Electronic Collogquium on Computational Complexity, Report No. 36 (2005)

Quantified Constraint Satisfaction, Maximal
Constraint Languages, and Symmetric
Polymorphisms

Hubie Chen

Departament de Tecnologia
Universitat Pompeu Fabra
Barcelona, Spain
hubie.chen@upf.edu

Abstract. The constraint satisfaction problem (CSP) is a convenient
framework for modelling search problems; the CSP involves deciding,
given a set of constraints on variables, whether or not there is an as-
signment to the variables satisfying all of the constraints. This paper is
concerned with the quantified constraint satisfaction problem (QCSP),
a more general framework in which variables can be quantified both uni-
versally and existentially. We study the complexity of restricted cases of
the QCSP where the types of constraints that may appear are restricted
by a constraint language. We give a complete complexity classification of
maximal constraint languages, the largest possible languages that can be
tractable. We also give a complete complexity classification of constraint
languages arising from symmetric polymorphisms.

1 Introduction

The constraint satisfaction problem (CSP) is widely acknowledged as a conve-
nient framework for modelling search problems. An instance of the CSP consists
of a set of variables, a domain, and a set of constraints; each constraint consists
of a tuple of variables paired with a relation (over the domain) which contains
permitted values for the variable tuple. The question is to decide whether or not
there is an assignment mapping each variable to a domain element that satisfies
all of the constraints. Alternatively, the CSP may be viewed as the problem of
deciding, given an ordered pair of relational structures, whether or not there ex-
ists a homomorphism from the first structure to the second. Canonical examples
of CSPs include boolean satisfiability and graph coloring problems.

All of the variables in a CSP can be viewed as being implicitly existentially
quantified. A natural and useful generalization of the CSP is the quantified con-
straint satisfaction problem (QCSP), where variables may be both universally
and existentially quantified. An instance of the QCSP can be viewed as a game
between two players which take turns setting variables occurring in a set of
constraints; the question is to decide whether or not a specified player can al-
ways succeed in satisfying all of the constraints, despite the moves of the other

ISSN 1433-8092

player. While the CSP captures the complexity of deciding whether or not a
combinatorial object of desirable type exists in a large search space, the QCSP
is a prototypical PSPACE reasoning problem which captures the complexity
of many problems involving interaction among multiple agents. Such problems
arise naturally in a wide variety of domains, for example, combinatorics, logic,
game theory, and artificial intelligence.

In their general formulation, the CSP and QCSP are intractable, being NP-
complete and PSPACE-complete, respectively; however, it is possible to param-
eterize these problems by restricting the constraint language, or the types of
constraints that are permitted in problem instances. This is the form of restric-
tion which was studied by Schaefer in his now classic dichotomy theorem [30],
and has seen intense investigation over the past decade in several different con-
texts. This paper continues the recently initiated study of the complexity of
the QCSP under constraint language restrictions [3,13,14]. Our contributions
are the complete classification of mazimal constraint languages, as well as the
complete classification of idempotent symmetric polymorphisms.

1.1 Background

Complexity classification theorems. In 1978, Schaefer proved that every
constraint language over a two-element domain gives rise to a case of the CSP
that is either in P or is NP-complete [30]. The non-trivial tractable cases given
by this result are 2-SAT, HORN SAT, and XOR-SAT (where each constraint
is a linear equation in the field with two elements). Over the past decade, many
more complexity dichotomy theorems in the spirit of Schaefer’s have been es-
tablished [15], including dichotomies in the complexity of model checking for
circumscription [26], “inverse” satisfiability [24], and computing an assignment
maximizing the number of satisfied constraints [25]. All of these dichotomy the-
orems are for constraint languages over a two-element domain. Particularly rele-
vant here is the dichotomy theorem for QCSP in domain size two [15, 16], which
shows that the only tractable cases in this context are QUANTIFIED 2-SAT [1],
QUANTIFIED HORN SAT [12], and QUANTIFIED XOR-SAT [15], reflecting ex-
actly the non-trivial tractable constraint languages given by Schaefer’s theorem.
All other constraint languages give rise to a PSPACE-complete QCSP.

A considerable limitation of the mentioned classification theorems is that they
only address constraint languages that are over a two-element domain. Exten-
sions of these theorems that classify all constraint languages over finite domains
would be extremely valuable. Such extensions would identify all of the ways
tractability can arise from constraint language restrictions. Given a restricted
case of the QCSP that is a candidate for being tractable, one would have the
ability to immediately identify whether or not tractability of the case can be
deduced from its constraint language; if not, it would follow that other features
of the case need to be utilized in a proof of tractability. Indeed, the tractable
and intractable cases identified by classification theorems give crisp theoreti-
cal results constituting an extremely convenient starting point for performing
complexity analysis.

Much attention has recently been directed towards achieving a full classifi-
cation theorem for the CSP, and has resulted in the identification of many new
tractable cases of the CSP; see, for example, the papers [23,19,21,18,27,9,17,
11,6,7]. One spectacular result produced by this line of work is Bulatov’s di-
chotomy theorem on CSP complexity classifying all constraint languages over
a three-element domain [5], which resolved a question from Schaefer’s original
paper [30] that had been open for over two decades.

