Electronic Collogquium on Computational Complexity, Report No. 37 (2005)

On the Complexity of Numerical Analysis

Eric Allenders Peter Birgisser'

Abstract

We study two quite different approaches to under-
standing the complexity of fundamental problems in
numerical analysis. We show that both hinge on the
question of understanding the complexity of the follow-
ing problem, which we call PosSLP: Given a division-
free straight-line program producing an integer IV, de-
cide whether N > 0. We show that PosSLP lies in the
counting hierarchy, and we show that if A is any lan-
guage in the Boolean part of Py accepted by a machine
whose machine constants are algebraic real numbers,
then A € PPSLP - Combining our results with work
of Tiwari, we show that the Euclidean Traveling Sales-
man Problem lies in the counting hierarchy — the pre-
vious best upper bound for this important problem (in
terms of classical complexity classes) being PSPACE.

1 Introduction

The motivation for this paper comes from a desire
to understand the complexity of computation over the
reals in the Blum-Shub-Smale model, and more gener-
ally by a desire to understand the complexity of prob-
lems in numerical analysis.

The Blum-Shub-Smale model of computation over
the reals provides a very well-studied complexity-
theoretic setting in which to study the computational

*Department of Computer Science, Rutgers, the State Univer-
sity of NJ. email: al | ender @s. rut gers. edu.

TDepartment of Mathematics, Paderborn University. e-mail:
pbuer g@ipb. de. Partially supported by DFG grant BU 1371
and Paderborn Institute for Scientific Computation.

fPA Consulting Group, Copenhagen. email:
j ohan. kj el dgaar d- peder sen@paconsul ti ng. com

$Department of Computer Science, University of Aarhus.
email: brom | | e@lai m . au. dk.

Johan Kjeldgaard-Pedersen*

Peter Bro Miltersen$

problems of numerical analysis. We refer the reader to
Blum, Cucker, Shub and Smale [8] for detailed defi-
nitions and background material related to this model;
here, we will recall only a few salient facts. In the
Blum-Shub-Smale model, each machine computing
over the reals has associated with it a finite set of real
machine constants. The inputs to a machine are ele-
ments of | J,, R™” = R, and thus each polynomial-
time machine over R accepts a “decision problem”
L C R, The set of decision problems accepted by
polynomial-time machines over R is denoted Pg.

There has been considerable interest in relating
computation over R to the classical Boolean complex-
ity classes such as P, NP, PSPACE, etc. This is ac-
complished by considering the Boolean part of deci-
sion problems over the reals. That is, given a prob-
lem L C R, the Boolean part of L is defined as
BP(L) := LN {0,1}>°. (Here, we follow the nota-
tion of [8]; {0,1}>° = |J,,{0,1}", which is identical
to {0, 1}*.) The Boolean part of P, denoted BP (Pg),
is defined as {BP(L) | L € Pgr}.

By encoding the advice function in a single real
constant as in Koiran [22], one can show that
P/poly C BP(Pr). The best upper bound on the com-
plexity of problems in BP(Pg) that is currently known
was obtained by Cucker and Grigoriev [12]:

BP(Pg) C PSPACE/poly. (1)

There has been no work pointing to lower bounds
on the complexity of BP(Pgr); nobody has presented
any compelling evidence that BP(Pg) is not equal to
P/poly.

There has also been some suggestion that perhaps
BP(Pr) is equal to PSPACE /poly. For instance, cer-
tain variants of the RAM model that provide for unit-
cost arithmetic can simulate all of PSPACE in polyno-
mial time [7, 18]. Since the Blum-Shub-Smale model
also provides for unit-time multiplication on “large”

ISSN 1433-8092

numbers, Cucker and Grigoriev [12] mention that re-
searchers have raised the possibility that similar argu-
ments might show that polynomial-time computation
over R might be able to simulate PSPACE. Cucker and
Grigoriev also observe that certain naive approaches to
provide such a simulation must fail.

One of our goals is to provide evidence that BP(Pg)
lies properly between P /poly and PSPACE /poly. To-
wards this goal, it is crucial to understand a certain de-
cision problem PosSLP: The problem of deciding, for
a given straight-line program, whether it represents a
positive integer. (For precise definitions, see the next
section.)

The immediate relationship between the Blum-
Shub-Smale model and the problem PosSLP is given
by the lemma below. Following Birgisser and
Cucker [10], define P to be the class of decision prob-
lems over the reals decided by polynomial time Blum-
Shub-Smale machines using only the constants 0, 1.

Lemmal.l PPosSLP — Bp(PY).

Proof. (Sketch) It is clear that PosSLP is in BP(PQ).
To show the other direction, assume we have a poly-
nomial time machine over R using only the constants
0,1. On input a bit string, we simulate the computa-
tion by storing the straight-line program representation
of the intermediate results instead of their values. The
outcome of tests N > 0 is obtained by oracle calls to
PosSLP. O

Our first main result is a strengthening of this con-
nection. Define PR to be the class of deci-
sion problems over the reals decided by polynomial
time Blum-Shub-Smale machines using only alge-
braic constants. In §3, using real algebraic geometry,
we prove:

Theorem 1.2 PPOSSLP _ BP(PﬁlgebraiC)_

As already mentioned, by encoding the advice func-
tion in a single real constant, one can show that
P/poly C BP(Pg). The proof in fact shows even
PPosSLP /holy € BP(Pgr). The real constant encod-
ing the advice function, will, of course, in general be
transcendental. Thus, there is a strong relationship be-
tween non-uniformity in the classical model of com-
putation and the use of transcendental constants in the

Blum-Shub-Smale model. We conjecture that this re-
lationship can be further strengthened:

Conjecture 1.3 PPosSLP /pyoly = BP(PR)

The Blum-Shub-Smale model is a very elegant one,
but it does not take into account the fact that actual
numerical computations have to deal with finitely rep-
resented values. We next observe that even if we take
this into account, the PosSLP problem still captures
the complexity of numerical computation.

