
A Reducibility that Corresponds to Unbalanced
Leaf-Language Classes

Christian Glaßer, Stephen Travers, and Klaus W. Wagner

Theoretische Informatik
Julius-Maximilians Universität Würzburg,

97074 Würzburg, Germany

28th February 2005

Abstract

We introduce the polynomial-time tree reducibility (ptt-reducibility). Our main result states that
for languages B and C it holds that B ptt-reduces to C if and only if the unbalanced leaf-language
class of B is robustly contained in the unbalanced leaf-language class of C. This is the unbalanced
analogue of the well-known result by Bovet, Crescenzi, Silvestri, and Vereshchagin which connects
polylog-time reducibility with balanced leaf-languages.

We show that restricted to regular languages, the levels 0, 1/2, 1, and 3/2 of the dot-depth hier-
archy (DDH) are closed under ptt-reducibility. This gives evidence that with respect to unbalanced
leaf-languages, the dot-depth hierarchy and the polynomial-time hierarchy perfectly correspond.
Level 0 of the DDH is closed under ptt-reducibility even without the restriction to regular languages.
We show that this does not hold for higher levels.

As a consequence of our study of ptt-reducibility, we obtain the first gap theorem of leaf-language
definability above the Boolean closure of NP: If D = Leafpu(C) for some C ⊆ REG, then D ⊆

BC(NP) or there exists an oracle O such that DO 6⊆ PNP[ε·log n]O for every ε < 1.

1 Introduction

In their pioneering work for the leaf-language approach, Bovet, Crescenzi, and Silvestri [BCS92] and
Vereshchagin [Ver93] independently introduced the notion of polylog-time reducibility (plt-reducibility
for short). This reducibility allows an amazing translation between two seemingly independent ques-
tions.

1. Are given complexity classes separable by oracles?

2. Are given languages plt-reducible?

Leaf Languages. The translation mentioned above uses the concept of leaf languages. Let M be a
nondeterministic polynomial-time bounded Turing machine such that every computation path outputs
one letter from a fixed alphabet. Let M(x) denote the computation tree of M on input x. Let βM (x) be
the concatenation of all leaf-symbols of M(x). For a language B, let Leaf p

u(B) be the class of languages

1

Electronic Colloquium on Computational Complexity, Report No. 35 (2005)

ISSN 1433-8092

L such that there exists a nondeterministic polynomial-time-bounded Turing machine M as above such
that for all x,

x ∈ L ⇐⇒ βM (x) ∈ B.

We refer to Leafp
u(B) as the unbalanced leaf-language class of B. Call a nondeterministic polynomial-

time-bounded Turing machine M balanced if there exists a polynomial-time computable function that
on input (x, n) computes the n-th path of M(x). If we assume M to be balanced in the definition above,
then this defines the class Leafpb(B) which we call the balanced leaf-language class of B. For any class
of languages C let Leafp

u(C) =
⋃

B∈C Leafpu(B) and Leafpb(C) =
⋃

B∈C Leafpb(B). Call a complexity
class D unbalanced leaf-language definable if there exists C such that D = Leaf p

u(C). Analogously
define balanced leaf-language definability. For a survey on leaf-languages we refer to [Wag04].

BCSV-Theorem. Suppose for given complexity classes D1 and D2, there exist languages L1 and L2

such that D1 = Leafpb(L1) and D2 = Leafpb(L2). The theorem by Bovet, Crescenzi, Silvestri, and
Vereshchagin states the following.

L1≤
plt
m L2 ⇔ ∀O

(

Leafpb
O
(L1) ⊆ Leafpb

O
(L2)

)

(1)

Here ≤plt
m denotes polylog-time reducibility (Definition 2.2). For this equivalence it is crucial that bal-

anced leaf-language classes are used. The theorem does not hold for the unbalanced model: Observe that
languages L,L′ ⊆ {0, 1}∗ with L =def {w

∣

∣ |w| is odd}, L′ =def 0{0, 1}∗ form a counterexample, since
Leafpu(L) = ⊕P is not robustly contained in Leafp

u(L
′) = P though L plt-reduces to L′. In this paper

we introduce a new reducibility (ptt-reducibility) which allows us to prove the following unbalanced
analogue.

L1≤
ptt
m L2 ⇔ ∀O

(

Leafpu
O(L1) ⊆ Leafpu

O(L2)
)

(2)

Beside the pure academic interest of a Bovet-Crescenzi-Silvestri-Vereshchagin-like theorem (BCSV-
theorem for short) for the unbalanced case, further motivation comes from a connection between com-
plexity theory and the theory of finite automata: On the lower levels, the dot-depth hierarchy perfectly
corresponds to the polynomial-time hierarchy when we consider unbalanced leaf-languages. Below,
after the introduction of both hierarchies, we will emphasize that equivalence (2) can be very useful in
this respect.

Dot-Depth Hierarchy. Starfree regular languages (starfree languages for short) are regular languages
that can be built up from single letters by using Boolean operations and concatenation (so iteration
is not allowed). SF denotes the class of starfree languages. Brzozowski and Cohen [CB71, Brz76]
introduced the dot-depth hierarchy (DDH for short) which is a parameterization of the class of starfree
languages. The dot-depth counts the minimal number of nested alternations between Boolean operations
and concatenation that is needed to define a language. The classes of the dot-depth hierarchy consist of
languages that have the same dot-depth. For a class of languages C, let Pol(C) denote C’s closure under
finite union and finite concatenation. Let BC(C) denote the Boolean closure of C. The classes (or levels)
of the dot-depth hierarchy are defined as:

B0 =def {L ⊆ A∗
∣

∣ A is a finite alphabet with at least two letters and L
is a finite union of terms vA∗w where v, w ∈ A∗}

Bn+ 1
2

=def Pol(Bn)

Bn+1 =def BC(Bn+ 1
2
)

The dot-depth of a language L is defined as the minimal m such that L ∈ Bm where m = n/2 for some
integer n. All levels of the dot-depth hierarchy are closed under union, under intersection, under taking
inverse morphisms, and under taking residuals [PP86, Arf91, PW97]. The dot-depth hierarchy is strict
[BK78, Tho84] and exhausts the class of starfree languages [Eil76].

2

Polynomial-Time Hierarchy. For a complexity class D let coD = {L
∣

∣ L ∈ D}. Let ∃·D denote the
class of languages L such that there exists a polynomial p and B ∈ D such that x ∈ L ⇔ ∃y, |y| ≤
p(|x|), (x, y) ∈ B. Let ∀·D = co∃·coD. Define ∃!·D and ∀!·D similarly by using ∃! and ∀! instead of ∃
and ∀. Stockmeyer [Sto77] introduced the polynomial-time hierarchy (PH for short). We use a definition
which is due to Wrathall [Wra77].

ΣP
0 = ΠP

0 =def P

ΣP
n+1 =def ∃·ΠP

n

ΠP
n+1 =def ∀·ΣP

n

Connection between DDH and PH. We continue reasoning the better suitability of the unbalanced
model for the connection between dot-depth hierarchy and polynomial-time hierarchy. Hertrampf et al.
[HLS+93], and Burtschick and Vollmer [BV98] proved that the levels of the polynomial-time hierarchy
are connected with the levels of the dot-depth hierarchy. For n ≥ 1,

L ∈ Bn−1/2 ⇒ ∀O(Leafpb
O
(L) ⊆ ΣP

n
O
), (3)

L ∈ Bn−1/2 ⇒ ∀O(Leafpu
O(L) ⊆ ΣP

n
O
). (4)

In particular, the attraction of this connection comes from the fact that both hierarchies are prominent
and well-studied objects. Even more, with the P-NP problem and the dot-depth problem, they represent
two of the most fundamental problems in theoretical computer science.

Can we turn the implications (3) and (4) into equivalences?

