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Abstract

We present a polynomial time algorithm that, given a unique game of value 1 — ¢/logn,
satisfies a constant fraction of constraints, where n is the number of variables.

This improves an algorithm of Trevisan (ECCC TR05-34), that satisfies a constant fraction
of constraints in unique games of value 1 — ¢/(logn)? and, for sufficiently large alphabets, it
improves an algorithm of Khot (STOC’02) that satisfies a constant fraction of constraints in
unique games of value 1 — ¢/(k'°(log k)®), where k is the size of the alphabet.

Our algorithm is based on semidefinite programming.

The result presented in this note will be incorporated in a later version of ECCC TR05-34.

1 The Semidefinite Program

A unique game [FL92, Kho02] is presented as a graph G = (V, E), a set S and a permutation
e : S — S for every edge e € E. We think of a unique game as a constraint satisfaction problem
where there is a variable for every vertex w, variables take values in the set S, and every edge
e = (u,v) with associated permutation 7. : S — S defines the constraint v = 7, ,)(u). The goal is
to find an assignment that satisfies as many constraints as possible. The value of a unique game is
the fraction of constraints satisfied by an optimal assignment.

We consider the following integer programming formulation. We assume without loss of generality
that the set S equals {1,...,|S|}. For every variable u of the unique game we have k := |S| boolean
variables uq,...,u; in the integer program, with the intended meaning that if « = ¢ then u; = 1
and uj = 0 for j # i. Each constraint v = f(u) contributes » ;g vs()u; to the objective function.
The integer program, therefore, looks like this:

max Z(u,v)EE EiES Uy, (i) Wi

Subjet to
ui-uj =0 (Vu € V,Vi,j € [k],i # j)
diegui=1 Vu e V)
u; € {0,1} VueV)

In the semidefinite relaxation, each variable u; is replaced by a vector u;.
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Max Y, )e B D2oies V(i) Wi

Subjet to
u;-u; =0 (Vu € V. Vi, j € [k],i # j)
Yies il =1 (VueV)

We will work with an equivalent formulation of the objective function, and add “triangle inequali-
ties.”

max Y5, e (1= Dies 31Va, ) — will®)

Subject to
ui-uj:() (VUGKVZ,]G[%],Z#]) (1)
Yies |lwl? =1 (VueV)
[[wh —wl|? < ||lwp —vj[|? + ||v; —wl|*  (Vu,v,w € V,Vi,j,h € [k])
v = wil? > [lvj][? = [Ju]? (Vu, v € V, Vi, j € [k])

Feige and Lovasz [FL92] and Khot [Kho02] add different inequalities, and it is not clear if the SDP
(1) is equivalent or not to the ones in [FL92, Kho02].

2 Analysis
In this section we prove the following result.

Theorem 1 Suppose that the SDP (1) has a solution of cost at least (1 — ce3/(logn))|E|. Then it
1s possible to find in polynomial time a solution for the unique game that satisfies at least a 1 — ¢
fraction of constraints. (c is an absolute constant.)

Suppose that the SDP relaxation of a unique game (G = (V, E), S, {7¢ }ccr) has a solution of cost
at least (1 — ) - |E|, where v = ce3/logn (we will fix c later). Then for all but an £/3 fraction of
constraints their contribution to the objective function is at least 1 — 3y/e = 1 — 3¢c£2/logn. The
algorithm of Theorem 1 is as follows:

1. Remove the constraints whose contribution is smaller than 1 — 3v/e.

This step removes at most |F|e/3 edges and, in the residual graph, every edge contributes at
least 1 — 3ce?/logn to the objective function.

2. Apply the Leighton-Rao decomposition of Lemma 4 below with ¢ = 1/(1—¢/3)) to the residual
graph.

This step removes at most |Fle/3 edges, and the residual graph breaks up into connected
components of diameter at most d = O((logn)/e).

3. Use Lemma 2 below to satisfy at least 1 — £/3 fraction of constraints in each connected
component of the residual graph that we obtain after steps (1) and (2).

(The constant ¢ will have to be set so that 1 — 3ce?/(logn) > 1 — ¢/24(d + 1), that is,
¢ < (logn)/(72-(d+1)-¢).)



