Addendum to "Approximation Algorithms for Unique Games"

Luca Trevisan*

May 9, 2005

Abstract

We present a polynomial time algorithm that, given a unique game of value $1-c / \log n$, satisfies a constant fraction of constraints, where n is the number of variables.

This improves an algorithm of Trevisan (ECCC TR05-34), that satisfies a constant fraction of constraints in unique games of value $1-c /(\log n)^{3}$ and, for sufficiently large alphabets, it improves an algorithm of Khot (STOC'02) that satisfies a constant fraction of constraints in unique games of value $1-c /\left(k^{10}(\log k)^{5}\right)$, where k is the size of the alphabet.

Our algorithm is based on semidefinite programming. The result presented in this note will be incorporated in a later version of ECCC TR05-34.

1 The Semidefinite Program

A unique game [FL92, Kho02] is presented as a graph $G=(V, E)$, a set S and a permutation $\pi_{e}: S \rightarrow S$ for every edge $e \in E$. We think of a unique game as a constraint satisfaction problem where there is a variable for every vertex u, variables take values in the set S, and every edge $e=(u, v)$ with associated permutation $\pi_{e}: S \rightarrow S$ defines the constraint $v=\pi_{(u, v)}(u)$. The goal is to find an assignment that satisfies as many constraints as possible. The value of a unique game is the fraction of constraints satisfied by an optimal assignment.
We consider the following integer programming formulation. We assume without loss of generality that the set S equals $\{1, \ldots,|S|\}$. For every variable u of the unique game we have $k:=|S|$ boolean variables u_{1}, \ldots, u_{k} in the integer program, with the intended meaning that if $u=i$ then $u_{i}=1$ and $u_{j}=0$ for $j \neq i$. Each constraint $v=f(u)$ contributes $\sum_{i \in S} v_{f(i)} u_{i}$ to the objective function. The integer program, therefore, looks like this:

$$
\max \sum_{(u, v) \in E} \sum_{i \in S} v_{\pi_{u, v}(i)} u_{i}
$$

Subjet to

$$
\begin{array}{ll}
u_{i} \cdot u_{j}=0 & (\forall u \in V, \forall i, j \in[k], i \neq j) \\
\sum_{i \in S} u_{i}=1 & (\forall u \in V) \\
u_{i} \in\{0,1\} & (\forall u \in V)
\end{array}
$$

In the semidefinite relaxation, each variable u_{i} is replaced by a vector \mathbf{u}_{i}.

[^0]\[

$$
\begin{array}{ll}
\max \sum_{(u, v) \in E} \sum_{i \in S} \mathbf{v}_{\pi_{u, v}(i)} \mathbf{u}_{i} & \\
\text { Subjet to } & \\
\quad \mathbf{u}_{i} \cdot \mathbf{u}_{j}=0 & (\forall u \in V, \forall i, j \in[k], i \neq j) \\
\sum_{i \in S}\left\|\mathbf{u}_{i}\right\|^{2}=1 & (\forall u \in V)
\end{array}
$$
\]

We will work with an equivalent formulation of the objective function, and add "triangle inequalities."

$$
\begin{array}{ll}
\max \sum_{(u, v) \in E}\left(1-\sum_{i \in S} \frac{1}{2}\left\|\mathbf{v}_{\pi_{u, v}(i)}-\mathbf{u}_{i}\right\|^{2}\right) & \\
\text { Subject to } & \\
\quad \mathbf{u}_{i} \cdot \mathbf{u}_{j}=0 & (\forall u \in V, \forall i, j \in[k], i \neq \\
\sum_{i \in S}\left\|\mathbf{u}_{i}\right\|^{2}=1 & (\forall u \in V) \tag{1}\\
\left\|\mathbf{w}_{h}-\mathbf{u}_{i}\right\|^{2} \leq\left\|\mathbf{w}_{h}-\mathbf{v}_{j}\right\|^{2}+\left\|\mathbf{v}_{j}-\mathbf{u}_{i}\right\|^{2} & (\forall u, v, w \in V, \forall i, j, h \in \\
\left\|\mathbf{v}_{j}-\mathbf{u}_{i}\right\|^{2} \geq\left\|\mathbf{v}_{j}\right\|^{2}-\left\|\mathbf{u}_{i}\right\|^{2} & (\forall u, v \in V, \forall i, j \in[k])
\end{array}
$$

Feige and Lovasz [FL92] and Khot [Kho02] add different inequalities, and it is not clear if the SDP (1) is equivalent or not to the ones in [FL92, Kho02].

2 Analysis

In this section we prove the following result.

Theorem 1 Suppose that the $S D P$ (1) has a solution of cost at least $\left(1-c \varepsilon^{3} /(\log n)\right)|E|$. Then it is possible to find in polynomial time a solution for the unique game that satisfies at least a $1-\varepsilon$ fraction of constraints. (c is an absolute constant.)

