
Oracles Are Subtle But Not Malicious

Scott Aaronson∗

Abstract

Theoretical computer scientists have been debating the role of oracles since the 1970’s. This pa-

per illustrates both that oracles can give us nontrivial insights about the barrier problems in circuit

complexity, and that they need not prevent us from trying to solve those problems.

First, we give an oracle relative to which PP has linear-sized circuits, by proving a new lower bound

for perceptrons and low-degree threshold polynomials. This oracle settles a longstanding open question,

and generalizes earlier results due to Beigel and to Buhrman, Fortnow, and Thierauf. More importantly,

it implies the first nonrelativizing separation of “traditional” complexity classes, as opposed to interactive

proof classes such as MIP and MAEXP. For Vinodchandran showed, by a nonrelativizing argument, that

PP does not have circuits of size n
k for any fixed k. We present an alternative proof of this fact, which

shows that PP does not even have quantum circuits of size n
k with quantum advice. To our knowledge,

this is the first nontrivial lower bound on quantum circuit size.

Second, we study a beautiful algorithm of Bshouty et al. for learning Boolean circuits in ZPP
NP.

We show that the NP queries in this algorithm cannot be parallelized by any relativizing technique,

by giving an oracle relative to which ZPP
NP
|| and even BPP

NP
|| have linear-size circuits. On the other

hand, we also show that the NP queries could be parallelized if P = NP. Thus, classes such as ZPP
NP
||

inhabit a “twilight zone,” where we need to distinguish between relativizing and black-box techniques.

Our results on this subject have implications for computational learning theory as well as for the circuit

minimization problem.

1 Introduction

It is often lamented that, half a century after Shannon’s insight [30] that almost all Boolean functions require
exponential-size circuits, there is still no explicit function for which we can prove even a superlinear lower
bound. Yet whether this lament is justified depends on what we mean by “explicit.” For in 1982, Kannan
[18] did show that for every constant k, there exists a language in Σ

p
2 (the second level of the polynomial

hierarchy) that does not have circuits of size nk. His proof used the oldest trick in the book: diagonalization,
defined broadly as any method for simulating all machines in one class by a single machine in another. In
some sense, diagonalization is still the only method we know that zeroes in on a specific property of the
function being lower-bounded, and thereby escapes the jaws of Razborov and Rudich [27].

But can we generalize Kannan’s theorem to other complexity classes? A decade ago, Bshouty et al. [8]
discovered an algorithm to learn Boolean circuits in ZPPNP (that is, probabilistic polynomial time with NP

oracle). As noticed by Köbler and Watanabe [20], the existence of this algorithm implies that ZPPNP itself
cannot have circuits of size nk for any k.1

So our task as lowerboundsmen and lowerboundswomen seems straightforward: namely, to find increas-
ingly powerful algorithms for learning Boolean circuits, which can then be turned around to yield increasingly
powerful circuit lower bounds. But when we try to do this, we quickly run into the brick wall of relativization.

∗Email: aaronson@ias.edu. This research was done while the author was a postdoc at the Institute for Advanced Study in
Princeton, supported by an NSF grant.

1For Bshouty et al.’s algorithm implies the following improvement to the celebrated Karp-Lipton theorem [19]: if NP ⊂ P/poly

then PH collapses to ZPPNP. There are then two cases: if NP 6⊂ P/poly, then certainly ZPPNP 6⊂ P/poly as well and we are
done. On the other hand, if NP ⊂ P/poly, then ZPPNP = PH, but we already know from Kannan’s theorem that PH does not
have circuits of size nk. Indeed, we can repeat this argument for the class S

p
2 , which Cai [11] showed is contained in ZPPNP.

1

Electronic Colloquium on Computational Complexity, Report No. 40 (2005)

ISSN 1433-8092

Just as Baker, Gill, and Solovay [6] gave a relativized world where P = NP, so Wilson [40] gave relativized
worlds where NP and PNP have linear-size circuits. Since the results of Kannan [18] and Bshouty et al. [8]
relativize, this suggests that new techniques will be needed to make further progress.

Yet attitudes toward relativization vary greatly within our community. Some computer scientists ridicule
oracle results as elaborate formalizations of the obvious—apparently believing that (1) there exist relativized
worlds where just about anything is true, (2) the creation of such worlds is a routine exercise, (3) the only
conjectures ruled out by oracle results are trivially false ones, which no serious researcher would waste time
trying to prove, and (4) nonrelativizing results such as IP = PSPACE [29] render oracles irrelevant anyway.
At the other extreme, some computer scientists see oracle results not as a spur to create nonrelativizing
techniques or as a guide to where such techniques might be needed, but as an excuse to abandon hope.

This paper will offer new counterexamples to both of these views, in the context of circuit lower bounds.
We focus on two related topics: first, the classical and quantum circuit complexity of PP; and second, the
learnability of Boolean circuits using parallel NP queries.

1.1 On PP and Quantum Circuits

In Section 2, we give an oracle relative to which PP has linear-size circuits. Here PP is the class of languages
accepted by a nondeterministic polynomial-time Turing machine that accepts and if and only if the majority
of its paths do. Our construction also yields an oracle relative to which PEXP (the exponential-time version
of PP) has polynomial-size circuits, and indeed PNP = ⊕P = PEXP. This settles several questions that were
open for years,2 and subsumes at least three previous results:

(1) that of Beigel [7] giving an oracle relative to which PNP 6⊂ PP (since clearly PNP = PEXP implies
PNP 6⊂ PP),

(2) that of Buhrman, Fortnow, and Thierauf [10] giving an oracle relative to which MAEXP ⊂ P/poly, and

(3) that of Buhrman et al. [9] giving an oracle relative to which PNP = NEXP.

Note that our result is nearly optimal, since Toda’s theorem [35] yields a relativizing proof that PPP and
even BP · PP do not have circuits of any fixed polynomial size.

Our proof first represents each PP machine by a low-degree multilinear polynomial, whose variables are
the bits of the oracle string. It then combines these polynomials into a single polynomial called Q. The key
fact is that, if there are no variables left “unmonitored” by the component polynomials, then we can modify
the oracle in a way that increases Q. Since Q can only increase a finite number of times, it follows that we
will eventually win our “war of attrition” against the polynomials, at which point we can simply write down
what each machine does in an unmonitored part of the oracle string. The main novelty of the proof lies in
how we combine the polynomials to create Q.

We can state our result alternatively in terms of perceptrons [24], also known as threshold-of-AND circuits

or polynomial threshold functions. Call a perceptron “small” if it has size 2no(1)

, order no(1), and weights
in {−1, 1}. Also, given an n-bit string x1 . . . xn, recall that the ODDMAXBIT problem is to decide whether
the maximum i such that xi = 1 is even or odd, promised that such an i exists. Then Beigel [7] showed that
no small perceptron can solve ODDMAXBIT. What we show is a strong generalization of Beigel’s theorem:
for any k = no(1) small perceptrons, there exists a “problem set” consisting of k ODDMAXBIT instances,
such that for every i, the ith perceptron will get the ith problem wrong even if it can examine the whole
problem set. Previously this had been open even for k = 2.

But the real motivation for our result is that in the unrelativized world, PP is known not to have linear-
size circuits. Indeed, Vinodchandran [39] showed that for every k, there exists a language in PP that does not
have circuits of size nk. As a consequence, we obtain the first nonrelativizing separation that does not involve
artificial classes or classes defined using interactive proofs. There have been nonrelativizing separations in
the past, but most of them have followed easily from the collapse of interactive proof classes: for example,

2Lance Fortnow, personal communication.

2

NP 6= MIP from MIP = NEXP [5], and IP 6⊂ SIZE
(
nk

)
from IP = PSPACE [29]. The one exception was the

result of Buhrman, Fortnow, and Thierauf [10] that MAEXP 6⊂ P/poly, where MAEXP is the exponential-time
version of MA. However, the class MAEXP exists for the specific purpose of not being contained in P/poly,
and the resulting separation does not scale down below NEXP, to show (for example) that MA does not have
linear-size circuits. By contrast, PP is one of the most natural complexity classes there is. That is why, in
our opinion, our result adds some heft to the idea that currently-understood nonrelativizing techniques can
lead to progress on the fundamental questions of complexity theory.