The reverse of (3) does not hold, even if we demand L to be starfree: For every n ≥ 1, there exists a
starfree regular language Ln /∈ Bn−1/2 such that Ln plt-reduces to a language in B1/2 [Gla05]. So by

(1), ∀O,Leafpb
O
(Ln) ⊆ ΣP

n
O

, but Ln /∈ Bn−1/2. This shows that the levels of the dot-depth hierarchy
are not closed under plt-reducibility even if we restrict ourselves to starfree regular languages. Contrary
to that, we will prove that things are different for ptt-reducibility. We can show that restricted to regular
languages, the classes B0, B1/2, B1, and B3/2 are closed under ptt-reducibility. (Here and in the fol-

lowing, this formulation means that for instance Rptt
m (B1) ∩ REG = B1 where Rptt

m (B1) denotes B1’s
closure under ptt-reducibility.) It follows that for every regular language L the following holds:

L ∈ B0 ⇔ ∀O(Leafpu
O(L) ⊆ PO) (5)

L ∈ B1/2 ⇔ ∀O(Leafpu
O(L) ⊆ NPO) (6)

L ∈ B1 ⇔ ∀O(Leafpu
O(L) ⊆ BC(NP)O) (7)

L ∈ B3/2 ⇔ ∀O(Leafpu
O(L) ⊆ ΣP

2
O
) (8)

We consider this observation as evidence that restricted to regular languages, all levels of the dot-depth
hierarchy might be closed under ptt-reducibility. This would turn (4) into an equivalence.

By (5)–(8), at least on the lower levels, the dot-depth hierarchy exactly corresponds to robust inclu-
sions of unbalanced leaf-language classes in the polynomial-time hierarchy. This correspondence does
not hold for balanced leaf-language classes. So this shows that unbalanced leaf-language classes are
indeed well-worth being considered. This motivates the study of ptt-reducibility which is the suitable
reducibility for the unbalanced model.

3

Note that Borchert and Silvestri [BS97] showed that for every class Leaf p
u(L), there exists an L′ such

that Leafpu(L) = Leafpb(L
′). So from the plain definability point of view, we can restrict ourselves to

balanced leaf-languages. However, a shortcoming of this point of view is that it obliterates the inherent
connection of a leaf-language and the complexity class defined by it. Naturally, the leaf-language for
a complexity class should be as simple as possible, i.e., the language should capture the properties of
the class it describes as close as possible. L′ can be much more complex than L, and this brings the
unbalanced model into play again. In some cases, the unbalanced model can describe a complexity class
by a simpler language than the balanced model can do.

Perfect Correspondence. We describe another aspect of ptt-reducibility. The perfect correspondence
between the dot-depth hierarchy and the polynomial-time hierarchy allows to prove statements like the
following which are due to Borchert, Kuske, Stephan, and Schmitz.

Theorem 1.1 ([Bor95, BKS99, Sch01]) Let L be a regular language.

1. [Bor95] If L ∈ B0, then Leafpu(L) ⊆ P. If L /∈ B0, then Leafpu(L) ⊇ NP or Leafpu(L) ⊇ coNP
or Leafpu(L) ⊇ MODpP for a prime p.

2. [BKS99] If L ∈ B1/2, then Leafpu(L) ⊆ NP. If L /∈ B1/2, then Leafpu(L) ⊇ coNP or Leafp
u(L) ⊇

co1NP or Leafpu(L) ⊇ MODpP for a prime p.

3. [Sch01] If L ∈ B3/2, then Leafpu(L) ⊆ ΣP
2 . If L /∈ B3/2, then Leafpu(L) ⊇ ∀·UP or Leafp

u(L) ⊇
co∃!·UP or Leafp

u(L) ⊇ MODpP for a prime p.

In view of this theorem we say that B0 and P (resp., B1/2 and NP, B3/2 and ΣP
2) perfectly correspond.

For instance, consider B1/2 and NP. By Burtschick and Vollmer [BV98], Leafp
u(B1/2) = NP. In

addition, Theorem 1.1 states that the languages in B1/2 are the only regular languages L such that
Leafpu(L) is robustly contained in NP. Hence, B1/2 and NP perfectly correspond. With help of plt-
reducibility and the new ptt-reducibility, we can make the notion of perfect correspondence precise.

1. A class of regular languages C and a complexity class D perfectly correspond with respect to
balanced leaf-languages if (restricted to regular languages) C is closed under plt-reducibility and
Leafpb(C) = D.

2. A class of regular languages C and a complexity class D perfectly correspond with respect to
unbalanced leaf-languages if (restricted to regular languages) C is closed under ptt-reducibility
and Leafpu(C) = D.

The following perfect correspondences with respect to unbalanced leaf-languages are easily obtained
from known results [Bor95, BKS99, Sch01].

• B0 perfectly corresponds to P.

• B1/2 perfectly corresponds to NP.

• B3/2 perfectly corresponds to ΣP
2 .

We show that restricted to regular languages, B1 is closed under ptt-reducibility. From this we obtain a
new perfect correspondence with respect to unbalanced leaf-languages:

4

• B1 perfectly corresponds to the Boolean closure of NP.

It follows that above the Boolean hierarchy over NP there is a gap in unbalanced leaf-language defin-
ability: If D = Leafp

u(C) for some class C of regular languages, then D ⊆ BC(NP) or there exists an
oracle O such that DO 6⊆ PNP[ε·log n]O for all ε < 1.

Our investigations of the ptt-reducibility show the following phenomenon: While we can (uncondi-
tionally) prove that level 0 of the dot-depth hierarchy is closed under ptt-reducibility, we can show the
similar property for higher levels only if we restrict ourselves to regular languages. We can construct a
language B ∈ NP r REG that is ptt-reducible to a language in B1/2. The exception of level 0 allows
to improve the correspondence between B0 and P: Not only that B0 and P perfectly correspond, but in
fact it even holds that for any language L /∈ B0 (this includes all nonregular languages) there exists an
oracle O such that Leafpu

O(L) 6⊆ PO.

Organization of the Paper. Section 3 defines ptt-reducibility. In section 4 we formulate and prove
the central result of this paper, the unbalanced analogue of the BCSV-theorem. Section 5 studies the
ptt-closure of classes of the dot-depth hierarchy, and it shows that on some lower levels, the dot-depth
hierarchy perfectly corresponds to the polynomial-time hierarchy.

2 Preliminaries

For a machine or automaton M , let L(M) denote the accepted language. For a finite alphabet Σ, the
initial word relation v on Σ∗ is defined by

u v v
df

⇐⇒ ∃w(w ∈ Σ∗ ∧ uw = v).

We write u @ v if and only if u v v and u 6= v. The lexicographical order on {0, 1}∗ is defined by

x � y
df

⇐⇒ x v y ∨ ∃u(u0 v x ∧ u1 v y).

The quasi-lexicographical order on {0, 1}∗ is defined by

x ≤ y
df

⇐⇒ |x| < |y| ∨ (|x| = |y| ∧ ∃u(u0 v x ∧ u1 v y)) ∨ x = y.

In what follows we identify the set {0, 1}∗ with the set N of natural numbers according to the quasi-
lexicographical order. So {0, 1}∗ inherits operations like + from the natural numbers. Furthermore, we
identify a set O ⊆ N with the characteristic sequence cO(0)cO(1)cO(2) · · · ∈ {0, 1}ω where cO is the
characteristic function of O. For a set O ⊆ {0, 1}ω and u ∈ {0, 1}∗ we define the following sets.

u|O =def ucO(|u|)cO(|u| + 1)cO(|u| + 2) · · ·

uO =def ucO(0)cO(1)cO(2) · · ·

The following theorem shows the close relation between the dot-depth hierarchy and the polynomial-
time hierarchy. Here NP(n) denotes level n of the Boolean hierarchy over NP. PLT is the class of
languages that have polylog-time computable characteristic functions where the input is accessed as an
oracle.

Theorem 2.1 ([HLS+93, BV98, BKS99]) The following holds for n ≥ 1 and relative to all oracles.

5

1. P = Leafpb(PLT) = Leafpb(B0) = Leafpu(B0)

2. ΣP
n = Leafpb(Bn−1/2) = Leafpu(Bn−1/2)

3. ΠP
n = Leafpb(coBn−1/2) = Leafpu(coBn−1/2)

4. BC(ΣP
n) = Leafpb(Bn) = Leafpu(Bn)

5. NP(n) = Leafpb(B1/2(n)) = Leafpu(B1/2(n))

Bovet, Crescenzi, and Silvestri [BCS92] and Vereshchagin [Ver93] showed that polylog-time reducibil-
ity exactly corresponds to balanced leaf-language definable classes.