Suppose that the SDP relaxation of a unique game $\left(G=(V, E), S,\left\{\pi_{e}\right\}_{e \in E}\right)$ has a solution of cost at least $(1-\gamma) \cdot|E|$, where $\gamma=c \varepsilon^{3} / \log n$ (we will fix c later). Then for all but an $\varepsilon / 3$ fraction of constraints their contribution to the objective function is at least $1-3 \gamma / \varepsilon=1-3 c \varepsilon^{2} / \log n$. The algorithm of Theorem 1 is as follows:

1. Remove the constraints whose contribution is smaller than $1-3 \gamma / \varepsilon$.

This step removes at most $|E| \varepsilon / 3$ edges and, in the residual graph, every edge contributes at least $1-3 c \varepsilon^{2} / \log n$ to the objective function.
2. Apply the Leighton-Rao decomposition of Lemma 4 below with $t=1 /(1-\varepsilon / 3))$ to the residual graph.
This step removes at most $|E| \varepsilon / 3$ edges, and the residual graph breaks up into connected components of diameter at most $d=O((\log n) / \varepsilon)$.
3. Use Lemma 2 below to satisfy at least $1-\varepsilon / 3$ fraction of constraints in each connected component of the residual graph that we obtain after steps (1) and (2).
(The constant c will have to be set so that $1-3 c \varepsilon^{2} /(\log n) \geq 1-\varepsilon / 24(d+1)$, that is, $c<(\log n) /(72 \cdot(d+1) \cdot \varepsilon)$.

This step finds a solution that satisfies all but at most $\varepsilon|E| / 3$ constraints of the residual graph obtained after steps (1) and (2).

It remains to state and prove Lemma 2 (see below) and to state the Leighton-Rao decomposition result (see the Appendix).

Lemma 2 Suppose we are given a unique game ($G,[k],\left\{\pi_{e}\right\}$) such that the SDP (1) has a feasible solution in which every edge contributes at least $1-\varepsilon / 8(d+1)$, where d is the diameter of the graph. Then it is possible, in polynomial time, to find a solution that satisfies a $1-\varepsilon$ fraction of the constraints.

Proof:[Of Lemma 2] We fix a spanning tree of diameter d of G and we let r be the root of the tree. We pick at random a value $i \in[k]$ with probability $\left\|\mathbf{r}_{i}\right\|^{2}$, and we assign i to r. For every other variable v, we assign to v the value j that minimizes the "distance" $\left\|\mathbf{v}_{j}-\mathbf{r}_{i}\right\|^{2}$. Let A be the random variable corresponding to the above described distribution of assignments. We claim that every constraint has a probability at least $1-\varepsilon$ of being satisfied by such an assignment.
Let (u, v) be a constraint in G, and let $r=u^{0}, u^{1}, \ldots, u^{t}=u$ be a path from r to u of length $t \leq d$ in G. Let π_{u} be the composition of the permutations $\pi_{\left(r, u^{1}\right)}, \ldots, \pi_{\left(u^{t-1}, u\right)}$ corresponding to the path. Let $\pi_{v}():=\pi_{(u, v)}\left(\pi_{u}()\right)$.
We will show that there is a probability at least $1-\varepsilon / 2$ that $A(u)=\pi_{u}(A(r))$ and a probability at least $1-\varepsilon / 2$ that $A(v)=\pi_{v}(A(r))$. (We only prove the former statement, since the latter has an identical proof.) By a union bound, it will follow that there is a probability at least $1-\varepsilon$ that $A(v)=\pi_{(u, v)}(A(u))$.
By the triangle inequality, we have

$$
\sum_{i \in S}\left\|\mathbf{r}_{i}-\mathbf{u}_{\pi_{u}(i)}\right\|^{2} \leq \varepsilon / 4
$$

Let B be the set of indices i such that $\pi_{u}(i)$ is not the j that minimizes $\left\|\mathbf{r}_{i}-\mathbf{u}_{j}\right\|^{2}$. Then we have

$$
\operatorname{Pr}\left[A(u) \neq \pi_{u}(A(r))\right]=\sum_{i \in B}\left\|\mathbf{r}_{i}\right\|^{2}
$$

We claim that for every $i \in B,\left\|\mathbf{r}_{i}-\mathbf{u}_{\pi_{u}(i)}\right\|^{2} \geq \frac{1}{2}\left\|\mathbf{r}_{i}\right\|^{2}$. This follows from the following simple fact (substitute $\mathbf{r} \leftarrow \mathbf{r}_{i}, \mathbf{u} \leftarrow \mathbf{u}_{\pi_{u}(i)}$ and $\mathbf{v} \leftarrow \mathbf{u}_{j}$, where j is the minimizer of $\left\|\mathbf{r}_{i}-\mathbf{u}_{j}\right\|^{2}$).