Algebra and polymorphisms. A powerful algebraic approach to studying
complexity and the relative expressiveness of constraint languages was intro-
duced in [23,20] and further studied, for example, in [21,22,18,10,9,17,11,5-
7]. In this approach, a dual perspective on the various constraint languages is
given by studying the set of functions under which a constraint language is in-
variant, called the polymorphisms of a constraint language. In particular, sets of
polymorphisms are linked to constraint languages (which are sets of relations)
via a Galois connection, and two different constraint languages having the same
polymorphisms give rise to cases of the CSP (and QCSP) with ezactly the same
complexity. The program of classifying constraint languages as either tractable or
intractable can thus be rephrased as a classification question on polymorphisms;
as it turns out, this rephrasing makes the classification program amenable to
attack by insights and tools from universal algebra. This dual viewpoint was
used heavily by Bulatov to obtain his dichotomy theorem [5], and can also be
used in conjunction with Post’s classification theorem [28, 2] to succinctly derive
Schaefer’s theorem: see, for example, [2].

Quantified constraint satisfaction. Recently, the issue of QCSP complexity
based on constraint languages in domains of size greater than two was studied
by Borner, Bulatov, Krokhin and Jeavons [3] and the present author [13,14].
Both of these works used the algebraic approach in a central manner. The con-
tributions of [3] included development of the algebraic viewpoint for the QCSP,
the identification of some intractable and tractable classes of constraint lan-
guages, and a complete complexity classification theorem for a restricted class
of constraint languages. The main contribution of [13] was general technology
for demonstrating the tractability of constraint languages, while [14] studied the
complexity of 2-semilattice polymorphisms.

1.2 Contributions of this paper

In this paper, we study QCSP complexity by adopting the approach used to
study CSP complexity in [9,11,4,8]: we seek the most general tractability re-
sults possible by focusing on mazimal constraint languages. Maximal constraint
languages are those constraint languages that can express any constraint with the
help of any relation not contained in the language. Because a constraint language
that can express all relations is intractable, maximal constraint languages are
the largest constraint languages that could possibly be tractable. The investiga-
tion of such languages has played a key role in understanding tractability in the

CSP setting: all of the tractability results identified by Schaefer’s theorem apply
to maximal constraint languages, and the investigation of maximal constraint
languages in domains of size larger than two has resulted in the identification of
new tractable cases of the CSP [9,11,4, 8].

Classification of maximal constraint languages. We give a full classifica-
tion theorem on maximal constraint languages, showing that each gives rise to
a case of the QCSP that is either polynomial-time decidable, or intractable (by
which we mean NP-hard or coNP-hard). In order to obtain this theorem, we
make use of a theorem of Rosenberg [29] from universal algebra which yields an
algebraic description of maximal constraint languages, showing that any maxi-
mal constraint language has a polymorphism of one of five types. Most of the
effort in obtaining our classification theorem is concentrated in studying one of
the five types of maximal constraint languages, namely, those having a binary
idempotent polymorphism. We remark that in the CSP setting, a classification
of maximal constraint languages was only recently obtained [8], and there the
difficult case was also this particular type.

Binary idempotent polymorphisms. Intriguingly, we show that maximal
constraint languages invariant under a binary idempotent polymorphism give rise
to four modes of behavior in the context of quantified constraint satisfaction. In
our study, we consider such binary polymorphisms in two classes, those that act
as a projection on some two-element domain, and those that do not. Those that
do act as a projection give rise to cases of the QCSP that are either NP-complete
or PSPACE-complete. Those that do not act as a projection can be assumed to
be commutative, and give rise to cases of the QCSP that are either in P or
coNP-hard; our demonstration of this fact generalizes the main result of [14].
We leave the exact complexity analysis of the coNP-hard cases as a fascinating
issue for future research; we conjecture that these cases are contained in coNP,
and are hence coNP-complete.

The fact that the binary polymorphisms investigated here fall into four differ-
ent regimes of complexity can be contrasted with complexity results on the CSP,
where all constraint languages that have been studied have been shown to be ei-
ther in P or NP-complete. We believe that our results give evidence that, relative
to study of the CSP, study of the QCSP is likely to require the utilization of a
greater diversity of techniques, and be much richer from a complexity-theoretic
standpoint.

Symmetric polymorphisms and set functions. Our study of commutative
binary polymorphisms is in fact carried out in a more general setting, that of
idempotent symmetric polymorphisms. We fully classify idempotent symmetric
polymorphisms, showing that for any such polymorphism, the corresponding case
of the QCSP is either reducible to its CSP restriction or is coNP-hard, and that
an algebraic criterion determines which of the two cases holds (Theorem 17).
Significantly, we show that the ideas used to study symmetric polymorphisms
can be deployed to give a full classification of idempotent set functions in the

QCSP. Set functions have been studied in CSP complexity [18] and guarantee
tractability in the CSP setting. As with symmetric polymorphisms, we show
that set functions beget cases of the QCSP that are either P or coNP-hard. This
classification result resolves an open question naturally arising from [18], namely,
to take the class of problems shown therein to be tractable in the CSP, and to
give a complexity classification of these problems in the QCSP.