The actual lower bound of Vinodchandran [39] follows easily from three well-known results: the LFKN
interactive protocol for the permanent [22], Toda’s theorem [35], and Kannan’s theorem [18].3 In Section 3,
we present an alternative, more self-contained proof, which does not go through Toda’s theorem. As a bonus,
our proof also shows that PP does not have quantum circuits of size nk for any k. Indeed, this remains true
even if the quantum circuits are given “quantum advice states” on nk qubits, which might require exponential
time to prepare. One part of our proof is a “quantum Karp-Lipton theorem,” which states that if PP has

polynomial-size quantum circuits, then the “counting hierarchy” (consisting of PP, PPPP, PPPPPP

, and so
on) collapses to QMA, the quantum analogue of NP. By analogy to the classical nonrelativizing separation
of Buhrman, Fortnow, and Thierauf [10], we also show that QMAEXP, the exponential-time version of QMA,
is not contained in BQP/qpoly. Indeed, QMAEXP requires quantum circuits of at least “half-exponential”
size, meaning size f (n) where f (f (n)) grows exponentially.4

While none of the results in Section 3 are really difficult, we include them here for three reasons:

(1) So far as we know, the only existing lower bounds for arbitrary quantum circuits are due to Nishimura
and Yamakami [26], who showed (among other things) that EESPACE 6⊂ BQP/qpoly.5 We felt it
worthwhile to point out that much better bounds are possible.

(2) When it comes to understanding the limitations of quantum computers, our knowledge to date consists
almost entirely of oracle lower bounds. Many researchers have told us that they would much prefer
to see some unrelativized results, or at the very least conditional statements—for example, “if NP-
complete problems are solvable in quantum polynomial time, then the polynomial hierarchy collapses.”
The results of Section 3 represent a first step in that direction.

(3) Recently Aaronson [2] gave a new characterization of PP, as the class of problems solvable in quantum
polynomial time, given the ability to postselect (that is, to discard all runs of the computation in
which a given measurement result does not occur). If we replace “quantum” by “randomized” in this
definition, then we obtain a classical complexity class called BPPpath, which was introduced by Han,
Hemaspaandra, and Thierauf [16]. So the fact that we can prove a quantum circuit lower bound for PP

implies one of two things: either that (i) we can prove a nonrelativizing quantum separation theorem,
but not the classical analogue of the same theorem, or that (ii) we should be able to prove classical
circuit lower bound for BPPpath. As we will see later, the latter possibility would be a significant
breakthrough.

1.2 On Parallel NP Queries and Black-Box Learning

In a second part of the paper, we study the learning algorithm of Bshouty et al. [8] mentioned earlier. Given
a Boolean function f that is promised to have a polynomial-size circuit, this algorithm finds such a circuit

in the class ZPPNPf

: that is, zero-error probabilistic polynomial time with NP oracle with oracle for f . One
of the most basic questions about this algorithm is whether the NP queries can be made nonadaptive. For
if so, then we immediately obtain a new circuit lower bound: namely that ZPPNP

|| (that is, ZPP with parallel

3Suppose by contradiction that PP has circuits of size nk. Then P#P ⊂ P/poly, and therefore MA = PP = P#P by a result
of LFKN [22] (this is the only part of the proof that fails to relativize). Now MA ⊆ Σ

p
2 ⊆ P#P by Toda’s theorem [35], so

Σ
p
2 = PP as well. But we already know from Kannan’s theorem [18] that Σ

p
2 does not have circuits of size nk.

4See Miltersen, Vinodchandran, and Watanabe [23] for a discussion of this concept.
5A similar bound is implicit in a paper by Stockmeyer and Meyer [34].

3

NP queries) does not have circuits of size nk for any k.6 Conceptually, this would not be so far from showing
that NP itself does not have circuits of size nk.7

Let C be the set of circuits of size nk. In Bshouty et al.’s algorithm, we repeatedly ask the NP oracle
to find us an input xt such that, among the circuits in C that succeed on all previous inputs x1, . . . , xt−1, at
least a 1/3 fraction fail on xt. Since each such input reduces the number of circuits “still in the running” by
at least a constant factor, this process can continue for at most log |C| steps. Furthermore, when it ends, by
assumption we have a set C∗ of circuits such that for all inputs x, a uniform random circuit drawn from C∗

will succeed on x with probability at least 2/3. So now all we have to do is sample a polynomial number of
circuits from C∗, then generate a new circuit that outputs the majority answer among the sampled circuits.
The technical part is to express the concepts “at least a 1/3 fraction” and “a uniform random sample” in
NP. For that Bshouty et al. use pairwise-independent hash functions.

When we examine the above algorithm, it is far from obvious that adaptive NP queries are necessary.
For why can’t we simply ask the following question in parallel, for all T ≤ log |C|?

“Do there exist inputs x1, . . . , xT , such that at least a 1/3 fraction of circuits in C fail on x1, and
among the circuits that succeed on x1, at least a 1/3 fraction fail on x2, and among the circuits
that succeed on x1 and x2, at least a 1/3 fraction fail on x3, . . . and so on up to xT ?”

By making clever use of hashing and approximate counting, perhaps we could control the number of
circuits that succeed on x1, . . . , xt for all t ≤ T . In that case, by finding the largest T such that the above
question returns a positive answer, and then applying the Valiant-Vazirani reduction [38] and other standard
techniques, we would achieve the desired parallelization of Bshouty et al.’s algorithm. Indeed, when we
began studying the topic, it seemed entirely likely to us that this was possible.

Nevertheless, in Section 4 we give an oracle relative to which ZPPNP
|| and even BPPNP

|| have linear-size
circuits. The overall strategy of our oracle construction is the same as for PP, but the details are somewhat
less elegant. The existence of this oracle means that any parallelization of Bshouty et al.’s algorithm will
need to use nonrelativizing techniques.

Yet even here, the truth is subtler than one might imagine. To explain why, we need to distinguish
carefully between relativizing and black-box algorithms. An algorithm for learning Boolean circuits is
relativizing if, when given access to an oracle A, the algorithm can learn circuits that are also given access
to A. But a nonrelativizing algorithm can still be black-box, in the sense that it learns about the target
function f only by querying it, and does not exploit any succinct description of f (for example, that f (x) = 1
if and only if x encodes a satisfiable Boolean formula). Bshouty et al.’s algorithm is both relativizing and
black-box. What our oracle construction shows is that no relativizing algorithm can learn Boolean circuits
in BPPNP

|| . But what about a nonrelativizing yet still black-box algorithm?
Surprisingly, we show in Section 5 that if P = NP, then there is a black-box algorithm to learn Boolean

circuits even in PNP
|| (as well as in NP/log). Despite the outlandishness of the premise, this theorem is not

trivial, and requires many of the same techniques originally used by Bshouty et al. [8]. One way to interpret
the theorem is that we cannot show the impossibility of black-box learning in PNP

|| , without also showing
that P 6= NP. By contrast, it is easy to show that black-box learning is impossible in NP, regardless of what
computational assumptions we make.8

These results provide a new perspective on one of the oldest problems in computer science, the circuit
minimization problem: given a Boolean circuit C, does there exist an equivalent circuit of size at most s?
Certainly this problem is NP-hard and in Σ

p
2. Also, by using Bshouty et al.’s algorithm, we can find a

circuit whose size is within an O (n/ logn) factor of minimal in ZPPNP. Yet after fifty years of research,

6This follows from the same reasoning used by Köbler and Watanabe [20] to show that ZPPNP does not have circuits of size
nk. For such an algorithm would readily imply that if NP ⊂ P/poly, then PH collapses to ZPPNP

|| .
7For as observed by Shaltiel and Umans [28] and Fortnow and Klivans [13] among others, there is an intimate connection

between the classes PNP
||

and NP/log. Furthermore, any circuit lower bound for NP/log implies the same lower bound for NP,

since we can tack the advice onto the input.
8Note that by “learn,” we always mean “learn exactly” rather than “PAC-learn.” Of course, if P = NP, then approximate

learning of Boolean circuits could be done in polynomial time.

4

almost nothing else is known about the complexity of this problem. For example, is it Σ
p
2-complete? Can

we approximate the minimum circuit size in ZPPNP
|| ?

What our techniques let us say is the following. First, there exists an oracle A such that minimizing

circuits with oracle access to A is not even approximable in BPPNPA

|| . Indeed, any probabilistic algorithm
to distinguish the cases “C is minimal” and “there exists an equivalent circuit for C of size s,” using fewer
than s adaptive NP queries, would have to use nonrelativizing techniques. If one wished, one could take
this as evidence that the true complexity of the circuit minimization problem should be PNP rather than
PNP
|| . On the other hand, one cannot rule out even a “black-box” circuit minimization algorithm (that is,

an algorithm that treats C itself as an oracle) in PNP
|| , without also showing that P 6= NP.

From a learning theory perspective, perhaps what is most interesting about our results is that they show
a clear tradeoff between two complexities: the complexity of the learner who queries the target function f ,
and the complexity of the resulting computational problem that the learner has to solve. If the learner

is a ZPPNPf

machine, then the problem is easy; if the learner is a ZPPNPf

|| machine, then the problem is

(probably) hard; and if the learner is an NPf machine, then there is no computational problem whose
solution would suffice to learn f .