Let u # 0 be a dyadic rational number. The float-
ing point representation of v is obtained by writing
u = v2™ where m is an integer and 3 < |v| < 1.
The floating point representation is then given by the
sign of v, and the usual binary representations of the
numbers |v| and m. The floating point representation
of 0 is the string 0 itself. We shall abuse notation and
identify the floating point representation of a number
with the number itself, using the term “floating point
number” for the number as well as its representation.

Let u # 0 be a real number. We may write u as
u = /2™ where 1 < [u/| < 1 and m is an integer.
Then, we define a floating point approximation of «
with & significant bits to be a floating point number
v2™ so that [v — o/| < 2~ (k+1),

A (somewhat simplistic) view of the work per-
formed by numerical analysts is this: Given a func-
tion to compute, first devise a way to compute it (per-
haps approximately) in an ideal model of computa-
tion that can be modeled by an arithmetic circuit with
operations +, —, x, —. Second, perform the computa-
tion devised using floating point arithmetic. We shall
formalize this second part. The generic task of nu-
merical analysis. Given an integer % in unary and a
straight-line program (with +) taking as inputs float-
ing point numbers, with a promise that it neither evalu-
ates to zero nor does division by zero, compute a float-
ing point approximation of the value of the output with
k significant bits.

Note that this definition lies entirely within the dis-
crete realm, and thus differs quite fundamentally from
the approach taken in the Blum-Shub-Smale model.

The numerical analyst will solve the generic task of
numerical analysis for concrete instances by consid-
ering the numerical stability of the computation and,
in case of instability, devising an equivalent but sta-

ble computation. In general, such considerations are
highly non-trivial (and might not succeed).

We show that the generic task of numerical analysis
is equivalent in power to PosSLP. (To model more
general computations in numerical analysis that in-
volve branching after testing inequalities, we can sim-
ilarly reduce this to PosSLP, by querying PosSLP to
simulate branch tests.)

Proposition 1.4 The generic task of numerical analy-
sisis polynomial time Turing equivalent to PosSLP.

Proof. We first reduce PosSLP to the generic task
of numerical analysis. Given a straight-line program
representing the number N, we construct a straight-
line program computing the value v = 2N — 1. The
only inputs 0, 1 of this program can be considered to be
floating point numbers and this circuit clearly satisfies
the promise of the generic task of numerical analysis.
Then N > 0ifv>1and N < 0ifv < —1. Deter-
mining an approximation of v to one significant bit is
enough to distinguish between these cases.

Conversely, suppose we have an oracle solving
PosSLP. Given a straight-line program with inputs
being floating point numbers, we first convert it to a
straight-line program with the only input 1; it is easy to
see that this can be done in polynomial time. By stan-
dard techniques we move all = gates to the top, so that
the program computes a value v = vy /ve, Where vy, vy
are given by division-free straight-line programs. We
can use the oracle to determine the signs of v and v,.
Without loss of generality assume that v is positive.
Next we use the oracle to determine if v; > vo. Sup-
pose this is indeed the case (the opposite case is han-
dled similarly).

We then find the least r, so that 271 < v < 27,
by first comparing v, with v92% fori = 0,1,2,3, ...,
using the oracle, thus finding the minimum i so that
v < 2% and afterwards doing a binary search, again
using the oracle to compare v; to v92" for various val-
ues of r. This takes polynomial time.

The desired output is the floating point number
u = u/'2", where [v — u| < 2=¢+D To obtain «/
we first want to find the integer w between 2% and
2k+1 — 1 so that w/2* < v/2" < (w + 1)/2F+L.
Since w/2F ! < w/2" < (w + 1)/2F 1 iff w2 vy <
0128 < (w 4 1)27 vy, we can determine this by an-
other binary search, using O(k) calls to the oracle. We

then output the sign of v, the binary representation of
the rational w/2%*1, and the binary representation of
r, together forming the desired floating point approxi-
mation of v. O

We consider Proposition 1.4 to be evidence for the
computational intractability of PosSLP. If PosSLP
is in P/poly then there is a polynomial-sized “cook-
book” that can be used in place of the creative task of
devising numerically stable computations. This seems
unlikely.

The generic task of numerical analysis is one way
of formulating the notion of what is feasible to com-
pute in a world where arbitrary precision arithmetic is
available for free. In contrast, the Blum-Shub-Smale
model can be interpreted as formulating the notion of
feasibility in a world where infinite precision arith-
metic is available for free. According to Proposi-
tion 1.4 and Theorem 1.2, both of these approaches are
equivalent (and captured by PPosSLP) when only alge-
braic constants are allowed in the Blum-Shub-Smale
model. Conjecture 1.3 claims that this is also true
when allowing arbitrary real constants.

As another demonstration of the computational
power of PosSLP, we show in §2 that the problem of
determining the total degree of a multivariate polyno-
mial over the integers given as a straight-line program
reduces to PosSLP.

The above discussion suggests that PosSLP is not
an easy problem. Can more formal evidence of this
be given? Although it would be preferable to show
that PosSLP is hard for some well-studied complexity
class, the best that we can do is observe that a some-
what stronger problem (BitSLP) is hard for #P. This
will be done in §2.

The above discussion also suggests that non-trivial
upper bounds for PosSLP are of great interest. Prior
to this paper, the best upper bound was PSPACE. Our
second main result is an improved upper bound: We
show, based on results on the uniform circuit com-
plexity of integer division and the relationship between
constant depth circuits and subclasses of PSPACE
[3, 19], that PosSLP lies in the counting hierarchy CH,
a well-studied subclass of PSPACE that bears more or
less the same relationship to #P as the polynomial hi-
erarchy bears to NP [34, 36].

