appear only till m(F)/n(F) ≤ 3.2 (from Lemma 3), so the next Section starts with
m(F)/n(F) > 3.2.
Other Sections 5 to 7 can be shown similarly, and also have been handled by [5]. The worst
case running time of C2SAT6 with m ≤ 4n is O(poly(n) · 2χ8n) ≈ O(poly(n) · 1.216218n).

ut

Lemma 8. For a maximally reduced formula F with 4n < m ≤ 5n, C2SAT6(F, C, W)
runs in time O(poly(n) · 2χ13n).

Proof. In this case we have d(F) = 5 or 6. We use the measures of f8(m, n) to f12(m, n).
If d(F) = 6 one can show as in previous lemmas that the branching number is less than 2.
If d(F) = 5, Lemma 3 guarantees that there will be a variable x with α(x)/β(x) > 4. The
minimum value of S(x) satisfying this property is 23. We can again handle Sections 8 to
12 as in previous lemmas (also handled by [5]). The worst case running time of C2SAT6

with m ≤ 5n is O(poly(n) · 2χ13n) ≈ O(poly(n) · 1.241083n). ut

Lemma 9. For a maximally reduced formula F with 5n < m ≤ 6n, C2SAT6(F, C, W)
runs in time O(poly(n) · 2χ19n).

Proof. We know that d(F) = 6. In this lemma measures f13(m, n) to f18(m, n) are used.
The minimum value of S(x) for variables with α(x)/β(x) > 5 is 33. We can again handle
Sections 13 to 18 as in previous lemmas. This results in χ19 ≈ 0.317384. The worst case
running time of C2SAT6 with m ≤ 6n is O(poly(n) · 2χ19n) ≈ O(poly(n) · 1.246069n). ut

Putting together Lemmas 4-9 we get that C2SAT6 has a worst case running time of
O(1.246069n).

10

Algorithm C2SAT (F, C, W)

1) if F contains no clauses, return(1,0). If F contains empty clause return (0,0)

2) if F is not connected, return (c, w) where c =
Qj

i=0 ci, w =
Qj

i=0 wi and
(ci, wi) = C2SAT (Fi, C, W) for connected components F0, . . . , Fj .

3) if there exists a non-monotone variable x with d(x) ≥ 6, then branch on x.
4) if d(F) ≤ 6, then return C2SAT6(F, C, W).
5) pick a variable x of maximum degree and branch on it.

Theorem 1. C2SAT (F, C, W) runs in time O(poly(n) · 1.246069n).

Proof. Algorithm C2SAT (F, C, W) handles various cases. If we are in Case 3, the worst
case is T (n) = T (n− 2) + T (n− 6), so we have the solution O(τ(2, 6)n) ≈ O(1.21061n). If
we apply the algorithm C2SAT6 we have a running time of O(poly(n) · 1.246069n). In case
we branch on the variable of a vertex of degree greater than 6, we have a trivial worst case
of T (n) = T (n− 1) + T (n− 8) with solutions in O(τ(1, 8)n) ≈ O(1.23205n). So we have a
worst case upper bound of O(poly(n) · 1.246069n). ut

4 Applications

Here we summarize some other interesting problems whose running times from [5, 1] have
improved as a direct consequence of our result. We present only the definitions and upper
bounds but not the reductions.

1. #Maximum Weighted Independent Set can be solved in O(1.246069n).
Instance: Graph G=(V,E) with a weight w(x) for each vertex x ∈ V .
Solution: Subset of vertices V ′ ⊆ V s.t. no vertices have an edge between them. Count
the Maximum Weighted Independent Sets.

2. #Exact Cover can be solved in O(1.246069n).
Instance: Collection C of subsets of a finite set S.
Solution: A subset C ′ ⊆ C s.t. every element in S belongs to at exactly one member
of C ′. Count the number of such covers.

3. #Exact Hitting Set can be solved in O(1.246069n).
Instance: Collection C = {c1, . . . , cn} of subsets of a finite set S, s.t.

⋃

ci = S.
Solution: A minimum subset S′ ⊆ S s.t. S′ contains exactly one element from each
subset ci. Count the number of such sets.

4. #Weighted Set Packing can be solved in O(1.246069n).
Instance: Collection C = {c1, . . . , cn} of subsets of a finite set S with weights on each
ci.
Solution: A collection of disjoint sets C ′ ⊆ C of maximum weight. Count the number
of such packings.