This step finds a solution that satisfies all but at most €|E|/3 constraints of the residual graph
obtained after steps (1) and (2).

It remains to state and prove Lemma 2 (see below) and to state the Leighton-Rao decomposition
result (see the Appendix).

Lemma 2 Suppose we are given a unique game (G, [k],{m.}) such that the SDP (1) has a feasible
solution in which every edge contributes at least 1 — ¢/8(d + 1), where d is the diameter of the
graph. Then it is possible, in polynomial time, to find a solution that satisfies a 1 — e fraction of
the constraints.

PRrROOF:[Of Lemma 2] We fix a spanning tree of diameter d of G and we let r be the root of the
tree. We pick at random a value i € [k] with probability ||r;||?, and we assign i to r. For every
other variable v, we assign to v the value j that minimizes the “distance” ||v; —r;||%. Let A be the
random variable corresponding to the above described distribution of assignments. We claim that
every constraint has a probability at least 1 — € of being satisfied by such an assignment.

Let (u,v) be a constraint in G, and let » = % u',... u’ = u be a path from r to u of length

t <din G. Let m, be the composition of the permutations 7, 1, ...,T(t-1,) corresponding to
the path. Let 7 () := m(y0) (mu())-

We will show that there is a probability at least 1 — /2 that A(u) = m,(A(r)) and a probability
at least 1 — /2 that A(v) = m,(A(r)). (We only prove the former statement, since the latter has
an identical proof.) By a union bound, it will follow that there is a probability at least 1 — ¢ that

A(v) = () (A(u)).
By the triangle inequality, we have

D e = gl < e/4

€S
Let B be the set of indices i such that 7, (i) is not the j that minimizes ||r; — u;||?. Then we have

Pr[A(u) # m,(A(r))] = Y [[ril]?
1€B
We claim that for every i € B, ||r; — ug, )|]> > Zl/r;||?. This follows from the following simple fact

(substitute r < r;, u < u, ;) and v < u;, where j is the minimizer of [|r; — u;|?).

Claim 3 Let r,u,v be vectors such that: (i) u-v =0, (i) |[r — u||? > ||[r — Vv||?, and (iii) the
vectors r,u, v satisfy the “triangle inequality” constraints of (1).
Then ||r —ul|? > ||r||%.

PRrROOF: We consider three cases:

L. If [|ul|? < &]|r[|?, then

e =l > ||e[* = [Jul[* > [l

DO | =



2. If ||v||? < 3||r[|?, then
1
[ =l = [ = vI[* = [[r[[* = [[v]|* = 5[]

3. If |[ul[%, ||v]|* > 4]|r|/%, then from the triangle inequality and from assumption (ii) we have
v —ul? < ||v —r|” +[fr —ul|* < 2[[r —u|f?
and by Pythagoras theorem and the orthogonality of v and u we have
v —ul]* = [[v]* + [Jul?

so that

[[r —ul* > ]

N —

1 1
v = wlf? = SV + 5 ul? 2

N —

O

We can now estimate the probability of an inconsistent assignment to r and u as

Pr[A(u) # m(A(r)] = Y [will? <2 [lri —ue,@|? <2 [y —ug, )| < g

-2
i€B i€B €S

3 Extensions

By choosing parameters differently in the decomposition step, we can, for example, satisfy a

O(lolgol%) fraction of constraints in unique games of value 1 — O(lofgO g’i"), or satisfy a 1/n0)

fraction of constraints in a unique game of value > 1 — ~.

Khot and Vishnoi [KV05] construct instances of unique games such that the SDP optimum is
(1 —v)|E| but the value of the game is at most 1/(logn)?. Their result applies to our formulation
as well. It would be very interesting to close this exponential gap.
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A Appendix

A.1 Statement of the Leighton Rao Decomposition Theorem

Lemma 4 (Leighton and Rao [LR99]) There is a polynomial time algorithm that, on input a
graph G = (V,E) and a parameter t > 1, returns a subset of edges E' C E such that |E|" >
|E|/t and such that every connected component of the graph G' = (V, E’) has diameter at most
(1+1og|E|)/(logt).
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