PP
Theorem 1.5 PosSLP isin PPP™ .

We suspect that PosSLP lies at an even lower level
of CH. We leave as major open problems the ques-
tion of providing better upper bounds for PosSLP and
the question of providing any sort of hardness the-
orem, reducing a supposedly intractable problem to
PosSLP. We also believe that it would be very in-
teresting to verify Conjecture 1.3, as this would give a
characterization of BP(Pr) in terms of classical com-
plexity classes. But in fact, it would be equally in-
teresting to refute it under some plausible complex-
ity theoretic assumption, as this would give evidence
that the power of using transcendental constants in the
Blum-Shub-Smale model goes beyond the power of
non-uniformity in classical computation.

1.1 Applications

The Sum-of-square-roots problem is a well-known
problem with many applications to computational ge-
ometry and elsewhere. The input to the problem is a
list of integers (d1, ... ,d,) and an integer k, and the
problem is to decide if >, v/d; > k. The complex-
ity of this problem is posed as an open question by
Garey, Graham and Johnson [16] in connection with
the Euclidean traveling salesman problem, which is
not known to be in NP, but which is easily seen to
be solvable in NP relative to the Sum-of-square-roots
problem. See also O’Rourke [27, 28] and Etessami
and Yannakakis [15] for additional information. Al-
though it has been conjectured [26] that the problem
lies in P, it seems that no classical complexity class
smaller than PSPACE has been known to contain this
problem. On the other hand, Tiwari [32] showed that
the problem can be decided in polynomial time on an
“algebraic random-access machine”. In fact, it is easy
to see that the set of decision problems decided by
such machines in polynomial time is exactly BP(Pp).
Thus by Lemma 1.1 we see that the Sum-of-square-
roots problem reduces to PosSLP. Theorem 1.5 thus
yields the following corollary.

Corollary 1.6 The Sum-of-square-roots problem and
the Euclidean Travelling Salesnan Problem arein CH.

2 Preliminaries

Our definitions of arithmetic circuits and straight-
line programs are standard. An arithmetic circuit is a

directed acyclic graph with input nodes labeled with
the constants 0,1 or with indeterminants Xq,... , X
for some k. Internal nodes are labeled with one of the
operations +, —, x, =. A straight-line program is a se-
quence of instructions corresponding to a sequential
evaluation of an arithmetic circuit. If it contains no +
operation it is said to be division free. Unless other-
wise stated, all the straight-line programs considered
will be division-free. Thus straight-line programs can
be seen as a very compact representation of a poly-
nomial over the integers. In many cases, we will be
interested in division-free straight-line programs using
no indeterminants, which thus represent an integer.
By the n-bit binary representation of an integer N
such that |[N| < 2" we understand a bit string of
length n + 1 consisting of a sign bit followed by n bits
encoding | V| (padded with leading zeroes, if needed).
We consider the following problems:

EquSLP Given a straight-line program represent-
ing an integer N, decide whether V = 0.

ACIT Given a straight-line program representing a
polynomial f € Z[X,,... , X\, decide whether

f=o.

DegSLP: Given a straight-line program represent-
ing a polynomial f € Z[X1,... , X], and given
a natural number d in binary, decide whether
deg f < d.

PosSLP Given a straight-line program represent-
ing N € Z, decide whether N > 0.

BitSLP Given a straight-line program representing
N, and given n,¢ € N in binary, decide whether
the 4th bit of the n-bit binary representation of NV
is 1.

It is not clear that any of these problems is in P,
since straight-line program representations of integers
can be exponentially smaller than ordinary binary rep-
resentation.

Clearly, EquSLP is a special case of ACIT.
Schonhage [30] showed that EquSLP is in coRP, us-
ing computation modulo a randomly chosen prime.
Ibarra and Moran [20], building on Schwartz [31] and
Zippel [37], extended this to show that ACIT lies
in coRP. The problem ACIT has recently attracted

much attention due to the work of Kabanets and Im-
pagliazzo [21] who showed that a deterministic al-
gorithm for ACIT would yield circuit lower bounds.
As far as we know, it has not been pointed out be-
fore that ACIT is actually polynomial time equivalent
to EquSLP. In other words, disallowing indetermi-
nates in the straight-line program given as input does
not make ACIT easier. Or more optimistically: It is
enough to find a deterministic algorithm for this spe-
cial case in order to have circuit lower bounds.

Proposition 2.1 ACIT is polynomial-time equivalent
to EquSLP.

Proof. We are given a straight-line program of size
n with m indeterminates X1, ... , X,,, computing the
polynomial p(Xi,...,X,,). Define B,; = 92"
Straight-line-programs computing these numbers us-
ing iterated squaring can easily be constructed in poly-
nomial time, so given a straight-line-program for p,
we can easily construct a straight-line program for
p(Bni,- .. Bnm). We shall show that for n > 3,
p is identically zero iff p(B,,1,... ,Bnm) evaluates
to zero.

To see this, first note that the “only if” part is triv-
ial, so we only have to show the “if” part. Thus, as-
sume that p(X7,... , X,,) is not the zero-polynomial.
Let m(Xy,...,X,,) be the largest monomial occur-
ing in p with respect to inverse lexicographic order!
and let k& be the number of monomials. We can write
p = am + Y% aym;, where (m;)i—1... 1 are the
remaining monomials. An easy induction in the size
of the straight line program shows that |o;| < 22"
k < 22" and that the degree of any variable in any m;
is at most 2".

