
Linear Advice for Randomized Logarithmic Space

Lance Fortnow
Department of Computer Science

University of Chicago
Chicago, IL 60637

fortnow@cs.uchicago.edu

Adam R. Klivans∗

Department of Computer Science

The University of Texas at Austin
Austin, TX 78712

klivans@cs.utexas.edu

April 14, 2005

Abstract

We show that RL ⊆ L/O(n), i.e., any language computable in randomized logarith-
mic space can be computed in deterministic logarithmic space with a linear amount of
non-uniform advice. To prove our result we show how to take an ultra-low space walk
on the Gabber-Galil expander graph.

∗Work done while at TTI-Chicago.

1

Electronic Colloquium on Computational Complexity, Report No. 42 (2005)

ISSN 1433-8092

1 Introduction

The question of whether RL, randomized logarithmic space, can be simulated in L, determin-
istic logarithmic space, remains a central challenge in complexity-theory. The best known
deterministic simulation of randomized logarithmic space is due to Saks and Zhou [15] who,
building on seminal work due to Nisan [12], proved that BPL ⊆ L3/2. Recently in a break-
through result, Reingold [13] proved that the s-t connectivity problem on undirected graphs
could be solved in L; this implies SL, the symmetric analogue of NL, equals L. The possibility
of extending his techniques to prove RL = L has subsequently been investigated by Reingold,
Trevisan and Vadhan [14].

1.1 Randomness and Non-Uniformity

The relationship between randomness and non-uniformity is a topic of fundamental impor-
tance in complexity theory. Derandomizing complexity classes frequently involves a con-
sideration of the smallest non-uniform complexity class or circuit family which contains a
particular randomized class. Adleman’s well known result on BPP [1], for example, shows
that BPP can be computed by polynomial-size circuits. Goldreich and Wigderson [7] have
recently proved an interesting relationship between the non-uniform complexity of RL and
the existence of deterministic algorithms for RL which work on almost every input. More
specifically they showed that if RL is computable in log-space with o(n) bits of non-uniform
advice and furthermore most of the advice strings are “good,” (i.e. result in a correct sim-
ulation of the RL machine by the advice-taking deterministic logarithmic-space machine)
then there exists a deterministic log-space simulation of RL which errs on a o(1) fraction of
inputs for every input length. In other words, finding a log-space simulation with o(n) bits
of non-uniform advice is a step towards showing that RL is “almost” in L.

1.2 Our Results

We prove that every language in RL can be computed in L with O(n) bits of additional
non-uniform advice:

Theorem 1 Every language in RL can be computed by a deterministic, log-space Turing
machine which receives O(n) bits of non-uniform advice on a two-way read-only input tape.

In Section 3, we state as a corollary of Nisan’s well-known pseudo-random generator for
space bounded computation the inclusion RL ⊆ L/O(n logn). What is more difficult is to
show that RL ⊆ L/O(n). To do this we present a non-standard, space-efficient walk on an
expander graph when the edge labels are presented on a two-way read-only input tape:

Theorem 2 There exists an O(log(n))-space algorithm for taking a walk of length O(n) on
a particular constant-degree expander graph with 2O(n) nodes if the algorithm has access to
an initial vertex and edge labels describing the walk via a two-way read-only advice tape.

2

Note that a naive implementation of a walk on a graph of size 2O(n) would require O(n)
space just to remember the current vertex label! Our main tool is a Gabber-Galil graph [6]
in conjunction with log-space algorithms for converting to and from Chinese Remainder
Representations of integers [4].

We can then apply the above walk on an expander graph to amplify the success probability
of the RL algorithm using only O(n) random bits and O(log n) space. Using Adleman’s
trick [1] we can conclude that there must exist a good advice string of length O(n) which
works for all inputs.

1.3 Related Work

Bar-Yossef, Goldreich, and Wigderson [3] initiated a study of on-line, space-efficient gener-
ation of walks on expander graphs. Their work shows how to amplify a space S algorithm
using r random bits with error probability 1/3 to an O(kS)-space algorithm that uses r+O(k)
random bits and has error probability εΩ(k) for any constant ε > 0. Note, however, that we
need ε < 2−n and hence must take k ≥ n. The space of their resulting algorithm will then
be Ω(nS), which is much too large for our application here. Our savings comes from the
fact that we have an initial vertex and the edge labels of a particular walk on an expander
graph on an advice tape– we thus do not need to remember an initial vertex or the edge
labels. Our work is similar to Bar-Yossef et al. in that we also make use of the simple edge
relations of Gabber-Galil type graphs.

2 Preliminaries

Karp and Lipton [9] give a general definition of complexity classes with advice.