Definition 2.2 A function f : A∗ → A∗ is polylog-time computable if there exist two polynomial-time-
bounded oracle transducers R : A∗ × N → A and l : A∗ → N such that for all x,

f(x) = Rx(|x|, 1)Rx(|x|, 2) · · · Rx(|x|, lx(|x|))

where R and l access the input x as an oracle. A language B is polylog-time reducible (plt-reducible)
to a language C , B≤plt

m C for short, if there exists a polylog-time computable f such that for all x,
x ∈ B ⇔ f(x) ∈ C .

Theorem 2.3 ([BCS92, Ver93]) For all languages B and C ,

B≤plt
m C ⇔ ∀O

(

Leafpb
O
(B) ⊆ Leafpb

O
(C)

)

.

Let D be a complexity class. A language L belongs to the class ∃u·D if there exist a polynomial p and
B ∈ D such that:

x ∈ L ⇒ (∃!y, |y| ≤ p(|x|))[(x, y) ∈ B]

x /∈ L ⇒ (∀y, |y| ≤ p(|x|))[(x, y) /∈ B]

Analogously, L belongs to ∀u·D if there exist a polynomial p and B ∈ D such that:

x ∈ L ⇒ (∀y, |y| ≤ p(|x|))[(x, y) ∈ B]

x /∈ L ⇒ (∃!y, |y| ≤ p(|x|))[(x, y) /∈ B]

3 Polynomial-Time Tree Reducibility

With polynomial-time tree reducibility (ptt-reducibility for short) we introduce the unbalanced analog
of polylog-time reducibility (plt-reducibility). For the representation of a balanced computation tree it
suffices to think of a leaf string such that each symbol is accessible in polylog-time in the length of the
leaf string. Representations of unbalanced computation trees are more complicated. Here the particular
structure of the tree must be taken into account. This makes it necessary to define suitable representations
of trees. Intuitively, a language B ptt-reduces to a language C if there exists a polynomial-time (in the
height of the tree) computable function that transforms trees such that for every tree t, the leafstring of t
belongs to B if and only if the leafstring of f(t) belongs to C .

6

We start with representations of trees. Let Σ be a finite alphabet. A triple t = (T, h,m) is called a
Σ-tree if T ⊆ {0, 1}∗ is finite, h : T → Σ, and m ∈ N such that ∀z∀u((u v z ∧ z ∈ T) → u ∈ T) and
∀z(z ∈ T → |z| ≤ m). Let TΣ be the set of all Σ-trees. A leaf of t is a z ∈ T such that there is no u ∈ T
with z @ u. For a Σ-tree t = (T, h,m), we define the leaf word of t as β(t) =def h(z1)h(z2) · · · h(zs)
where {z1, z2, . . . , zs} is the set of all leaves of t and z1 ≺ z2 ≺ · · · ≺ zs.

Choose r ≥ 1 such that |Σ| ≤ 2r , and let e : Σ → {0, 1}r be an injective mapping. A Σ-tree t =
(T, h,m) is encoded by the set Ot =def {ze(h(z))

∣

∣ z ∈ T} and the number mt =def m. On the other
hand, an arbitrary set O ⊆ {0, 1}∗ and a number m ∈ N define a Σ-tree tO,m =def (TO,m, hO,m,m)
where

TO,m =def {z
∣

∣ |z| ≤ m ∧ ∀u(u v z → ∃v(v ∈ e(Σ) ∧ uv ∈ O))} and

hO,m(z) =def e−1(lexicographically first v ∈ e(Σ) such that zv ∈ O).

It is easy to see that tOt,mt = t for every Σ-tree t. Now let us define functions that transform unbalanced
computation trees.

Definition 3.1 Let Σ1 and Σ2 be finite alphabets. A function f : TΣ1 → TΣ2 is called a polynomial-time
tree function (ptt-function for short) if there exist k > 0 and functions g1 : TΣ1 × {0, 1}∗ × N → {0, 1}
and g2 : TΣ1 × {0, 1}∗ × N → Σ2 such that:

• There exists a polynomial p(·, ·) such that g1(t, z,m) and g2(t, z,m) are computable in time
p(|z|,m) where the tree t is accessed as the oracle Ot.

• It holds that f(t) = (T ′, h′,mk
t + k) where T ′ =def {z

∣

∣ g1(t, z,mt) = 1} and h′(z) =def

g2(t, z,mt).

We will also write gOt
1 (z,m) and gOt

2 (z,m) instead of g1(t, z,m) and g2(t, z,m), respectively. Finally
we define polynomial-time tree reducibility.

Definition 3.2 For L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2, we define L1≤
ptt
m L2 (L1 is ptt-reducible to L2) if there

exists a ptt-function f : TΣ1 → TΣ2 such that for all t ∈ TΣ1 ,

β(t) ∈ L1 ↔ β(f(t)) ∈ L2.

Proposition 3.3 ≤ptt
m is reflexive and transitive.

We describe how parts of the characteristic sequence of a set O can be interpreted as trees: For any
x ∈ {0, 1}∗ and any O ⊆ {0, 1}∗ , let

O − x =def {y
∣

∣ y + x ∈ O} and

O + x =def {y
∣

∣ y − x ∈ O}.

Observe that O − x + x = {y ∈ O
∣

∣ y ≥ x} and O + x− x = O. Moreover, note that the characteristic
sequence of O − x is exactly cO(x)cO(x + 1)cO(x + 2) · · · . For L ⊆ Σ∗ and O ⊆ {0, 1}∗ we define

LO =def {x
∣

∣ x ∈ {0, 1}∗ and β(tO−x,|x|) ∈ L} and

L◦ =def {(O, x)
∣

∣ x ∈ {0, 1}∗ and β(tO−x,|x|) ∈ L}.

7

Proposition 3.4 Let L ∈ Σ∗, O1, O2 ⊆ {0, 1}∗ , and x, u, v ∈ {0, 1}∗.

1. If |u| = |v| ≤ x, then x ∈ LuO1 ↔ x ∈ LvO1 .

2. If |u| > 2r+3 · x, then x ∈ LuO1 ↔ x ∈ LuO2 . (Note that r is the constant that was chosen at the
beginning of this section such that |Σ| ≤ 2r .

Proof Assume we want to check x ∈ LO1 . So we have to consider the tree tO1−x,|x| which consists of
paths of length ≤ |x|. The latter are described by the words in O1−x that are of length ≤ |x|+r. There
are less than 2|x|+r+1 ≤ x · 2r+2 such words. So in order to figure out whether x ∈ LO1 , we only need
to know i ∈ O1 for i ∈ {x, x + 1, . . . , x + x · 2r+2}. 2

Some more notations are needed for the proof of the unbalanced BCSV-theorem in section 4. Let M be a
nondeterministic polynomial-time Turing machine (NPTM, for short) such that on input x, M produces
on every computation path z a symbol M(x, z) from a finite alphabet Σ. Let k be the smallest natural
number such that nk + k bounds the running time of M . For every computation path z of M on input
x, let

TM (x) =def {u
∣

∣ ∃z(z computation path of M on x and u v z)} and

hM (x)(z) =def M(x, z).

For the other z ∈ TM (x) the value of hM (x)(z) is chosen arbitrarily from Σ. The computation tree of
M on x is

tM (x) =def (TM (x), hM (x), |x|k + k).

Note that tM(x) is a Σ-tree. For a nondeterministic polynomial-time oracle Turing machine (NPTOM,
for short) M , we define the computation tree of M on x with oracle O as

tOM (x) =def (T O
M (x), hO

M (x), |x|k + k).

For a language L ⊆ Σ∗, define Leafpu(L) as the class of all languages B for which there exists an NPTM
M such that for all x,

x ∈ B ⇔ β(tM (x)) ∈ L.