Now, our claim is that the absolute value
lam(Bp 1, ... ,Bnm)| is strictly bigger than the ab-
solute value | "7~ a;m;(Bn.1,. .. , Bnm)|, and thus
we cannot have that p(B,, 1, ... , Bpm) = 0.

Indeed, since the monomial m was the biggest in the
inverse lexicographic ordering, we have that for any
other monomial m; there is an index 5 so that

n2
> Bn,m) > 2% on® 1
, anm) — ng—ll 221n2 on

X Xam s greater than X' ... X m in this order iff
the right-most nonzero component of o — 3 is positive, cf. Cox,
Little and O’Shea [11, p. 59].

m(anl, e
mi(anl, e

)

so we can bound

k—1
| Z aimi(Bn,la ce. 7Bn,m)|
=1

< 22” 222” | Il;‘lal%{ m’i(Bn,l) s 7Bn,m)|
1=
on 2271, 7277,271
< 22292 |m(Bp 1, .. s Bnm)
< m(Bml, - 7Bn,m) < \am(anl, - 7Bn,m)‘7
which proves the claim. a

The problem DegSLP is not known to lie in BPP,
even for the special case of univariate polynomials.
Here, we show that it reduces to PosSLP.

Proposition 2.2 DegSLP polynomia time many-one
reduces to PosSLP.

Proof. We first show the reduction for the case of uni-
variate polynomials (i.e., straight-line-programs with
a single indeterminate) and afterwards we reduce the
multivariate case to the univariate case.

Let f € Z[X] be given by a straight-line pro-
gram of length n. To avoid having to deal with the
zero polynomial of degree —oo and to ensure that
the image of the polynomial is a subset of the non-
negative integers, we first change the straight-line pro-
gram computing f into a straight-line program com-
puting f1(X) = (X f(X) + 1)? by adding a few extra
lines. We can check if the degree of f is at most d by
checking if the degree of f; isat most D = 2(d + 1)
(except for d = —oo in which case we check if the
degree of f; isat most D = 0).

Let B, be the integer 22" As in the proof of
Proposition 2.1, we can easily construct a straight-line
program computing B,, and from this a straight-line
program computing f1(B,,).

Now, suppose that deg f1 < D. Using the same
bounds on sizes of the coefficients as in the proof of
Proposition 2.1 and assuming without loss of general-
ity that n > 3, we then have

D
f(By) <3 22" BY < (2" +1)22" BP

=0
on 92n_on® P D41
< (2% +1)2 B2t < BPt)2,

On the other hand suppose that deg f1 > D + 1.
Then we have

D

Ai(By) > (Bp)PH =3 27" Bl >
=0

BDH _ 92" 922" 9 —2n BDH > gD+ g

Thus, to check whether deg f1 < D, we just need to
construct a straight-line-program for 2f; (B,,) — BP+!
and check whether it computes a positive integer. This
completes the reduction for the univariate case.

We next reduce the multivariate case to the uni-
variate case. Thus, let f € Z[Xq1,...,Xn]
be given by a straight-line program of length n.
Let f* € Z[X1,...,Xm,Y] be defined by
(X1, Xp,Y) = f(Xﬂ;,... JXnY). We
claim that if we let B,,; = 22" as in the proof of
Proposition 2.1, then, for n > 3, the degree of the uni-
variate polynomial f*(B,,1,... ,Bpm,Y) is equal to
the total degree of f. Indeed, we can write f* as a
polynomial in Y with coefficients in Z[X, ... , X,,]:

d*
f*(Xl,... ,Xm,Y) = Zg](Xl, ,Xm)Y]
7=0

where d* is the degree of variable Y in the polyno-
mial f*. Note that this is also the total degree of the
polynomial f. Now, the same argument as used in the
proof of Propostion 2.1 shows that since g4+ is not the
zero-polynomial, gq« (B, 1, Bn2, - - - , Bnm) is differ-
ent from 0. O

As PosSLP easily reduces to BitSLP, we obtain
the chain of reductions

ACIT<} DegSLP <}, PosSLP<%,BitSLP.

In §4 we will show that all the above problems in fact
lie in the counting hierarchy CH.

The complexity of BitSLP contrasts sharply with
that of EquSLP.

Proposition 2.3 BitSLP is hard for #P.
Proof of Proposition 2.3. The proof is quite similar to

that of Blirgisser [9, Prop. 5.3], which in turn is based
on ideas of Valiant [35]. We show that computing the

permanent of matrices with entries from {0,1} is re-
ducible to BitSLP.

Given a matrix X with entries z; ; € {0,1}, con-
sider the univariate polynomial

o= Z fn,zYZ = H (Zmi,jy2j71)
i j=1

i=1

which can be represented by a straight-line program
of size O(n?). Then f,, 9»_1 equals the permanent of
X. Let N be the number that is represented by the
straight-line program that results by replacing the in-
determinate Y with 27°. It is easy to see that the bi-
nary representation of f, o»_; appears as a sequence
of consecutive bits in the binary representation of V.
O

3 Algebraic Constants

The goal of this section is to show that real alge-
braic constants do not add to the power of a polyno-
mial time real Turing machine on discrete inputs.

For fixed ai,...,ap. € R consider the
problem SignSLP(aq,...,ar) of deciding
whether f(ay,...,ax) > 0 for a polynomial
f € Z[Xy,...,Xx] given by a straight-line program.
Clearly, this is a generalization of PosSLP. The
problem can be solved in polynomial time by a
machine over R using the real constants aq,... ,ax:
the machine just evaluates the straight-line program to
obtain f(aq,...,a) and then checks the sign. Thus
SignSLP(ay,...,ax) is in the Boolean part of the
real complexity class Pg. Conversely, the following is
easily shown as in the proof of Lemma 1.1.