To the best of our knowledge no faster algorithm is known for finding a truth assignment for
2SATw or for solving the above Problems 1-4. Also, #Perfect Matchings and #Matchings
for general graphs can be solved in O(1.246069|E|) where |E| is the number of edges. To
improve the running time one could think of utilizing dynamic programming. Other ways
could be to find a way to characterize the Section boundaries better and to perform a more
careful analysis of the neighborhood.

11

5 Counting Solutions in Constraint Satisfaction Problems

Another problem which has a better running time because of our result is counting the
number of Weighted Binary CSP (Constraint Satisfaction Problem) solutions. A (d, 2)-CSP
instance is a triple (V, D, C), where V is a set of variables, D a finite domain of values with
|D| = d, and C a set of constraints {c1, . . . , cq}. Each constraint ci is a triple xRy, where
x, y ∈ V and R ∈ D2. A solution is a function f : V → D, s.t., (f(x), f(y)) ∈ R for each
constraint xRy. The counting problem is to determine the number of solutions.

We use the same approach as in [1]. The idea is to create a weighted #(d, 2) CSP
instance and to partition the domains of the variable into subdomains of sizes between 2
and 5 elements. The algorithm for the #2SATw is used for solving these smaller instances
and results are recombined. The decrease in running times from [1] is because of the faster
running times for #2SATw and better partitioning of the domains. The following theorem
from [1] demonstrates how partitions can be used for solving #(d, 2)-CSP. In the following
analysis we use αn to indicate the running time for #2SATw, i.e., α = 1.246069.

Theorem 2. (Angelsmark et al. [1]) Let A be an algorithm for #(p, 2)-CSP running
in O (

∏p
i=1 αni

i) time (αi ≥ 1) when applied to an instance containing ni, i-valued vari-
ables for 1 ≤ i ≤ p. Choose d and partitioning P = {P1, . . . , Pk} of {1, . . . , d} such that
|Pi| ≤ p for every i. Then, there exists an algorithm for #(d, 2)-CSP running in time
O
(

(
∑p

i=1 σ(P, i)αi)
n)

, where σ(P, i) denotes the number of parts of size i in P .

A #(d, 2)-CSP instance is solved by transforming it into a weighted #2SATw instance.
The transformation from [1] is reproduced for completeness:

1. if x is single valued we can remove it by assigning 1 to x and by propagating.
2. if x is two-valued, we introduce a propositional variable xi with the interpretation that x = 1

if x1 is true and x = 2 otherwise.
3. if x is k-valued, we create k propositional variables x1, . . . , xk (also called propositions) with

the interpretation that x = i if xi is true. Also, we introduce clauses to ensure that at most
one of them is true.

^

i≤j, i,j∈{1,...,k}
(¬xi ∨ ¬xj)

4. for every constraint xRy ∈ C, with x having domain Dx and y having domain Dy, we add
the clauses

^

a∈Dx,b∈Dy,(a,b)/∈R

(¬xa ∨ ¬yb)

If one of the variables is two-valued, we need to take into account that its negation also
corresponds to an assignment. For, e.g., if x is two-valued and y ∈ Dy, we introduce clauses
like:

^

b∈Dy ,(0,b)/∈R

(¬x0 ∨ ¬yb) ∧
^

b∈Dy,(1,b)/∈R

(x0 ∨ ¬yb)

Cases where both the variables are two-valued can be handled similarly.

In this context it is possible that the new variables x1, . . . , xk corresponding to a k-valued
variable x (k > 2) may all be false and thus x would not get an assignment. To remedy
this, weights are introduced: weight 0 is assigned to each proposition corresponding to a
two-valued variable, and 1 for all propositions corresponding to higher valued variables.
The running time for #2SATw is O(1k1 · αk2 · α3k3 . . .), where ki indicates number of i-
valued variables. The search is for satisfying assignments having a weight of

∑

i≥3 ki, i.e.,
maximum possible weight.

12

Given a partitioning P of a domain D containing d elements, it follows by using Theorem
2 and the above construction that #(d, 2)-CSP can be solved in O(T (P)n) where

T (P) = σ(P, 1) + σ(P, 2)α +
d
∑

i=3

σ(P, i)αi

We let the multiset [[P1], . . . , [Pk]] represent the partition P . The following theorem defines
the optimal partitioning for α = 1.246069. We use the following fact throughout the proof: if
T ([a1, . . . , an]) < T ([b1, . . . , bm]), then T ([a1, . . . , an, c1, . . . , ck]) < T ([b1, . . . , bm, c1, . . . , ck])
for all choices of c1, . . . , ck.

