Oracles Are Subtle But Not Malicious

Scott Aaronson*

Abstract

Theoretical computer scientists have been debating the role of oracles since the 1970's. This paper illustrates both that oracles can give us nontrivial insights about the barrier problems in circuit complexity, and that they need not prevent us from trying to solve those problems.

First, we give an oracle relative to which PP has linear-sized circuits, by proving a new lower bound for perceptrons and low-degree threshold polynomials. This oracle settles a longstanding open question, and generalizes earlier results due to Beigel and to Buhrman, Fortnow, and Thierauf. More importantly, it implies the first nonrelativizing separation of "traditional" complexity classes, as opposed to interactive proof classes such as MIP and MA EXP. For Vinodchandran showed, by a nonrelativizing argument, that PP does not have circuits of size n^{k} for any fixed k. We present an alternative proof of this fact, which shows that PP does not even have quantum circuits of size n^{k} with quantum advice. To our knowledge, this is the first nontrivial lower bound on quantum circuit size.

Second, we study a beautiful algorithm of Bshouty et al. for learning Boolean circuits in ZPP ${ }^{N P}$. We show that the NP queries in this algorithm cannot be parallelized by any relativizing technique, by giving an oracle relative to which $Z_{\| P}^{N P}$ and even $B P P_{\|}^{N P}$ have linear-size circuits. On the other hand, we also show that the NP queries could be parallelized if $P=N P$. Thus, classes such as ZPP NP inhabit a "twilight zone," where we need to distinguish between relativizing and black-box techniques. Our results on this subject have implications for computational learning theory as well as for the circuit minimization problem.

1 Introduction

It is often lamented that, half a century after Shannon's insight [30] that almost all Boolean functions require exponential-size circuits, there is still no explicit function for which we can prove even a superlinear lower bound. Yet whether this lament is justified depends on what we mean by "explicit." For in 1982, Kannan [18] did show that for every constant k, there exists a language in Σ_{2}^{p} (the second level of the polynomial hierarchy) that does not have circuits of size n^{k}. His proof used the oldest trick in the book: diagonalization, defined broadly as any method for simulating all machines in one class by a single machine in another. In some sense, diagonalization is still the only method we know that zeroes in on a specific property of the function being lower-bounded, and thereby escapes the jaws of Razborov and Rudich [27].

But can we generalize Kannan's theorem to other complexity classes? A decade ago, Bshouty et al. [8] discovered an algorithm to learn Boolean circuits in ZPP ${ }^{N P}$ (that is, probabilistic polynomial time with NP oracle). As noticed by Köbler and Watanabe [20], the existence of this algorithm implies that ZPPNP itself cannot have circuits of size n^{k} for any $k .{ }^{1}$

So our task as lowerboundsmen and lowerboundswomen seems straightforward: namely, to find increasingly powerful algorithms for learning Boolean circuits, which can then be turned around to yield increasingly powerful circuit lower bounds. But when we try to do this, we quickly run into the brick wall of relativization.

[^0]Just as Baker, Gill, and Solovay [6] gave a relativized world where $P=N P$, so Wilson [40] gave relativized worlds where NP and $P^{N P}$ have linear-size circuits. Since the results of Kannan [18] and Bshouty et al. [8] relativize, this suggests that new techniques will be needed to make further progress.

Yet attitudes toward relativization vary greatly within our community. Some computer scientists ridicule oracle results as elaborate formalizations of the obvious - apparently believing that (1) there exist relativized worlds where just about anything is true, (2) the creation of such worlds is a routine exercise, (3) the only conjectures ruled out by oracle results are trivially false ones, which no serious researcher would waste time trying to prove, and (4) nonrelativizing results such as IP = PSPACE [29] render oracles irrelevant anyway. At the other extreme, some computer scientists see oracle results not as a spur to create nonrelativizing techniques or as a guide to where such techniques might be needed, but as an excuse to abandon hope.

This paper will offer new counterexamples to both of these views, in the context of circuit lower bounds. We focus on two related topics: first, the classical and quantum circuit complexity of PP; and second, the learnability of Boolean circuits using parallel NP queries.

1.1 On PP and Quantum Circuits

In Section 2, we give an oracle relative to which PP has linear-size circuits. Here PP is the class of languages accepted by a nondeterministic polynomial-time Turing machine that accepts and if and only if the majority of its paths do. Our construction also yields an oracle relative to which PEXP (the exponential-time version of PP) has polynomial-size circuits, and indeed $P^{N P}=\oplus P=P E X P$. This settles several questions that were open for years, ${ }^{2}$ and subsumes at least three previous results:
(1) that of Beigel [7] giving an oracle relative to which $\mathrm{P}^{\mathrm{NP}} \not \subset \mathrm{PP}$ (since clearly $\mathrm{P}^{\mathrm{NP}}=\mathrm{PEXP}$ implies $\left.P^{N P} \not \subset P P\right)$,
(2) that of Buhrman, Fortnow, and Thierauf [10] giving an oracle relative to which $M A_{\text {EXP }} \subset P /$ poly, and
(3) that of Buhrman et al. [9] giving an oracle relative to which $\mathrm{P}^{\mathrm{NP}}=$ NEXP.

Note that our result is nearly optimal, since Toda's theorem [35] yields a relativizing proof that PPP and even BP. PP do not have circuits of any fixed polynomial size.

Our proof first represents each PP machine by a low-degree multilinear polynomial, whose variables are the bits of the oracle string. It then combines these polynomials into a single polynomial called Q. The key fact is that, if there are no variables left "unmonitored" by the component polynomials, then we can modify the oracle in a way that increases Q. Since Q can only increase a finite number of times, it follows that we will eventually win our "war of attrition" against the polynomials, at which point we can simply write down what each machine does in an unmonitored part of the oracle string. The main novelty of the proof lies in how we combine the polynomials to create Q.

We can state our result alternatively in terms of perceptrons [24], also known as threshold-of-AND circuits or polynomial threshold functions. Call a perceptron "small" if it has size $2^{n^{o(1)}}$, order $n^{o(1)}$, and weights in $\{-1,1\}$. Also, given an n-bit string $x_{1} \ldots x_{n}$, recall that the ODDMAXBIT problem is to decide whether the maximum i such that $x_{i}=1$ is even or odd, promised that such an i exists. Then Beigel [7] showed that no small perceptron can solve ODDMAXBIT. What we show is a strong generalization of Beigel's theorem: for any $k=n^{o(1)}$ small perceptrons, there exists a "problem set" consisting of k ODDMAXBIT instances, such that for every i, the $i^{\text {th }}$ perceptron will get the $i^{t h}$ problem wrong even if it can examine the whole problem set. Previously this had been open even for $k=2$.

But the real motivation for our result is that in the unrelativized world, PP is known not to have linearsize circuits. Indeed, Vinodchandran [39] showed that for every k, there exists a language in PP that does not have circuits of size n^{k}. As a consequence, we obtain the first nonrelativizing separation that does not involve artificial classes or classes defined using interactive proofs. There have been nonrelativizing separations in the past, but most of them have followed easily from the collapse of interactive proof classes: for example,

[^1]NP \neq MIP from MIP $=$ NEXP [5], and IP $\not \subset \operatorname{SIZE}\left(n^{k}\right)$ from IP $=$ PSPACE [29]. The one exception was the result of Buhrman, Fortnow, and Thierauf [10] that $\mathrm{MA}_{\mathrm{EXP}} \not \subset \mathrm{P} /$ poly, where $\mathrm{MA}_{\text {EXP }}$ is the exponential-time version of MA. However, the class $\mathrm{MA}_{\text {EXP }}$ exists for the specific purpose of not being contained in $\mathrm{P} /$ poly, and the resulting separation does not scale down below NEXP, to show (for example) that MA does not have linear-size circuits. By contrast, PP is one of the most natural complexity classes there is. That is why, in our opinion, our result adds some heft to the idea that currently-understood nonrelativizing techniques can lead to progress on the fundamental questions of complexity theory.

The actual lower bound of Vinodchandran [39] follows easily from three well-known results: the LFKN interactive protocol for the permanent [22], Toda's theorem [35], and Kannan's theorem [18]. ${ }^{3}$ In Section 3, we present an alternative, more self-contained proof, which does not go through Toda's theorem. As a bonus, our proof also shows that PP does not have quantum circuits of size n^{k} for any k. Indeed, this remains true even if the quantum circuits are given "quantum advice states" on n^{k} qubits, which might require exponential time to prepare. One part of our proof is a "quantum Karp-Lipton theorem," which states that if PP has polynomial-size quantum circuits, then the "counting hierarchy" (consisting of PP, PP PP , PP PP ${ }^{\text {PP }}$, and so on) collapses to QMA, the quantum analogue of NP. By analogy to the classical nonrelativizing separation of Buhrman, Fortnow, and Thierauf [10], we also show that QMA ${ }_{\text {ExP }}$, the exponential-time version of QMA, is not contained in BQP/qpoly. Indeed, QMA ${ }_{\text {EXP }}$ requires quantum circuits of at least "half-exponential" size, meaning size $f(n)$ where $f(f(n))$ grows exponentially. ${ }^{4}$

While none of the results in Section 3 are really difficult, we include them here for three reasons:
(1) So far as we know, the only existing lower bounds for arbitrary quantum circuits are due to Nishimura and Yamakami [26], who showed (among other things) that EESPACE $\not \subset B Q P /$ qpoly. ${ }^{5}$ We felt it worthwhile to point out that much better bounds are possible.
(2) When it comes to understanding the limitations of quantum computers, our knowledge to date consists almost entirely of oracle lower bounds. Many researchers have told us that they would much prefer to see some unrelativized results, or at the very least conditional statements-for example, "if NPcomplete problems are solvable in quantum polynomial time, then the polynomial hierarchy collapses." The results of Section 3 represent a first step in that direction.
(3) Recently Aaronson [2] gave a new characterization of PP, as the class of problems solvable in quantum polynomial time, given the ability to postselect (that is, to discard all runs of the computation in which a given measurement result does not occur). If we replace "quantum" by "randomized" in this definition, then we obtain a classical complexity class called $\mathrm{BPP}_{\text {path }}$, which was introduced by Han, Hemaspaandra, and Thierauf [16]. So the fact that we can prove a quantum circuit lower bound for PP implies one of two things: either that (i) we can prove a nonrelativizing quantum separation theorem, but not the classical analogue of the same theorem, or that (ii) we should be able to prove classical circuit lower bound for $\mathrm{BPP}_{\text {path }}$. As we will see later, the latter possibility would be a significant breakthrough.