1.3 Outlook

Figure 1 shows the “battle map” for nonrelativizing circuit lower bounds that emerges from this paper. The
figure displays not one but two barriers: a “relativization barrier,” below which any Karp-Lipton collapse or
superlinear circuit size lower bound will need to use nonrelativizing techniques; and a “black-box barrier,”
below which black-box learning even of unrelativized circuits is provably impossible. At least for the thirteen
complexity classes shown in the figure, we now know exactly where to draw these two barriers—something
that would have been less than obvious a priori (at least to us!).

To switch metaphors, we can think of the barriers as representing “phase transitions” in the behavior of
complexity classes. Below the black-box barrier, we cannot learn circuits relative to any oracle A. Between
the relativization and black-box barriers, we can learn Boolean circuits relative to some oracles A but not
others. For example, we can learn relative to a PSPACE oracle, since it collapses P and NP, but we cannot
learn relative to the oracles in this paper, which cause PP and BPPNP

|| to have linear-size circuits. Finally,

above the relativization barrier, we can learn Boolean circuits relative to every oracle A.9 As we move
upward from the black-box barrier toward the relativization barrier, we can notice “steam bubbles” starting
to form, as the assumptions needed for black-box learning shift from implausible (P = NP), to plausible (the
standard derandomization assumptions that collapse PNP with ZPPNP and PP with BP · PP), and finally to
no assumptions at all.

To switch metaphors again, the oracle results have laid before us a rich and detailed landscape, which a
nonrelativizing Lewis-and-Clark expedition might someday visit more fully.

2 The Oracle for PP

In this section we construct an oracle relative to which PP has linear-size circuits. To do so, we will need a
lemma about multilinear polynomials, which follows from the well-known lower bound of Nisan and Szegedy
[25] on the approximate degree of the OR function.

Lemma 1 (Nisan-Szegedy) Let p : {0, 1}N → R be a real multilinear polynomial of degree at most
√
N/7,

and suppose that |p (X)| ≤ 2
3

∣∣p
(
0N

)∣∣ for all X ∈ {0, 1}N
with Hamming weight 1. Then there exists an

X ∈ {0, 1}N
such that |p (X)| ≥ 6 |p (0n)|.

9There is one important caveat: in S
p
2 , we currently only know how to learn self-reducible functions, such as the characteristic

functions of NP-complete problems. For if the circuits from the two competing provers disagree with each other, then we need
to know which one to trust.

5

NP

MA

AM

NPP||

NPZPP||

NPBPP||

NPP

NPZPP

NPBPP

pS2

pathBPP

PP

PPBP ⋅

BLA
CK-B

OX B
ARRIE

R

Successful
nonrelativizing

incursion

RELATIV
IZ

ATIO
N B

ARRIE
R

Figure 1: “Battle map” of some complexity classes between NP and BP · PP, in light of this paper’s results.
Classes that coincide under a plausible derandomization assumption are grouped together with dashed ovals.
Below the relativization barrier, we must use nonrelativizing techniques to show any Karp-Lipton collapse
or superlinear circuit size lower bound. Below the black-box barrier, black-box learning of Boolean circuits
is provably impossible.

6

We now prove the main result.

Theorem 2 There exists an oracle relative to which PP has linear-size circuits.

Proof. For simplicity, we first give an oracle that works for a specific value of n, and then generalize to
all n simultaneously. Let M1,M2, . . . be an enumeration of PTIME

(
nlog n

)
machines. Then it suffices to

simulate M1, . . . ,Mn, for in that case every Mi will be simulated on all but finitely many n.
The oracle A will consist of 25n “rows” and n2n “columns,” with each row labeled by a string r ∈ {0, 1}5n

,
and each column labeled by a pair 〈i, x〉 where i ∈ {1, . . . , n} and x ∈ {0, 1}n. Then given a triple 〈r, i, x〉
as input, A will return the bit A (r, i, x).

We will construct A via an iterative procedure. Initially A is empty (that is, A (r, i, x) = 0 for all r, i, x).
Let At be the state of A after the tth iteration. Also, let Mi,x (A) be a Boolean function that equals 1 if
Mi accepts on input x ∈ {0, 1}n

and oracle string A, and 0 otherwise. Then to encode a row r means to
set At (r, i, x) := Mi,x (At−1) for all i, x. At a high level, our entire procedure will consist of repeating the
following two steps, for all t ≥ 1:

(1) Choose a set of rows S ⊆ {0, 1}5n
of At−1.

(2) Encode each r ∈ S, and let At be the result.

The problem, of course, is that each time we encode a row r, the Mi,x (A)’s might change as a result.
So we need to show that, by carefully implementing step (1), we can guarantee that the following condition
holds after a finite number of steps.

(C) There exists an r such that A (r, i, x) = Mi,x (A) for all i, x.

If (C) is satisfied, then clearly M1, . . . ,Mn will have linear-size circuits relative to A, since we can just
hardwire r into the circuits.

We will use the following fact, which is immediate from the definition of PP. For all i, x, there exists a
multilinear polynomial pi,x (A), whose variables are the bits of A, such that:

(i) If Mi,x (A) = 1 then pi,x (A) ≥ 1.

(ii) If Mi,x (A) = 0 then pi,x (A) ≤ −1.

(iii) pi,x has degree at most nlog n.

(iv) |pi,x (A)| ≤ 2nlog n

for all A.

Now for all integers 0 ≤ k ≤ nlog n and b ∈ {0, 1}, let

qi,x,b,k (A) = 22k−3 +
(
2k + (−1)

b
pi,x (A)

)2

.

Then we will use the following polynomial as a progress measure:

Q (A) =
∏

i,x

∏

b∈{0,1}

nlog n∏

k=0

qi,x,b,k (A) .

Notice that
deg (Q) ≤ n2n · 2 ·

(
nlog n + 1

)
· 2 deg (pi,x) = 2n+o(n).

Since 1/8 ≤ qi,x,b,k (A) ≤ 5 · 22nlog n

for all i, x, b, k, we also have

Q (A) ≤
(
5 · 22nlog n

)n2n·2·(nlog n+1)
= 22n+o(n)

,

Q (A) ≥
(

1

8

)n2n·2·(nlog n+1)
= 2−2n+o(n)

7

for all A. The key claim is the following.
At any given iteration, suppose there is no r such that, by encoding r, we can satisfy condition (C).

Then there exists a set S ⊆ {0, 1}5n
such that, by encoding each r ∈ S, we can increase Q (A) by at least a

factor of 2 (that is, ensure that Q (At) ≥ 2Q (At−1)).
The above claim readily implies that (C) can be satisfied after a finite number of steps. For, by what

was said previously, Q (A) can double at most 2n+o(n) times—and once Q (A) can no longer double, by
assumption we can encode an r that satisfies (C). (As a side note, “running out of rows” is not an issue
here, since we can re-encode rows that were encoded in previous iterations.)

We now prove the claim. Call the pair 〈i, x〉 sensitive to row r if encoding r would change the value
of Mi,x (A). By hypothesis, for every r there exists an 〈i, x〉 that is sensitive to r. So by a counting
argument, there exists a single 〈i, x〉 that is sensitive to at least 25n/ (n2n) > 23n rows. Fix that 〈i, x〉, and
let r1, . . . , r23n be the first 23n rows to which 〈i, x〉 is sensitive. Also, given a binary string Y = y1 . . . y23n ,
let S (Y) be the set of all rj such that yj = 1, and let A(Y) be the oracle obtained by starting from A and
then encoding each rj ∈ S (Y).

Set b equal toMi,x (A), and set k equal to the least integer such that 2k ≥ |pi,x (A)|. Then we will think of
Q (A) as the product of two polynomials q (A) and v (A), where q (A) = qi,x,b,k (A), and v (A) = Q (A) /q (A)
is the product of all other terms in Q (A). Notice that q (A) > 0 and v (A) > 0 for all A. Also,

q (A) = 22k−3 +
(
2k + (−1)

b
pi,x (A)

)2

≤ 22k−3 +
(
2k − 2k−1

)2

=
3

8
· 22k.

Here the second line follows since −2k ≤ (−1)
b
pi,x (A) ≤ −2k−1. On the other hand, for all Y ∈ {0, 1}23n

with Hamming weight 1, we have (−1)
b
pi,x (A) ≥ 0, and therefore

q
(
A(Y)

)
= 22k−3 +

(
2k + (−1)

b
pi,x

(
A(Y)

))2

≥ 22k−3 +
(
2k

)2

=
9

8
· 22k

≥ 3q (A) .

