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Abstract

We present a polynomial time algorithm that, given a unique game of value 1 − c/ log n,
satisfies a constant fraction of constraints, where n is the number of variables.

This improves an algorithm of Trevisan (ECCC TR05-34), that satisfies a constant fraction
of constraints in unique games of value 1 − c/(log n)3 and, for sufficiently large alphabets, it
improves an algorithm of Khot (STOC’02) that satisfies a constant fraction of constraints in
unique games of value 1− c/(k10(log k)5), where k is the size of the alphabet.

Our algorithm is based on semidefinite programming.
The result presented in this note will be incorporated in a later version of ECCC TR05-34.

1 The Semidefinite Program

A unique game [FL92, Kho02] is presented as a graph G = (V,E), a set S and a permutation
πe : S → S for every edge e ∈ E. We think of a unique game as a constraint satisfaction problem
where there is a variable for every vertex u, variables take values in the set S, and every edge
e = (u, v) with associated permutation πe : S → S defines the constraint v = π(u,v)(u). The goal is
to find an assignment that satisfies as many constraints as possible. The value of a unique game is
the fraction of constraints satisfied by an optimal assignment.

We consider the following integer programming formulation. We assume without loss of generality
that the set S equals {1, . . . , |S|}. For every variable u of the unique game we have k := |S| boolean
variables u1, . . . , uk in the integer program, with the intended meaning that if u = i then ui = 1
and uj = 0 for j 6= i. Each constraint v = f(u) contributes

∑

i∈S vf(i)ui to the objective function.
The integer program, therefore, looks like this:

max
∑

(u,v)∈E

∑

i∈S vπu,v(i)ui

Subjet to
ui · uj = 0 (∀u ∈ V,∀i, j ∈ [k], i 6= j)
∑

i∈S ui = 1 (∀u ∈ V )
ui ∈ {0, 1} (∀u ∈ V )

In the semidefinite relaxation, each variable ui is replaced by a vector ui.
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max
∑

(u,v)∈E

∑

i∈S vπu,v(i)ui

Subjet to
ui · uj = 0 (∀u ∈ V,∀i, j ∈ [k], i 6= j)
∑

i∈S ||ui||
2 = 1 (∀u ∈ V )

We will work with an equivalent formulation of the objective function, and add “triangle inequali-
ties.”

max
∑

(u,v)∈E

(

1−
∑

i∈S
1
2 ||vπu,v(i) − ui||

2
)

Subject to
ui · uj = 0 (∀u ∈ V,∀i, j ∈ [k], i 6= j)
∑

i∈S ||ui||
2 = 1 (∀u ∈ V )

||wh − ui||
2 ≤ ||wh − vj ||

2 + ||vj − ui||
2 (∀u, v, w ∈ V,∀i, j, h ∈ [k])

||vj − ui||
2 ≥ ||vj ||

2 − ||ui||
2 (∀u, v ∈ V,∀i, j ∈ [k])

(1)

Feige and Lovasz [FL92] and Khot [Kho02] add different inequalities, and it is not clear if the SDP
(1) is equivalent or not to the ones in [FL92, Kho02].

2 Analysis

In this section we prove the following result.

Theorem 1 Suppose that the SDP (1) has a solution of cost at least (1− cε3/(log n))|E|. Then it
is possible to find in polynomial time a solution for the unique game that satisfies at least a 1 − ε
fraction of constraints. (c is an absolute constant.)

Suppose that the SDP relaxation of a unique game (G = (V,E), S, {πe}e∈E) has a solution of cost
at least (1 − γ) · |E|, where γ = cε3/ log n (we will fix c later). Then for all but an ε/3 fraction of
constraints their contribution to the objective function is at least 1 − 3γ/ε = 1 − 3cε2/ log n. The
algorithm of Theorem 1 is as follows:

1. Remove the constraints whose contribution is smaller than 1− 3γ/ε.

This step removes at most |E|ε/3 edges and, in the residual graph, every edge contributes at
least 1− 3cε2/ log n to the objective function.

2. Apply the Leighton-Rao decomposition of Lemma 4 below with t = 1/(1−ε/3)) to the residual
graph.

This step removes at most |E|ε/3 edges, and the residual graph breaks up into connected
components of diameter at most d = O((log n)/ε).

3. Use Lemma 2 below to satisfy at least 1 − ε/3 fraction of constraints in each connected
component of the residual graph that we obtain after steps (1) and (2).

(The constant c will have to be set so that 1 − 3cε2/(log n) ≥ 1 − ε/24(d + 1), that is,
c < (log n)/(72 · (d + 1) · ε).)
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This step finds a solution that satisfies all but at most ε|E|/3 constraints of the residual graph
obtained after steps (1) and (2).