1.2 On Parallel NP Queries and Black-Box Learning

In a second part of the paper, we study the learning algorithm of Bshouty et al. [8] mentioned earlier. Given a Boolean function f that is promised to have a polynomial-size circuit, this algorithm finds such a circuit in the class $\mathrm{ZPP}^{\mathrm{NP}^{f}}$: that is, zero-error probabilistic polynomial time with NP oracle with oracle for f. One of the most basic questions about this algorithm is whether the NP queries can be made nonadaptive. For if so, then we immediately obtain a new circuit lower bound: namely that ZPP ${ }_{\|}$(that is, ZPP with parallel

[^2]NP queries) does not have circuits of size n^{k} for any $k .{ }^{6}$ Conceptually, this would not be so far from showing that NP itself does not have circuits of size n^{k}. ${ }^{7}$

Let \mathcal{C} be the set of circuits of size n^{k}. In Bshouty et al.'s algorithm, we repeatedly ask the NP oracle to find us an input x_{t} such that, among the circuits in \mathcal{C} that succeed on all previous inputs x_{1}, \ldots, x_{t-1}, at least a $1 / 3$ fraction fail on x_{t}. Since each such input reduces the number of circuits "still in the running" by at least a constant factor, this process can continue for at most $\log |\mathcal{C}|$ steps. Furthermore, when it ends, by assumption we have a set \mathcal{C}^{*} of circuits such that for all inputs x, a uniform random circuit drawn from \mathcal{C}^{*} will succeed on x with probability at least $2 / 3$. So now all we have to do is sample a polynomial number of circuits from \mathcal{C}^{*}, then generate a new circuit that outputs the majority answer among the sampled circuits. The technical part is to express the concepts "at least a $1 / 3$ fraction" and "a uniform random sample" in NP. For that Bshouty et al. use pairwise-independent hash functions.

When we examine the above algorithm, it is far from obvious that adaptive NP queries are necessary. For why can't we simply ask the following question in parallel, for all $T \leq \log |\mathcal{C}|$?
"Do there exist inputs x_{1}, \ldots, x_{T}, such that at least a $1 / 3$ fraction of circuits in \mathcal{C} fail on x_{1}, and among the circuits that succeed on x_{1}, at least a $1 / 3$ fraction fail on x_{2}, and among the circuits that succeed on x_{1} and x_{2}, at least a $1 / 3$ fraction fail on x_{3}, \ldots and so on up to x_{T} ?"

By making clever use of hashing and approximate counting, perhaps we could control the number of circuits that succeed on x_{1}, \ldots, x_{t} for all $t \leq T$. In that case, by finding the largest T such that the above question returns a positive answer, and then applying the Valiant-Vazirani reduction [38] and other standard techniques, we would achieve the desired parallelization of Bshouty et al.'s algorithm. Indeed, when we began studying the topic, it seemed entirely likely to us that this was possible.

Nevertheless, in Section 4 we give an oracle relative to which ZPP ${ }_{\|}{ }_{\|}$and even BPP ${ }_{\|}{ }_{\|}$have linear-size circuits. The overall strategy of our oracle construction is the same as for PP, but the details are somewhat less elegant. The existence of this oracle means that any parallelization of Bshouty et al.'s algorithm will need to use nonrelativizing techniques.

Yet even here, the truth is subtler than one might imagine. To explain why, we need to distinguish carefully between relativizing and black-box algorithms. An algorithm for learning Boolean circuits is relativizing if, when given access to an oracle A, the algorithm can learn circuits that are also given access to A. But a nonrelativizing algorithm can still be black-box, in the sense that it learns about the target function f only by querying it, and does not exploit any succinct description of f (for example, that $f(x)=1$ if and only if x encodes a satisfiable Boolean formula). Bshouty et al.'s algorithm is both relativizing and black-box. What our oracle construction shows is that no relativizing algorithm can learn Boolean circuits in $B P P_{\|}^{N P}$. But what about a nonrelativizing yet still black-box algorithm?

Surprisingly, we show in Section 5 that if $\mathrm{P}=\mathrm{NP}$, then there is a black-box algorithm to learn Boolean circuits even in $P_{\|}^{N P}$ (as well as in NP/log). Despite the outlandishness of the premise, this theorem is not trivial, and requires many of the same techniques originally used by Bshouty et al. [8]. One way to interpret the theorem is that we cannot show the impossibility of black-box learning in $P_{\| \mid}^{N P}$, without also showing that $P \neq N P$. By contrast, it is easy to show that black-box learning is impossible in NP, regardless of what computational assumptions we make. ${ }^{8}$

These results provide a new perspective on one of the oldest problems in computer science, the circuit minimization problem: given a Boolean circuit C, does there exist an equivalent circuit of size at most s ? Certainly this problem is NP-hard and in Σ_{2}^{p}. Also, by using Bshouty et al.'s algorithm, we can find a circuit whose size is within an $O(n / \log n)$ factor of minimal in ZPP ${ }^{N P}$. Yet after fifty years of research,

[^3]almost nothing else is known about the complexity of this problem. For example, is it \sum_{2}^{p}-complete? Can we approximate the minimum circuit size in ZPP ${ }_{\| \mid}^{\text {NP? }}$

What our techniques let us say is the following. First, there exists an oracle A such that minimizing circuits with oracle access to A is not even approximable in $B P P_{\|}{ }^{(A}$. Indeed, any probabilistic algorithm to distinguish the cases " C is minimal" and "there exists an equivalent circuit for C of size s," using fewer than s adaptive NP queries, would have to use nonrelativizing techniques. If one wished, one could take this as evidence that the true complexity of the circuit minimization problem should be $P^{N P}$ rather than $P_{\| P}^{N P}$. On the other hand, one cannot rule out even a "black-box" circuit minimization algorithm (that is, an algorithm that treats C itself as an oracle) in $P_{\| P}^{N}$, without also showing that $\mathrm{P} \neq \mathrm{NP}$.

From a learning theory perspective, perhaps what is most interesting about our results is that they show a clear tradeoff between two complexities: the complexity of the learner who queries the target function f, and the complexity of the resulting computational problem that the learner has to solve. If the learner is a $\mathrm{ZPP}^{N P^{f}}$ machine, then the problem is easy; if the learner is a $\mathrm{ZPP}_{\|} \mathrm{NP}^{f}$ machine, then the problem is (probably) hard; and if the learner is an NP^{f} machine, then there is no computational problem whose solution would suffice to learn f.

1.3 Outlook

Figure 1 shows the "battle map" for nonrelativizing circuit lower bounds that emerges from this paper. The figure displays not one but two barriers: a "relativization barrier," below which any Karp-Lipton collapse or superlinear circuit size lower bound will need to use nonrelativizing techniques; and a "black-box barrier," below which black-box learning even of unrelativized circuits is provably impossible. At least for the thirteen complexity classes shown in the figure, we now know exactly where to draw these two barriers-something that would have been less than obvious a priori (at least to us!).

To switch metaphors, we can think of the barriers as representing "phase transitions" in the behavior of complexity classes. Below the black-box barrier, we cannot learn circuits relative to any oracle A. Between the relativization and black-box barriers, we can learn Boolean circuits relative to some oracles A but not others. For example, we can learn relative to a PSPACE oracle, since it collapses P and NP, but we cannot learn relative to the oracles in this paper, which cause PP and BPP $\|_{\|}^{N P}$ to have linear-size circuits. Finally, above the relativization barrier, we can learn Boolean circuits relative to every oracle A. ${ }^{9}$ As we move upward from the black-box barrier toward the relativization barrier, we can notice "steam bubbles" starting to form, as the assumptions needed for black-box learning shift from implausible ($P=N P$), to plausible (the standard derandomization assumptions that collapse $P^{N P}$ with $Z P P^{N P}$ and $P P$ with $B P \cdot P P$), and finally to no assumptions at all.

To switch metaphors again, the oracle results have laid before us a rich and detailed landscape, which a nonrelativizing Lewis-and-Clark expedition might someday visit more fully.

2 The Oracle for PP

In this section we construct an oracle relative to which PP has linear-size circuits. To do so, we will need a lemma about multilinear polynomials, which follows from the well-known lower bound of Nisan and Szegedy [25] on the approximate degree of the OR function.

Lemma 1 (Nisan-Szegedy) Let $p:\{0,1\}^{N} \rightarrow \mathbb{R}$ be a real multilinear polynomial of degree at most $\sqrt{N} / 7$, and suppose that $|p(X)| \leq \frac{2}{3}\left|p\left(0^{N}\right)\right|$ for all $X \in\{0,1\}^{N}$ with Hamming weight 1 . Then there exists an $X \in\{0,1\}^{N}$ such that $|p(X)| \geq 6\left|p\left(0^{n}\right)\right|$.

[^4]

Figure 1: "Battle map" of some complexity classes between NP and BP • PP, in light of this paper's results. Classes that coincide under a plausible derandomization assumption are grouped together with dashed ovals. Below the relativization barrier, we must use nonrelativizing techniques to show any Karp-Lipton collapse or superlinear circuit size lower bound. Below the black-box barrier, black-box learning of Boolean circuits is provably impossible.

We now prove the main result.
Theorem 2 There exists an oracle relative to which PP has linear-size circuits.
Proof. For simplicity, we first give an oracle that works for a specific value of n, and then generalize to all n simultaneously. Let M_{1}, M_{2}, \ldots be an enumeration of PTIME $\left(n^{\log n}\right)$ machines. Then it suffices to simulate M_{1}, \ldots, M_{n}, for in that case every M_{i} will be simulated on all but finitely many n.

The oracle A will consist of $2^{5 n}$ "rows" and $n 2^{n}$ "columns," with each row labeled by a string $r \in\{0,1\}^{5 n}$, and each column labeled by a pair $\langle i, x\rangle$ where $i \in\{1, \ldots, n\}$ and $x \in\{0,1\}^{n}$. Then given a triple $\langle r, i, x\rangle$ as input, A will return the bit $A(r, i, x)$.

We will construct A via an iterative procedure. Initially A is empty (that is, $A(r, i, x)=0$ for all r, i, x). Let A_{t} be the state of A after the $t^{t h}$ iteration. Also, let $M_{i, x}(A)$ be a Boolean function that equals 1 if M_{i} accepts on input $x \in\{0,1\}^{n}$ and oracle string A, and 0 otherwise. Then to encode a row r means to set $A_{t}(r, i, x):=M_{i, x}\left(A_{t-1}\right)$ for all i, x. At a high level, our entire procedure will consist of repeating the following two steps, for all $t \geq 1$:
(1) Choose a set of rows $S \subseteq\{0,1\}^{5 n}$ of A_{t-1}.
(2) Encode each $r \in S$, and let A_{t} be the result.

The problem, of course, is that each time we encode a row r, the $M_{i, x}(A)$'s might change as a result. So we need to show that, by carefully implementing step (1), we can guarantee that the following condition holds after a finite number of steps.
(\mathcal{C}) There exists an r such that $A(r, i, x)=M_{i, x}(A)$ for all i, x.
If (\mathcal{C}) is satisfied, then clearly M_{1}, \ldots, M_{n} will have linear-size circuits relative to A, since we can just hardwire r into the circuits.