Theorem 3. Let D be a domain of size d ≥ 2. If d < 6, then the partitioning P = [d] is
optimal. Otherwise, the following partitions with k ≥ 1 are optimal:
1) if d = 5k, P = [5, 5, . . . , 5]
2) if d = 5k + 1, d ≥ 16, P = [4, 4, 4, 4, 5, 5, . . . , 5]
3) if d = 5k + 2, d ≥ 12, P = [4, 4, 4, 5, 5, . . . , 5]
4) if d = 5k + 3, P = [4, 4, 5, 5, . . . , 5]
5) if d = 5k + 4, P = [4, 5, 5, . . . , 5]
6) if d = 6 then P = [4, 2], if d = 7 then P = [5, 2], if d = 11 then P = [5, 4, 2]

Proof. If P is not optimal then there exists P ∗ which is a strictly better partition. We
show that such a P ∗ does not exist and, consequently, P is optimal. One can easily show
as in [1] that P ∗ contains no parts of size 1. The idea is to use induction over parts of size
greater than 1. This immediately implies that the domain sizes 1 < d < 3 should not be
partitioned further. Also domain sizes of 4 and 5 should not be partitioned further because
T ([4]) < T [2, 2]) and T ([5] < T ([3, 2]). The following four steps complete the proof:
1) P ∗ contains only parts of size a, a ∈ {2, 4, 5}.
The proof idea is to show inductively that T ([a, p1, . . . , pk]) > T ([a − 2, 2, p1, . . . , pk]) for
a > 5. So it is better to partition any domain size greater than 5, implying that op-
timal partitions only contain parts of size 2, 3, 4 and 5. Assume P ∗ = [3, a, . . .] where
a ∈ {2, 3, 4, 5}. It can be checked that T ([3, 2]) > T ([5]), T ([3, 3]) > T ([4, 2]), T ([3, 4]) >
T ([5, 2]), T ([3, 5]) > T ([4, 4]), so P ∗ contains no parts of size 3 for d > 3.

2) P is optimal for d = 6, 7 and 11.
For d ∈ {6, 7, 11} there is only one way of partitioning with parts of size a, where a ∈
{2, 4, 5}. So P is optimal for the above choices.

3) P ∗ contains only parts of size a, a ∈ {4, 5}, when d > 5 and d /∈ {6, 7, 11}.
P ∗ can’t have more than one parts of size 2 because T ([2, 2]) > T ([4]). Also, P ∗ can’t have
any partition of the form [5, 5, 2] (as T ([5, 5, 2]) > T ([4, 4, 4])) and of the form {4, 4, 2} (as
T ([4, 4, 2]) > T ([5, 5])). Implying that P ∗ has no parts of size 2 for d > 5 and d /∈ {6, 7, 11}.

4) P is optimal when d > 5 and d /∈ {6, 7, 11}.
P ∗ can’t have more than four parts of size 4 because T ([4, 4, 4, 4, 4]) > T ([5, 5, 5, 5]). P ∗

can’t have fewer parts of size 4, since otherwise it would need parts of size different from
4 and 5.
All the above imply that, P = P ∗, so P is optimal. ut

Using the above theorem we can compute the running times 4. For large domains, the
term d

5 · α5 dominates the time complexity. Consequently, all the bounds approach to

4 Not included are domain sizes 2,3,4,5,6,7,11

13

O(d
5 · α5) ≈ O(0.6009n) improving the previous best bound of O(0.6224n) . The following

table summarizes our time complexity.

O(((d/5) · α5)n) if d = 5k, k ≥ 1.
O((4α4 + bd/5 − 3c · α5)n) if d = 5k + 1, k ≥ 3.
O((3α4 + bd/5 − 2c · α5)n) if d = 5k + 2, k ≥ 2.
O((2α4 + bd/5 − 1c · α5)n) if d = 5k + 3, k ≥ 1.
O((α4 + bd/5c · α5)n) if d = 5k + 4, k ≥ 1.

In the Table 2 we compare the improvement in running times for sample domain sizes.

Domain Size Previous Time Improved Time

2 1.2561n 1.2461n

3 1.9819n 1.9348n

4 2.4895n 2.4109n

5 3.1270n 3.0041n

10 6.2350n 6.0081n

15 9.3619n 9.0122n

25 15.5740n 15.0204n

Table 2. Time Complexity Comparison for #(d, 2)-CSPs

6 Counting #3-Colorings

We now present an algorithm for counting the number of 3-colorings of a graph. Let G be
a graph with V (G) as set of vertices and E(G) as set of edges. A k-coloring of a graph
G is a function C : V (G) → {1, . . . , k} such that for all v, w ∈ V (G), if C(v) = C(w)
then (v, w) /∈ E(G). The #k-COL problem is to determine the number of such k-colorings
for G. We first present a faster algorithm #3-COL and then show how it results in faster
#k-COL algorithm when combined with results from [1].