For a fixed oracle O ⊆ {0, 1}∗ , let Leafpu
O(L) be the class of all languages B for which there exists an

NPTOM M such that for all x,
x ∈ B ⇔ β(tOM (x)) ∈ L.

Finally, let Leafpu
◦(L) be the class of all sets B for which there exists an NPTOM M such that for all x

and all oracles O,
(O, x) ∈ B ⇔ β(tOM (x)) ∈ L.

Proposition 3.5 Let L be a language.

1. LO ∈ Leafpu
O(L) for every oracle O.

2. L◦ ∈ Leafpu
◦(L).

A language L ⊆ Σ∗ is called nontrivial if L 6= ∅ and L 6= Σ∗.

8

4 The BCSV-Theorem for Unbalanced Leaf Languages

Let B and C be languages. Bovet, Crescenzi, and Silvestri [BCS92] and Vereshchagin [Ver93] proved
that B polylog-time reduces to C if and only if for all oracles O, Leaf p

b
O
(B) ⊆ Leafpb

O
(C). So

plt-reducibility corresponds to robust inclusions of balanced leaf-language classes. We show that ptt-
reducibility and unbalanced leaf-language classes share the same connection.

Theorem 4.1 For nontrivial L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 the following are equivalent:

(1) L1≤
ptt
m L2

(2) Leafpu
◦(L1) ⊆ Leafpu

◦(L2)

(3) L◦
1 ∈ Leafpu

◦(L2)

Proof (1) ⇒ (2). Let L1≤
ptt
m L2 via ptt-function f . For B ∈ Leafp

u
◦(L1) there exists an NPTOM M

such that (O, x) ∈ B ⇔ β(tOM (x)) ∈ L1 for all x ∈ Σ∗ and oracles O. It is easy to construct an
NPTOM M ′ such that β(tOM ′(x)) = β(f(tOM (x))) for all x and O.1 Consequently,

(O, x) ∈ B ⇔ β(tOM (x)) ∈ L1 ⇔ β(f(tOM (x))) ∈ L2 ⇔ β(tOM ′(x)) ∈ L2,

and hence B ∈ Leafp
u
◦(L2).

(2) ⇒ (3) is obvious because of Proposition 3.5.2

(3) ⇒ (1). Let L◦
1 ∈ Leafpu

◦(L2). There exists an NPTOM M such that (O, x) ∈ L◦
1 ⇔ β(tOM (x)) ∈ L2.

Let k be the smallest natural number such that nk + k bounds the running time of M . For a Σ-tree t we
obtain Ot = Ot + 0mt − 0mt and therefore,

β(t) ∈ L1 ⇔ β(tOt,mt) ∈ L1 ⇔ (Ot + 0mt , 0mt) ∈ L◦
1 ⇔ β(tOt+0mt

M (0mt)) ∈ L2.

Define f(t) =def tOt+0mt

M (0mt) = (T Ot+0mt

M (0mt), hOt+0mt

M (0mt),mk
t + k). Observe that there ex-

ist polynomial-time computable functions g1, g2 such that T Ot+x
M (0mt) = {z

∣

∣ gt
1(z,mt) = 1} and

hOt+x
M (0mt) = gt

2(z,mt). Hence L1≤
ptt
m L2. 2

Theorem 4.2 For nontrivial L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 the following are equivalent:

(1) L1≤
ptt
m L2

(2) ∀O(Leafpu
O(L1) ⊆ Leafpu

O(L2))

(3) ∀O(LO
1 ∈ Leafpu

O(L2))

1Note that we cannot guarantee tO
M′(x) = f(tO

M (x)). Every inner node of tO
M′ (x) has exactly two children, since tO

M′(x)
is a computation tree. In contrast, f(tO

M (x)) is an arbitrary tree which by our definition can contain inner nodes that have only
one child. However, β(tO

M′(x)) = β(f(tO
M (x))) is possible, since from f(tO

M (x)) we obtain a computation tree by deleting
such nodes.

9

Proof (1) ⇒ (2) follows from (1) ⇒ (2) in Theorem 4.1, and (2) ⇒ (3) is obvious because of Proposition
3.5.1.

(3) ⇒ (1). Because of Theorem 4.1 it suffices to prove L◦1 ∈ Leafpu
◦(L2). Let M0,M1,M2, . . . be an

enumeration of all NPTOMs. Assume L◦
1 6∈ Leafpu

◦(L2), i.e., for every k there exist an oracle Ok and a
word xk such that

xk ∈ LOk
1 ↔ β(tOk

Mk
(xk)) 6∈ L2. (9)

Claim 4.3 There exist u0, u1, u2, . . . ∈ {0, 1}∗ and an z0, z1, z2, . . . ∈ N such that

• uk−1 is a proper initial word of uk, and

• zk ∈ LO
1 ↔ β(tOMk

(zk)) 6∈ L2 for all O ∈ uk · {0, 1}ω .

Proof of Claim 4.3. By induction on k. For k = 0, let z0 = x0, and let u0 be the shortest initial word of
O0 ∈ {0, 1}ω such that |u0| > 2r+3 · x0 and {0, 1, . . . , |u0|} contains every query of M0 to the oracle
O0 during its work on x0. For every O ∈ u0 · {0, 1}

ω we obtain using Proposition 3.4.2 and (9)

z0 ∈ LO
1 ⇔ x0 ∈ LO

1 ⇔ x0 ∈ LO0
1 ⇔ β(tO0

M0
(x0)) 6∈ L2

⇔ β(tOM0
(x0)) 6∈ L2 ⇔ β(tOM0

(z0)) 6∈ L2.

Now assume that we have already constructed u0, u1, . . . , uk ∈ {0, 1}∗ and z0, x1, . . . , xk ∈ N that
satisfy the claim. We construct uk+1 and zk+1 as follows. Consider an NPTOM M such that for every
input x and every oracle O the following holds. If x ≥ |uk|, then M works as Mk+1 on x with oracle
uk|O. If x < |uk|, then M works in such a way that x ∈ LO

1 ↔ β(tOMr
(x)) ∈ L2. Choose r such that

M = Mr.

If xr < |uk|, then xr ∈ LOr
1 ↔ β(tOr

Mr
(xr)) ∈ L2 which contradicts (9). Therefore, xr ≥ |uk|, and

consequently, using Proposition 3.4.1 and (9),

xr ∈ L
uk|Or

1 ⇔ xr ∈ LOr
1 ⇔ β(tOr

Mr
(xr)) 6∈ L2 ⇔ β(t

uk |Or

Mk+1
(xr)) 6∈ L2. (10)

Now define zk+1 =def xr and let uk+1 be the shortest initial word of uk|Or such that |uk+1| > |uk|,
|uk+1| > 2r+3 · xr, and {0, 1, . . . , |uk+1|} contains every query of Mk+1 to the oracle uk|Or during
its work on input xr. Hence uk is a proper initial word of uk+1, and by Proposition 3.4.2 and (10) we
obtain for all O ∈ uk+1 · {0, 1}

ω

zk+1 ∈ LO
1 ⇔ xr ∈ LO

1 ⇔ xr ∈ L
uk|Or

1 ⇔ β(t
uk |Or

Mk+1
(xr)) 6∈ L2

⇔ β(tOMk+1
(xr)) 6∈ L2 ⇔ β(tOMk+1

(zk+1)) 6∈ L2.

This completes the induction and proves Claim 4.3.

Now define O′ =def limk→∞ uk ·0
ω , from which we obtain O′ ∈ uk ·{0, 1}

ω for all k ≥ 0. By the claim,
zk ∈ LO′

1 ↔ β(tO
′

Mk
(zk)) 6∈ L2 for every k ≥ 0. This means LO′

1 6∈ Leafpu
O′

(L2) which contradicts the
assumption of (3). 2

10

5 ptt-Reducibility and the Dot-Depth Hierarchy

By Theorem 2.1 the levels of the dot-depth hierarchy and the levels of the polynomial-time hierarchy
are closely related. Note that this connection exists for both models, balanced and unbalanced leaf-
languages. In this section we discuss evidence that for the unbalanced model this connection is even
closer than that stated in Theorem 2.1.