We will use the following fact, which is immediate from the definition of PP. For all i, x, there exists a multilinear polynomial $p_{i, x}(A)$, whose variables are the bits of A, such that:
(i) If $M_{i, x}(A)=1$ then $p_{i, x}(A) \geq 1$.
(ii) If $M_{i, x}(A)=0$ then $p_{i, x}(A) \leq-1$.
(iii) $p_{i, x}$ has degree at most $n^{\log n}$.
(iv) $\left|p_{i, x}(A)\right| \leq 2^{n^{\log n}}$ for all A.

Now for all integers $0 \leq k \leq n^{\log n}$ and $b \in\{0,1\}$, let

$$
q_{i, x, b, k}(A)=2^{2 k-3}+\left(2^{k}+(-1)^{b} p_{i, x}(A)\right)^{2}
$$

Then we will use the following polynomial as a progress measure:

$$
Q(A)=\prod_{i, x} \prod_{b \in\{0,1\}} \prod_{k=0}^{n^{\log n}} q_{i, x, b, k}(A) .
$$

Notice that

$$
\operatorname{deg}(Q) \leq n 2^{n} \cdot 2 \cdot\left(n^{\log n}+1\right) \cdot 2 \operatorname{deg}\left(p_{i, x}\right)=2^{n+o(n)}
$$

Since $1 / 8 \leq q_{i, x, b, k}(A) \leq 5 \cdot 2^{2 n^{\log n}}$ for all i, x, b, k, we also have

$$
\begin{aligned}
& Q(A) \leq\left(5 \cdot 2^{2 n^{\log n}}\right)^{n 2^{n} \cdot 2 \cdot\left(n^{\log n}+1\right)}=2^{2^{n+o(n)}} \\
& Q(A) \geq\left(\frac{1}{8}\right)^{n 2^{n} \cdot 2 \cdot\left(n^{\log n}+1\right)}=2^{-2^{n+o(n)}}
\end{aligned}
$$

for all A. The key claim is the following.
At any given iteration, suppose there is no r such that, by encoding r, we can satisfy condition (\mathcal{C}). Then there exists a set $S \subseteq\{0,1\}^{5 n}$ such that, by encoding each $r \in S$, we can increase $Q(A)$ by at least a factor of 2 (that is, ensure that $Q\left(A_{t}\right) \geq 2 Q\left(A_{t-1}\right)$).

The above claim readily implies that (\mathcal{C}) can be satisfied after a finite number of steps. For, by what was said previously, $Q(A)$ can double at most $2^{n+o(n)}$ times-and once $Q(A)$ can no longer double, by assumption we can encode an r that satisfies (\mathcal{C}). (As a side note, "running out of rows" is not an issue here, since we can re-encode rows that were encoded in previous iterations.)

We now prove the claim. Call the pair $\langle i, x\rangle$ sensitive to row r if encoding r would change the value of $M_{i, x}(A)$. By hypothesis, for every r there exists an $\langle i, x\rangle$ that is sensitive to r. So by a counting argument, there exists a single $\langle i, x\rangle$ that is sensitive to at least $2^{5 n} /\left(n 2^{n}\right)>2^{3 n}$ rows. Fix that $\langle i, x\rangle$, and let $r_{1}, \ldots, r_{2^{3 n}}$ be the first $2^{3 n}$ rows to which $\langle i, x\rangle$ is sensitive. Also, given a binary string $Y=y_{1} \ldots y_{2^{3 n}}$, let $S(Y)$ be the set of all r_{j} such that $y_{j}=1$, and let $A^{(Y)}$ be the oracle obtained by starting from A and then encoding each $r_{j} \in S(Y)$.

Set b equal to $M_{i, x}(A)$, and set k equal to the least integer such that $2^{k} \geq\left|p_{i, x}(A)\right|$. Then we will think of $Q(A)$ as the product of two polynomials $q(A)$ and $v(A)$, where $q(A)=q_{i, x, b, k}(A)$, and $v(A)=Q(A) / q(A)$ is the product of all other terms in $Q(A)$. Notice that $q(A)>0$ and $v(A)>0$ for all A. Also,

$$
\begin{aligned}
q(A) & =2^{2 k-3}+\left(2^{k}+(-1)^{b} p_{i, x}(A)\right)^{2} \\
& \leq 2^{2 k-3}+\left(2^{k}-2^{k-1}\right)^{2} \\
& =\frac{3}{8} \cdot 2^{2 k}
\end{aligned}
$$

Here the second line follows since $-2^{k} \leq(-1)^{b} p_{i, x}(A) \leq-2^{k-1}$. On the other hand, for all $Y \in\{0,1\}^{2^{3 n}}$ with Hamming weight 1 , we have $(-1)^{b} p_{i, x}(A) \geq 0$, and therefore

$$
\begin{aligned}
q\left(A^{(Y)}\right) & =2^{2 k-3}+\left(2^{k}+(-1)^{b} p_{i, x}\left(A^{(Y)}\right)\right)^{2} \\
& \geq 2^{2 k-3}+\left(2^{k}\right)^{2} \\
& =\frac{9}{8} \cdot 2^{2 k} \\
& \geq 3 q(A)
\end{aligned}
$$

There are now two cases. The first is that there exists a Y with Hamming weight 1 such that $v\left(A^{(Y)}\right) \geq$ $\frac{2}{3} v(A)$. In this case

$$
\begin{aligned}
Q\left(A^{(Y)}\right) & =q\left(A^{(Y)}\right) v\left(A^{(Y)}\right) \\
& \geq 3 q(A) \cdot \frac{2}{3} v(A) \\
& =2 q(A) v(A) \\
& =2 Q(A)
\end{aligned}
$$

So we simply set $S=S(Y)$ and are done.
The second case is that $v\left(A^{(Y)}\right)<\frac{2}{3} v(A)$ for all Y with Hamming weight 1. In this case, we can consider v as a real multilinear polynomial in the bits of $Y \in\{0,1\}^{2^{3 n}}$, of degree at most $\operatorname{deg}(Q)<\sqrt{2^{3 n}} / 7$. Then Lemma 1 implies that there exists a $Y \in\{0,1\}^{2^{3 n}}$ such that $\left|v\left(A^{(Y)}\right)\right|=v\left(A^{(Y)}\right) \geq 6 v(A)$. Furthermore, for all Y we have

$$
\frac{q\left(A^{(Y)}\right)}{q(A)} \geq \frac{2^{2 k-3}}{\frac{3}{8} \cdot 2^{2 k}}=\frac{1}{3}
$$

Hence

$$
\begin{aligned}
Q\left(A^{(Y)}\right) & =q\left(A^{(Y)}\right) v\left(A^{(Y)}\right) \\
& \geq \frac{1}{3} q(A) \cdot 6 v(A) \\
& =2 q(A) v(A) \\
& =2 Q(A)
\end{aligned}
$$

So again we can set $S=S(Y)$. This completes the claim.
All that remains is to handle PTIME $\left(n^{\log n}\right)$ machines that could query any bit of the oracle string, rather than just the bits corresponding to a specific n. The oracle A will now take as input a list of strings $R=\left(r_{1}, \ldots, r_{\ell}\right)$, with $r_{\ell} \in\{0,1\}^{5 \cdot 2^{\ell}}$ for all ℓ, in addition to i, x. Call R an ℓ-secret if $A(R, i, x)=M_{i, x}(A)$ for all $n \leq 2^{\ell}, i \in\{1, \ldots, n\}$, and $x \in\{0,1\}^{n}$. Then we will try to satisfy the following.
$\left(\mathcal{C}^{\prime}\right)$ There exists an infinite list of strings $r_{1}^{*}, r_{2}^{*}, \ldots$, , such that $R_{\ell}^{*}:=\left(r_{1}^{*}, \ldots, r_{\ell}^{*}\right)$ is an ℓ-secret for all $\ell \geq 1$.
If $\left(\mathcal{C}^{\prime}\right)$ is satisfied, then clearly each M_{i} can be simulated by linear-size circuits. For all $n \geq i$, simply find the smallest ℓ such that $2^{\ell} \geq n$, then hardwire R_{ℓ}^{*} into the circuit for size n. Since $\ell \leq 2 n$, this requires at most $5\left(2^{1}+\cdots+2^{\ell}\right) \leq 20 n$ bits.

To construct an oracle A that satisfies $\left(\mathcal{C}^{\prime}\right)$, we iterate over all $\ell \geq 1$. Suppose by induction that $R_{\ell-1}^{*}$ is an $(\ell-1)$-secret; then we want to ensure that R_{ℓ}^{*} is an ℓ-secret for some $r_{\ell} \in\{0,1\}^{5 \cdot 2^{\ell}}$. To do so, we use a procedure essentially identical to the one for a specific n. The only difference is this: previously, all we needed was a row $r \in\{0,1\}^{5 n}$ such that no $\langle i, x\rangle$ pair was sensitive to a particular change to r (namely, setting $A_{t}(r, i, x):=M_{i, x}\left(A_{t-1}\right)$ for all $\left.i, x\right)$. But in the general case, the "row" labeled by $R=\left(r_{1}, \ldots, r_{\ell}\right)$ consists of all triples $\left\langle R^{\prime}, i, x\right\rangle$ such that $R^{\prime}=\left(r_{1}, \ldots, r_{\ell}, r_{\ell+1}^{\prime}, \ldots, r_{L}^{\prime}\right)$ for some $L \geq \ell$ and $r_{\ell+1}^{\prime}, \ldots, r_{L}^{\prime}$. Furthermore, we do not yet know how later iterations will affect this "row." So we should call a pair $\langle i, x\rangle$ "sensitive" to R, if there is any oracle A^{\prime} such that (1) A^{\prime} disagrees with A only in row R, and (2) $M_{i, x}\left(A^{\prime}\right) \neq M_{i, x}(A)$.

Fortunately, this new notion of sensitivity requires no significant change to the proof. Suppose that for every row R of the form $\left(r_{1}^{*}, \ldots, r_{\ell-1}^{*}, r_{\ell}\right)$ there exists an $\langle i, x\rangle$ that is sensitive to R. Then as before, there exists an $\left\langle i^{\prime}, x^{\prime}\right\rangle$ that is sensitive to at least $2^{5 \cdot 2^{\ell}} /\left(2^{2 \ell} 2^{2^{\ell}+1}\right)>2^{3 n}$ rows of that form. For each of those rows R, fix a change to R to which $\left\langle i^{\prime}, x^{\prime}\right\rangle$ is sensitive. We thereby obtain a polynomial $Q(A)$ with the same properties as before - in particular, there exists a string $Y \in\{0,1\}^{2^{3 n}}$ such that $Q\left(A^{(Y)}\right) \geq 2 Q(A)$.