Lemma 3.1 Assume that L C R is decided by a
polynomial time machine over R using the real con-
stantsay, ... ,a;. ThenBP(L) € PSignSLP(ar,.ax),

The proof of the following result will be given in
the next subsections after some preparation.

Theorem 3.2 If ay,... ,a; are rea agebraic num-
bers over Q, then the problem SignSLP(aq, ... ,ax)
is contained in PPosSLP

Theorem 1.2 follows immediately from Lemma 3.1
and Theorem 3.2. We note that Conjecture 1.3 is

equivalent to SignSLP(a1, ... ,a;) € PPoSP /poly
for any list of real numbers ai,...,a;. Since
PPosSLP /poly € |U,er PRE™SLP@ /poly, Lemma 3.1
tells us that if Conjecture 1.3 holds, then BP(Pg) is
unchanged if we disallow machines with two or more
machine constants.

3.1 Consistency of Semialgebraic Constraints

Recall that the dense representation of a k-variate
polynomial of degree d is a vector of all of the
Sieq (1) coefficients, in some standard order.
For fixed £ € N consider the multivariate sign
consistency problem SignConsg(k) defined as fol-
lows: Given g1,...,g9s in R[Xy,...,Xy] of de-
gree at most d in dense representation and a sign
vector (o1,...,0s) € {—1,0,1}°, decide whether
there exists 2 € RF such that sgn(gi(z)) =
o1,... ,sen(gs(x)) = 0.

It is well-known [5, 6, 29] that the prob-
lem SignConsg (k) can be solved with a to-
tal of (sd)©®*) arithmetic operations (and parallel
time (klog(sd))®M). In particular, the problem
SignConsg (k) is in Pg.

SignConsSLPy (k) will denote the variation of this
problem, where the input polynomials g1, . .. , gs have
integer coefficients that are given by straight-line pro-
grams. (So the degree of g; is part of the input size,
however the bit size of the coefficients of g; might be
exponentially large.) Since the straight-line programs
giving the coefficients of the g; can be evaluated in P2,
we conclude that SignConsSLPp(k) is in BP(PR),
Hence we conclude as a consequence of Lemma 1.1
the following:

Lemma 3.3 SignConsSLPy (k) isin PPosSLP for any
fi xed k.

3.2 Division with remainder

Let A be an integral domain and f,p € A[X] be
univariate polynomials. (The cases A = Z and A =
Z[Xy,..., X} are of interest to us.) We assume that
d := degp > 1 and denote the leading coefficient of p
by A. There is a unique representation of the following
form (pseudo-division)

ArdesS=d f — g 47,)

where ¢, € A[X] and degr < d. Moreover, the
coefficients of the quotient ¢ and of the remainder »
can be computed from the coefficients of f and p by a
straight-line program of size O(d deg f), cf. von zur
Gathen and Gerhard [17].

As before, we will assume that p is given by its vec-
tor of coefficients. However, for f we allow now that
it is given by a straight-line program.

Lemma3.4 There is a polynomial time algorithm
computing in time O(¢d?) from a straight-line pro-
gram representation of f of size ¢ and from the vec-
tor of coeffi cients of p straight-line program represen-
tations for all the coeffi cients of the scaled remain-
der %2y,

Proof. ~ We proceed as in Birgisser [9, Proposi-
tion 5.2]. Letg; = 1,90 = X,...,g90 = [be
the sequence of intermediate results in A[X] of the
given straight-line program computing f. Let ¢, de-
note the number of multiplication instructions in its
first p steps.

By induction on p we are going to show that there
are representations

_1)(2% —
\(d=1)2% 1)gp:rp+pqp,

where g,,r, € A[X], degr, < d, and that straight-
line program representations for the coefficients of r,
can be computed in time O(pd?).

The induction start is clear. Suppose that g, = g;9;
with 4, j < p. Then we have by the induction hypoth-
esis

—1)(2ti +2% —
)\(d 1)(2%+277 2)gp =TT +p(7’ZQJ + Tidi +quQJ)

By the usual polynomial multiplication algorithm, we
obtain straight-line programs computing the coeffi-
cients of r;r; from the coefficients of r;,r; in time
O(d?). Moreover, by (2), we have A~ 1r;r; = r,+pq
for some ¢ € A[X] and we obtain straight-line pro-
grams computing the coefficients of r, in additional

time O(d?). Putting this together and noting that
max{/;,{;} < {,, the claim follows. In the case
g, = gi = g; the claim is obvious. O

3.3 Proof of Theorem 3.2

In symbolic computation, it is common to repre-
sent a real algebraic number « by its (uniquely de-
termined) primitive minimal polynomial p € Z[X]
with positive leading coefficient, together with the se-
quence of the signs of the derivatives of p at a. By
Thom’s Lemma [5], « is uniquely determined by this
data. Let the fixed real algebraic numbers a1, ... ,ax
be represented this way by their minimal polynomi-
als p1,... ,pr € Z[X]. We suppose without loss of
generality that d; := degp; > 1, we denote the lead-
ing coefficient of p; by A; > 0, and we write ¢; ; =
sgn(p (J)(;) for 0 < j < d; (note that €; o = 0). The
data describing the a1, ... ,a; is assumed to be fixed
in the following.

Lemma35 For f € Z[Xi,...,X)] there ae
q1,---qg, " € Z[X1,...,Xx] and natura numbers
e1,... e such that

)\il e)\Zkf =7r+ Zle pz(Xz)qla

where degx, r < di,... ,degy, r < di. Moreover,
there is a polynomia time algorithm computing in
time O(¢d3 - - - d2) from astraight-line program repre-
sentation of f straight-line program representations for
al integer coeffi cients of the remainder polynomial r.