There are now two cases. The first is that there exists a Y with Hamming weight 1 such that v
(
A(Y)

)
≥

2
3v (A). In this case

Q
(
A(Y)

)
= q

(
A(Y)

)
v

(
A(Y)

)

≥ 3q (A) · 2

3
v (A)

= 2q (A) v (A)

= 2Q (A) .

So we simply set S = S (Y) and are done.
The second case is that v

(
A(Y)

)
< 2

3v (A) for all Y with Hamming weight 1. In this case, we can consider

v as a real multilinear polynomial in the bits of Y ∈ {0, 1}23n

, of degree at most deg (Q) <
√

23n/7. Then

Lemma 1 implies that there exists a Y ∈ {0, 1}23n

such that
∣∣v

(
A(Y)

)∣∣ = v
(
A(Y)

)
≥ 6v (A). Furthermore,

for all Y we have
q
(
A(Y)

)

q (A)
≥ 22k−3

3
8 · 22k

=
1

3
.

8

Hence

Q
(
A(Y)

)
= q

(
A(Y)

)
v

(
A(Y)

)

≥ 1

3
q (A) · 6v (A)

= 2q (A) v (A)

= 2Q (A) .

So again we can set S = S (Y). This completes the claim.
All that remains is to handle PTIME

(
nlog n

)
machines that could query any bit of the oracle string,

rather than just the bits corresponding to a specific n. The oracle A will now take as input a list of strings

R = (r1, . . . , r`), with r` ∈ {0, 1}5·2`

for all `, in addition to i, x. Call R an `-secret if A (R, i, x) = Mi,x (A)
for all n ≤ 2`, i ∈ {1, . . . , n}, and x ∈ {0, 1}n

. Then we will try to satisfy the following.

(C′) There exists an infinite list of strings r∗1 , r
∗
2 , . . ., , such that R∗

` := (r∗1 , . . . , r
∗
`) is an `-secret for all ` ≥ 1.

If (C′) is satisfied, then clearly each Mi can be simulated by linear-size circuits. For all n ≥ i, simply find
the smallest ` such that 2` ≥ n, then hardwire R∗

` into the circuit for size n. Since ` ≤ 2n, this requires at
most 5

(
21 + · · · + 2`

)
≤ 20n bits.

To construct an oracle A that satisfies (C ′), we iterate over all ` ≥ 1. Suppose by induction that R∗
`−1

is an (`− 1)-secret; then we want to ensure that R∗
` is an `-secret for some r` ∈ {0, 1}5·2`

. To do so, we
use a procedure essentially identical to the one for a specific n. The only difference is this: previously, all
we needed was a row r ∈ {0, 1}5n

such that no 〈i, x〉 pair was sensitive to a particular change to r (namely,
setting At (r, i, x) := Mi,x (At−1) for all i, x). But in the general case, the “row” labeled by R = (r1, . . . , r`)
consists of all triples 〈R′, i, x〉 such that R′ =

(
r1, . . . , r`, r

′
`+1, . . . , r

′
L

)
for some L ≥ ` and r′`+1, . . . , r

′
L.

Furthermore, we do not yet know how later iterations will affect this “row.” So we should call a pair
〈i, x〉 “sensitive” to R, if there is any oracle A′ such that (1) A′ disagrees with A only in row R, and (2)
Mi,x (A′) 6= Mi,x (A).

Fortunately, this new notion of sensitivity requires no significant change to the proof. Suppose that for
every row R of the form

(
r∗1 , . . . , r

∗
`−1, r`

)
there exists an 〈i, x〉 that is sensitive to R. Then as before, there

exists an 〈i′, x′〉 that is sensitive to at least 25·2`

/
(
22`22`+1

)
> 23n rows of that form. For each of those

rows R, fix a change to R to which 〈i′, x′〉 is sensitive. We thereby obtain a polynomial Q (A) with the same

properties as before—in particular, there exists a string Y ∈ {0, 1}23n

such that Q
(
A(Y)

)
≥ 2Q (A).

Let us make three remarks about Theorem 2.

(1) If we care about constants, it is clear that the advice r can be reduced to 3n+ o (n) bits for a specific
n, or 12n+ o (n) for all n simultaneously. Presumably these bounds are not tight.

(2) One can easily extend Theorem 2 to give an oracle relative to which PE = PTIME
(
2O(n)

)
has linear-size

circuits, and hence PEXP ⊂ P/poly by a padding argument.

(3) Han, Hemaspaandra, and Thierauf [16] showed that MA ⊆ BPPpath ⊆ PP. So in addition to implying
the result of Buhrman, Fortnow, and Thierauf that MA has linear-size circuits relative to an oracle,
Theorem 2 also yields the new result that BPPpath has linear-size circuits relative to an oracle.

Another application of our techniques, the construction of relativized worlds where PNP = PEXP and
⊕P = PEXP, is outlined in Appendix 8.

3 Quantum Circuit Lower Bounds

In this section we show, by a nonrelativizing argument, that PP does not have circuits of size nk, not even
quantum circuits with quantum advice. We first show that PPP does not have quantum circuits of size nk,
by a direct diagonalization argument. Our argument will use the following lemma of Aaronson [1].

9

Lemma 3 (“Almost As Good As New Lemma”) Suppose a two-outcome measurement of a mixed quan-
tum state ρ yields outcome 0 with probability 1 − ε. Then after the measurement, we can recover a state ρ̃
such that ‖ρ̃− ρ‖tr ≤

√
ε.

(Recall that the trace distance ‖ρ− σ‖tr between two mixed states ρ and σ is the maximum bias with
which those states can be distinguished via a single measurement. In particular, trace distance satisfies the
triangle inequality.)

Theorem 4 PPP does not have quantum circuits of size nk for any fixed k. Furthermore, this holds even if
the circuits can use quantum advice.

Proof. For simplicity, let us first explain why PPP does not have classical circuits of size nk. Fix an input
length n, and let x1, . . . , x2n be a lexicographic ordering of n-bit strings. Also, let C be the set of all circuits
of size nk, and let Ct ⊆ C be the subset of circuits in C that correctly decide the first t inputs x1, . . . , xt.
Then we define the language L ∩ {0, 1}n

by the following iterative procedure. First, if at least half of the
circuits in C accept x1, then set x1 /∈ L, and otherwise set x1 ∈ L. Next, if at least half of the circuits in
C1 accept x2, then set x2 /∈ L, and otherwise set x2 ∈ L. In general, let N = dlog2 |C′|e + 1. Then for
all t < N , if at least half of the circuits in Ct accept xt+1, then set xt+1 /∈ L, and otherwise set xt+1 ∈ L.
Finally, set xt /∈ L for all t > N .

It is clear that the resulting language L is in PPP. Given an input xt, we just reject if t > N , and
otherwise call the PP oracle t times, to decide if xi ∈ L for each i ∈ {1, . . . , t}. Note that, once we know
x1, . . . , xi, we can decide in polynomial time whether a given circuit belongs to Ci, and can therefore decide
in PP whether the majority of circuits in Ci accept or reject xi+1. On the other hand, our construction
guarantees that |Ct+1| ≤ |Ct| /2 for all t < N . Therefore |CN | ≤ |C| /2N = 1/2, which means that CN is
empty, and hence no circuit in C correctly decides x1, . . . , xN .

The above argument extends naturally to quantum circuits. Let C be the set of all quantum circuits of
size nk, over a basis of (say) Hadamard and Toffoli gates.10 (Note that these circuits need not be bounded-
error.) Then the first step is to amplify each circuit C ∈ C a polynomial number times, so that if C’s initial
error probability was at most 1/3, then its new error probability is at most (say) 2−10n. Let C′ be the
resulting set of amplified circuits. Now let |ψ0〉 be a uniform superposition over all descriptions of circuits
in C′, together with an “answer register” that is initially set to |0〉:

|ψ0〉 :=
1√
|C′|

∑

C∈C′

|C〉 |0〉 .

For each input xt ∈ {0, 1}n
, let Ut be a unitary transformation that maps |C〉 |0〉 to |C〉 |C (xt)〉 for each

C ∈ C′, where |C (xt)〉 is the output of C on input xt. (In general, |C (xt)〉 will be a superposition of |0〉
and |1〉.) To implement Ut, we simply simulate running C on xt, and then run the simulation in reverse to
uncompute garbage qubits.

Let N = dlog2 |C′|e + 2. Also, given an input xt, let L (xt) = 1 if xt ∈ L and L (xt) = 0 otherwise. Fix
t < N , and suppose by induction that we have already set L (xi) for all i ≤ t. Then we will use the following
quantum algorithm, called At, to set L (xt+1).