Let us make three remarks about Theorem 2.
(1) If we care about constants, it is clear that the advice r can be reduced to $3 n+o(n)$ bits for a specific n, or $12 n+o(n)$ for all n simultaneously. Presumably these bounds are not tight.
(2) One can easily extend Theorem 2 to give an oracle relative to which PE $=$ PTIME $\left(2^{O(n)}\right)$ has linear-size circuits, and hence $P E X P \subset P /$ poly by a padding argument.
(3) Han, Hemaspaandra, and Thierauf [16] showed that $M A \subseteq B P P_{\text {path }} \subseteq P P$. So in addition to implying the result of Buhrman, Fortnow, and Thierauf that MA has linear-size circuits relative to an oracle, Theorem 2 also yields the new result that $\mathrm{BPP}_{\text {path }}$ has linear-size circuits relative to an oracle.
Another application of our techniques, the construction of relativized worlds where $P^{N P}=P E X P$ and $\oplus \mathrm{P}=\mathrm{PEXP}$, is outlined in Appendix 8.

3 Quantum Circuit Lower Bounds

In this section we show, by a nonrelativizing argument, that PP does not have circuits of size n^{k}, not even quantum circuits with quantum advice. We first show that $\mathrm{P}^{P P}$ does not have quantum circuits of size n^{k}, by a direct diagonalization argument. Our argument will use the following lemma of Aaronson [1].

Lemma 3 ("Almost As Good As New Lemma") Suppose a two-outcome measurement of a mixed quantum state ρ yields outcome 0 with probability $1-\varepsilon$. Then after the measurement, we can recover a state $\widetilde{\rho}$ such that $\|\widetilde{\rho}-\rho\|_{\text {tr }} \leq \sqrt{\varepsilon}$.
(Recall that the trace distance $\|\rho-\sigma\|_{\text {tr }}$ between two mixed states ρ and σ is the maximum bias with which those states can be distinguished via a single measurement. In particular, trace distance satisfies the triangle inequality.)

Theorem 4 PPP does not have quantum circuits of size n^{k} for any fixed k. Furthermore, this holds even if the circuits can use quantum advice.

Proof. For simplicity, let us first explain why PPP does not have classical circuits of size n^{k}. Fix an input length n, and let $x_{1}, \ldots, x_{2^{n}}$ be a lexicographic ordering of n-bit strings. Also, let \mathcal{C} be the set of all circuits of size n^{k}, and let $\mathcal{C}_{t} \subseteq \mathcal{C}$ be the subset of circuits in \mathcal{C} that correctly decide the first t inputs x_{1}, \ldots, x_{t}. Then we define the language $L \cap\{0,1\}^{n}$ by the following iterative procedure. First, if at least half of the circuits in \mathcal{C} accept x_{1}, then set $x_{1} \notin L$, and otherwise set $x_{1} \in L$. Next, if at least half of the circuits in \mathcal{C}_{1} accept x_{2}, then set $x_{2} \notin L$, and otherwise set $x_{2} \in L$. In general, let $N=\left\lceil\log _{2}\left|\mathcal{C}^{\prime}\right|\right\rceil+1$. Then for all $t<N$, if at least half of the circuits in \mathcal{C}_{t} accept x_{t+1}, then set $x_{t+1} \notin L$, and otherwise set $x_{t+1} \in L$. Finally, set $x_{t} \notin L$ for all $t>N$.

It is clear that the resulting language L is in P^{PP}. Given an input x_{t}, we just reject if $t>N$, and otherwise call the PP oracle t times, to decide if $x_{i} \in L$ for each $i \in\{1, \ldots, t\}$. Note that, once we know x_{1}, \ldots, x_{i}, we can decide in polynomial time whether a given circuit belongs to \mathcal{C}_{i}, and can therefore decide in PP whether the majority of circuits in \mathcal{C}_{i} accept or reject x_{i+1}. On the other hand, our construction guarantees that $\left|\mathcal{C}_{t+1}\right| \leq\left|\mathcal{C}_{t}\right| / 2$ for all $t<N$. Therefore $\left|\mathcal{C}_{N}\right| \leq|\mathcal{C}| / 2^{N}=1 / 2$, which means that \mathcal{C}_{N} is empty, and hence no circuit in \mathcal{C} correctly decides x_{1}, \ldots, x_{N}.

The above argument extends naturally to quantum circuits. Let \mathcal{C} be the set of all quantum circuits of size n^{k}, over a basis of (say) Hadamard and Toffoli gates. ${ }^{10}$ (Note that these circuits need not be boundederror.) Then the first step is to amplify each circuit $C \in \mathcal{C}$ a polynomial number times, so that if C 's initial error probability was at most $1 / 3$, then its new error probability is at most (say) $2^{-10 n}$. Let \mathcal{C}^{\prime} be the resulting set of amplified circuits. Now let $\left|\psi_{0}\right\rangle$ be a uniform superposition over all descriptions of circuits in \mathcal{C}^{\prime}, together with an "answer register" that is initially set to $|0\rangle$:

$$
\left|\psi_{0}\right\rangle:=\frac{1}{\sqrt{\left|\mathcal{C}^{\prime}\right|}} \sum_{C \in \mathcal{C}^{\prime}}|C\rangle|0\rangle .
$$

For each input $x_{t} \in\{0,1\}^{n}$, let U_{t} be a unitary transformation that maps $|C\rangle|0\rangle$ to $|C\rangle\left|C\left(x_{t}\right)\right\rangle$ for each $C \in \mathcal{C}^{\prime}$, where $\left|C\left(x_{t}\right)\right\rangle$ is the output of C on input x_{t}. (In general, $\left|C\left(x_{t}\right)\right\rangle$ will be a superposition of $|0\rangle$ and $|1\rangle$.) To implement U_{t}, we simply simulate running C on x_{t}, and then run the simulation in reverse to uncompute garbage qubits.

Let $N=\left\lceil\log _{2}\left|\mathcal{C}^{\prime}\right|\right\rceil+2$. Also, given an input x_{t}, let $L\left(x_{t}\right)=1$ if $x_{t} \in L$ and $L\left(x_{t}\right)=0$ otherwise. Fix $t<N$, and suppose by induction that we have already set $L\left(x_{i}\right)$ for all $i \leq t$. Then we will use the following quantum algorithm, called \mathcal{A}_{t}, to set $L\left(x_{t+1}\right)$.

```
Set |\psi\rangle:= |\psi % \rangle
For }i:=1\mathrm{ to }
    Set |\psi\rangle:= U
    Measure the answer register
    If the measurement outcome is not L( }\mp@subsup{x}{i}{})\mathrm{ , then FAIL
Next i
Set |\psi\rangle:= U t+1 |\psi\rangle
Measure the answer register
```

[^5]Say that \mathcal{A}_{t} succeeds if it outputs $L\left(x_{i}\right)$ for all x_{1}, \ldots, x_{t}. Conditioned on \mathcal{A}_{t} succeeding, if the final measurement yields the outcome $|1\rangle$ with probability at least $1 / 2$, then set $L\left(x_{t+1}\right):=0$, and otherwise set $L\left(x_{t+1}\right):=1$. Finally, set $L\left(x_{t}\right):=0$ for all $t>N$.

By a simple extension of the result BQP \subseteq PP due to Adleman, DeMarrais, and Huang [3], Aaronson [2] showed that polynomial-time quantum computation with postselected measurement can be simulated in $P P$ (indeed the two are equivalent; that is, $\mathrm{PostBQP}=\mathrm{PP}$). In particular, a PP machine can simulate the postselected quantum algorithm \mathcal{A}_{t} above, and thereby decide whether the final measurement will yield $|0\rangle$ or $|1\rangle$ with greater probability, conditioned on all previous measurements having yielded the correct outcomes. It follows that $L \in \mathrm{P}^{\mathrm{PP}}$.

On the other hand, suppose by way of contradiction that there exists a quantum circuit $C \in \mathcal{C}^{\prime}$ that outputs $L\left(x_{t}\right)$ with probability at least $1-2^{-10 n}$ for all t. Then the probability that C succeeds on x_{1}, \ldots, x_{N} simultaneously is at least (say) 0.9 , by Lemma 3 together with the triangle inequality. Hence the probability that \mathcal{A}_{t} succeeds on x_{1}, \ldots, x_{N} is at least $0.9 /\left|\mathcal{C}^{\prime}\right|$. Yet by construction, \mathcal{A}_{t} succeeds with probability at most $1 / 2^{t}$, which is less than $0.9 /\left|\mathcal{C}^{\prime}\right|$ when $t=N-1$. This yields the desired contradiction.

Finally, to incorporate quantum advice of size $s=n^{k}$, all we need to do is add an s-qubit "quantum advice register" to $\left|\psi_{0}\right\rangle$, which U_{t} 's can use when simulating the circuits. We initialize this advice register to the maximally mixed state on s qubits. The key fact (see [1] for example) is that, whatever the "true" advice state $|\phi\rangle$, we can decompose the maximally mixed state into

$$
\frac{1}{2^{s}} \sum_{j=1}^{2^{s}}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|
$$

where $\left|\phi_{1}\right\rangle, \ldots,\left|\phi_{2^{s}}\right\rangle$ form an orthonormal basis and $\left|\phi_{1}\right\rangle=|\phi\rangle$. By linearity, we can then track the evolution of each of these 2^{s} components independently. So the previous argument goes through as before, if we set $N=\left\lceil\log _{2}\left|\mathcal{C}^{\prime}\right|\right\rceil+s+2$. (Note that we are assuming the advice states are suitably amplified, which increases the running time of \mathcal{A}_{t} by at most a polynomial factor.)

Similarly, for all time-constructible functions $f(n) \leq 2^{n}$, one can show that the class DTIME $(f(n))^{\mathrm{PP}}$ does not have quantum circuits of size $f(n) / n^{2}$. So for example, $E^{P P}$ requires quantum circuits of exponential size.

Having shown a quantum circuit lower bound for $P^{P P}$, we now bootstrap our way down to PP. To do so, we use the following "quantum Karp-Lipton theorem." Here BQP/poly is BQP with polynomial-size classical advice, $B Q P /$ qpoly is $B Q P$ with polynomial-size quantum advice, $Q M A$ is like MA but with quantum verifiers and quantum witnesses, and QCMA is like MA but with quantum verifiers and classical witnesses. Also, recall that the counting hierarchy CH is the union of $\mathrm{PP}, \mathrm{PP}^{\mathrm{PP}}, \mathrm{PP}^{\mathrm{PP}}$, and so on.

Theorem 5 If $\mathrm{PP} \subset \mathrm{BQP} /$ poly then $\mathrm{QCMA}=\mathrm{PP}$, and indeed CH collapses to QCMA . Likewise, if $\mathrm{PP} \subset \mathrm{BQP} /$ qpoly then CH collapses to QMA .