Proof. We prove by induction on p the following
statement: there are q,1,...q,, € Z[X1,..., Xk,
el,...,e, € Nyand for j = (j1,...,7,) there are
Tpj € L[Xpi1,. .., Xy] such that

)\?"')\pr:

Z TpJle X]p + sz Qp,

J1<di,...,jp<dp

Moreover, straight-line program representations for
each r,, ; can be computed in time ¢, < ¢?4d} --- d3,
where ¢ > 0 is a constant.

The start p = 1 follows by applying Lemma 3.4 to f
and p;(Xy), where f is interpreted as a polynomial
in X over the ring Z[Xo, ... , Xk].

Suppose the claim holds for p < k. We inter-
pret each r, ; as a univariate polynomial in X, over
the ring A = Z[X,19,... ,X};]. Lemma 3.4 applied

to r, ; yields the following representation with some
Gp+1,5 € A[Xpp1] and epp1 = dpy12%

ep+1
A o+1 "o = § :
Jp+1<dpt1

+ Por1(Xpi1)dpr1,

. Jp+1
Tp+1vjp+1Xp+1

wherether,,4 ;,,, € Aaregiven by straight-line pro-
grams that can be computed in time at most £, :=
cfpdf)+1 for some constant ¢ > 0. By induction hy-
pothesis this implies

el €p+1 _
)\1 o p+1 f

. Jp+1
§ : TPJFLJ/H-IX X0
J1<di,e Jp+1<dpt1

+ ZPiQpH,z‘ + Dp+14p+1,p+1;

=1
€p+1
where g¢,11; =)\pf:l Qi and gpi1p41 =
> ji<ds, . jp<d, dp+1, X7 .- X7?. Moreover, we ob-
tain £, < cPteds - dp+1, which shows the induc-
tion claim. O

Proof of Theorem 3.2. Let f € Z[Xy,...,X}]
be given by a straight-line program and r be the re-
mainder polynomial as in Lemma 3.5. Note that
flay,... ,ax) = r(aq,...,ax). This number is posi-
tive iff the following system of sign conditions is con-
sistent:

Jz1) = Lsgn(pl (2:)) = e

forl < i<k, 0<j < d; According to Lemma 3.5
we can compute straight-line program representations
for all the coefficients of r in polynomial time. Com-
bining this with Lemma 3.3, the assertion follows. O

sgn(r(zy,. ..

4 PosSLP liesin CH

The counting hierarchy CH was defined by Wagner
[36] and was studied further by Toran [34]; see also
[4, 3]. A problem lies in CH if it lies in one of the
classes in the sequence PP, PPPP | etc.

Theorem 4.1 BitSLP isin CH.

Proof. It was shown by Hesse et al. [19] that there
are Dlogtime-uniform threshold circuits of polynomial
size and constant depth that compute the following
function:

Input A number X in Chinese Remainder Represen-
tation. That is, a sequence of values indexed
(p,7) giving the j-th bit of X mod p, for each
prime p < n?, where 0 < X < 27 (thus we
view n as an appropriate “size” measure of the
input).

Output The binary representation of the unique natu-
ral number X < Hp prime,p<n2 P WOSe value mod-
ulo each small prime is encoded in the input.

Let this circuit family be denoted {D,, }.

Now, as in the proof of [3, Lemma 5], we consider
the following exponentially-big circuit family {E,,},
that computes BitSLP.

Given as input an encoding of a straight-line pro-
gram representing integer 1, we first build a new pro-
gram computing the positive integer X = W + 22",
Note that the bits of the binary representation of W
(including the sign bit) can easily be obtained from the
bits of X.

Level 1 of the circuit E,, consists of gates labeled
(p, 7) for each prime p such that p < 22" and for each
j 1< j < [logp]. The output of this gate records
the jth bit of X mod p. (Observe that there are ex-
ponentially many gates on level 1, and also note that
the output of each gate (p, j) can be computed in time
polynomial in the size of the binary encoding of p and
the size of the given straight-line program represent-
ing X. Note also that the gates on Level 1 correspond
to the gates on the input level of the circuit Dyon.

The higher levels of the circuit are simply the gates
of D22n .

Now, similar to the proof of [3, Lemma 5], we claim
that for each constant d, the following language is in
the counting hierarchy: L, ={(F, P,b) : F'is the name
of a gate on level d of E,, and F evaluates to b when
given straight-line program P as input}.

We have already observed that this is true when d =
1. For the inductive step, assume that L; € CH. Here
is an algorithm to solve L, using oracle access to
Lg. On input (F, P,b), we need to determine if the
gate F'is a gate of E,,, and if so, we need to determine

if it evaluates to b on input P. F'is a gate of E,, iff
if it is connected to some gate G such that, for some
v, (G, P,V) € Lg. This can be determined in NPZ¢ C
PPLd, since D, is Dlogtime-uniform. That is, we can
guess a gate (7, check that GG is connected to F' in takes
linear time (because of the uniformity condition) and
then use our oracle for Ly. If F is a gate of E,,, we
need to determine if the majority of the gates that feed
into it evaluate to 1. (Note that all of the gates in D,,
are MAJORITY gates.) That is, we need to determine
if it is the case that for most bit strings G such that G
is the name of a gate that is connected to F', (G, P, 1)
is in Lq. This is clearly computable in PP%.

Thus in order to compute BitSLP, given program
P and index ¢, compute the name F' of the output bit
of E,, that produces the ith bit of N (which is easy
because of the uniformity of the circuits D42.) and de-
termine if (F, P,1) € L4, where d is determined by
the depth of the constant-depth family of circuits pre-
sented in [19]. O

Theorem 4.1 shows that BP(P2#°"™) lies in CH.
A similar argument can be applied to an analogous re-
striction of “digital” NPy (i.e., where nondetermin-
istic machines over the reals can guess “bits” but
cannot guess arbitrary real numbers). Blrgisser and
Cucker [10] present some problems in PSPACE that
are related to counting problems over R. It would be
interesting to know if these problems lie in CH.