Set |ψ〉 := |ψ0〉
For i := 1 to t

Set |ψ〉 := Ui |ψ〉
Measure the answer register

If the measurement outcome is not L (xi), then FAIL

Next i
Set |ψ〉 := Ut+1 |ψ〉
Measure the answer register

10Shi [31] showed that this basis is universal. Any finite, universal set of gates with rational amplitudes would work equally
well.

10

Say that At succeeds if it outputs L (xi) for all x1, . . . , xt. Conditioned on At succeeding, if the final
measurement yields the outcome |1〉 with probability at least 1/2, then set L (xt+1) := 0, and otherwise set
L (xt+1) := 1. Finally, set L (xt) := 0 for all t > N .

By a simple extension of the result BQP ⊆ PP due to Adleman, DeMarrais, and Huang [3], Aaronson
[2] showed that polynomial-time quantum computation with postselected measurement can be simulated in
PP (indeed the two are equivalent; that is, PostBQP = PP). In particular, a PP machine can simulate the
postselected quantum algorithm At above, and thereby decide whether the final measurement will yield |0〉 or
|1〉 with greater probability, conditioned on all previous measurements having yielded the correct outcomes.
It follows that L ∈ PPP.

On the other hand, suppose by way of contradiction that there exists a quantum circuit C ∈ C ′ that
outputs L (xt) with probability at least 1 − 2−10n for all t. Then the probability that C succeeds on
x1, . . . , xN simultaneously is at least (say) 0.9, by Lemma 3 together with the triangle inequality. Hence
the probability that At succeeds on x1, . . . , xN is at least 0.9/ |C′|. Yet by construction, At succeeds with
probability at most 1/2t, which is less than 0.9/ |C ′| when t = N − 1. This yields the desired contradiction.

Finally, to incorporate quantum advice of size s = nk, all we need to do is add an s-qubit “quantum
advice register” to |ψ0〉, which Ut’s can use when simulating the circuits. We initialize this advice register
to the maximally mixed state on s qubits. The key fact (see [1] for example) is that, whatever the “true”
advice state |φ〉, we can decompose the maximally mixed state into

1

2s

2s∑

j=1

|φj〉 〈φj | ,

where |φ1〉 , . . . , |φ2s〉 form an orthonormal basis and |φ1〉 = |φ〉. By linearity, we can then track the evolution
of each of these 2s components independently. So the previous argument goes through as before, if we set
N = dlog2 |C′|e+ s+2. (Note that we are assuming the advice states are suitably amplified, which increases
the running time of At by at most a polynomial factor.)

Similarly, for all time-constructible functions f (n) ≤ 2n, one can show that the class DTIME (f (n))PP

does not have quantum circuits of size f (n) /n2. So for example, EPP requires quantum circuits of exponential
size.

Having shown a quantum circuit lower bound for PPP, we now bootstrap our way down to PP. To do so,
we use the following “quantum Karp-Lipton theorem.” Here BQP/poly is BQP with polynomial-size classical
advice, BQP/qpoly is BQP with polynomial-size quantum advice, QMA is like MA but with quantum verifiers
and quantum witnesses, and QCMA is like MA but with quantum verifiers and classical witnesses. Also,

recall that the counting hierarchy CH is the union of PP, PPPP, PPPPPP

, and so on.

Theorem 5 If PP ⊂ BQP/poly then QCMA = PP, and indeed CH collapses to QCMA. Likewise, if
PP ⊂ BQP/qpoly then CH collapses to QMA.

Proof. Let L be a language in CH. It is clear that we could decide L in quantum polynomial time, if we
were given polynomial-size quantum circuits for a PP-complete language such as MajSat. For Fortnow and
Rogers [14] showed that BQP is “low” for PP; that is, PPBQP = PP. So we could use the quantum circuits
for MajSat to collapse PPPP to PPBQP = PP to BQP, and similarly for all higher levels of CH.

Assume PP ⊂ BQP/poly; then clearly P#P = PPP is contained in BQP/poly as well. So in QCMA we
can do the following: first guess a bounded-error quantum circuit C for computing the permanent of a
poly (n) × poly (n) matrix over a finite field Fp, for some prime p = Θ (poly (n)). (For convenience, here
poly (n) means “a sufficiently large polynomial depending on L.”) Then verify that with 1−o (1) probability,
C works on at least a 1−1/ poly (n) fraction of matrices. To do so, simply simulate the interactive protocol
for the permanent due to Lund, Fortnow, Karloff, and Nisan [22], but with C in place of the prover. Next,
use the random self-reducibility of the permanent to generate a new circuit C ′ that, with 1−o (1) probability,
is correct on every poly (n) × poly (n) matrix over Fp. Since Permanent is #P-complete over all fields of
characteristic p 6= 2 [37], we can then use C ′ to decide MajSat instances of size poly (n), and therefore the
language L as well.

11

The case PP ⊂ BQP/qpoly is essentially identical, except that in QMA we guess a quantum circuit with
quantum advice. That quantum advice states cannot be reused indefinitely does not present a problem
here: we simply guess a boosted circuit, or else poly (n) copies of the original circuit.

By combining Theorems 4 and 5, we immediately obtain the following.

Corollary 6 PP does not have quantum circuits of size nk for any fixed k, not even quantum circuits with
quantum advice.

Proof. Suppose by contradiction that PP had such circuits. Then certainly PP ⊂ BQP/qpoly, so QMA =
PP = PPP = CH by Theorem 5. But PPP does not have such circuits by Theorem 4, and therefore neither
does PP.

More generally, for all f (n) ≤ 2n we find that PTIME (f (f (n))) requires quantum circuits of size ap-
proximately f (n). For example, PEXP requires quantum circuits of “half-exponential” size.

Finally, we point out a quantum analogue of Buhrman, Fortnow, and Thierauf’s classical nonrelativizing
separation [10].

Theorem 7 QCMAEXP 6⊂ BQP/poly, and QMAEXP 6⊂ BQP/qpoly.

Proof. Suppose by contradiction that QCMAEXP ⊂ BQP/poly. Then clearly EXP ⊂ BQP/poly as well.
Babai, Fortnow, and Lund [5] showed that any language in EXP has a two-prover interactive protocol where
the provers are in EXP. We can simulate such a protocol in QCMA as follows: first guess (suitably amplified)
BQP/poly circuits computing the provers’ strategies. Then simulate the provers and verifier, and accept if
and only if the verifier accepts. It follows that EXP = QCMA, and therefore QCMA = PPP as well. So by
padding, QCMAEXP = EXPPP. But we know from Theorem 4 that EXPPP 6⊂ BQP/poly, which yields the
desired contradiction. The proof that QMAEXP 6⊂ BQP/qpoly is essentially identical, except that we guess
quantum circuits with quantum advice.

One can strengthen Theorem 7 to show that QMAEXP requires quantum circuits of half-exponential size.
However, in contrast to the case for PEXP, here the bound does not scale down to QMA. Indeed, it turns
out that the smallest f for which we get any superlinear circuit size lower bound for QMATIME (f (n)) is
itself half-exponential.

4 The Oracle for BPP
NP
||

In this section we construct an oracle relative to which BPPNP
|| has linear-size circuits.

Theorem 8 There exists an oracle relative to which BPPNP
|| has linear-size circuits.

Proof. As in Theorem 2, we first give an oracle A that works for a specific value of n. Let M1,M2, . . . be an

enumeration of “syntactic” BPTIME
(
nlog n

)NP

||
machines, where syntactic means not necessarily satisfying

the promise. Then it suffices to simulate M1, . . . ,Mn. We assume without loss of generality that only the
NP oracle (not the Mi’s themselves) query A, and that each NP call is actually an NTIME (n) call (so in
particular, it involves at most nlog n queries to A). Let Mi,x,z (A) be a Boolean function that equals 1 if

Mi accepts on input x ∈ {0, 1}n, random string z ∈ {0, 1}nlog n

, and oracle A, and 0 otherwise. Then let
pi,x (A) := EXz [Mi,x,z (A)] be the probability that Mi accepts x.

The oracle A will consist of 23n rows and n2n columns, with each row labeled by r ∈ {0, 1}3n, and each
column labeled by an 〈i, x〉 pair where i ∈ {1, . . . , n} and x ∈ {0, 1}n

. We will construct A via an iterative
procedure P . Initially A is empty (that is, A (r, i, x) = 0 for all r, i, x). Let At be the state of A after
the tth iteration. Then to encode a row r means to set At (r, i, x) := round (pi,x (At−1)) for all i, x, where
round (p) = 1 if p ≥ 1/2 and round (p) = 0 if p < 1/2.