Proof. Let L be a language in CH . It is clear that we could decide L in quantum polynomial time, if we were given polynomial-size quantum circuits for a PP-complete language such as MajSat. For Fortnow and Rogers [14] showed that BQP is "low" for $P P$; that is, $P P^{B Q P}=P P$. So we could use the quantum circuits for MAJSAT to collapse $P P^{P P}$ to $P^{B Q P}=P P$ to $B Q P$, and similarly for all higher levels of $C H$.

Assume $\mathrm{PP} \subset \mathrm{BQP} /$ poly; then clearly $\mathrm{P}^{\# P}=\mathrm{P}^{P P}$ is contained in BQP/poly as well. So in QCMA we can do the following: first guess a bounded-error quantum circuit C for computing the permanent of a poly $(n) \times$ poly (n) matrix over a finite field \mathbb{F}_{p}, for some prime $p=\Theta$ (poly $\left.(n)\right)$. (For convenience, here poly (n) means "a sufficiently large polynomial depending on $L . "$) Then verify that with $1-o(1)$ probability, C works on at least a $1-1 /$ poly (n) fraction of matrices. To do so, simply simulate the interactive protocol for the permanent due to Lund, Fortnow, Karloff, and Nisan [22], but with C in place of the prover. Next, use the random self-reducibility of the permanent to generate a new circuit C^{\prime} that, with $1-o(1)$ probability, is correct on every poly $(n) \times$ poly (n) matrix over \mathbb{F}_{p}. Since Permanent is \#P-complete over all fields of characteristic $p \neq 2[37]$, we can then use C^{\prime} to decide MajSat instances of size poly (n), and therefore the language L as well.

The case $P P \subset B Q P / q p o l y$ is essentially identical, except that in QMA we guess a quantum circuit with quantum advice. That quantum advice states cannot be reused indefinitely does not present a problem here: we simply guess a boosted circuit, or else poly (n) copies of the original circuit.

By combining Theorems 4 and 5, we immediately obtain the following.
Corollary 6 PP does not have quantum circuits of size n^{k} for any fixed k, not even quantum circuits with quantum advice.

Proof. Suppose by contradiction that PP had such circuits. Then certainly $\mathrm{PP} \subset \mathrm{BQP} / \mathrm{qpoly}$, so $\mathrm{QMA}=$ $\mathrm{PP}=\mathrm{P}^{\mathrm{PP}}=\mathrm{CH}$ by Theorem 5. But P^{PP} does not have such circuits by Theorem 4, and therefore neither does PP.

More generally, for all $f(n) \leq 2^{n}$ we find that PTIME $(f(f(n)))$ requires quantum circuits of size approximately $f(n)$. For example, PEXP requires quantum circuits of "half-exponential" size.

Finally, we point out a quantum analogue of Buhrman, Fortnow, and Thierauf's classical nonrelativizing separation [10].

Theorem 7 QCMA $_{\text {EXP }} \not \subset \mathrm{BQP} /$ poly, and $\mathrm{QMA}_{\text {EXP }} \not \subset \mathrm{BQP} /$ qpoly.
Proof. Suppose by contradiction that $\mathrm{QCMA}_{\mathrm{EXP}} \subset \mathrm{BQP} /$ poly. Then clearly EXP $\subset \mathrm{BQP} /$ poly as well. Babai, Fortnow, and Lund [5] showed that any language in EXP has a two-prover interactive protocol where the provers are in EXP. We can simulate such a protocol in QCMA as follows: first guess (suitably amplified) BQP/poly circuits computing the provers' strategies. Then simulate the provers and verifier, and accept if and only if the verifier accepts. It follows that $E X P=Q C M A$, and therefore $Q C M A=P^{P P}$ as well. So by padding, $\mathrm{QCMA}_{\mathrm{EXP}}=E X P^{\text {PP }}$. But we know from Theorem 4 that EXP ${ }^{P P} \not \subset \mathrm{BQP} /$ poly, which yields the desired contradiction. The proof that $\mathrm{QMA}_{\mathrm{EXP}} \not \subset \mathrm{BQP} /$ qpoly is essentially identical, except that we guess quantum circuits with quantum advice.

One can strengthen Theorem 7 to show that QMA EXP requires quantum circuits of half-exponential size. However, in contrast to the case for PEXP, here the bound does not scale down to QMA. Indeed, it turns out that the smallest f for which we get any superlinear circuit size lower bound for $\operatorname{QMATIME}(f(n))$ is itself half-exponential.

4 The Oracle for BPP NP

In this section we construct an oracle relative to which $\mathrm{BPP}_{\|}^{\mathrm{NP}}$ has linear-size circuits.
Theorem 8 There exists an oracle relative to which $\mathrm{BPP}_{\|}^{\mathrm{NP}}$ has linear-size circuits.
Proof. As in Theorem 2, we first give an oracle A that works for a specific value of n. Let M_{1}, M_{2}, \ldots be an enumeration of "syntactic" BPTIME $\left(n^{\log n}\right)_{\|}^{\mathrm{NP}}$ machines, where syntactic means not necessarily satisfying the promise. Then it suffices to simulate M_{1}, \ldots, M_{n}. We assume without loss of generality that only the NP oracle (not the M_{i} 's themselves) query A, and that each NP call is actually an NTIME (n) call (so in particular, it involves at most $n^{\log n}$ queries to A). Let $M_{i, x, z}(A)$ be a Boolean function that equals 1 if M_{i} accepts on input $x \in\{0,1\}^{n}$, random string $z \in\{0,1\}^{n^{\log n}}$, and oracle A, and 0 otherwise. Then let $p_{i, x}(A):=\mathrm{EX}_{z}\left[M_{i, x, z}(A)\right]$ be the probability that M_{i} accepts x.

The oracle A will consist of $2^{3 n}$ rows and $n 2^{n}$ columns, with each row labeled by $r \in\{0,1\}^{3 n}$, and each column labeled by an $\langle i, x\rangle$ pair where $i \in\{1, \ldots, n\}$ and $x \in\{0,1\}^{n}$. We will construct A via an iterative procedure \mathcal{P}. Initially A is empty (that is, $A(r, i, x)=0$ for all $r, i, x)$. Let A_{t} be the state of A after the $t^{\text {th }}$ iteration. Then to encode a row r means to set $A_{t}(r, i, x):=\operatorname{round}\left(p_{i, x}\left(A_{t-1}\right)\right)$ for all i, x, where round $(p)=1$ if $p \geq 1 / 2$ and round $(p)=0$ if $p<1 / 2$.

Call an $\langle i, x\rangle$ pair sensitive to row r, if encoding r would change $p_{i, x}(A)$ by at least $1 / 6$. Then \mathcal{P} consists entirely of repeating the following two steps, for $t=1,2,3 \ldots$:
(1) If there exists an r to which no $\langle i, x\rangle$ is sensitive, then encode r and halt.
(2) Otherwise, by a counting argument, there exists a pair $\langle j, y\rangle$ that is sensitive to at least $N=2^{3 n} /\left(n 2^{n}\right)$ rows, call them r_{1}, \ldots, r_{N}. Let $A^{(k)}$ be the oracle obtained by starting from A and then encoding r_{k}. Choose an integer $k \in\{1, \ldots, N\}$ (we will specify how later), and set $A_{t}:=A_{t-1}^{(k)}$.

Suppose \mathcal{P} halts after t iterations, and let r be the row encoded by step (1). Then by assumption, $\left|p_{i, x}\left(A_{t}\right)-p_{i, x}\left(A_{t-1}\right)\right|<1 / 6$ for all i, x. So in particular, if $p_{i, x}\left(A_{t}\right) \geq 2 / 3$ then $p_{i, x}\left(A_{t-1}\right)>1 / 2$ and therefore $A_{t}(r, i, x)=1$. Likewise, if $p_{i, x}\left(A_{t}\right) \leq 1 / 3$ then $p_{i, x}\left(A_{t-1}\right)<1 / 2$ and therefore $A_{t}(r, i, x)=0$. It follows that any valid BPTIME $\left(n^{\log n}\right)_{\|}^{\mathrm{NP}}$ machine in $\left\{M_{1}, \ldots, M_{n}\right\}$ has linear-size circuits relative to A_{t} - since we can just hardwire $r \in\{0,1\}^{2 n}$ into the circuits.

It remains only to show that \mathcal{P} halts after a finite number of steps, for some choice of k 's. Given an input x, random string z, and oracle A, let $S_{i, x, z}(A)$ be the set of NP queries made by M_{i} that accept. Then we will use

$$
W(A):=\sum_{i, x} \operatorname{EX}_{z}\left[\left|S_{i, x, z}(A)\right|\right]
$$

as our progress measure. Since each M_{i} can query the NP oracle at most $n^{\log n}$ times, clearly $0 \leq\left|S_{i, x, z}(A)\right| \leq$ $n^{\log n}$ for all i, x, z, and therefore

$$
0 \leq W(A) \leq n 2^{n} \cdot n^{\log n}
$$

for all A. On the other hand, we claim that whenever step (2) is executed, if $k \in\{1, \ldots, N\}$ is chosen uniformly at random then

$$
\underset{k}{\operatorname{EX}}\left[W\left(A^{(k)}\right)\right] \geq W(A)+\frac{1}{6}-2^{-n+o(n)}
$$

So in step (2), we should simply choose k to maximize $W\left(A^{(k)}\right)$. For we will then have $W\left(A_{t}\right) \geq$ $\left(1 / 6-2^{-n+o(n)}\right) t$ for all t, from which it follows that \mathcal{P} halts after at most

$$
\frac{n 2^{n} \cdot n^{\log n}}{1 / 6-2^{-n+o(n)}}=2^{n+o(n)}
$$

iterations.
We now prove the claim. Observe that for each accepting NP query $q \in S_{i, x, z}(A)$, there are at most $n^{\log n}$ rows r_{k} such that encoding r_{k} would cause $q \notin S_{i, x, z}\left(A^{(k)}\right)$. For to change q 's output from 'accept' to 'reject,' we would have to eliminate (say) the lexicographically first accepting path of the NP oracle, and that path can depend on at most $n^{\log n}$ rows of A. Hence by the union bound, for all i, x, z, A we have

$$
\begin{aligned}
\operatorname{Pr}_{k}\left[S_{i, x, z}(A) \not \subset S_{i, x, z}\left(A^{(k)}\right)\right] & \leq \sum_{q \in S_{i, x, z}(A)} \operatorname{Pr}_{k}\left[q \notin S_{i, x, z}\left(A^{(k)}\right)\right] \\
& \leq\left|S_{i, x, z}(A)\right| \frac{n^{\log n}}{N} \\
& \leq \frac{n^{2 \log n}}{2^{3 n} /\left(n 2^{n}\right)} \\
& =2^{-2 n+o(n)}
\end{aligned}
$$