Definition 5.1 A class of regular languages C and a complexity class D perfectly correspond with re-
spect to balanced leaf-languages if (restricted to regular languages) C is closed under plt-reducibility
and Leafpb(C) = D. A class of regular languages C and a complexity class D perfectly correspond
with respect to unbalanced leaf-languages if (restricted to regular languages) C is closed under ptt-
reducibility and Leafpu(C) = D.

Perfect correspondences are connections closer than those stated in Theorem 2.1.

Proposition 5.2 If C perfectly corresponds to D with respect to balanced leaf-languages, then for every
regular L /∈ C there exists an oracle relative to which Leafp

b(C) 6⊆ D. The similar statement holds for
unbalanced leaf-languages.

Proof Follows from Theorems 2.3 and 4.2. 2

The levels of the dot-depth hierarchy and the levels of the polynomial-time hierarchy do not perfectly
correspond with respect to balanced leaf-languages. In particular, for n ≥ 1, Bn/2 is not closed under
plt-reducibility even if we restrict ourselves to starfree regular languages.

Theorem 5.3 For every n ≥ 1, Bn−1/2 does not perfectly correspond to ΣP
n with respect to balanced

leaf-languages.

Proof For every n ≥ 1, there exists Ln ∈ SF − Bn−1/2 such that Ln plt-reduces to a language in B1/2

[Gla05]. 2

In contrast, we will see that restricted to regular languages, the classes B0, B1/2, B1, and B3/2 are closed
under ptt-reducibility. In particular, these classes perfectly correspond to the classes of the polynomial-
time hierarchy. While for B0, B1/2, and B3/2 the latter is easily obtained from known results [Bor95,
BKS99, Sch01], this is a new result for B1. We consider these results as evidence that restricted to regular
languages, all levels of the dot-depth hierarchy might be closed under ptt-reducibility and therefore,
perfectly correspond to the levels of the polynomial-time hierarchy.

Unlike all classes Bn/2 for n ≥ 1 (see Theorem 5.12), the class B0 is closed under ptt-reducibility even
without the restriction to regular languages.

Theorem 5.4 Rptt
m (B0) = B0.

11

Proof Let L ⊆ Σ∗ be ≤ptt
m -reducible to a language in B0. Hence L≤ptt

m {1}, i.e., there exists a ptt-
function f such that for all Σ-trees t,

β(t) ∈ L ⇔ β(f(t)) = 1.

Without loss of generality we can assume that β(t) 6∈ L implies β(f(t)) = 0. Let g1 and g2 be the
polynomial-time computable functions that define f . Let M1 and M2 be polynomial-time machines
computing g1 and g2, resp., in time nk for suitable k ≥ 1.

Claim 5.5 For every wxv ∈ L with |x| > max((3 log2 |wxv|)k+1, 1) there exist r > 1 and
v1, v2, . . . , vr such that

1. |v1v2 · · · vr| ≤ (3 log2 |wxv|)k+1,

2. wxv ∈ wv1Σ
∗v2Σ

∗ · · ·Σ∗vrv, and

3. wv1Σ
∗v2Σ

∗ · · ·Σ∗vrv ∩ Σ≤2|wxv| ⊆ L.

The same holds true for L.

Proof of Claim 5.5. Consider wxv such that |x| > max((3 log2 |wxv|)k+1, 1), and let m =def

3 log2 |wxv|. From |x| ≥ 2 we obtain m ≥ 3. Let t = (T, h,m) be a balanced Σ-tree such that
β(t) = wxv. Since β(f(t)) ∈ {0, 1}, the tree f(t) has only one path. To compute this path, at most
2mk ≤ mk+1 − 2 paths of t are queried by M1 or M2. So we can factorize wxv as

wxv = wv1u1v2u2 · · · ur−1vrv

such that all ui and vi are nonempty, |v1v2 · · · vr| ≤ mk+1, and no queried path goes through a symbol
in ui. Since |x| > mk+1 we have r ≥ 2. Also note that r ≤ mk+1, since the vi are nonempty. Now we
cut all paths that correspond to symbols in ui. This results in a new Σ-tree t1 = (T1, h1,m) such that
β(t1) = wv1v2 · · · vrv. Clearly,

wxv ∈ wv1Σ
∗v2Σ

∗ · · ·Σ∗vr−1Σ
∗vrv.

Now consider arbitrary z1, z2, . . . , zr−1 such that |wv1z1v2z2 · · · zr−1vrv| ≤ 2|wxv|. If πi is the path
corresponding to the first symbol of ui, then we add πi to the tree, and additionally, we attach a tree with
leaf word zi to πi. This results in a Σ-tree t2 = (T2, h2,m) such that

β(t2) = wv1z1v2z2v3 · · · vr−1zr−1vrv.

Note that height m still suffices, since the length of πi is less than or equal to dlog2 |wxv|e and since
|zi| ≤ 2|wxv|. M1 and M2 do not query paths that go through symbols in ui. Therefore, these machines
cannot distinguish between the Σ-trees t and t2. Consequently,

wxv ∈ L ⇔ wv1z1v2z2v3 · · · vr−1zr−1vrv ∈ L.

This proves Claim 5.5.

Define N0 as a natural number such that N0 > max(2(3 log2 N0)
k+1, 1), and consequently N >

2(3 log2 N)k+1 for every N ≥ N0.

12

Claim 5.6 For every x ∈ L with |x| ≥ 2N0 there exist w, v such that |w| = |v| = (3 log2 |x|)
k+1,

x ∈ wΣ∗v, and wΣ∗v ⊆ L.

Proof of Claim 5.6. Let x ∈ L such that |x| ≥ 2N0 ≥ N0 > 1, and let m =def 3 log2 |x|. Hence |x| >
2mk+1 ≥ mk+1. By Claim 5.5, there exist r > 1 and w1, w2, · · · , wr such that |w1w2 · · ·wr| ≤ mk+1

and
x ∈ w1Σ

∗w2Σ
∗ · · ·Σ∗wr ∩ Σ≤|x| ⊆ L.

Because of |x| ≥ 2mk+1 and |w1wr| ≤ mk+1, we can choose words u1, u2, u3 such that x =
w1u1u2u3wr and |w1u1| = |u3wr| = mk+1. Assume there exists a z ′ such that w1u1z

′u3wr ∈ L.
Let z =def u1z

′u3. So w1zwr ∈ L and

|z| ≥ |u1u3| = |w1u1| + |u3wr| − |w1wr| ≥ 2mk+1 − mk+1 = mk+1.

Thus there exists a z such that w1zwr ∈ L and |z| ≥ mk+1 (and hence |z| ≥ N0). Let z be of minimum
length with this property. Observe |z| ≥ mk+1 ≥ |w1wr| and |z| ≥ 3 log2 |x| ≥ 3. Since 2|z| ≥ N0 we
obtain 2|z| > 2(3 log2 2|z|)k+1 and hence

|z| > (3 log2 2|z|)k+1 ≥ (3 log2 |w1zwr|)
k+1.

From Claim 5.5 we obtain s > 1 and v1, v2, · · · , vs such that

w1v1Σ
∗v2Σ

∗ · · ·Σ∗vswr ∩ Σ≤2|w1zwr| ⊆ L

and
|v1v2 · · · vs| ≤ (3 log2 |w1zwr|)

k+1 < |z|.

From w1v1v2 · · · vswr ∈ L and from the minimality of z we obtain |v1v2 · · · vs| < mk+1.

So far we have seen
w1Σ

∗w2Σ
∗ · · ·Σ∗wr ∩ Σ≤|x| ⊆ L (11)

and
w1v1Σ

∗v2Σ
∗ · · ·Σ∗vswr ∩ Σ≤2|z| ⊆ L. (12)

Now observe that

|w1v1w2w3 · · ·wr−1v2v3 · · · vswr| = |w1w2 · · ·wr| + |v1v2 · · · vs| ≤ 2mk+1

≤ min{|x|, 2|z|}.