Algebra and complexity. We believe our results to be beautiful examples
of the fascinating interplay between algebra and complexity taking place in the
setting of constraint satisfaction—an interplay that we feel to be deserving of
more attention.

We remark that much of our study concerns idempotent polymorphisms.
Idempotent polymorphisms give rise to constraint languages containing all con-
stant relations, by which we mean arity one relations of size one. Such constraint
languages have the desirable robustness property that for any (QCSP or CSP)
instance over the constraint language, when a variable is instantiated with a
value, the resulting instance is still over the constraint language.

2 Preliminaries

We use the notation [n] to denote the set containing the first n positive integers,
{1,...,n}. We use t; to denote the ith coordinate of a tuple .

2.1 Quantified constraint satisfaction

We now set the basic terminology of quantified constraint satisfaction to be used.
Our definitions and notation are fairly standard, and similar to those used in
other papers on (quantified) constraint satisfaction. Throughout, we use D to
denote a domain, which here is a nonempty set of finite size.

Definition 1. A relation (over D) is a subset of D¥. A constraint (over D) is
an expression of the form R(w), where R is a relation over D and W is a tuple
of variables with the same arity as R. A constraint language is a set of relations,
all of which are over the same domain.

Intuitively, a constraint restricts the permissible values that can be given to
a set of variables; the variable tuple specifies the variables that are restricted,
while the corresponding relation specifies the values that the variable tuple
may take on. Formally, we consider an arity k constraint R(wi,...,wy) to
be satisfied under an interpretation f defined on the variables {wy,...,w;} if

(f(w1), ..., f(wk)) € R.

Definition 2. A quantified formula is an expression of the form Qqvy ... Qpv,C
where for all i € [n], Q; is a quantifier from the set {V¥,3} and v; is a variable;
and, C is a constraint network, that is, a finite set of constraints over the same
domain, with variables from {v1,...,v,}. A quantified formula is said to be
over a constraint language I' if every constraint in its constraint network C has
relation from I.

Note that, in this paper, we only consider quantified formulas without free
variables. Truth of a quantified formula is defined just as in first-order logic; the
constraint network C is interpreted as the conjunction of constraints it contains.
The QCSP is the problem of deciding, given a quantified formula, whether or not
it is true; the CSP can be defined as the restricted version of the QCSP where
all quantifiers appearing must be existential. We are interested in the following
parameterized version of the QCSP.

Definition 3. Let I' be a constraint language. The QCSP(I") decision problem
is to decide, given as input a quantified formula over I', whether or not it is
true. We define the CSP(I") decision problem as the restriction of QCSP(I") to
instances having only existential quantifiers.

The present paper is a contribution to the long-term research goal of classi-
fying the complexity of QCSP(I") for all constraint languages I'.

2.2 Expressibility and polymorphisms

We now explain how the set of relations expressible by a constraint language,
and the polymorphisms of a constraint language, characterize the complexity
of the constraint language. Our presentation is based on the papers [23,20], to
which we refer the reader for more information.

Definition 4. (see [20] for details) When I' is a constraint language over D,
define {I'), the set of relations expressible by I", to be the smallest set of relations
containing I' U {=p} and closed under permutation, extension, truncation, and
intersection. (Here, =p denotes the equality relation on D.)

The more relations that a constraint language I' can express, the higher in
complexity it is.

Proposition 5. Let Iy, I[» be constraint languages where I is finite. If (1) C
(Ip), then QCSP(I) reduces to QCSP(I%).!

From Proposition 5, we can see that two finite constraint languages that ex-
press exactly the same relations are reducible to one another, and hence of the
same complexity. (Up to certain technicalities that are not essential for under-
standing the new results of this paper, all of our discussion also holds for the
case of infinite constraint languages.)

We now introduce the notion of polymorphism. An operation p of rank k is
a polymorphism of a relation R if, for any choice of k tuples #1,...,#; from R,
the tuple obtained by acting on the tuples #; in a coordinate-wise manner by pu,
is also contained in R.

! Note that the only form of reduction we consider in this paper is many-one
polynomial-time reduction.

Definition 6. An operation p: D¥ — D is a polymorphism of a relation R C
D™ if for all tuplesty,...,t; € R, the tuple (u(t11,..-,tk1)s- - w(t1my -« > tkm))
is in R. An operation p is a polymorphism of a constraint language I' if p is a
polymorphism of all relations R € I'. When p is a polymorphism of R (I"), we
also say that R (I') is invariant under p.

We will be interested in the set of all polymorphisms of a constraint language
I'; as well as the set of all relations invariant under all operations in a given set.

Definition 7. Let Op denote the set of all finite rank operations over D, and
let Rp denote the set of all finite arity relations over D.
When I' C Rp is a set of relations (that is, a constraint language), we define

Pol(I'") = {p € Op | p is a polymorphism of I'}.
When F C Op is a set of operations, we define
Inv(F) = {R € Rp | R is invariant under all operations p € F'}.