Although Theorem 4.1 shows that BitSLP and
PosSLP both lie in CH, some additional effort is re-
quired in order to determine the level of CH where
these problems reside. We present a more detailed
analysis for PosSLP, since it is our main concern in
this paper.

The following result implies Theorem 1.5, since
Toda’s Theorem [33] shows that PPPH" < PPP* for
every oracle A.

Theorem 4.2 PosSLP € PHPP™" .

Proof. We will use the Chinese remaindering algo-
rithm of [19] to obtain our upper bound on PosSLP.
(Related algorithms, which do not lead directly to the
bound reported here, have been used on several occa-
sions [1, 13, 14, 23, 24].) Let us introduce some nota-
tion relating to Chinese remaindering.

For n € N let M, be the product of all odd
primes p less than on’, By the prime number theorem,

22" < M, < 22" for sufficiently large. For such
primes p let h,, ,, denote the inverse of M,, /p mod p.

Any integer 0 < X < M, can be represented
uniquely as a list (x,), where p runs over the odd
primes p < 2"° and z, = X mod p. Moreover, X
is congruent to > zphy, , M, /p modulo M,,. Hence
X /M, is the fractional part of > @,y /p.

Define the family of approximation functions
appy(X) to be > By, where By, = zphy, .0, and
op.n 1S the result of truncating the binary expansion of
1/p after 27" pits. Note that for n sufficiently large
and X < My, appn(X) is within 272" of X/M,.

Let the input to PosSLP be a program P of size n
representing the integer W and put Y,, = 2%". Since
|W| <Y, the number X := W + Y, is nonnegative
and we can easily transform P into a program of size
2n + 2 representing X. Clearly, W > 0iff X > Y,,.
Note that if X > Y,,, then X/M,, and Y,,/M,, differ
by at least 1/M,, > 2-2""*1 Wwhich implies that it is
enough to compare the binary expansions of app,,(X)
and app, (Yy). (Interestingly, this seems to be some-
what easier than computing the bits of X directly.)

We can determine if X > Y,, in PH relative to the
following oracle: A = {(P,j,b,1™) : the j-th bit of
the binary expansion of app,,(X) is b, where X is the
number represented by straight-line program P and j
is given in binary}. Lemma 4.3 completes the proof
by showing that A € PHPP™" O

Lemma4.3 A € PHPP™ .

Proof. Assume for the moment that we can show that
B € PHPP where B := {(P,j,b,p,1") : the j-th
bit of the binary expansion of B, (= zphpnopn) 1S
b, where p < 27* is an odd prime, z, = X mod p,
X is the number represented by the straight-line pro-
gram P, and j is given in binary}. In order to recog-
nize the set A, it clearly suffices to compute 27" its
of the binary representation of the sum of the num-
bers B,. A uniform circuit family for iterated sum
is presented by Maciel and Thérien in [25, Corollary
3.4.2] consisting of MAJORITY gates on the bottom
(input) level, with three levels of AND and OR gates

10

above. As in the proof of Theorem 4.1, the con-
struction of Maciel and Thérien immediately yields a
PHPP” algorithm for A, by simulating the MAJOR-
ITY gates by PP? computation, simulating the OR
gates above the MAJORITY gates by NPPP” compu-
tation, etc. The claim follows, since by Toda’s Theo-

PP
rem [33] PHPP” < PHPP™ — PHPP™ It remains
only to show that B € PH"P. O

Lemmad4.4 B e PHPP,

Proof. Observe that given (P, j,b,p) we can deter-
mine in polynomial time if p is prime [2], and we can
compute x,.

In PH C PPP we can find the least generator g,, of
the multiplicative group of the integers mod p. The
set C' = {(¢,9p,%,p) : p # ¢ are primes and 1 is the
least number for which g;) = ¢ mod p} is easily seen
to lie in PH. We can compute the discrete log base
g, of the number M,,/p mod p in #P¢ C PPP, by
the algorithm that nondeterministically guesses ¢ and
i, verifies that (¢, gp,i,p) € C, and if so generates
1 accepting paths. Thus we can compute the number
M,,/p mod p itself in PPP by first computing its dis-
crete log, and then computing g, to that power, mod
p. The inverse h,, ,, is now easy to compute in PPP, by
finding the inverse of M,, /p mod p.

Our goal is to compute the j-th bit of the binary ex-
pansion of x,hy, ,0p, ». We have already computed x,,
and h,, , in PPP| so it is easy to compute x,h,, . The
jth bit of 1/p is simply the low-order bit of 2/ mod p,
so bits of o), ,, are easy to compute in polynomial time.
(Note that j is exponentially large.)

Thus our task is to obtain the j-th bit of the product
of x,hy, and o, or (equivalently) adding o, to
itself 2, h,,, times. The problem of adding log®™ n
many n-bit numbers lies in uniform AC®. Simulating
these ACY circuits leads to the desired PH"P algorithm

for B. O
Acknowledgments
We acknowledge helpful conversations with

Kousha Etessami, Sambuddha Roy, Felipe Cucker,
and Kristoffer Arnsfelt Hansen.

References

(1]

(2]

(3]

[4]

5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

M. Agrawal, E. Allender, and S. Datta. On TC®, AC®, and
arithmetic circuits. J. Comp. Syst. Sci., 60:395-421, 2000.

M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P.
Auvailable at: http://www.cse.iitk.ac.in/primality.pdf, 2002.

E. Allender, M. Kouck’y, D. Ronneburger, S. Roy, and
V. Vinay. Time-space tradeoffs in the counting hierarchy. In
Proc. 16th Ann. IEEE Conf. on Computational Complexity
(CCC'01), pages 295-302, 2001. Revised version to appear
in Theory of Computing Systems.