Claim 3 Let $\mathbf{r}, \mathbf{u}, \mathbf{v}$ be vectors such that: (i) $\mathbf{u} \cdot \mathbf{v}=0$, (ii) $\|\mathbf{r}-\mathbf{u}\|^{2} \geq\|\mathbf{r}-\mathbf{v}\|^{2}$, and (iii) the vectors $\mathbf{r}, \mathbf{u}, \mathbf{v}$ satisfy the "triangle inequality" constraints of (1).
Then $\|\mathbf{r}-\mathbf{u}\|^{2} \geq\|\mathbf{r}\|^{2}$.

Proof: We consider three cases:

1. If $\|\mathbf{u}\|^{2} \leq \frac{1}{2}\|\mathbf{r}\|^{2}$, then

$$
\|\mathbf{r}-\mathbf{u}\|^{2} \geq\|\mathbf{r}\|^{2}-\|\mathbf{u}\|^{2} \geq \frac{1}{2}\|\mathbf{r}\|^{2}
$$

2. If $\|\mathbf{v}\|^{2} \leq \frac{1}{2}\|\mathbf{r}\|^{2}$, then

$$
\|\mathbf{r}-\mathbf{u}\|^{2} \geq\|\mathbf{r}-\mathbf{v}\|^{2} \geq\|\mathbf{r}\|^{2}-\|\mathbf{v}\|^{2} \geq \frac{1}{2}\|\mathbf{r}\|^{2}
$$

3. If $\|\mathbf{u}\|^{2},\|\mathbf{v}\|^{2} \geq \frac{1}{2}\|\mathbf{r}\|^{2}$, then from the triangle inequality and from assumption (ii) we have

$$
\|\mathbf{v}-\mathbf{u}\|^{2} \leq\|\mathbf{v}-\mathbf{r}\|^{2}+\|\mathbf{r}-\mathbf{u}\|^{2} \leq 2\|\mathbf{r}-\mathbf{u}\|^{2}
$$

and by Pythagoras theorem and the orthogonality of \mathbf{v} and \mathbf{u} we have

$$
\|\mathbf{v}-\mathbf{u}\|^{2}=\|\mathbf{v}\|^{2}+\|\mathbf{u}\|^{2}
$$

so that

$$
\|\mathbf{r}-\mathbf{u}\|^{2} \geq \frac{1}{2}\|\mathbf{v}-\mathbf{u}\|^{2}=\frac{1}{2}\|\mathbf{v}\|^{2}+\frac{1}{2}\|\mathbf{u}\|^{2} \geq \frac{1}{2}\|\mathbf{r}\|^{2}
$$

We can now estimate the probability of an inconsistent assignment to \mathbf{r} and \mathbf{u} as

$$
\operatorname{Pr}\left[A(u) \neq \pi_{u}(A(r))\right]=\sum_{i \in B}\left\|\mathbf{r}_{i}\right\|^{2} \leq 2 \sum_{i \in B}\left\|\mathbf{r}_{i}-\mathbf{u}_{\pi_{u}(i)}\right\|^{2} \leq 2 \sum_{i \in S}\left\|\mathbf{r}_{i}-\mathbf{u}_{\pi_{u}(i)}\right\|^{2} \leq \frac{\varepsilon}{2}
$$

3 Extensions

By choosing parameters differently in the decomposition step, we can, for example, satisfy a $O\left(\frac{\log \log n}{\log n}\right)$ fraction of constraints in unique games of value $1-O\left(\frac{\log \log n}{\log n}\right)$, or satisfy a $1 / n^{O(\gamma)}$ fraction of constraints in a unique game of value $\geq 1-\gamma$.
Khot and Vishnoi [KV05] construct instances of unique games such that the SDP optimum is $(1-\gamma)|E|$ but the value of the game is at most $1 /(\log n)^{\gamma}$. Their result applies to our formulation as well. It would be very interesting to close this exponential gap.

Acknowledgements

I wish to thank Robi Krautghamer and James Lee for suggesting the problem, proposing the SDP formulation (1) and helping with the proof of Claim 3.

A Appendix

A. 1 Statement of the Leighton Rao Decomposition Theorem

Lemma 4 (Leighton and Rao [LR99]) There is a polynomial time algorithm that, on input a graph $G=(V, E)$ and a parameter $t>1$, returns a subset of edges $E^{\prime} \subseteq E$ such that $|E|^{\prime} \geq$ $|E| / t$ and such that every connected component of the graph $G^{\prime}=\left(V, E^{\prime}\right)$ has diameter at most $(1+\log |E|) /(\log t)$.

References

[FL92] Uri Feige and László Lovász. Two-prover one round proof systems: Their power and their problems. In Proceedings of the 24th ACM Symposium on Theory of Computing, pages 733-741, 1992. 1, 2
[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th ACM Symposium on Theory of Computing, pages 767-775, 2002. 1, 2
[KV05] Subhash Khot and Nisheeth Vishnoi. The unique games conjecture, integrality gap for cut problems and the embeddability of negative type metrics into ℓ_{1}. Manuscript, 2005. 4
[LR99] Frank T. Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. Journal of the ACM, 46:787-832, 1999. 4

[^0]: ${ }^{*}$ luca@cs.berkeley.edu. U.C. Berkeley, Computer Science Division.