When f is a single operation, we use Inv(f) as notation for Inv({f}), and

QCSP(f) (CSP(f)) as notation for QCSP(Inv(f)) (CSP(Inv(f))).
Theorem 8. For any constraint language I, it holds that (I") = Inv(Pol(I")).

From Theorem 8, we see that the complexity of a constraint language depends
only on its polymorphisms, since its polymorphisms determine the set of relations
that it can express, which as we have discussed, characterizes its complexity.

Proposition 9. Let I7,I5 be constraint languages where I is finite.

If Pol(I;) C Pol(I7), then QCSP(I7) reduces to QCSP(I%). Moreover, if both
I and I are finite and Pol(I7) = Pol(I2), then QCSP(IY) and QCSP(I%) are
equivalent in that they reduce to one another.

3 Maximal constraint languages

We study the most general forms of constraint language restrictions by consider-
ing mazimal constraint languages, the largest possible constraint languages that
cannot express all relations.

Definition 10. A constraint language I' is maximal if (I") is not the set of all
relations, but for any relation R not contained in I', (I' U {R}) is the set of all
relations.

A theorem of Rosenberg [29] demonstrates that all maximal constraint lan-
guages are invariant under an operation of one of five particular forms. In
order to state this theorem, we require some new terminology. An operation
f : DF = D is a majority operation if k = 3 and for all a,a’ € D the equalities
fla,a,a") = f(a,a',a) = f(a',a,a) = a hold; an affine operation if k¥ = 3 and

for all ay,as2,a3 € D it is the case that f(a1,as,a3) = ay * a;l * az where x is a
binary operation and ~! is a unary operation such that (D, *, ') is an Abelian
group; a projection if there exists ¢ € [k] such that for all ai,...,ar € D,
flai,...,ax) = a;; and a semiprojection if k > 3, f is not a projection, and
there exists ¢ € [k] such that for all a,...,ar € D, |{a1,...,ar}| < k implies
f(al, PN ,ak) = Q;.

Theorem 11. (follows from [29]) If I is a mazimal constraint language, then
I' = Inv(f) for an operation f having one of the following five types: a unary
operation which is either a bijection or acts identically on its range, a semipro-
jection, a majority operation, an affine operation, a binary idempotent operation
that is not a projection.

The first two types of operations in Theorem 11 give rise to hard cases of the
QCSP(I") problem.

Theorem 12. Let I' be a mazimal constraint language of the form Inv(f), where
[is a unary operation which is either a bijection or acts identically on its range.
Then QCSP(I") is PSPACE-complete.

Theorem 13. [11] Let I' be a mazimal constraint language of the form Inv(f),
where f is a semiprojection. Then QCSP(I") is NP-hard.

The next two types of operations in Theorem 11 have previously been shown
to be tractable.

Theorem 14. [13, 3] Let I be a constraint language invariant under a majority
operation or invariant under an affine operation. Then QCSP(I") is in P.

The following is the statement of our classification theorem on maximal con-
straint languages.

Theorem 15. (Classification of mazimal constraint languages) Let I" be a maz-
imal constraint language. One of the following five conditions holds:

— QCSP(I') is in P.

— QCSP(I') is coNP-hard and I' = Inv(f) for f a binary commutative idempo-
tent operation that is not a projection.

— QCSP(I") is NP-complete.

— QCSP(I) is NP-hard and I = Inv(f) for f a semiprojection.

— QCSP(I") is PSPACE-complete.

Proof. For the first four types of maximal constraint languages in Theorem 11,
the result holds by Theorems 12, 13, and 14. Otherwise, consider a maximal
constraint language I' = Inv(f) for f a binary idempotent operation that is not
a projection. Using a technique similar to that of the proof of [11, Lemma 3], it
can be shown that I = Inv(f') for f' a binary idempotent operation such that,
for every two-element subset {a, b} of D, either f'(a,b) = f'(b,a), or f' acts as
a projection on {a, b}.

— If there is no two-element subset {a,b} such that f’ acts as a projection
on {a,b}, the function f' is commutative and QCSP(I") either reduces to
CSP(I') or is coNP-hard by Theorem 17 (Section 4). In the former case,
CSP(I"), and hence QCSP(I"), is in P by [8, Theorem 5].

— Otherwise, there exists at least one two-element subset {a,b} such that
f' acts as a projection on {a,b}, and QCSP(I") is either NP-complete or
PSPACE-complete by Theorem 22 (Section 5).

0O

4 Symmetric polymorphisms

In this section, we develop algebraic theory that permits us to present a complete
classification of idempotent symmetric polymorphisms in the QCSP, as well as a
complete classification of idempotent set functions. We say that a polymorphism
(or function) f : D¥ — D is symmetric if for all ai,...,a; € D and for all
permutations 7 : [k] — [k], it holds that f(a1,...,ax) = f(ax(1),---;0r))-
Note that in this section, we consider symmetric polymorphisms of all arities,
and not just binary polymorphisms.

Let f : D¥ — D be an idempotent symmetric function. We say that an
element a € D can f-hit an element b € D in one step if there exist elements
a1,..-,ar_1 € D such that f(a,a1,...,ar_1) = b. Let us say that a € D can
f-hit b € D (in m steps) if there exist elements dy, . . ., d,,, € D such that a = dp,
b =d, and for all s = 0,...,m — 1 it holds that d; can hit d;;; in one step.
Notice that the “can f-hit” relation is reflexive and transitive.