The 3-COL problem is a special (3,2)-CSP problem, hence the algorithm from the
previous section trivially implies that we have a running time of O(1.9348n), but as will
be seen, this can be improved down to O(1.7702n). The previous best algorithm for this
problem has an upper bound of O(1.7879n). We choose the colors from the set {R, G, B}.
We denote by I(G) a maximum independent set in G. As in [1] we define an R{G/B}
assignment as a total function C : V (G) → {R, GB}. Once we have an R{G/B} assignment
it can be tested in polynomial time whether it is possible to reassign colors G or B, to
all vertices v with the initial color C(v) = GB. The number of such reassignments is 2c,
where c is the number of connected components in the subgraph induced by such vertices.
The algorithm (C3COL) for #3-COL begins by identifying a maximum independent set
I(G). If |I(G)| ≤ c · |V (G)|, we search for an uncolored vertex x with at least one of its
neighbors uncolored. We perform a two way branching on x. In one branch we assign color
R to x and assign GB to its uncolored neighbors. In the other branch we assign color GB
to x. If |I(G)| > c · |V (G)| we enumerate all the 3-colorings of the induced subgraph G′

on V (G) − I(G). To do so we find a maximal independent set (I(G′)) for G′. We search
through all possible 3-colorings of I(G′) and all permitted 2-colorings of V (G′) − I(G′).
The correctness of the algorithm C3COL can be shown similarly to [1].

14

Function C3COL(G)

1) if |I(G)| ≤ c · |V (G)| then
a) if all v ∈ V (G) are R{G/B}-colored then return Count(G).
b) else if there exists an uncolored vertex x with U as the set of its uncolored neighbors,

and, U 6= Ø, then return (C3COL(G[x = R, U = GB]) + C3COL(G[x = GB])).
c) else if there is an uncolored vertex x return (C3COL(G[x = R]) + C3COL(G[x = GB])).

2) else
a) find the induced graph G′ of V (G) − I(G).
b) find I(G′), then cycle through all the possible 3-colorings of I(G′) and

permitted 2-colorings of V (G′) − I(G′).
d) for every 3-coloring C of G′ do c = c +

Q

v∈I(G)(3 − |{C(w)|w ∈ NG(x) − {x}}|).

e) return c.

Theorem 4. Algorithm C3COL runs in time O(poly(n) · 1.7702n).

Proof. The best known algorithm for finding a maximum independent set is by Robson
[20] running in time O(1.2025n). The analysis of C3COL has two parts.
1) if |I(G)| ≤ c · |V (G)|:
The worst case recursive equation at line 1b) has the Fibonacci form T (n) ≤ T (n − 1) +
T (n − 2) and T (n) ∈ O(φn), where φ is the golden ratio 5. If line 1c) of the algorithm is
reached, the uncolored vertices form an independent set I ′. Therefore, the total running
time of this part is O(2|I

′|·φ|V (G)|−|I′|). The worst case running time is when |I ′| = c·|V (G)|.
In this case algorithm runs in time O(2cn · φ(n−cn)).
2) if |I(G)| > c · |V (G)|:
Since I(G) is a maximum independent set, we know that |I(G′)| ≤ |I(G)|. We can enu-
merate all possible 3-colorings of G′ in time O(3|I(G′)| · 2|V (G)|−|I(G)|−|I(G′)|). If |I(G)| ≥
1
2 |V (G)| we have a worst case when |I(G′)| = |V (G)| − |I(G)| = 1

2 |V (G)| resulting in run-

ning time of O(3n/2). The more interesting case is when, c′ · |V (G)| = |I(G′)| ≤ |I(G)| <
1
2 ·|V (G)|. The worst case running time in this interval is when |I(G′)| = |I(G)| = c·|V (G)|.

In this case algorithm runs in time O(3cn · 2(n−2cn)).
Finally, we obtain the values of c = c′ = 0.4242 by solving:

2c · φ1−c = 3c · 21−2c

So the algorithm C3COL runs in time O(poly(n) · 1.7702n). ut

It might be possible to further reduce the running time for some special graphs, e.g., for
bipartite graphs we can reduce the upper bound to O(3n/2). The improvement in the
running time for #3-COL is particularly important because it automatically improves the
running time of the best known #k-COL algorithm of Angelsmark et al. [1]. The following
theorem summarizes the improvement.