Together with (11) and (12) this implies w1v1w2w3 · · ·wr−1v2v3 · · · vswr ∈ L ∩ L which is a contra-
diction. This means that there is no z ′ such that w1u1z

′u3wr ∈ L. Consequently, the statement of the
claim is fulfilled by w =def w1u1 and v =def u3wr. This proves Claim 5.6.

By Claim 5.6, for every x ∈ L with |x| ≥ 2N0 there exist words w, v such that |w| = |v| =
(3 log2 |x|)

k+1 and x ∈ wΣ∗v ⊆ L. Since wv ∈ L and |wv| = 2(3 log2 |x|)
k+1 < |x| we can ap-

ply Claim 5.6 repeatedly until we obtain w′, v′ such that |w′| = |v′| = 2N0 and x ∈ wΣ∗vwΣ∗v ⊆ L.
Hence

L =
⋃

x∈L,

|x|<2N0

{x} ∪
⋃

wv∈L,

|w|=|v|=2N0

wΣ∗v.

This shows L ∈ B0. 2

13

s0

vu y′

w′

y

w

s2s1

v

w′

u

w

s3s5

z
v

w′

u

w

s6s4

x

z

s7 : +/− s8 : −/+

Figure 1: Pattern P1 where w,w′ are nonempty - Nonexistence of this pattern characterizes B1.

Theorem 5.7 Rptt
m (B1/2) ∩ REG = B1/2.

Proof It suffices to argue for the inclusion from left to right. Assume there exists L ∈ Rptt
m (B1/2)∩REG

such that L /∈ B1/2. So there exists L′ ∈ B1/2 such that L≤ptt
m L′. Hence for all oracles O, Leafp

u
O(L′) ⊆

NPO. By Borchert, Kuske, and Stephan [BKS99], for all oracles O, coUPO ⊆ Leafpu
O(L). By Theo-

rem 4.2, for all oracles O, Leafp
u
O(L) ⊆ Leafpu

O(L′) and therefore, coUPO ⊆ NPO. This contradicts
an oracle construction by Eppstein et al. [EHTY92]. 2

Lemma 5.8 Let L ∈ REG r B1. Then there exists an oracle B such that Leafp
u
B(L) 6⊆ PNP[ε·logn]B

for all ε < 1.

Proof Let A be an alphabet with |A| ≥ 2 and L ⊆ A∗ such that L ∈ REG r B1. Hence, the minimal
automaton of L contains pattern P1 (see Figure 1) and there exist u, v, x, y, y ′, z ∈ A∗ and w,w′ ∈ A+

as apparent in Figure 1. Without loss of generality, we assume that the minimal automaton contains the
first version of the pattern, i.e., state s7 is accepting and state s8 is rejecting. Let LP1 be the language
of all words in x{u, v, w,w′ , y, y′}∗z such that the minimal automaton of L moves along the paths
drawn in Figure 1 and finally reaches s7. Let L′

P1
be the similar set of words leading to s8. Clearly,

Leafpu(LP1 , L
′
P1

) ⊆ Leafpu(L).2 We construct B such that for all ε < 1,

Leafpu
B(LP1 , L

′
P1

) 6⊆ P
NP[nε]
‖

B
.

This implies that for all ε < 1,

Leafpu
B(LP1 , L

′
P1

) 6⊆ PNP[ε·log(n)]B .

Let e /∈ A be a new letter. For n ∈ N let α0,n ≺ α1,n ≺ . . . ≺ α2n−1,n be the
words of {0, 1}n in lexicographical order. For any set D ⊆ {0, 1}∗ with characteristic function
cD, the characteristic sequence of D restricted to words of length n is defined as CD(n) =def

cD(α0,n)cD(α1,n) . . . cD(α2n−2,n)cD(α2n−1,n). Such a characteristic sequence can be considered as

2Note that here a pair of languages (LP1
, L′

P1
) defines a leaf-language class. A language belongs to Leafpu(LP1

, L′
P1

) if
and only if there exists a nondeterministic polynomial-time-bounded Turing machine M such that for all x: If x ∈ L then
βM (x) ∈ LP1

; if x /∈ L then βM (x) ∈ L′
P1

. This can be used to define promise classes, as in this case.

14

a sequence of letters from A ∪ {e} where dlog(|A| + 1)e bits of CD(n) encode a letter from A ∪ {e}.
Denote this new sequence by C ′

D(n) and observe that its length is greater than 2n−|A|. Let C ′
D(n)|A be

the sequence obtained by removing all e’s from C ′
D(n). We say that the sequence CD(n) is valid for

pattern P1 if the following holds:

• C ′
D(n) does not contain a factor en+1, and

• C ′
D(n)|A ∈ LP1 ∪ L′

P1
.

We call a valid sequence accepted (resp., rejected) by pattern P1 if it belongs to LP1 (resp., L′
P1

). Hence,
a valid sequence CD(n) encodes a sequence C ′

D(n) over A∪{e} which may contain only short e-blocks.

We will define a fast-growing tower function t : N → N such that t(n + 1) = 2t(n) for n ≥ 0. For an
arbitrary oracle O, we define our witness language WO as follows:

WO =def {0
t(n)

∣

∣ n ≥ 0 and CO(t(n)) is accepted by pattern P1}

Throughout the construction we will ensure that for all n, the sequence CB(t(n)) is valid for pattern
P1. This implies W B ∈ Leafpu

B(LP1 , L
′
P1

): On input 0m, an unbalanced machine first verifies that
m = t(n) for some n, and then produces a computation tree with leaf string C ′

O(m). Since C ′
O(m)

only contains short blocks of e’s, this machine can reorganize its computation tree such that all e’s are

removed from the leaf string. So it remains to show that W B /∈ PNP[ε·log(n)]B .

Our oracle B will be defined as the union of (finite) oracle stages Bi, i ≥ 1, which are constructed
iteratively. Each stage Bn is characterized by oracle words of length t(n) and therefore by the sequence
CB(t(n)). Let B[k, j] =def

⋃

k≤i≤j Bi denote an interval of oracle stages.

We enumerate P
NP[mε]
‖ -machines as follows. Consider an enumeration of all tuples (M,N, p, ε) such

that M is a deterministic polynomial-time oracle Turing machine, N is a nondeterministic polynomial-
time oracle Turing machine, p is a polynomial and ε < 1. We interpret M as the base machine and N as
the oracle machine.

By defining the first value t(0) of the tower function sufficiently large and t(n + 1) =def 2t(n), we can
ensure that the enumeration satisfies the following technical requirements. For the n-th tuple of the
enumeration, (M,N, p, ε), all of the following holds:

1. p(t(n)) ≤ 2log2 t(n)

2. 3 log2 t(n) ≤ t(n)(1−ε)/2

3. 2t(n)/2t(n)(1+ε)/2
≥ 2 · |A| · |ww′yy′uv|

4. Let the running times of M and N be bounded by polynomials q and r, respectively. Then it holds
that r(q(n)) ≤ p(n).

5. M on input x asks at most |x|ε nonadaptive queries to the oracle L(N).

Let (M,N, p, ε) be the n-th tuple in our enumeration and let m = t(n). We diagonalize against
(M,N, p, ε) through ensuring

L(MB[1,n],L(NB[1,n])) 6= W B[1,n]. (13)

15

Notice that M can access both oracles, B[1, n] and L(N B[1,n]).

We describe the main idea behind the diagonalization against (M,N, p, ε): We start with an oracle
Bn such that CB(m) is accepted by P1. After that we simulate M with the so-far constructed oracle
(B[1, n]) on input 0m and determine segments in Bn that have to be reserved. If M rejects 0m we are
done for this stage. Otherwise we change Bn on non-reserved positions, such that CB(m) is still valid
but now rejected by P1 (here the e’s compensate length differences). We then repeat the simulation of
M on input 0m with the modified oracle and update the list of reserved segments. If M still accepts we
are done, otherwise we modify non-reserved positions such that CB(m) remains valid but accepted by
P1 again. We will show that after ε · log m such rounds, M on input 0m will err in its decision.

The detailed construction of the diagonalization against (M,N, p, ε) follows.