Call an 〈i, x〉 pair sensitive to row r, if encoding r would change pi,x (A) by at least 1/6. Then P consists
entirely of repeating the following two steps, for t = 1, 2, 3 . . .:

12

(1) If there exists an r to which no 〈i, x〉 is sensitive, then encode r and halt.

(2) Otherwise, by a counting argument, there exists a pair 〈j, y〉 that is sensitive to at least N = 23n/ (n2n)
rows, call them r1, . . . , rN . Let A(k) be the oracle obtained by starting from A and then encoding rk.

Choose an integer k ∈ {1, . . . , N} (we will specify how later), and set At := A
(k)
t−1.

Suppose P halts after t iterations, and let r be the row encoded by step (1). Then by assumption,
|pi,x (At) − pi,x (At−1)| < 1/6 for all i, x. So in particular, if pi,x (At) ≥ 2/3 then pi,x (At−1) > 1/2 and
therefore At (r, i, x) = 1. Likewise, if pi,x (At) ≤ 1/3 then pi,x (At−1) < 1/2 and therefore At (r, i, x) = 0.

It follows that any valid BPTIME
(
nlog n

)NP

||
machine in {M1, . . . ,Mn} has linear-size circuits relative to

At—since we can just hardwire r ∈ {0, 1}2n into the circuits.
It remains only to show that P halts after a finite number of steps, for some choice of k’s. Given an

input x, random string z, and oracle A, let Si,x,z (A) be the set of NP queries made by Mi that accept. Then
we will use

W (A) :=
∑

i,x

EX
z

[|Si,x,z (A)|]

as our progress measure. Since eachMi can query the NP oracle at most nlog n times, clearly 0 ≤ |Si,x,z (A)| ≤
nlog n for all i, x, z, and therefore

0 ≤W (A) ≤ n2n · nlog n

for all A. On the other hand, we claim that whenever step (2) is executed, if k ∈ {1, . . . , N} is chosen
uniformly at random then

EX
k

[
W

(
A(k)

)]
≥W (A) +

1

6
− 2−n+o(n).

So in step (2), we should simply choose k to maximize W
(
A(k)

)
. For we will then have W (At) ≥(

1/6− 2−n+o(n)
)
t for all t, from which it follows that P halts after at most

n2n · nlog n

1/6− 2−n+o(n)
= 2n+o(n)

iterations.
We now prove the claim. Observe that for each accepting NP query q ∈ Si,x,z (A), there are at most

nlog n rows rk such that encoding rk would cause q /∈ Si,x,z

(
A(k)

)
. For to change q’s output from ‘accept’

to ‘reject,’ we would have to eliminate (say) the lexicographically first accepting path of the NP oracle, and
that path can depend on at most nlog n rows of A. Hence by the union bound, for all i, x, z, A we have

Pr
k

[
Si,x,z (A) 6⊂ Si,x,z

(
A(k)

)]
≤

∑

q∈Si,x,z(A)

Pr
k

[
q /∈ Si,x,z

(
A(k)

)]

≤ |Si,x,z (A)| n
log n

N

≤ n2 log n

23n/ (n2n)

= 2−2n+o(n).

So in particular, for all i, x, A,

EX
k,z

[∣∣∣Si,x,z

(
A(k)

)∣∣∣
]
≥ |Si,x,z (A)| · Pr

k,z

[∣∣∣Si,x,z

(
A(k)

)∣∣∣ ≥ |Si,x,z (A)|
]

≥ |Si,x,z (A)|
(
1 − 2−2n+o(n)

)

13

On the other hand, by assumption there exists a pair 〈j, y〉 that is sensitive to row rk for every k ∈
{1, . . . , N}. Furthermore, given y and z, the output Mj,y,z (A) of Mj is a function of the NP oracle
responses Sj,y,z (A), and can change only if Sj,y,z (A) changes. Therefore

Pr
k,z

[
Sj,y,z

(
A(k)

)
6= Sj,y,z (A)

]
≥ Pr

k,z

[
Mj,y,z

(
A(k)

)
6= Mj,y,z (A)

]
≥ 1

6
.

So by the union bound,

Pr
k,z

[∣∣∣Sj,y,z

(
A(k)

)∣∣∣ > |Sj,y,z (A)|
]
≥ Pr

k,z

[
Sj,y,z

(
A(k)

)
6= Sj,y,z (A)

]
− Pr

k,z

[
Sj,y,z (A) 6⊂ Sj,y,z

(
A(k)

)]

≥ 1

6
− 2−2n+o(n).

Putting it all together,

EX
k

[
W

(
A(k)

)]
=

∑

i,x

EX
k,z

[∣∣∣Qi,x,z

(
A(k)

)∣∣∣
]

≥ 1

6
− 2−2n+o(n) +

∑

i,x

|Si,x,z (A)|
(
1 − 2−2n+o(n)

)

=
1

6
− 2−2n+o(n) +

(
1 − 2−2n+o(n)

)
W (A)

= W (A) +
1

6
− 2−n+o(n),

which completes the claim.
To handle all values of n simultaneously, we use exactly the same trick as in Theorem 2. That is, we

replace r by an `-tuple R = (r1, . . . , r`) where r` ∈ {0, 1}3·2`

; define the “row” R` to consist of all triples
〈R′

L, i, x〉 such that L ≥ ` and r′h = rh for all h ≤ `; and call the pair 〈i, x〉 “sensitive” to row R` if there is any
oracle A′ that disagrees with A only in R`, such that |pi,x (A′) − pi,x (A)| ≥ 1/6. We then run the procedure
P repeatedly to encode r1, r2, . . ., where “encoding” r` means setting At (R`, i, x) := round (pi,x (At−1)) for
all n ≤ 2`, i ∈ {1, . . . , n}, and x ∈ {0, 1}n

. The rest of the proof goes through as before.
Let us make six remarks about Theorem 8.

(1) An immediate corollary is that any Karp-Lipton collapse to BPPNP
|| would require nonrelativizing

techniques. For relative to the oracle A from the theorem, we have NP ⊆ BPPNP
|| ⊂ P/poly. On the

other hand, if PHA = BPPNPA

|| , then BPPNPA

|| would not have linear-size circuits by Kannan’s Theorem
[18] (which relativizes), thereby yielding a contradiction.

(2) If we care about constants, we can reduce the advice r to 2n+ o (n) bits for a specific n, or 8n+ o (n)
for all n simultaneously.

(3) As with Theorem 2, one can easily modify Theorem 8 to give a relativized world where BPEXPNP
|| ⊂

P/poly. Thus, Theorem 8 provides an alternate generalization of the result of Buhrman, Fortnow, and
Thierauf [10] that MAEXP ⊂ P/poly relative to an oracle.

(4) Since BPPpath ⊆ BPPNP
|| (as is not hard to show using approximate counting), Theorem 8 also provides

an alternate proof that BPPpath has linear-size circuits relative to an oracle.

(5) Completely analogously to Theorem 12, one can modify Theorem 8 to give oracles relative to which
PNP = BPEXPNP

|| and ⊕P = BPEXPNP
|| .

(6) For any function f , the construction of Theorem 8 actually yields an oracle relative to which BPPNP[f(n)]

(that is, BPP with f (n) adaptive NP queries) has circuits of size O (n+ f (n)). For clearly we can
simulate f (n) adaptive queries using 2f(n) nonadaptive queries. We then repeat Theorem 8 with the
bound 0 ≤W (A) ≤ n2n · 2f(n).

14

5 Black-Box Learning in Algorithmica

“Algorithmica” is one of Impagliazzo’s five possible worlds [17], the world in which P = NP. In this section
we show that in Algorithmica, black-box learning of Boolean circuits is possible in PNP

|| . Let us first define
what we mean by black-box learning.

Definition 9 Say that black-box learning is possible in a complexity class C if the following holds. There
exists a C machine M such that, for all Boolean functions f : {0, 1}n → {0, 1} with circuit complexity at
most s (n), the machine M f outputs a circuit for f given

〈
0n, 0s(n)

〉
as input. Also, M has approximation

ratio α (n) if for all f , any circuit output by M has size at most s (n)α (n).

The above definition is admittedly somewhat vague, but for most natural complexity classes C it is clear
how to make it precise. Firstly, by “C machine” we really mean “FC machine,” where FC is the function
version of C. Secondly, for semantic classes, we do not care if the machine violates the promise on inputs
not of the form

〈
0n, 0s(n)

〉
, or oracles f that do not have circuit complexity at most s (n). Let us give a few

examples.

• Almost by definition, black-box learning is possible in Σ
p
2 with approximation ratio 1.

• As pointed out by Umans [36], the result of Bshouty et al. [8] implies that black-box learning is possible
in ZPPNP, with approximation ratio O (n/ logn).