It remains to state and prove Lemma 2 (see below) and to state the Leighton-Rao decomposition
result (see the Appendix).

Lemma 2 Suppose we are given a unique game (G, [k], {πe}) such that the SDP (1) has a feasible
solution in which every edge contributes at least 1 − ε/8(d + 1), where d is the diameter of the
graph. Then it is possible, in polynomial time, to find a solution that satisfies a 1 − ε fraction of
the constraints.

Proof:[Of Lemma 2] We fix a spanning tree of diameter d of G and we let r be the root of the
tree. We pick at random a value i ∈ [k] with probability ||ri||

2, and we assign i to r. For every
other variable v, we assign to v the value j that minimizes the “distance” ||vj − ri||

2. Let A be the
random variable corresponding to the above described distribution of assignments. We claim that
every constraint has a probability at least 1− ε of being satisfied by such an assignment.

Let (u, v) be a constraint in G, and let r = u0, u1, . . . , ut = u be a path from r to u of length
t ≤ d in G. Let πu be the composition of the permutations π(r,u1), . . . , π(ut−1,u) corresponding to
the path. Let πv() := π(u,v)(πu()).

We will show that there is a probability at least 1 − ε/2 that A(u) = πu(A(r)) and a probability
at least 1 − ε/2 that A(v) = πv(A(r)). (We only prove the former statement, since the latter has
an identical proof.) By a union bound, it will follow that there is a probability at least 1− ε that
A(v) = π(u,v)(A(u)).

By the triangle inequality, we have

∑

i∈S

||ri − uπu(i)||
2 ≤ ε/4

Let B be the set of indices i such that πu(i) is not the j that minimizes ||ri − uj ||
2. Then we have

Pr[A(u) 6= πu(A(r))] =
∑

i∈B

||ri||
2

We claim that for every i ∈ B, ||ri−uπu(i)||
2 ≥ 1

2 ||ri||
2. This follows from the following simple fact

(substitute r← ri, u← uπu(i) and v← uj , where j is the minimizer of ||ri − uj||
2).

Claim 3 Let r,u,v be vectors such that: (i) u · v = 0, (ii) ||r − u||2 ≥ ||r − v||2, and (iii) the
vectors r,u,v satisfy the “triangle inequality” constraints of (1).

Then ||r− u||2 ≥ ||r||2.

Proof: We consider three cases:

1. If ||u||2 ≤ 1
2 ||r||

2, then

||r− u||2 ≥ ||r||2 − ||u||2 ≥
1

2
||r||2
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2. If ||v||2 ≤ 1
2 ||r||

2, then

||r− u||2 ≥ ||r− v||2 ≥ ||r||2 − ||v||2 ≥
1

2
||r||2

3. If ||u||2, ||v||2 ≥ 1
2 ||r||

2, then from the triangle inequality and from assumption (ii) we have

||v − u||2 ≤ ||v − r||2 + ||r− u||2 ≤ 2||r − u||2

and by Pythagoras theorem and the orthogonality of v and u we have

||v − u||2 = ||v||2 + ||u||2

so that

||r− u||2 ≥
1

2
||v − u||2 =

1

2
||v||2 +

1

2
||u||2 ≥

1

2
||r||2

�

We can now estimate the probability of an inconsistent assignment to r and u as

Pr[A(u) 6= πu(A(r))] =
∑

i∈B

||ri||
2 ≤ 2

∑

i∈B

||ri − uπu(i)||
2 ≤ 2

∑

i∈S

||ri − uπu(i)||
2 ≤

ε

2

�

3 Extensions

By choosing parameters differently in the decomposition step, we can, for example, satisfy a
O( log log n

log n
) fraction of constraints in unique games of value 1 − O( log log n

log n
), or satisfy a 1/nO(γ)

fraction of constraints in a unique game of value ≥ 1− γ.

Khot and Vishnoi [KV05] construct instances of unique games such that the SDP optimum is
(1− γ)|E| but the value of the game is at most 1/(log n)γ . Their result applies to our formulation
as well. It would be very interesting to close this exponential gap.
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A Appendix

A.1 Statement of the Leighton Rao Decomposition Theorem

Lemma 4 (Leighton and Rao [LR99]) There is a polynomial time algorithm that, on input a
graph G = (V,E) and a parameter t > 1, returns a subset of edges E ′ ⊆ E such that |E|′ ≥
|E|/t and such that every connected component of the graph G′ = (V,E′) has diameter at most
(1 + log |E|)/(log t).
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