We define
β =def xwγwuz,

such that γ ∈ {w, e}∗, γ does not contain a factor em+1, and |β| = 2m−|A|. We start with Bn ⊆ {0, 1}m

such that C ′
Bn

(m) = β. Clearly, CBn(m) is accepted by pattern P1: Whether a valid sequence is
accepted or rejected is determined by the first occurrence of a word from {u, v} in the encoded sequence;
for u the sequence is accepted, for v it is rejected.

Let F denote the set of reserved segments; F = ∅ at the beginning. F is supposed to contain words
of length m that we will not modify in the further construction. Simulate M B[1,n] on input 0m. If M
rejects, (13) is fulfilled and the construction of stage Bn is complete. So assume M accepts. Let Q1

be the set of M ’s queries to Bn on input 0m. Thus, |Q1| ≤ p(m). Let q1, . . . , qk be M ’s nonadaptive
queries to N where k ≤ mε. Let Q+ ⊆ {q1, . . . , qk} be the set of positively answered queries. Hence,
for q ∈ Q+, the nondeterministic machine N on input q produces at least one accepting path. We
define Q2 =def {q

∣

∣∃q′ ∈ Q+(N on input q′ queries q on its leftmost accepting path)}. Observe that
|Q2| ≤ p(m)2. We now set F = F ∪ Q1 ∪ Q2. Since |F | ≤ p(m)3 and |CBn(m)| = 2m, there exist
2m/p(m)3 consecutive words of length m that are not in F . These words represent a segment s in β.
By the construction of β, s ∈ {w, e}∗ . In the next step, s is replaced by a segment s′ ∈ y{w′, e}∗v such
that |s′| = |s| and s does not contain a factor em+1. Observe that the purpose of e in this construction is
to compensate differences in the lengths of y, w,w ′ and v. After this modification, CBn(m) is still valid
but now rejected by P1. Since all further modifications in later rounds will be restricted to the segment
s′, we reserve all the rest of the oracle at this stage, i.e., F now contains all words from {0, 1}m except
those encoding s′.

Again, we simulate MB[1,n] on input 0m and now assume that it has noticed the deception and thus
rejects. Let Q3 be the set of queries to Bn during this simulation. Since Q2 ⊆ F , no query in Q+ can
have flipped from positive to negative. Consequently, there have to be queries in {q1, . . . , qk} r Q+

which have been answered positively by N during the second simulation of M . Let Q ′
+ be the

set of these queries. We repeat the above construction by defining the set Q4 =def {q
∣

∣∃q′ ∈
Q′

+(N on input q′ queries q on its leftmost accepting path)}. We have |Q3| ≤ p(m) and |Q4| ≤ p(m)2.
Set F = F ∪ Q3 ∪ Q4. Hence, we still find

2m

p(m)3 · p(m)3

consecutive words of length m that are not in F . These correspond to a segment s1 ∈ {w′, e}∗ which
has not been reserved yet. This segment is replaced by a segment s′1 ∈ y′{w, e}∗u with |s1| = |s′1|. This
modification causes CBn(m) to be accepted by P1.

16

We can deceive M again by repeating the above procedure. After at most k rounds, no more of M ’s
queries to N can flip from negative to positive. At that point, M cannot change its behavior any longer.
Each round the size of the non-reserved area of {0, 1}m is divided by at most p(m)3. Hence after k
rounds we still have a segment of size

2m

p(m)3k
≥

2m

p(m)3mε ≥
2m

23mε(log2 m)
≥

2m

2m(1−ε)/2mε
=

2m

2m(1+ε)/2
≥2 · |A| · |ww′yy′uv|.

Therefore, after k rounds we can still find a sufficiently large non-reserved area. We can then modify
this segment to deceive M one final time. 2

Utilizing Theorem 4.2, we can translate this oracle separation into a statement about the ptt-closure of
B1.

Theorem 5.9 Rptt
m (B1) ∩ REG = B1.

Proof It suffices to argue for the inclusion from left to right. Assume there exists L ∈ Rptt
m (B1)∩REG

such that L /∈ B1. So there exists L′ ∈ B1 such that L≤ptt
m L′. By Theorem 4.2, for all oracles O,

we then have Leafpu
O(L) ⊆ Leafpu

O(L′). Theorem 2.1 holds relative to all oracles. Therefore, for all
oracles O, it holds that Leafp

u
O(L′) ⊆ BC(NP)O. This contradicts Lemma 5.8. 2

As a consequence, we obtain the first gap theorem of leaf-language definability above the Boolean
closure of NP.

Corollary 5.10 Let D = Leafp
u(C) for some C ⊆ REG. Then D ⊆ BC(NP) or there exists an oracle

O such that DO 6⊆ PNP[ε·log n]O for all ε < 1.

Theorem 5.11 Rptt
m (B3/2) ∩ REG = B3/2.

Proof It suffices to argue for the inclusion from left to right. Assume there exists L ∈ Rptt
m (B3/2)∩REG

such that L /∈ B3/2. So there exists L′ ∈ B3/2 such that L≤ptt
m L′. Hence for all oracles O, Leafp

u
O(L′) ⊆

Σp
2
O. By Schmitz [Sch01], for all oracles O, ∀u·∃u·PO ⊆ Leafpu

O(L). By Theorem 4.2, for all oracles
O, Leafpu

O(L) ⊆ Leafpu
O(L′) and therefore, ∀u·∃u·PO ⊆ Σp

2
O. This contradicts an oracle construction

by Spakowski and Tripathi [ST04]. 2

By Theorem 5.4, B0 is closed under ptt-reducibility. As stated in the Theorems 5.7, 5.9, and 5.11, the
classes B1/2, B1, and B3/2 are closed under ptt-reducibility if we restrict ourselves to regular languages.
We explain this difference and show that the restriction to regular languages is crucial: For k ≥ 1, Bk/2

is not closed under ptt-reducibility.

Theorem 5.12 There exists B ∈ NP r REG such that Leaf p
u(B) ⊆ NP.

17

Proof We use the pairing function 〈·, ·〉 that is defined as follows for letters ai and bi.

〈a1a2 · · · ak, b1b2 · · · bl〉 =def 0a10a2 · · · 0ak1b11b2 · · · 1bl

Let N1, N2, . . . be an enumeration of nondeterministic polynomial-time-bounded Turing machines such
that Ni on inputs of length n has running time ni + i. We may assume that given i, one can determine
the machine Ni in polynomial-time in |i|.

Every word appears as leaf string of a suitable computation. This changes if we demand that the leaf
string is generated by a short input. A word w is called honestly generated if it is generated by a machine
Ni on input of a sufficiently small word x. We make this precise with the definition of B which consists
of all honestly generated words.

B =def {w
∣

∣ (∃i ≤ |w|/2)(∃x ∈ A∗, |x|i + i < |w|)[βNi(x) = w]}

Assume we are given w, i, and x as above. The running time of Ni on x is |x|i + i < |w|. Therefore, in
time O(|w|2) we can determine the machine Ni, can simulate the first |w| computation paths of Ni(x),
and can test whether βNi(x) = w. This shows B ∈ NP.

Let n ≥ 2 and 1 ≤ i ≤ n/2. We estimate |B ∩ An| as follows.

|B ∩ An| ≤

n/2
∑

i=1

|{x ∈ A∗
∣

∣ |x| ≤ (n − i − 1)1/i}| ≤

n/2
∑

i=1

2n−i = 2n

n/2
∑

i=1

2−i < 2n

This shows that at least one word of any length belongs to B. In particular, B is infinite.

We argue that B /∈ REG. For this we start with the description of a nondeterministic machine N
on input 〈M, k〉 where k is a natural number and M is a deterministic finite automaton. First, N
deterministically computes nonempty words u, v, z such that for all i ≥ 0, uv iz /∈ L(M). If such words
do not exist, then N generates the leaf string 0. Otherwise, in a nondeterministic way N generates the
leaf string uvkz. Observe that the words u, v, z, if they exist, can be computed in polynomial-time which
shows that N is polynomial-time bounded. Therefore, N = Nj for some j ≥ 1.