E. Allender and K. W. Wagner. Counting hierarchies: poly-
nomial time and constant depth circuits. In G. Rozenberg
and A. Salomaa, editors, Current Trendsin Theoretical Com-
puter Science, pages 469-483. World Scientific, 1993.

S. Basu, R. Pollack, and M.-F. Roy. Algorithmsin Real Alge-
braic Geometry, volume 10 of Algorithms and Computation
in Mathematics. Springer Verlag, 2003.

M. Ben-Or, D. Kozen, and J. Reif. The complexity of ele-
mentary algebra and geometry. J. Comp. Syst. ci., 32:251-
264, 1986.

A. Bertoni, G. Mauri, and N. Sabadini. Simulations among
classes of random access machines and equivalence among
numbers succinctly represented. Ann. Discrete Math.,
25:65-90, 1985.

L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and
Real Computation. Springer, 1998.

P. B'urgisser. The complexity of factors of multivariate
polynomials. Foundations of Computational Mathematics,
4:369-396, 2004.

P. B argisser and F. Cucker. Counting complexity classes for
numeric computations Il: Algebraic and semialgebraic sets.
Available at: http://www.arxiv.org/abs/cs/cs.CC/0312007,
Extended abstract in Proc. 36th Ann. ACM STOC, pages
475-485, 2004.

D. Cox, J. Little, and D. O’Shea. |deals, Varieties, and Al-
gorithms. Springer, 1991.

F. Cucker and D.Yu. Grigoriev. On the power of real Turing
machines over binary inputs. SAM J. Comp., 26:243-254,
1997.

G.l. Davida and B. Litow. Fast parallel arithmetic via mod-
ular representation. SSAM J. Comp., 20(4):756-765, August
1991.

P.F. Dietz, I.l. Macarie, and J.l. Seiferas. Bits and relative
order from residues, space efficiently. Inf. Proc. Letters,
50(3):123-127, 9 May 1994.

K. Etessami and M. Yannakakis. Recursive Markov chains,
stochastic grammars, and monotone systems of nonlinear
equations. In V. Diekert and B. Durand, editors, 22nd
Ann. Symposium on Theoretical Aspects of Computer ci-
ence (STACS 05), number 3404 in LNCS, pages 340-352,
2005.

11

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

M. Garey, R.L. Graham, and D.S. Johnson. Some NP-
complete geometric problems. In Proc. ACM Symp. Theory
Comp., pages 10-22, 1976.

J. von zur Gathen and J. Gerhard. Modern Computer Alge-
bra. Cambridge University Press, 1999.

J. Hartmanis and J. Simon. On the power of multiplication in
random-access machines. In Proc. 15th Ann.. IEEE Sympos.
Switching Automata Theory, pages 13-23, 1974.

W. Hesse, E. Allender, and D. A. Mix Barrington. Uni-
form constant-depth threshold circuits for division and iter-
ated multiplication. J. Comp. Syst. i, 65:695-716, 2002.

O.H. Ibarra and S. Moran. Equivalence of straight-line pro-
grams. J. ACM, 30:217-228, 1983.

V. Kabanets and R. Impagliazzo. Derandomizing polyno-
mial identity tests means proving circuit lower bounds. In
Proc. ACM Symp. Theory Comp., pages 355-364, 2003.

P. Koiran. Computing over the reals with addition and order.
Theoret. Comp. i, 133:35-47, 1994.

B. Litow. On iterated integer product. Inf. Proc. Letters,
42(5):269-272, 03 July 1992.

I. Macarie. Space-efficient deterministic simulation of prob-
abilistic automata. SAM J. Comp., 27:448-465, 1998.

A. Maciel and D. Therien. Threshold circuits of small
majority-depth. Information and Computing, 146:55-83,
1998.

G. Malajovich. An effective version of Kronecker’s theo-
rem on simultaneous Diophantine approximation. Technical
report, City University of Hong Kong, 1996.

J. O’Rourke. http://maven.smith.edu/~ orourke/TOPP. Web-
page.

J. O’Rourke. Advanced problem 6369.
Monthly, 88:769, 1981.

J. Renegar. On the computational complexity and geome-
try of the first-order theory of the reals. I. Introduction. Pre-
liminaries. The geometry of semi-algebraic sets. The deci-
sion problem for the existential theory of the reals. J. Symb.
Comp., 13(3):255-299, 1992.

A. Sch’dnhage. On the power of random access machines. In
H.A. Maurer, editor, Automata, languages and programming
ICALP’ 79, number 71 in LNCS, pages 520-529, 1979.

J.T. Schwartz. Fast probabilistic algorithms for verification
of polynomial identities. J. ACM, 27:701-717, 1980.

P. Tiwari. A problem that is easier to solve on the unit-cost
algebraic RAM. Journal of Complexity, 8:393-397, 1992.

S. Toda. PP is as hard as the polynomial-time hierarchy.
S AM J. Comp., 21(2):865-877, 1991.

J. Tor“an. Complexity classes defined by counting quantifiers.
J. ACM, 38:753-774, 1991.

L.G. Valiant. Reducibility by algebraic projections. In
Logic and Algorithmic: an International Symposium held in
honor of Ernst Specker, volume 30, pages 365-380. Monogr.
No. 30 de I’Enseign. Math., 1982.

Amer. Math.

[36] K. W. Wagner. The complexity of combinatorial prob-
lems with succinct input representation. Acta Informatica,
23:325-356, 1986.

[37] R.E.B. Zippel. Simplification of radicals with applications to
solving polynomial equations. Master’s thesis, M.I.T., 1977.

ECCC ISSN 1433-8092
12 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