Define a set C' C D to be coherent with respect to f if it is nonempty and
for all ay,...,ar € D, the following holds: if {ai,...,ar} \ C is nonempty, then
flay,...,ax) ¢ C (equivalently, if f(a1,...,ar) € C,then ay,...,a; € C'). When
S C D is a nonempty set that is not coherent, if {ai,...,ar} \ S is nonempty
and f(ai,...,ar) € S, we say that (ai1,...,ar) is a witness to the non-coherence
of S.

Observe that the union of any two coherent sets is also a coherent set. In
addition, when C7, Cy are two coherent sets with a non-trivial intersection, their
intersection C; N C> is also a coherent set. We use (d) to denote the smallest
coherent set containing d.

Lemma 16. All elements of (d) can hit d.

Let us say that a coherent set is minimal if it is minimal (among coherent
sets) with respect to the subset C ordering. We show that whether or not an
idempotent symmetric function f has a wunigue minimal coherent set in fact
determines the complexity of QCSP(f).

Theorem 17. Let f be an idempotent symmetric function. If there is a unique
minimal coherent set with respect to f, then QCSP(f) reduces to CSP(f); other-
wise, QCSP(f) is coNP-hard.

Similar techniques can be used to establish a classification result on idempo-
tent set functions. We consider a set function (on domain D) to be a mapping
from (D) \ {0} to D, where p(D) denotes the power set of D. A set function
f:9(D)\ {0} — D is considered to be idempotent if for all d € D, it holds
that f({d}) = d. We consider a relation R of arity k to be invariant under a
set function f : p(D) \ {#} — D if for any non-empty subset S C R, it holds
that the tuple (f({t1 : £ € S}),..., f({tx, : t € S})) is in R. Equivalently, R is
invariant under f : p(D) \ {0} — D if it is invariant under all of the functions
fi : D! — D defined by fi(di,...,d;) = f({d1,...,d;}), for i > 1. Set functions
were studied in the context of CSP complexity by Dalmau and Pearson [18];
among other results, they showed that any problem of the form CSP(f), for f a
set function, is polynomial-time decidable.

We can define notions similar to those in the beginning of this section for
set functions. In particular, when f is a set function, we say that an element
a € D can f-hit an element b € D in one step if there exists a subset A C D
such that f({a} U A) = b. We define a set C C D to be coherent with respect
to f if it is nonempty and for all nonempty A C D, the following holds: if A\ C
is nonempty, then f(A) ¢ C. Using these notions, it is possible to give proofs
analogous to those for the previous results of this section, yielding the following
classification theorem.

Theorem 18. Let f : p(D) \ {0} = D be an idempotent set function. If there
is a unique minimal coherent set with respect to f, then QCSP(f) reduces to
CSP(f) (and is hence in P by [18]); otherwise, QCSP(f) is coNP-hard.

5 Commutative-projective operations

As we have indicated (proof of Theorem 15), all binary operations giving rise to
maximal constraint languages can be seen as having one of two types. The pre-
vious section was concerned with a generalization of the first type, commutative
binary operations; this section studies the second type, commutative-projective
operations.

Definition 19. A commutative-projective operation is a binary idempotent op-
eration f : D?* — D such that for every two-element subset {a,b} of D, either
f(a,b) = f(b,a), or f acts as a projection on {a,b}; and, there exists a two-
element subset {a,b} of D such that f acts as a projection on {a,b}.

Fix a commutative-projective operation f : D?> — D. Based on f, we define
two directed graphs G1, G2 as follows. Both of these graphs have vertex set D.
Let there be an edge from a to b in both G; and Gs if there exists d € D such
that f(a,d) = f(d,a) = b. In addition, let there be an edge from a to b as well
as an edge from b to a in G; if on the two-element set {a, b} the operation f acts
as the projection onto the ith coordinate. We have the following results.

Lemma 20. Suppose that there exists dy € D such that for both i € {1,2}
and for every d € D, there is a path from dy to d in G;. Then, QCSP(f) is
NP-complete.

For each i € {1,2}, define <; to be the partial ordering on strongly connected
components of G; where C <; C' if there exist vertices v € C,v' € C' such that
there is a path from v to v' in G;. We define a component C' to be minimal in
G; if for all components C' such that C' <; C, it holds that C' = C.

Lemma 21. Suppose that one (or both) of the graphs G1, G2 has more than one
minimal component. Then, QCSP(f) is PSPACE-complete.

Theorem 22. Let f : D2 — D be a commutative-projective operation such that
Inv(f) is a mazimal constraint language. The problem QCSP(f) is either NP-
complete or PSPACE-complete.

Acknowledgements. The author thanks the anonymous referees for their help-
ful comments.

References

1. Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm
for testing the truth of certain quantified boolean formulas. Information Processing
Letters, 8(3):121-123, 1979.