Assume B ∈ REG, i.e., B = L(M) for some finite automaton M. Choose l sufficiently large such
that l ≥ 2j and l > |〈M, l〉|j + j. Let x =def 〈M, l〉 and w =def βNj (x). Since B is infinite, there
exist nonempty words u, v, z such that for all i ≥ 0, uviz /∈ L(M). Therefore, for suitable such words
it holds that w = uvlz /∈ L(M). So j ≤ |w|/2 and |w| > |x|j + j. It follows that w ∈ B − L(M)
which contradicts the assumption B = L(M) and which shows B /∈ REG.

Finally we show Leafp
u(B) ⊆ NP. Fix any j ≥ 1 and let L = {x

∣

∣ βNj (x) ∈ B}. It suffices to show
L ∈ NP. Let x be an arbitrary word of length ≥ 2. Define w =def βNj (x) and observe

x ∈ L ⇔ w ∈ B

⇔ (|x|j + j < |w|) ∨ (|x|j + j ≥ |w| ∧ w ∈ B).

The first |x|j +j letters of the leaf string w can be determined in polynomial-time in |x|. So the condition
|x|j + j < |w| is decidable in polynomial-time in |x|. If |x|j + j ≥ |w|, then w ∈ B can be decided in
nondeterministic polynomial-time in |x|. Hence the condition on the right-hand side is decidable in NP
which shows L ∈ NP. 2

Corollary 5.13 1. There exists B ∈ NP r REG such that B ∈ Rptt
m (B1/2).

18

2. For every k ≥ 1, Bk/2 is not closed under ≤ptt
m -reducibility.

Proof Let C =def {0, 1}
∗1{0, 1}∗ and define B as in Theorem 5.12. There we show B ∈ NP r REG

and Leafpu(B) ⊆ NP. The argument for the latter inclusion is relativizable. Therefore, for all oracles O,
Leafpu

O(B) ⊆ NPO = Leafpu
O(C). By Theorem 4.2, B≤ptt

m C and hence B ∈ Rptt
m (B1/2). This shows

the first statement and the second one follows immediately. 2

We state an upper bound for the complexity of the ≤ptt
m -closure of regular languages.

Theorem 5.14 Rptt
m (REG) ⊆

⋃

k≥1 DSPACE(logk n).

Proof Let L ∈ Rptt
m (REG), i.e., there exists L′ ∈ REG such that L≤ptt

m L′ via ptt-function f . So there
exist k > 0 and functions g1 and g2 as in Definition 3.1. Both functions are polynomial-time computable
when the tree is accessed as an oracle. For a word x, let tx denote the balanced binary tree that has leaf
string x.

Let m = dlog |x|ek + k. We describe an algorithm that computes β(f(tx)): Consider all strings z
of length ≤ m in lexicographical order. If g1(tx, z, dlog |x|e) = 1, then output g2(tx, z, dlog |x|e).
Consider the next string z.

This algorithm computes β(f(tx)), since it exactly simulates f . If tx is accessed as oracle, then
g1(tx, z, dlog |x|e) and g1(tx, z, dlog |x|e) are computable in polynomial time in log |x|. Given x, an or-
acle access to tx can be simulated in logarithmic space. Therefore, the algorithm above can be simulated
in polylogarithmic space in |x|. Given β(f(tx)), we can test in constant space whether β(f(tx)) ∈ L′.
The theorem follows, since

x ∈ L ⇔ β(tx) ∈ L ⇔ β(f(tx)) ∈ L′.

2

Due to this theorem, we can now specify the complexity of nonregular sets C such that Leaf p
u(C) ⊆

NP.3 Accordingly it is unlikely that such sets are NP-complete. In particular, this applies to the set B
that was used in Theorem 5.12 and Corollary 5.13.

Corollary 5.15 Let C be a set. Then the following holds: If Leaf p
u
O(C) ⊆ NPO for all oracles O, then

C ∈
⋃

k≥1 DSPACE(logk n).

Proof For all oracles O, Leafp
u
O(C) ⊆ NPO = Leafpu

O(0∗1{0, 1}∗). So C≤ptt
m 0∗1{0, 1}∗ and hence

C ∈ Rptt
m (REG) ⊆

⋃

k≥1 DSPACE(logk n). 2

Since PSPACE = Leafpu(REG) [HLS+93], the last corollary remains valid if we replace NP by
PSPACE.

3Recall that for regular sets, we already know by Theorem 5.7 that only languages in B1/2 come into question.

19

Acknowledgments

We thank Bernd Borchert, Heinz Schmitz, Victor Selivanov, and Pascal Tesson for helpful discussions
about leaf languages.

References

[Arf91] M. Arfi. Opérations polynomiales et hiérarchies de concaténation. Theoretical Computer
Science, 91:71–84, 1991.

[BCS92] D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity classes.
Theoretical Computer Science, 104:263–283, 1992.

[BK78] J. A. Brzozowski and R. Knast. The dot-depth hierarchy of star-free languages is infinite.
Journal of Computer and System Sciences, 16:37–55, 1978.

[BKS99] B. Borchert, D. Kuske, and F. Stephan. On existentially first-order definable languages and
their relation to NP. Theoretical Informatics and Applications, 33:259–269, 1999.

[Bor95] B. Borchert. On the acceptance power of regular languages. Theoretical Computer Science,
148:207–225, 1995.

[Brz76] J. A. Brzozowski. Hierarchies of aperiodic languages. RAIRO Inform. Theor., 10:33–49,
1976.

[BS97] B. Borchert and R. Silvestri. A characterization of the leaf language classes. Information
Processing Letters, 63(3):153–158, 1997.

[BV98] H.-J. Burtschick and H. Vollmer. Lindstr öm quantifiers and leaf language definability. In-
ternational Journal of Foundations of Computer Science, 9:277–294, 1998.

[CB71] R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. Journal of Computer and
System Sciences, 5:1–16, 1971.

[EHTY92] D. Eppstein, L. A. Hemachandra, J. Tisdall, and B. Yener. Simultaneous strong separations
of probabilistic and unambiguous complexity classes. Mathematical Systems Theory, 25:23–
36, 1992.

[Eil76] S. Eilenberg. Automata, languages and machines, volume B. Academic Press, New York,
1976.

[Gin66] A. Ginzburg. About some properties of definite, reverse-definite and related automata. IEEE
Transactions on Electronic Computers EC-15, pages 806–810, 1966.

[Gla05] C. Glaßer. Polylog-time reductions decrease dot-depth. In Proceedings 22nd Symposium
on Theoretical Aspects of Computer Science, volume 3404 of Lecture Notes in Computer
Science. Springer Verlag, 2005.

[HLS+93] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner. On the power
of polynomial time bit-reductions. In Proceedings 8th Structure in Complexity Theory,
pages 200–207, 1993.

20

[PP86] D. Perrin and J. E. Pin. First-order logic and star-free sets. Journal of Computer and System
Sciences, 32:393–406, 1986.

[PW97] J. E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory of computing
systems, 30:383–422, 1997.

[Sch01] H. Schmitz. The Forbidden-Pattern Approach to Concatenation Hierarchies. PhD thesis,
Fakult ät f ür Mathematik und Informatik, Universit ät W ürzburg, 2001.

[ST04] H. Spakowski and R. Tripathi. On the power of unambiguity in alternating machines. Tech-
nical Report 851, University of Rochester, 2004.

[Sto77] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1–22,
1977.

[Tho84] W. Thomas. An application of the Ehrenfeucht–Fra ı̈ssé game in formal language theory.
Société Mathématique de France, mémoire 16, 2:11–21, 1984.

[Ver93] N. K. Vereshchagin. Relativizable and non-relativizable theorems in the polynomial theory
of algorithms. Izvestija Rossijskoj Akademii Nauk, 57:51–90, 1993. In Russian.

[Wag04] K. W. Wagner. Leaf language classes. In Proceedings International Conference on Ma-
chines, Computations, and Universality, volume 3354 of Lecture Notes in Computer Sci-
ence. Springer Verlag, 2004.

[Wra77] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer Sci-
ence, 3:23–33, 1977.

21
ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