• Under standard derandomization assumptions, black-box learning is possible in PNP with approxima-
tion ratio O (n/ logn), and in PP with approximation ratio 1. For not only do these assumptions imply
that ZPPNP = PNP and that BP · PP = PP, but they also yield a black-box simulation of a ZPPNP or
BP · PP algorithm that learns a circuit for f by just querying an existing circuit C on various inputs
(without “cheating” and looking at C).

On the other hand:

Proposition 10 Black-box learning is impossible in NP, or for that matter in AM, IP, or MIP.

Proof. Suppose there are two possibilities: either f is the identically zero function, or else f is a point
function (that is, there exists a y such that f (x) = 1 if and only if x = y). In both cases s (n) = O (n).
But since the verifier has only oracle access to f , it is obvious that no polynomially-bounded sequence of
messages from the prover(s) could convince the verifier that f is identically zero. We omit the details, which
were worked out by Fortnow and Sipser [15].

We now prove the main result.

Theorem 11 If P = NP, then black-box learning is possible in PNP
|| (indeed, with approximation ratio 1.)

Proof. We use a procedure inspired by that of Bshouty et al. [8].
Fix n, and suppose f : {0, 1}n → {0, 1} has circuits of size s = s (n). Let B be the set of all circuits of

size s, so that |B| = sO(s). Also, say that a circuit C ∈ B succeeds on input x ∈ {0, 1}n
if C (x) = f (x),

and fails otherwise. Then given a list of inputs X = (x1, x2, . . .), let B (X) be the set of circuits in B that
succeed on every x ∈ X .

For the remainder of the proof, let Xt = (x1, . . . , xt) be a list of t inputs, and for all 0 ≤ i < t, let
Xi = (x1, . . . , xi) be the prefix of Xt consisting of the first i inputs (so in particular, X0 is the empty list).
Then our first claim is that there exists an NPf machine Qt with the following behavior:

• If there exists an Xt such that |B (Xi)| ≤ 2
3 |B (Xi−1)| for all i ∈ {1, . . . , t}, then Qt accepts.

• If for all Xt there exists an i ∈ {1, . . . , t} such that |B (Xi)| ≥ 3
4 |B (Xi−1)|, then Qt rejects.

15

(As usual, if neither of the two stated conditions hold, then the machine can behave arbitrarily.)
In what follows, we can assume without loss of generality that t is polynomially bounded. For, since

some circuit C ∈ B succeeds on every input, we must have |B (Xi)| ≥ 1 for all i. Therefore Qt can accept
only if |B| (3/4)

t ≥ 1, or equivalently if t = O (s log s).
Let f (Xt) := (f (x1) , . . . , f (xt)), and let z be a “witness string” consisting of Xt and f (Xt). Then

given z and i ≤ t, we can easily decide whether a circuit C belongs to the set B (Xi): we simply check
whether C (xj) = f (xj) for all j ≤ i. So by standard results on approximate counting due to Stockmeyer

[33] and Sipser [32], we can approximate the cardinality |B (Xi)| in BPPNP. More precisely, for all t, i there
exists a PromiseBPPNP machine Mt,i such that for all z = 〈Xt, f (Xt)〉:

• If |B (Xi)| ≤ 2
3 |B (Xi−1)| then Mt,i (z) accepts with probability at least 2/3 (where the probability is

over Mt,i’s internal randomness).

• If |B (Xi)| ≥ 3
4 |B (Xi−1)| then Mt,i (z) rejects with probability least 2/3.

Now by the Sipser-Lautemann Theorem [32, 21], the assumption P = NP implies that PromiseP =
PromiseBPPNP as well. So we can convert Mt,i into a deterministic polynomial-time machine M ′

t,i such that
for all z:

• If |B (Xi)| ≤ 2
3 |B (Xi−1)| then M ′

t,i (z) accepts.

• If |B (Xi)| ≥ 3
4 |B (Xi−1)| then M ′

t,i (z) rejects.

Using M ′
t,i, we can then rewrite Qt as follows.

“Does there exist a witness z, of the form 〈Xt, f (Xt)〉, such that M ′
t,1 (z) ∧ · · · ∧M ′

t,t (z)?”

This proves the claim, since the above query is clearly in NPf .
To complete the theorem, we will need one other predicate At (z, x), with the following behavior. For

all z = 〈Xt, f (Xt)〉 and x ∈ {0, 1}n
:

• If PrC∈B(Xt) [C (x) = 1] ≥ 2/3 then At (z, x) accepts.

• If PrC∈B(Xt) [C (x) = 0] ≥ 2/3 then At (z, x) rejects.

It is clear that we can implement At in PromiseBPPNP, again because of approximate counting and the
ease of deciding membership in B (Xt). So by the assumption P = NP, we can also implement At in P.

Now let Ct,z be the lexicographically first circuit C ∈ B such that C (x) = At (z, x) for all x ∈ {0, 1}n
.

Notice that At (z, x) is an explicit procedure: that is, we can evaluate it without recourse to the oracle for f .

So given z, we can find Ct,z in ∆
p
3 = PNPNP

, and hence also in P.
Let t∗ be the maximum t for which Qt accepts, and let z = 〈Xt∗ , f (Xt∗)〉 be any accepting witness for

Qt∗ . Then for all x ∈ {0, 1}n
, we have

Pr
C∈B(Xt∗)

[C (x) = f (x)] ≥ 2

3
.

For otherwise the sequence (x1, . . . , xt∗ , x) would satisfy Qt∗+1, thereby contradicting the maximality of t∗.
An immediate corollary is that At∗ (z, x) = f (x) for all x ∈ {0, 1}n. Hence Ct∗,z is the lexicographically
first circuit for f , independently of the particular accepting witness z.

The PNPf

|| learning algorithm now follows easily. For all t = O (s log s), the algorithm submits the query

Qt to the NP oracle. It also submits the following query, called Rt,j , for all t = O (s log s) and j = O (s log s):
“Does there exist a witness z = 〈Xt, f (Xt)〉 satisfying Qt, such that the jth bit in the description of Ct,z

is a 1?”
Using the responses to the Qt’s, the algorithm then determines t∗. Finally it reads a description of Ct∗,z

off the responses to the Rt∗,j ’s.

16

Theorem 11 has the following easy corollaries. First, we cannot show that a Karp-Lipton collapse to PNP
||

would require non-black-box techniques, without also showing P 6= NP. Second, if P = NP, then black-box
learning is possible in NP/log. For since the PNP

|| algorithm of Theorem 11 does not take any input, we
simply count how many of its NP queries return a positive answer, and then feed that number as advice to
the NP/log machine.

6 Open Problems

The main open problem is, of course, to prove better nonrelativizing lower bounds. For example, can we
show that BPPNP

|| does not have linear-size circuits? To do so, we would presumably need a nonrelativizing
technique that applies directly to the polynomial hierarchy, without requiring the full strength of #P. Arora,
Impagliazzo, and Vazirani [4] argue that “local checkability,” as used for example in the PCP Theorem,
constitutes such a technique (though see Fortnow [12] for a contrary view). For us, the relevant question
now is not which techniques are “truly” nonrelativizing, but simply which ones lead to lower bounds!

Here are a few other problems.

• Can we show that PNP 6= PEXP? If so, then we would obtain perhaps the first nonrelativizing
separation of uniform complexity classes that does not follow immediately from a collapse such as
IP = PSPACE or MIP = NEXP.

• Can we show that PEXP requires circuits of exponential size, rather than just half-exponential?

• As mentioned in Section 1.2, Bshouty et al.’s algorithm does not find a minimal circuit for a Boolean
function f , but only a circuit within an O (n/ logn) factor of minimal.11 Can we improve this
approximation ratio, or alternatively, show that doing so would require nonrelativizing techniques?

• Is black-box learning possible in PNP
|| or ZPPNP

|| , under some computational assumption that we actually

believe (for example, a derandomization assumption)? Alternatively, can we show that black-box
learning is impossible in PNP

|| under some plausible computational assumption?

7 Acknowledgments

I am grateful to Lance Fortnow for telling me the problem of whether PP has linear-size circuits relative
to an oracle, and for pointing out the implications of my oracle construction for perceptrons and for the
relativized collapse of PEXP. I also thank Avi Wigderson for sponsoring the postdoc during which this work
was done and for many enlightening conversations; and Boaz Barak, Sasha Razborov, Luca Trevisan, Chris
Umans, Umesh Vazirani, Hoeteck Wee, and Chris Wilson for helpful discussions and correspondence.

References

[1] S. Aaronson. Limitations of quantum advice and one-way communication. Theory of Computing, 2004.
To appear. Conference version in Proc. IEEE Complexity 2004, pp. 320-332. quant-ph/0402095.