Theorem 5. (Angelsmark et al. [1]) There is an algorithm for solving the #k-COL
problem in time O((ck)n), where, for some i ∈ N

ck =







blog2 kc if k = 2i

blog2 kc + (β − 1) if 2i < k ≤ 2i + 2i−1

blog2 kc + 1 if 2i + 2i−1 < k ≤ 2i+1

with β as the running time of #3-COL.

5 φ = 1+
√

5
2

15

References

1. O. Angelsmark and P. Jonsson. Improved algorithms for counting solutions in constraint
satisfaction problems. In ICCP: International Conference on Constraint Programming (CP),
LNCS, 2003.

2. O. Angelsmark, P. Jonsson, S. Linusson, and J. Thapper. Determining the number of solutions
to binary CSP instances. Lecture Notes in Computer Science, 2470:327–340, 2002.

3. V. Dahllöf and P. Jonsson. An algorithm for counting maximum weighted independent sets
and its applications. Proceedings of the thirteen annual ACM-SIAM Symposium On Discrete
Algorithms, pages 292–298, 2002.

4. V. Dahllöf, P. Jonsson, and M. Wahlström. Counting satisfying assignments in 2-SAT and
3-SAT. In COCOON: Annual International Conference on Computing and Combinatorics,
2002.

5. V. Dahllöf, P. Jonsson, and M. Wahlström. Counting models for 2SAT and 3SAT for-
mulae. Theoretical Computer Science, http://www.sciencedirect.com/science/article/B6V1G-
4DTBKWK-1/2/dba6357d72b8f629ec960f74e4f396dd, 332(1-3):265–291, 2005.

6. E. Danstin, E. A. Hirsch, S. Ivanov, and M. Vserminov. Algorithms for sat and upper bounds
on their complexity. Electronic Colloquium on Computational Complexity, 12(8), 2001.

7. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Com-
munications of the ACM, 5(7):394–397, July 1962.

8. M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of
Association Computer Machinery, 7:201–215, 1960.

9. O. Dubois. Counting the number of solutions for instances of satisfiability. Theoretical Com-
puter Science, 81(1):49–64, April 1991.

10. M. Dyer and C. Greenhill. The complexity of counting graph homomorphisms. RSA: Random
Structures and Algorithms, 17:260–289, 2000.

11. M. Dyer and C. Greenhill. Corrigendum: The complexity of counting graph homomorphisms.
RSA: Random Structures and Algorithms, 25:346–352, 2004.

12. D. Eppstein. Improved algorithms for 3-Coloring, 3-Edge-Coloring, and constraint satisfaction.
In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-
01), pages 329–337, New York, January 7–9 2001. ACM Press.

13. T. Feder and R. Motwani. Worst-case time bounds for coloring and satisfiability problems. J.
Algorithms, 45(2):192–201, 2002.

14. U. Feige, S. Goldwasser, L. Lóvasz, S. Safra, and M. Szegedy. Approximating the clique is
almost NP-complete. In Proc. 32nd IEEE Symp. on Foundations of Comp. Science, pages
34–39. IEEE, 1991.

15. J. H̊astad. Clique is hard to approximate within n1−ε. Acta Math., 182(1):105–142, 1999.
16. P. G. Jeavons, D. A. Cohen, and J. K. Pearson. Constraints and universal algebra. Annals of

Mathematics and Artificial Intelligence, 24:51–67, 1998.
17. D. L. Kozen. The Design and Analysis of Algorithms. Springer, Berlin, 1992.
18. O. Kullmann. New methods for 3-SAT decision and worst-case analysis. Theoretical Computer

Science, 223:1–72, 1999.
19. M. L. Littman, T. Pitassi, and R. Impagliazzo. On the complexity of counting satisfying

assignments. In The Working notes of LICS 2001 Workshop on Satisfiability, 2001.
20. M. Robson. Finding a maximum independent set in time O(2n/4). Technical report, LaBRI,

Université Bordeaux, 2001.
21. D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1–2):273–302,

1996.
22. S. P. Vadhan. The complexity of counting in sparse, regular, and planar graphs. SIAM Journal

on Computing, 31(2):398–427, April 2002.
23. L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,

8(2):189–201, April 1979.
24. L. G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,

8(3):410–421, August 1979.

16

25. E. Vigoda. Improved bounds for sampling colorings. Journal of Mathematical Physics,
41(3):1555–1569, March 2000.

26. W. Zhang. Number of models and satisfiability of sets of clauses. Theoretical Computer
Science, 155(1):277–288, February 1996.

17

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