So in particular, for all i, x, A,

$$
\begin{aligned}
\underset{k, z}{\operatorname{EX}}\left[\left|S_{i, x, z}\left(A^{(k)}\right)\right|\right] & \geq\left|S_{i, x, z}(A)\right| \cdot \underset{k, z}{\operatorname{Pr}}\left[\left|S_{i, x, z}\left(A^{(k)}\right)\right| \geq\left|S_{i, x, z}(A)\right|\right] \\
& \geq\left|S_{i, x, z}(A)\right|\left(1-2^{-2 n+o(n)}\right)
\end{aligned}
$$

On the other hand, by assumption there exists a pair $\langle j, y\rangle$ that is sensitive to row r_{k} for every $k \in$ $\{1, \ldots, N\}$. Furthermore, given y and z, the output $M_{j, y, z}(A)$ of M_{j} is a function of the NP oracle responses $S_{j, y, z}(A)$, and can change only if $S_{j, y, z}(A)$ changes. Therefore

$$
\operatorname{Pr}_{k, z}\left[S_{j, y, z}\left(A^{(k)}\right) \neq S_{j, y, z}(A)\right] \geq \operatorname{Pr}_{k, z}\left[M_{j, y, z}\left(A^{(k)}\right) \neq M_{j, y, z}(A)\right] \geq \frac{1}{6}
$$

So by the union bound,

$$
\begin{aligned}
\operatorname{Pr}_{k, z}\left[\left|S_{j, y, z}\left(A^{(k)}\right)\right|>\left|S_{j, y, z}(A)\right|\right] & \geq \operatorname{Pr}_{k, z}\left[S_{j, y, z}\left(A^{(k)}\right) \neq S_{j, y, z}(A)\right]-\operatorname{Pr}_{k, z}\left[S_{j, y, z}(A) \not \subset S_{j, y, z}\left(A^{(k)}\right)\right] \\
& \geq \frac{1}{6}-2^{-2 n+o(n)} .
\end{aligned}
$$

Putting it all together,

$$
\begin{aligned}
\underset{k}{\operatorname{EX}}\left[W\left(A^{(k)}\right)\right] & =\sum_{i, x} \underset{k, z}{\operatorname{EX}}\left[\left|Q_{i, x, z}\left(A^{(k)}\right)\right|\right] \\
& \geq \frac{1}{6}-2^{-2 n+o(n)}+\sum_{i, x}\left|S_{i, x, z}(A)\right|\left(1-2^{-2 n+o(n)}\right) \\
& =\frac{1}{6}-2^{-2 n+o(n)}+\left(1-2^{-2 n+o(n)}\right) W(A) \\
& =W(A)+\frac{1}{6}-2^{-n+o(n)},
\end{aligned}
$$

which completes the claim.
To handle all values of n simultaneously, we use exactly the same trick as in Theorem 2 . That is, we replace r by an ℓ-tuple $R=\left(r_{1}, \ldots, r_{\ell}\right)$ where $r_{\ell} \in\{0,1\}^{3 \cdot 2^{\ell}}$; define the "row" \mathcal{R}_{ℓ} to consist of all triples $\left\langle R_{L}^{\prime}, i, x\right\rangle$ such that $L \geq \ell$ and $r_{h}^{\prime}=r_{h}$ for all $h \leq \ell$; and call the pair $\langle i, x\rangle$ "sensitive" to row \mathcal{R}_{ℓ} if there is any oracle A^{\prime} that disagrees with A only in \mathcal{R}_{ℓ}, such that $\left|p_{i, x}\left(A^{\prime}\right)-p_{i, x}(A)\right| \geq 1 / 6$. We then run the procedure \mathcal{P} repeatedly to encode r_{1}, r_{2}, \ldots, where "encoding" r_{ℓ} means setting $A_{t}\left(R_{\ell}, i, x\right):=\operatorname{round}\left(p_{i, x}\left(A_{t-1}\right)\right)$ for all $n \leq 2^{\ell}, i \in\{1, \ldots, n\}$, and $x \in\{0,1\}^{n}$. The rest of the proof goes through as before.

Let us make six remarks about Theorem 8.
(1) An immediate corollary is that any Karp-Lipton collapse to BPPNP would require nonrelativizing techniques. For relative to the oracle A from the theorem, we have $N P \subseteq B P P_{\|}^{N P} \subset P /$ poly. On the other hand, if $\mathrm{PH}^{A}=B P P_{\|} \mathrm{NP}^{A}$, then $\mathrm{BPP}_{\|} \mathrm{NP}^{A}$ would not have linear-size circuits by Kannan's Theorem [18] (which relativizes), thereby yielding a contradiction.
(2) If we care about constants, we can reduce the advice r to $2 n+o(n)$ bits for a specific n, or $8 n+o(n)$ for all n simultaneously.
(3) As with Theorem 2, one can easily modify Theorem 8 to give a relativized world where BPEXPNP \subset $\mathrm{P} /$ poly. Thus, Theorem 8 provides an alternate generalization of the result of Buhrman, Fortnow, and Thierauf [10] that $\mathrm{MA}_{\mathrm{EXP}} \subset \mathrm{P} /$ poly relative to an oracle.
(4) Since $B P P_{\text {path }} \subseteq B P P_{\|}^{N P}$ (as is not hard to show using approximate counting), Theorem 8 also provides an alternate proof that $\mathrm{BPP}_{\text {path }}$ has linear-size circuits relative to an oracle.
(5) Completely analogously to Theorem 12 , one can modify Theorem 8 to give oracles relative to which $P^{N P}=B P E X P_{\|}^{N P}$ and $\oplus P=B P E X P_{\|}^{N P}$.
(6) For any function f, the construction of Theorem 8 actually yields an oracle relative to which $\operatorname{BPP}^{\operatorname{NP}[f(n)]}$ (that is, BPP with $f(n)$ adaptive NP queries) has circuits of size $O(n+f(n))$. For clearly we can simulate $f(n)$ adaptive queries using $2^{f(n)}$ nonadaptive queries. We then repeat Theorem 8 with the bound $0 \leq W(A) \leq n 2^{n} \cdot 2^{f(n)}$.

5 Black-Box Learning in Algorithmica

"Algorithmica" is one of Impagliazzo's five possible worlds [17], the world in which $P=N P$. In this section we show that in Algorithmica, black-box learning of Boolean circuits is possible in $P_{\|}^{N P}$. Let us first define what we mean by black-box learning.

Definition 9 Say that black-box learning is possible in a complexity class \mathcal{C} if the following holds. There exists a \mathcal{C} machine M such that, for all Boolean functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ with circuit complexity at most $s(n)$, the machine M^{f} outputs a circuit for f given $\left\langle 0^{n}, 0^{s(n)}\right\rangle$ as input. Also, M has approximation ratio $\alpha(n)$ if for all f, any circuit output by M has size at most $s(n) \alpha(n)$.

The above definition is admittedly somewhat vague, but for most natural complexity classes \mathcal{C} it is clear how to make it precise. Firstly, by " \mathcal{C} machine" we really mean " $\mathcal{F C}$ machine," where $\mathcal{F C}$ is the function version of \mathcal{C}. Secondly, for semantic classes, we do not care if the machine violates the promise on inputs not of the form $\left\langle 0^{n}, 0^{s(n)}\right\rangle$, or oracles f that do not have circuit complexity at most $s(n)$. Let us give a few examples.

- Almost by definition, black-box learning is possible in Σ_{2}^{p} with approximation ratio 1 .
- As pointed out by Umans [36], the result of Bshouty et al. [8] implies that black-box learning is possible in $\mathrm{ZPP}^{\mathrm{NP}}$, with approximation ratio $O(n / \log n)$.
- Under standard derandomization assumptions, black-box learning is possible in P^{NP} with approximation ratio $O(n / \log n)$, and in PP with approximation ratio 1 . For not only do these assumptions imply that $Z P P^{N P}=P^{N P}$ and that $\mathrm{BP} \cdot \mathrm{PP}=\mathrm{PP}$, but they also yield a black-box simulation of a $\mathrm{ZPP}{ }^{N P}$ or $\mathrm{BP} \cdot \mathrm{PP}$ algorithm that learns a circuit for f by just querying an existing circuit C on various inputs (without "cheating" and looking at C).

On the other hand:
Proposition 10 Black-box learning is impossible in NP, or for that matter in AM, IP, or MIP.
Proof. Suppose there are two possibilities: either f is the identically zero function, or else f is a point function (that is, there exists a y such that $f(x)=1$ if and only if $x=y)$. In both cases $s(n)=O(n)$. But since the verifier has only oracle access to f, it is obvious that no polynomially-bounded sequence of messages from the prover(s) could convince the verifier that f is identically zero. We omit the details, which were worked out by Fortnow and Sipser [15].

We now prove the main result.
Theorem 11 If $\mathrm{P}=\mathrm{NP}$, then black-box learning is possible in $\mathrm{P}_{\|}^{\mathrm{NP}}$ (indeed, with approximation ratio 1.)
Proof. We use a procedure inspired by that of Bshouty et al. [8].
Fix n, and suppose $f:\{0,1\}^{n} \rightarrow\{0,1\}$ has circuits of size $s=s(n)$. Let \mathcal{B} be the set of all circuits of size s, so that $|\mathcal{B}|=s^{O(s)}$. Also, say that a circuit $C \in \mathcal{B}$ succeeds on input $x \in\{0,1\}^{n}$ if $C(x)=f(x)$, and fails otherwise. Then given a list of inputs $X=\left(x_{1}, x_{2}, \ldots\right)$, let $\mathcal{B}(X)$ be the set of circuits in \mathcal{B} that succeed on every $x \in X$.

For the remainder of the proof, let $X_{t}=\left(x_{1}, \ldots, x_{t}\right)$ be a list of t inputs, and for all $0 \leq i<t$, let $X_{i}=\left(x_{1}, \ldots, x_{i}\right)$ be the prefix of X_{t} consisting of the first i inputs (so in particular, X_{0} is the empty list). Then our first claim is that there exists an NP^{f} machine Q_{t} with the following behavior:

- If there exists an X_{t} such that $\left|\mathcal{B}\left(X_{i}\right)\right| \leq \frac{2}{3}\left|\mathcal{B}\left(X_{i-1}\right)\right|$ for all $i \in\{1, \ldots, t\}$, then Q_{t} accepts.
- If for all X_{t} there exists an $i \in\{1, \ldots, t\}$ such that $\left|\mathcal{B}\left(X_{i}\right)\right| \geq \frac{3}{4}\left|\mathcal{B}\left(X_{i-1}\right)\right|$, then Q_{t} rejects.
(As usual, if neither of the two stated conditions hold, then the machine can behave arbitrarily.)
In what follows, we can assume without loss of generality that t is polynomially bounded. For, since some circuit $C \in \mathcal{B}$ succeeds on every input, we must have $\left|\mathcal{B}\left(X_{i}\right)\right| \geq 1$ for all i. Therefore Q_{t} can accept only if $|\mathcal{B}|(3 / 4)^{t} \geq 1$, or equivalently if $t=O(s \log s)$.