2. E. Bohler, N. Creignou, S. Reith, and H. Vollmer. Playing with boolean blocks,
part II: constraint satisfaction problems. ACM SIGACT-Newsletter, 35(1):22-35,
2004.

3. F. Borner, A. Bulatov, A. Krokhin, and P. Jeavons. Quantified constraints: Algo-
rithms and complexity. In Computer Science Logic 2008, 2003.

4. Andrei Bulatov. Combinatorial problems raised from 2-semilattices. Manuscript.

5. Andrei Bulatov. A dichotomy theorem for constraints on a three-element set. In
Proceedings of 43rd IEEE Symposium on Foundations of Computer Science, pages
649-658, 2002.

6. Andrei Bulatov. Malt’sev constraints are tractable. Technical Report PRG-RR-
02-05, Oxford University, 2002.

7. Andrei Bulatov. Tractable conservative constraint satisfaction problems. In Pro-
ceedings of 18th IEEE Symposium on Logic in Computer Science (LICS '03), pages
321-330, 2003.

8. Andrei Bulatov. A graph of a relational structure and constraint satisfaction prob-
lems. In Proceedings of 19th IEEE Annual Symposium on Logic in Computer
Science (LICS’04), 2004.

9. Andrei Bulatov and Peter Jeavons. Tractable constraints closed under a binary
operation. Technical Report PRG-TR-12-00, Oxford University, 2000.

10. Andrei Bulatov, Andrei Krokhin, and Peter Jeavons. Constraint satisfaction prob-
lems and finite algebras. In Proceedings 27th International Colloquium on Au-
tomata, Languages, and Programming — ICALP’00, volume 1853 of Lecture Notes
In Computer Science, pages 272-282, 2000.

11. Andrei Bulatov, Andrei Krokhin, and Peter Jeavons. The complexity of maximal
constraint languages. In ACM Symposium on Theory of Computing, pages 667674,
2001.

12. Hans Kleine Biining, Marek Karpinski, and Andreas Flogel. Resolution for quan-
tified boolean formulas. Information and Computation, 117(1):12-18, 1995.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Hubie Chen. Collapsibility and consistency in quantified constraint satisfaction.
In AAAT, 2004.

Hubie Chen. Quantified constraint satisfaction and 2-semilattice polymorphisms.
In CP, 2004.

Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complezity Classification of
Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Math-
ematics and Applications. Society for Industrial and Applied Mathematics, 2001.

Victor Dalmau. Some dichotomy theorems on constant-free quantified boolean
formulas. Technical Report LSI-97-43-R, Llenguatges i Sistemes Informatics - Uni-
versitat Politécnica de Catalunya, 1997.

Victor Dalmau. A new tractable class of constraint satisfaction problems. In 6th
International Symposium on Artificial Intelligence and Mathematics, 2000.

Victor Dalmau and Justin Pearson. Closure functions and width 1 problems. In
CP 1999, pages 159-173, 1999.

Tomés Feder and Moshe Y. Vardi. The computational structure of monotone
monadic snp and constraint satisfaction: A study through datalog and group the-
ory. SIAM J. Comput., 28(1):57-104, 1998.

Peter Jeavons. On the algebraic structure of combinatorial problems. Theoretical
Computer Science, 200:185-204, 1998.

Peter Jeavons, David Cohen, and Martin Cooper. Constraints, consistency, and
closure. Articial Intelligence, 101(1-2):251-265, 1998.

Peter Jeavons, David Cohen, and Justin Pearson. Constraints and universal alge-
bra. Annals of Mathematics and Artificial Intelligence, 24(1-4):51-67, 1998.

P.G. Jeavons, D.A. Cohen, and M. Gyssens. Closure properties of constraints.
Journal of the ACM, 44:527-548, 1997.

D. Kavvadias and M. Sideri. The inverse satisfiability problem. SIAM Journal on
Computing, 28(1):152-163, 1998.

Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. The
approximability of constraint satisfaction problems. SIAM Journal on Computing,
30(6):1863-1920, 2001.

L. M. Kirousis and P. G. Kolaitis. The complexity of minimal satisfiability prob-
lems. In Proceedings 18th Annual Symposium on Theoretical Aspects of Com-
puter Science, volume 2010 of Lecture Notes in Computer Science, pages 407-418.
Springer-Verlag, 2001.

Ph.G. Kolaitis and M.Y. Vardi. Conjunctive-query containment and constraint
satisfaction. Journal of Computer and System Sciences, 61:302-332, 2000.

Emil L. Post. The Two- Valued Iterative Systems of Mathematical Logic. Princeton
University Press, 1941.

I.G. Rosenberg. Minimal clones I: the five types. In Lectures in Universal Algebra
(Proc. Conf. Szeged 1983), volume 43 of Collog. Math. Soc. Janos Bolyai, pages
405-427. North-Holland, 1986.

Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of
the ACM Symposium on Theory of Computing (STOC), pages 216-226, 1978.

A Proof of Lemma 16

Proof. We define a sequence of sets S; as follows. Define Sq = {d}. If S; is
coherent, then S;11 is undefined; otherwise, let (al,. ,at) be a witness to the
non-coherence of S;, and define S;11 = S;U{al,...,a}}. Notice that when S;;

is defined, any coherent set T’ containing S; must contain the elements ai, ..., ai,
and hence S;11 (otherwise, (ai,...,al) is a witness to the non-coherence of T').
Consequently, we have (d) = U;S;.