[2] S. Aaronson. Quantum computing, postselection, and probabilistic polynomial-time. Submitted. quant-
ph/0412187, 2004.

[3] L. Adleman, J. DeMarrais, and M.-D. Huang. Quantum computability. SIAM J. Comput., 26(5):1524–
1540, 1997.

11Actually, the algorithm as we stated it gives an O (n) approximation ratio, but we can improve it to O (n/ log n) by replacing
“at least a 1/3 fraction” by “at least a 1/ poly (n) fraction.”

17

[4] S. Arora, R. Impagliazzo, and U. Vazirani. Relativizing versus nonrelativizing techniques: the role of
local checkability. Manuscript, 1992.

[5] L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time has two-prover interactive
protocols. Computational Complexity, 1(1):3–40, 1991.

[6] T. Baker, J. Gill, and R. Solovay. Relativizations of the P=?NP question. SIAM J. Comput., 4:431–442,
1975.

[7] R. Beigel. Perceptrons, PP, and the polynomial hierarchy. Computational Complexity, 4:339–349, 1994.

[8] N. H. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. Oracles and queries that are sufficient
for exact learning. J. Comput. Sys. Sci., 52(3):421–433, 1996.

[9] H. Buhrman, S. Fenner, L. Fortnow, and L. Torenvliet. Two oracles that force a big crunch. Computa-
tional Complexity, 10(2):93–116, 2001.

[10] H. Buhrman, L. Fortnow, and T. Thierauf. Nonrelativizing separations. In Proc. IEEE Conference on
Computational Complexity, pages 8–12, 1998.

[11] J.-Y. Cai. Sp
2 ⊆ ZPPNP . In Proc. IEEE FOCS, pages 620–629, 2001.

[12] L. Fortnow. The role of relativization in complexity theory. Bulletin of the EATCS, 52:229–244, February
1994.

[13] L. Fortnow and A. Klivans. NP with small advice. In Proc. IEEE Conference on Computational
Complexity, 2005. To appear.

[14] L. Fortnow and J. Rogers. Complexity limitations on quantum computation. J. Comput. Sys. Sci.,
59(2):240–252, 1999. cs.CC/9811023.

[15] L. Fortnow and M. Sipser. Are there interactive protocols for co-NP languages? Inform. Proc. Lett.,
28:249–251, 1988.

[16] Y. Han, L. Hemaspaandra, and T. Thierauf. Threshold computation and cryptographic security. SIAM
J. Comput., 26(1):59–78, 1997.

[17] R. Impagliazzo. A personal view of average-case complexity. In Proc. IEEE Conference on Computa-
tional Complexity, pages 134–147, 1995.

[18] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and Control,
55:40–56, 1982.

[19] R. M. Karp and R. J. Lipton. Turing machines that take advice. Enseign. Math., 28:191–201, 1982.

[20] J. Köbler and O. Watanabe. New collapse consequences of NP having small circuits. SIAM J. Comput.,
28(1):311–324, 1998.

[21] C. Lautemann. BPP and the polynomial hierarchy. Inform. Proc. Lett., 17:215–217, 1983.

[22] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. J.
ACM, 39:859–868, 1992.

[23] P. B. Miltersen, N. V. Vinodchandran, and O. Watanabe. Super-polynomial versus half-exponential
circuit size in the exponential hierarchy. In COCOON, pages 210–220, 1999.

[24] M. Minsky and S. Papert. Perceptrons (2nd edition). MIT Press, 1988. First appeared in 1968.

18

[25] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. Computational
Complexity, 4(4):301–313, 1994.

[26] H. Nishimura and T. Yamakami. Polynomial time quantum computation with advice. Inform. Proc.
Lett., 90:195–204, 2003. ECCC TR03-059, quant-ph/0305100.

[27] A. A. Razborov and S. Rudich. Natural proofs. J. Comput. Sys. Sci., 55(1):24–35, 1997.

[28] R. Shaltiel and C. Umans. Pseudorandomness for approximate counting and sampling. In Proc. IEEE
Conference on Computational Complexity, 2005. To appear.

[29] A. Shamir. IP=PSPACE. J. ACM, 39(4):869–877, 1992.

[30] C. Shannon. The synthesis of two-terminal switching circuits. Bell System Technical Journal, 28(1):59–
98, 1949.

[31] Y. Shi. Both Toffoli and controlled-NOT need little help to do universal quantum computation. Quantum
Information and Computation, 3(1):84–92, 2002. quant-ph/0205115.

[32] M. Sipser. A complexity theoretic approach to randomness. In Proc. ACM STOC, pages 330–335, 1983.

[33] L. J. Stockmeyer. The complexity of approximate counting. In Proc. ACM STOC, pages 118–126, 1983.

[34] L. J. Stockmeyer and A. R. Meyer. Cosmological lower bound on the circuit complexity of a small
problem in logic. J. ACM, 49(6):753–784, 2002.

[35] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877, 1991.

[36] C. Umans. Approximability and Completeness in the Polynomial Hierarchy. PhD thesis, UC Berkeley,
2000.

[37] L. G. Valiant. The complexity of computing the permanent. Theoretical Comput. Sci., 8(2):189–201,
1979.

[38] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions. Theoretical Comput.
Sci., 47(3):85–93, 1986.

[39] N. V. Vinodchandran. A note on the circuit complexity of PP. ECCC TR04-056, 2004.

[40] C. B. Wilson. Relativized circuit complexity. J. Comput. Sys. Sci., 31(2):169–181, 1985.

8 Appendix: A Really Big Crunch

By slightly modifying the construction of Theorem 2, we can resolve two other open questions of Fortnow.

Theorem 12

(i) There exists an oracle relative to which PNP = PEXP, and indeed PNP = PNPPEXP

.

(ii) There exists an oracle relative to which ⊕P = PEXP.

Proof.

(i) In the oracle construction of Theorem 2 dealing with all n simultaneously, make the following simple
change. Whenever a row R gets encoded, record the “current time” t as a prefix to that row. In
other words, the oracle A will now take two kinds of queries: those of the form 〈R, i, x〉 as before, and
those of the form 〈R, j〉 for an integer j ≥ 0. Initially A (R, j) = 0 for all R, j. At any step of the
iterative procedure, let t be the number of encoding steps that have already occurred. Then call the
pair 〈i, x〉 “sensitive” to row R, if there exists an oracle A′ such that

19

• A′ disagrees with A only in row R,

• Mi,x (A′) 6= Mi,x (A), and

• as we range over j, the A′ (R, j)’s encode the binary expansion of t+ 1.

Clearly the proof of Theorem 2 still goes through with this change. For let ` = dlog2 ne. Then
as before, whenever there does not exist a row R of the form

(
r∗1 , . . . , r

∗
`−1, r`

)
to which no 〈i, x〉 is

sensitive, we can encode a subset of those rows so as to double Q (A). Since 2−2O(n) ≤ Q (A) ≤ 22O(n)

for all A, this process will halt after at most 2O(n) steps, meaning that t will never require more than
O (n) bits to represent. Indeed, this is true even if we are dealing with PTIME (2n) machines, rather
than PTIME

(
nlog n

)
machines.

Now consider a PTIMEA (2n) machine Mi. We can simulate Mi in DTIME
(
n2

)NPA

, as follows. Given

an input x ∈ {0, 1}n
, first find the unique row R =

(
r1, . . . , rdlog2 ne

)
for which t is maximal—in other

words, the last such row to have been encoded. This requires O (n) adaptive queries to the NP oracle,
each of size O (n). Then output A (R, i, x).

It follows that DTIME
(
n2

)NP
= PE relative to A, and (by padding) that PNP = PEXP. Indeed, once

the PNP machine finds the r`’s, it can use them to decide an arbitrary language in PNPPEXP

, which is

why PNP = PNPPEXP

as well.

(ii) In this case the change to Theorem 2 is even simpler. Whenever we encode a row R = (r1, . . . , r`),
instead of setting At (R, i, x) := Mi,x (At−1) for all i, x, we now set

At (R, i, x) := Mi,x (At−1) ⊕
⊕

R′ 6=R

At (R′, i, x) ,

where the sum mod 2 ranges over all R′ = (r′1, . . . , r
′
`) other than R itself. Then when we are done,

by assumption A will satisfy

Mi,x (A) =
⊕

R=(r1,...,r`)

A (R, i, x)

for all n ≤ 2`, i ∈ {1, . . . , n}, and x ∈ {0, 1}n. So to simulate a PE machine Mi on input x,
a ⊕DTIME (n) machine just needs to return the above sum. Hence ⊕DTIMEA (n) = PEA, and
⊕PA = PEXPA by padding.

20

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