Let $f\left(X_{t}\right):=\left(f\left(x_{1}\right), \ldots, f\left(x_{t}\right)\right)$, and let z be a "witness string" consisting of X_{t} and $f\left(X_{t}\right)$. Then given z and $i \leq t$, we can easily decide whether a circuit C belongs to the set $\mathcal{B}\left(X_{i}\right)$: we simply check whether $C\left(x_{j}\right)=f\left(x_{j}\right)$ for all $j \leq i$. So by standard results on approximate counting due to Stockmeyer [33] and Sipser [32], we can approximate the cardinality $\left|\mathcal{B}\left(X_{i}\right)\right|$ in $\mathrm{BPP}^{\mathrm{NP}}$. More precisely, for all t, i there exists a PromiseBPP ${ }^{N P}$ machine $M_{t, i}$ such that for all $z=\left\langle X_{t}, f\left(X_{t}\right)\right\rangle$:

- If $\left|\mathcal{B}\left(X_{i}\right)\right| \leq \frac{2}{3}\left|\mathcal{B}\left(X_{i-1}\right)\right|$ then $M_{t, i}(z)$ accepts with probability at least $2 / 3$ (where the probability is over $M_{t, i}$'s internal randomness).
- If $\left|\mathcal{B}\left(X_{i}\right)\right| \geq \frac{3}{4}\left|\mathcal{B}\left(X_{i-1}\right)\right|$ then $M_{t, i}(z)$ rejects with probability least $2 / 3$.

Now by the Sipser-Lautemann Theorem [32, 21], the assumption $\mathrm{P}=\mathrm{NP}$ implies that PromiseP $=$ PromiseBPP ${ }^{N P}$ as well. So we can convert $M_{t, i}$ into a deterministic polynomial-time machine $M_{t, i}^{\prime}$ such that for all z :

- If $\left|\mathcal{B}\left(X_{i}\right)\right| \leq \frac{2}{3}\left|\mathcal{B}\left(X_{i-1}\right)\right|$ then $M_{t, i}^{\prime}(z)$ accepts.
- If $\left|\mathcal{B}\left(X_{i}\right)\right| \geq \frac{3}{4}\left|\mathcal{B}\left(X_{i-1}\right)\right|$ then $M_{t, i}^{\prime}(z)$ rejects.

Using $M_{t, i}^{\prime}$, we can then rewrite Q_{t} as follows.
"Does there exist a witness z, of the form $\left\langle X_{t}, f\left(X_{t}\right)\right\rangle$, such that $M_{t, 1}^{\prime}(z) \wedge \cdots \wedge M_{t, t}^{\prime}(z)$?"
This proves the claim, since the above query is clearly in NP^{f}.
To complete the theorem, we will need one other predicate $A_{t}(z, x)$, with the following behavior. For all $z=\left\langle X_{t}, f\left(X_{t}\right)\right\rangle$ and $x \in\{0,1\}^{n}$:

- If $\operatorname{Pr}_{C \in \mathcal{B}\left(X_{t}\right)}[C(x)=1] \geq 2 / 3$ then $A_{t}(z, x)$ accepts.
- If $\operatorname{Pr}_{C \in \mathcal{B}\left(X_{t}\right)}[C(x)=0] \geq 2 / 3$ then $A_{t}(z, x)$ rejects.

It is clear that we can implement A_{t} in PromiseBPP ${ }^{N P}$, again because of approximate counting and the ease of deciding membership in $\mathcal{B}\left(X_{t}\right)$. So by the assumption $\mathrm{P}=\mathrm{NP}$, we can also implement A_{t} in P .

Now let $C_{t, z}$ be the lexicographically first circuit $C \in \mathcal{B}$ such that $C(x)=A_{t}(z, x)$ for all $x \in\{0,1\}^{n}$. Notice that $A_{t}(z, x)$ is an explicit procedure: that is, we can evaluate it without recourse to the oracle for f. So given z, we can find $C_{t, z}$ in $\Delta_{3}^{p}=\mathrm{P}^{\mathrm{NP}}{ }^{\mathrm{NP}}$, and hence also in P .

Let t^{*} be the maximum t for which Q_{t} accepts, and let $z=\left\langle X_{t^{*}}, f\left(X_{t^{*}}\right)\right\rangle$ be any accepting witness for $Q_{t^{*}}$. Then for all $x \in\{0,1\}^{n}$, we have

$$
\operatorname{Pr}_{C \in \mathcal{B}\left(X_{t^{*}}\right)}[C(x)=f(x)] \geq \frac{2}{3}
$$

For otherwise the sequence $\left(x_{1}, \ldots, x_{t^{*}}, x\right)$ would satisfy $Q_{t^{*}+1}$, thereby contradicting the maximality of t^{*}. An immediate corollary is that $A_{t^{*}}(z, x)=f(x)$ for all $x \in\{0,1\}^{n}$. Hence $C_{t^{*}, z}$ is the lexicographically first circuit for f, independently of the particular accepting witness z.

The $\mathrm{P}_{\| \mathrm{NP}^{f}}$ learning algorithm now follows easily. For all $t=O(s \log s)$, the algorithm submits the query Q_{t} to the NP oracle. It also submits the following query, called $R_{t, j}$, for all $t=O(s \log s)$ and $j=O(s \log s)$:
"Does there exist a witness $z=\left\langle X_{t}, f\left(X_{t}\right)\right\rangle$ satisfying Q_{t}, such that the $j^{t h}$ bit in the description of $C_{t, z}$ is a 1?"

Using the responses to the Q_{t} 's, the algorithm then determines t^{*}. Finally it reads a description of $C_{t^{*}, z}$ off the responses to the $R_{t^{*}, j}$'s.

Theorem 11 has the following easy corollaries. First, we cannot show that a Karp-Lipton collapse to PNP would require non-black-box techniques, without also showing $P \neq N P$. Second, if $P=N P$, then black-box learning is possible in NP/log. For since the $P_{\|}^{N P}$ algorithm of Theorem 11 does not take any input, we simply count how many of its NP queries return a positive answer, and then feed that number as advice to the NP/log machine.

6 Open Problems

The main open problem is, of course, to prove better nonrelativizing lower bounds. For example, can we show that BPP NP does not have linear-size circuits? To do so, we would presumably need a nonrelativizing technique that applies directly to the polynomial hierarchy, without requiring the full strength of $\# \mathrm{P}$. Arora, Impagliazzo, and Vazirani [4] argue that "local checkability," as used for example in the PCP Theorem, constitutes such a technique (though see Fortnow [12] for a contrary view). For us, the relevant question now is not which techniques are "truly" nonrelativizing, but simply which ones lead to lower bounds!

Here are a few other problems.

- Can we show that $P^{N P} \neq$ PEXP? If so, then we would obtain perhaps the first nonrelativizing separation of uniform complexity classes that does not follow immediately from a collapse such as $I P=P S P A C E$ or MIP $=$ NEXP.
- Can we show that PEXP requires circuits of exponential size, rather than just half-exponential?
- As mentioned in Section 1.2, Bshouty et al.'s algorithm does not find a minimal circuit for a Boolean function f, but only a circuit within an $O(n / \log n)$ factor of minimal. ${ }^{11}$ Can we improve this approximation ratio, or alternatively, show that doing so would require nonrelativizing techniques?
- Is black-box learning possible in $\mathrm{P}_{\|}^{N P}$ or ZPP ${ }_{\| \|}^{N P}$, under some computational assumption that we actually believe (for example, a derandomization assumption)? Alternatively, can we show that black-box learning is impossible in $\mathrm{P}_{\|}^{\mathrm{NP}}$ under some plausible computational assumption?

7 Acknowledgments

I am grateful to Lance Fortnow for telling me the problem of whether PP has linear-size circuits relative to an oracle, and for pointing out the implications of my oracle construction for perceptrons and for the relativized collapse of PEXP. I also thank Avi Wigderson for sponsoring the postdoc during which this work was done and for many enlightening conversations; and Boaz Barak, Sasha Razborov, Luca Trevisan, Chris Umans, Umesh Vazirani, Hoeteck Wee, and Chris Wilson for helpful discussions and correspondence.

References

[1] S. Aaronson. Limitations of quantum advice and one-way communication. Theory of Computing, 2004. To appear. Conference version in Proc. IEEE Complexity 2004, pp. 320-332. quant-ph/0402095.
[2] S. Aaronson. Quantum computing, postselection, and probabilistic polynomial-time. Submitted. quantph/0412187, 2004.
[3] L. Adleman, J. DeMarrais, and M.-D. Huang. Quantum computability. SIAM J. Comput., 26(5):15241540, 1997.