Observe that, by definition, any element of S;4; can hit an element of S;. It
follows that every element of (d) can hit d, as desired. O

B Proof of Theorem 17

In order to prove Theorem 17, we make use of the following theorem, which can
be proved using ideas in [13].

Theorem 23. Let f be an idempotent function. Suppose that there exists a func-
tion g : D™ — D contained in the clone generated by f and an element d € D
such that all m of the arity (m — 1) functions obtained by instantiating one of
the arguments of g with d are surjective. Then QCSP(f) reduces to (and is hence
equivalent to) CSP(f).

Proof. (Theorem 17 - reduction to CSP) Define f; = f and fij11 : DF™ 5 D
by fix1 (@1, Tk) = f(fi(@D), .., [i(@)) for all T1,...,Tx € D¥. We show
that there exists a constant N and d € D such that all ¥V of the arity (k¥ — 1)
functions obtained by instantiating one of the arguments of fx : D =5 D with
d, are surjective. The theorem then follows from Theorem 23.

Suppose that there is a unique minimal coherent set. Fix b to be any element
of the unique minimal coherent set. Every coherent set contains b, so for all
d € D, we have b € (d). By Lemma 16, the element b can hit all elements
d € D. Let N be a sufficiently high constant so that for all d € D, the element
b can hit d in N steps. Define functions f! : D*=Y) — D by fi(z1,..., 25 1) =
f(b,x1,...,x4—1) and fi (U, 21,.-.,2%—1) = f(f{(@),21,-..,2k—1). By choice
of N, the function f} is surjective. By using the symmetry and idempotence of
f, it can be shown that the surjectivity of fj implies that the constant N and
element b € D satisfies the desired property. O

Proof. (Theorem 17 - coNP-hardness) We demonstrate coNP-hardness by reduc-
ing from the propositional tautology problem. Let F(y1,...,v,) be an instance
of this problem, where F' is a circuit with input gates having labels y1,...,yn
We assume that all non-input gates of F' are either AND or NOT gates, and
assign all non-input gates labels z1,...,Zy,.-

Let Cy and C; be distinct (and hence disjoint) minimal coherent sets. Fix
¢o and ¢; to be elements of Cy and C}, respectively. Define R as D \ (Co U Ch).
Define N to be the arity 2 relation

(Co x {c1}) U (C1 x {co}) U (R x D)
Define A to be the arity 3 relation

(C() X C() X {C()}) U (C() X Cl X {Co}) U (Cl X Co X {C()}) U (Cl X Cl X {Cl})U

(Rx (CouCh) xD)U ((CouC1) x Rx D)U(R x Rx D)

It is fairly straightforward to verify that the relations N and A have f as
polymorphism. Here, we verify that A has f as polymorphism. Suppose that
51,...,8; € A, and set t = f(31,...,5%); we wish to show that ¢ € A. If one
(or both) of t;,ty are contained in R, then t € A because R x D x D C A and
D x R x D C A. So, suppose that t; € C; and t; € Cj, with i,j € {0,1}. Since
C; and Cj are coherent, we have si1,...,5,1 € C; and s12,...,sp2 € Cj. By
definition of A, it follows that s13,...,sg3 = ciaj; by the idempotence of f, this
implies t3 = ¢;nj, from which it follows that ¢ € A.
Based on the tautology instance F', we create a quantified formula with quan-
tifier prefix
Yyi...Vyp3z1 ...z

and with constraint network constructed as follows:

— For each AND gate x; with inputs v, v’ € {y1,...,yn}U{Z1,...,Zm}, include
the constraint A(v,v’, z;).

— For each NOT gate z; with input v € {y1,...,yn} U{Z1,...,2Zm}, include
the constraint N (v, z;).

— For the output gate Zoytput, include the constraint (D \ Co)(Zoutput)-

We verify the reduction to be correct as follows. Observe that the constraint
network is satisfiable under all assignments f : {y1,...,yn} = D to the univer-
sally quantified variables if and only if it is satisfiable under all ¢;-assignments
f o {y1,---,un} — {co,c1}. This is because when f : {y1,...,yn} — D is
any assignment, for any assignment f' : {y1,...,yn} — {co,c1} such that
F(yi) € CoUCr = [{f(wi), f'(ys)} € Co or {f(ys), f'(yi)} C C1] the constraint
network on {zi,...,%,} obtained by instantiating the universal variables un-
der f' is at least as constrained than the constraint network on {zi,...,2m}
obtained by instantiating the universal variables under f.

Let g : {y1,.--,yn} — {0,1} be any assignment to the input gates of F. It
is straightforward to verify that, under the mapping ¢’ : {y1,-..,yn} = {co,c1}
defined by g'(y:) = c4(y;), the only assignment to the variables z; satisfying the
first two types of constraints is the assignment taking x; to ¢ if the gate x; of
F' is equal to 0 under input g, and ¢; if the gate x; of F' is equal to 1 under
input g. Because of the third type of constraint (on the output gate), the circuit
F is true under g if and only if the constraint network is satisfiable under g’,
and hence the circuit F' is a tautology if and only if the quantified formula is
true. O

C Proof of Lemma 20

Proof. There exists a two-element subset B C D such that f acts as a projection
on B; any relation over B is invariant under f. Consequently, the problem CSP(f)
is NP-complete, and the problem QCSP(f) is NP-hard. We need to show that
QCSP(f) is in NP.

Define functions f; : D** — D, for i > 1, as in the proof of Theorem 17. As
in that proof, we show that there exists a constant N such that all 2V of the
arity (2 — 1) functions obtained by instantiating one of the arguments of fx :
D?" - D with dy, are surjective. The theorem then follows from Theorem 23,
since then QCSP(f) reduces to CSP(f), which is in NP.

For i € {1,2}, pick M; to be a sufficiently high integer so that for any vertex
d € D, there is a path from dp to d in G; of length less than or equal to M;.
We claim that choosing N as M; + M — 1 suffices, and now explain why. First,
consider instantiating the first argument of f; : D?* — D with dy. The resulting
operation can be visualized as a binary tree of height j where the interior nodes
have label f, the root node is on top, the first (leftmost) leaf has value dy, and
the remaining 2/ — 1 leaves are the arguments. It can be seen that all elements
of D that are within distance j of dy in G2 are contained in the image of the
resulting arity 2/ —1 function. Next, consider instantiating the the last argument
of fj : D¥ — D with dy. In this case, all elements of D that are within distance
j of dy in G are contained in the image of the resulting arity 2/ — 1 function.
In the general case where an arbitrary argument of fy is instantiated with dp,
choosing N as M; + My — 1 ensures that all elements of D are contained in the
image of the resulting arity 2/ — 1 function, because in traversing a binary tree
of height M; + My — 1 from the leaf level to the root, one makes at least Mo
moves to the right or at least M; moves to the left. O

D Proof of Lemma 21

Proof. We assume without loss of generality that Cy,Cy are disjoint minimal
components of G. If there exists a two-element subset S C D on which f acts
as projection onto the second coordinate, define a1, as to be the elements of S.
Otherwise, there exists a two-element subset S C D on which f acts as projection
onto the first coordinate; let a;,as denote the elements of S.

Define R to be D\ (C; U C3), and define T to be the arity 2 relation T' =
(C1 x {a1}) U (Cs x {a2}) U (R x {a1,az}). It can be verified that the relation
T is invariant under f. A key fact is that when ¢,¢’ € D and ¢,c' do not lie in
the same set (of the sets Cy, C2, and R), either f(c,c¢') = f(c',¢) € R or f acts
as a projection on {c,c'}; in the latter case, f must act on {c,c'} as projection
onto the second coordinate, and in this case it also acts as projection onto the
second coordinate on {a1,as}, by choice of ay,as.

We show that QCSP(f) is PSPACE-hard by reduction from an arbitrary
instance ¢ of the QCSP over the two-element domain {a;,as}. We create an
instance ¢' of QCSP(f) based on ¢ as follows. For each universally quantified
variable y of ¢, the formula ¢' contains two variables: u,, which is universally
quantified, and vy, which is existentially quantified. The quantifier prefix of ¢’ is
obtained by substituting, in the quantifier prefix of ¢, each universally quanti-
fied variable Vy with Vu,3v,. The constraint network of ¢' is obtained from the
constraint network of ¢ by copying all constraints but replacing each occurrence
of y with vy, and adding, for each universally quantified variable y in ¢, a con-

straint T'(uy,vy). The key feature of T' that we use here is that in a constraint
of the form T'(uy,vy), setting u, to an element of C; (respectively, C>) forces vy
to take on the value a; (respectively, as). O

E Proof of Theorem 22

Proof. Suppose that f acts as a projection on all two-element domains. Then
the edge sets of G1,G> are symmetric, and it is straightforward to verify that
one of Lemmas 20, 21 apply: if Lemma 21 does not apply, then both G; and
G- are strongly connected and any element of D can be picked as dy to apply
Lemma, 20.

Suppose that f does not act as a projection on all two-element domains.
Define g : D? — D by g(z1,22) = f(f(z1,32), f(z2,21)). For all elements
a,b € D, if f(a,b) = f(b,a) then g(a,b) = g(b,a); and, if f acts as a projection
on {a, b}, then g acts as projection onto the first coordinate on {a, b}. Thus g is
commutative-projective; let G1,G2 be the graphs corresponding to g. We have
that the edges in G; are a superset of the edges in G2, and that for any edge
(a,b) in G; but not in G,, the edge (b, a) is also in G; but not in Gs.

We know that f(a,b) = f(b,a) for some distinct elements a,b € D; since
g(a,b) = g(b,a), g is not a projection. Since g is a polymorphism of Inv(f), by
the maximality of Inv(f), we have Inv(f) = Inv(g).

If Lemma 21 does not apply to G1,G2, then let dy be any element of the
unique minimal component of G2. The element dy must also be an element of
the unique minimal component of G, and hence Lemma 20 applies. O

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