[^6][4] S. Arora, R. Impagliazzo, and U. Vazirani. Relativizing versus nonrelativizing techniques: the role of local checkability. Manuscript, 1992.
[5] L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time has two-prover interactive protocols. Computational Complexity, 1(1):3-40, 1991.
[6] T. Baker, J. Gill, and R. Solovay. Relativizations of the $\mathrm{P}=$? NP question. SIAM J. Comput., 4:431-442, 1975.
[7] R. Beigel. Perceptrons, PP, and the polynomial hierarchy. Computational Complexity, 4:339-349, 1994.
[8] N. H. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. Oracles and queries that are sufficient for exact learning. J. Comput. Sys. Sci., 52(3):421-433, 1996.
[9] H. Buhrman, S. Fenner, L. Fortnow, and L. Torenvliet. Two oracles that force a big crunch. Computational Complexity, 10(2):93-116, 2001.
[10] H. Buhrman, L. Fortnow, and T. Thierauf. Nonrelativizing separations. In Proc. IEEE Conference on Computational Complexity, pages 8-12, 1998.
[11] J.-Y. Cai. $S_{2}^{p} \subseteq Z P P^{N P}$. In Proc. IEEE FOCS, pages 620-629, 2001.
[12] L. Fortnow. The role of relativization in complexity theory. Bulletin of the EATCS, 52:229-244, February 1994.
[13] L. Fortnow and A. Klivans. NP with small advice. In Proc. IEEE Conference on Computational Complexity, 2005. To appear.
[14] L. Fortnow and J. Rogers. Complexity limitations on quantum computation. J. Comput. Sys. Sci., 59(2):240-252, 1999. cs.CC/9811023.
[15] L. Fortnow and M. Sipser. Are there interactive protocols for co-NP languages? Inform. Proc. Lett., 28:249-251, 1988.
[16] Y. Han, L. Hemaspaandra, and T. Thierauf. Threshold computation and cryptographic security. SIAM J. Comput., 26(1):59-78, 1997.
[17] R. Impagliazzo. A personal view of average-case complexity. In Proc. IEEE Conference on Computational Complexity, pages 134-147, 1995.
[18] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and Control, 55:40-56, 1982.
[19] R. M. Karp and R. J. Lipton. Turing machines that take advice. Enseign. Math., 28:191-201, 1982.
[20] J. Köbler and O. Watanabe. New collapse consequences of NP having small circuits. SIAM J. Comput., 28(1):311-324, 1998.
[21] C. Lautemann. BPP and the polynomial hierarchy. Inform. Proc. Lett., 17:215-217, 1983.
[22] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. J. $A C M, 39: 859-868,1992$.
[23] P. B. Miltersen, N. V. Vinodchandran, and O. Watanabe. Super-polynomial versus half-exponential circuit size in the exponential hierarchy. In $C O C O O N$, pages 210-220, 1999.
[24] M. Minsky and S. Papert. Perceptrons (2nd edition). MIT Press, 1988. First appeared in 1968.
[25] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. Computational Complexity, 4(4):301-313, 1994.
[26] H. Nishimura and T. Yamakami. Polynomial time quantum computation with advice. Inform. Proc. Lett., 90:195-204, 2003. ECCC TR03-059, quant-ph/0305100.
[27] A. A. Razborov and S. Rudich. Natural proofs. J. Comput. Sys. Sci., 55(1):24-35, 1997.
[28] R. Shaltiel and C. Umans. Pseudorandomness for approximate counting and sampling. In Proc. IEEE Conference on Computational Complexity, 2005. To appear.
[29] A. Shamir. IP=PSPACE. J. ACM, 39(4):869-877, 1992.
[30] C. Shannon. The synthesis of two-terminal switching circuits. Bell System Technical Journal, 28(1):5998, 1949.
[31] Y. Shi. Both Toffoli and controlled-NOT need little help to do universal quantum computation. Quantum Information and Computation, 3(1):84-92, 2002. quant-ph/0205115.
[32] M. Sipser. A complexity theoretic approach to randomness. In Proc. ACM STOC, pages 330-335, 1983.
[33] L. J. Stockmeyer. The complexity of approximate counting. In Proc. ACM STOC, pages 118-126, 1983.
[34] L. J. Stockmeyer and A. R. Meyer. Cosmological lower bound on the circuit complexity of a small problem in logic. J. ACM, 49(6):753-784, 2002.
[35] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865-877, 1991.
[36] C. Umans. Approximability and Completeness in the Polynomial Hierarchy. PhD thesis, UC Berkeley, 2000.
[37] L. G. Valiant. The complexity of computing the permanent. Theoretical Comput. Sci., 8(2):189-201, 1979.
[38] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions. Theoretical Comput. Sci., 47(3):85-93, 1986.
[39] N. V. Vinodchandran. A note on the circuit complexity of PP. ECCC TR04-056, 2004.
[40] C. B. Wilson. Relativized circuit complexity. J. Comput. Sys. Sci., 31(2):169-181, 1985.

8 Appendix: A Really Big Crunch

By slightly modifying the construction of Theorem 2, we can resolve two other open questions of Fortnow.

Theorem 12

(i) There exists an oracle relative to which $\mathrm{P}^{\mathrm{NP}}=\mathrm{PEXP}$, and indeed $\mathrm{P}^{\mathrm{NP}}=\mathrm{P}^{\mathrm{NP}}$ PExP .
(ii) There exists an oracle relative to which $\oplus \mathrm{P}=\mathrm{PEXP}$.

Proof.
(i) In the oracle construction of Theorem 2 dealing with all n simultaneously, make the following simple change. Whenever a row R gets encoded, record the "current time" t as a prefix to that row. In other words, the oracle A will now take two kinds of queries: those of the form $\langle R, i, x\rangle$ as before, and those of the form $\langle R, j\rangle$ for an integer $j \geq 0$. Initially $A(R, j)=0$ for all R, j. At any step of the iterative procedure, let t be the number of encoding steps that have already occurred. Then call the pair $\langle i, x\rangle$ "sensitive" to row R, if there exists an oracle A^{\prime} such that

- A^{\prime} disagrees with A only in row R,
- $M_{i, x}\left(A^{\prime}\right) \neq M_{i, x}(A)$, and
- as we range over j, the $A^{\prime}(R, j)$'s encode the binary expansion of $t+1$.

Clearly the proof of Theorem 2 still goes through with this change. For let $\ell=\left\lceil\log _{2} n\right\rceil$. Then as before, whenever there does not exist a row R of the form $\left(r_{1}^{*}, \ldots, r_{\ell-1}^{*}, r_{\ell}\right)$ to which no $\langle i, x\rangle$ is sensitive, we can encode a subset of those rows so as to double $Q(A)$. Since $2^{-2^{O(n)}} \leq Q(A) \leq 2^{2^{O(n)}}$ for all A, this process will halt after at most $2^{O(n)}$ steps, meaning that t will never require more than $O(n)$ bits to represent. Indeed, this is true even if we are dealing with PTIME $\left(2^{n}\right)$ machines, rather than PTIME $\left(n^{\log n}\right)$ machines.
Now consider a $\operatorname{PTIME}^{A}\left(2^{n}\right)$ machine M_{i}. We can simulate M_{i} in $\operatorname{DTIME}\left(n^{2}\right)^{\mathrm{NP}^{A}}$, as follows. Given an input $x \in\{0,1\}^{n}$, first find the unique row $R=\left(r_{1}, \ldots, r_{\left\lceil\log _{2} n\right\rceil}\right)$ for which t is maximal-in other words, the last such row to have been encoded. This requires $O(n)$ adaptive queries to the NP oracle, each of size $O(n)$. Then output $A(R, i, x)$.
It follows that DTIME $\left(n^{2}\right)^{N P}=P E$ relative to A, and (by padding) that $P^{N P}=P E X P$. Indeed, once the $P^{N P}$ machine finds the r_{ℓ} 's, it can use them to decide an arbitrary language in $P^{N P^{P E X P}}$, which is why $\mathrm{P}^{N P}=\mathrm{P}^{\mathrm{NP} \text { PEXP }}$ as well.
(ii) In this case the change to Theorem 2 is even simpler. Whenever we encode a row $R=\left(r_{1}, \ldots, r_{\ell}\right)$, instead of setting $A_{t}(R, i, x):=M_{i, x}\left(A_{t-1}\right)$ for all i, x, we now set

$$
A_{t}(R, i, x):=M_{i, x}\left(A_{t-1}\right) \oplus \bigoplus_{R^{\prime} \neq R} A_{t}\left(R^{\prime}, i, x\right),
$$

where the sum mod 2 ranges over all $R^{\prime}=\left(r_{1}^{\prime}, \ldots, r_{\ell}^{\prime}\right)$ other than R itself. Then when we are done, by assumption A will satisfy

$$
M_{i, x}(A)=\bigoplus_{R=\left(r_{1}, \ldots, r_{\ell}\right)} A(R, i, x)
$$

for all $n \leq 2^{\ell}, i \in\{1, \ldots, n\}$, and $x \in\{0,1\}^{n}$. So to simulate a PE machine M_{i} on input x, a $\oplus \operatorname{DTIME}(n)$ machine just needs to return the above sum. Hence $\oplus \operatorname{DTIME}^{A}(n)=\operatorname{PE}^{A}$, and $\oplus \mathrm{P}^{A}=\mathrm{PEXP}^{A}$ by padding.

[^0]: *Email: aaronson@ias.edu. This research was done while the author was a postdoc at the Institute for Advanced Study in Princeton, supported by an NSF grant.
 ${ }^{1}$ For Bshouty et al.'s algorithm implies the following improvement to the celebrated Karp-Lipton theorem [19]: if NP $\subset P /$ poly then PH collapses to $\mathrm{ZPP}^{N P}$. There are then two cases: if NP $\not \subset \mathrm{P} /$ poly, then certainly $Z P P^{N P} \not \subset \mathrm{P} /$ poly as well and we are done. On the other hand, if NP $\subset P /$ poly, then $Z P P^{N P}=P H$, but we already know from Kannan's theorem that $P H$ does not have circuits of size n^{k}. Indeed, we can repeat this argument for the class S_{2}^{p}, which Cai [11] showed is contained in ZPPNP.

[^1]: ${ }^{2}$ Lance Fortnow, personal communication.

[^2]: ${ }^{3}$ Suppose by contradiction that PP has circuits of size n^{k}. Then $\mathrm{P} \# \mathrm{P} \subset \mathrm{P} /$ poly, and therefore $\mathrm{MA}=\mathrm{PP}=\mathrm{P} \# \mathrm{P}$ by a result of LFKN [22] (this is the only part of the proof that fails to relativize). Now MA $\subseteq \Sigma_{2}^{p} \subseteq \mathrm{P}^{\# \mathrm{P}}$ by Toda's theorem [35], so $\Sigma_{2}^{p}=\mathrm{PP}$ as well. But we already know from Kannan's theorem [18] that Σ_{2}^{p} does not have circuits of size n^{k}.
 ${ }^{4}$ See Miltersen, Vinodchandran, and Watanabe [23] for a discussion of this concept.
 ${ }^{5} \mathrm{~A}$ similar bound is implicit in a paper by Stockmeyer and Meyer [34].

[^3]: ${ }^{6}$ This follows from the same reasoning used by Köbler and Watanabe [20] to show that ZPP NP does not have circuits of size n^{k}. For such an algorithm would readily imply that if NP $\subset \mathrm{P} /$ poly, then PH collapses to ZPPNP.
 ${ }^{7}$ For as observed by Shaltiel and Umans [28] and Fortnow and Klivans [13] among others, there is an intimate connection between the classes PNP and NP/log. Furthermore, any circuit lower bound for NP/log implies the same lower bound for NP, since we can tack the advice onto the input.
 ${ }^{8}$ Note that by "learn," we always mean "learn exactly" rather than "PAC-learn." Of course, if $\mathrm{P}=\mathrm{NP}$, then approximate learning of Boolean circuits could be done in polynomial time.

[^4]: ${ }^{9}$ There is one important caveat: in S_{2}^{p}, we currently only know how to learn self-reducible functions, such as the characteristic functions of NP-complete problems. For if the circuits from the two competing provers disagree with each other, then we need to know which one to trust.

[^5]: ${ }^{10}$ Shi [31] showed that this basis is universal. Any finite, universal set of gates with rational amplitudes would work equally well.

[^6]: ${ }^{11}$ Actually, the algorithm as we stated it gives an $O(n)$ approximation ratio, but we can improve it to $O(n / \log n)$ by replacing "at least a $1 / 3$ fraction" by "at least a $1 /$ poly (n) fraction."