Definition 3 (Karp-Lipton) For a complexity class C, the class C/f(n) is the set of lan-
guages A such that there exists a language B in C and a sequence of strings a0, a1, . . ., with
|an| = f(n) and for all x in A,

x ∈ A ⇔ (x, a|x|) ∈ B.

Our main result shows that for every language A in RL there is a constant c such that A is
in L/cn. By Definition 3, the logarithmic space machine accepting B will have access to the
advice as part of the 2-way read-only input tape.

To achieve our result we start with pseudorandom generators for space-bounded compu-
tations.

Definition 4 A generator G : {0, 1}m → {0, 1}n is called a pseudorandom generator for
space(S) with parameter ε if for every randomized space(S) algorithm A and every input y
we have

|Pr(A(y) accepts) − Pr(A(G(x)) accepts)| ≤ ε

where y is chosen uniformly at random in {0, 1}n and x uniformly in {0, 1}m.

3

We will also use expander graphs.

Definition 5 An graph G = (V, E) is an ε-expander if there exists a constant ε > 0 such
that for all U such that |U | ≤ |V |/2, |U ∪N(U)| ≥ (1+ε)|U | where N(U) is the neighborhood
of U . A set of graphs {G1, G2, . . .} is a family of constant-degree expander graphs if there
are fixed constants d and ε such that for all n, Gn has n vertices, the degree of every vertex
of Gn is d and Gn is an ε-expander.

We will use the now well-known fact that explicitly constructible constant-degree ex-
pander graphs can be used to reduce the error of randomized decision procedures:

Theorem 6 ([5, 8]) Let L ∈ BPP be decided by a probabilistic turing machine M using
r(n) = nO(1) random bits. Then there exists a probabilistic polynomial-time algorithm for
deciding L using O(r(n) + t) random bits with error probability 2−t. The algorithm chooses
a random vertex of an expander graph and walks for t steps substituting the labels of the
vertices in place of the truly random bits M would have used.

For details on the history, constructions, spectral theory, and applications of expander
graphs see Motwani and Raghavan [11] or the lecture notes for a course by Nati Linial and
Avi Wigderson [10].

3 Starting Point: Nisan’s Generator

We will use Nisan’s well-known generator for space bounded computation [12] as the starting
point for the proof of our main result:

Theorem 7 (Nisan) For any R and S there exists a pseudorandom generator

G : {0, 1}O(S log(R/S)) → {0, 1}R

for space(S) with error parameter 2−S. Furthermore, if the seed is written on a two-way
read-only tape, the ith bit of the output of the generator can be computed in O(S) space.

Corollary 8 For any language A in RL there is a probabilistic algorithm solving L with
one-sided error 1/n using logarithmic space and O(log2 n) random bits on a 2-way read-only
tape.

Fix an RL language A. To prove the existence of a good advice string of length O(n log n)
for A we first apply Corollary 8 to get a randomized algorithm using O(log2 n) random bits
that for any fixed input x in A results in an answer which is correct with probability at least
1 − 1/n and always rejects on inputs not in A.

Running the algorithm 2n/(log n) times independently results in a randomized algorithm
with error probability strictly less than 2−n. Thus, by a union bound over all inputs, there
must exist a sequence of n seeds to G which results in a correct classification of any input x.

4

Hence the total advice string is of length O(n logn). Now assume that a log-space machine
is given access to this advice string on a read-only (multiple access) input tape. Since the
ith bit of Nisan’s generator is computable in log-space, we can carry out Adleman’s trick in
logarithmic space. Thus, as a corollary to Nisan’s generator we have the following:

Corollary 9 RL ⊆ L/O(n logn).

We wish to reduce the size of the advice to O(n) bits. Note that any attempt to construct
an advice string using only Adleman’s trick cannot hope to achieve an advice string of length
less than n. This is because using k bits of randomness in a black-box fashion can only drive
the error probability of the algorithm down to 2−k (without derandomizing the algorithm
altogether).

4 Space-Efficient Walks on Gabber-Galil Graphs

Consider a language L ∈ RL and its associated randomized Turing machine M . A now
standard approach for derandomizing algorithms [5, 8] is to “re-cycle” random bits via a
walk on a suitable expander graph. For example, if we have a pseudorandom generator G
with seed length s, and a suitable constant degree expander graph E with 2s vertices, we
can use the following randomness-efficient algorithm to compute L:

• Associate each vertex of the graph with a seed of G (note each vertex has a label of
length s).

• Use s random bits to choose an initial vertex of E and walk randomly (by choosing t
random edge labels) for t more steps to select t more seeds for G.

• Simulate L using the output of the generator G instead of truly random bits. Do this
t times independently and accept if any of the t simulations result in accept.

This algorithm uses O(s+t) random bits and requires space O(s) (plus the space required
to compute a neighbor of the current vertex). Applying Theorem 6 we see that the error
probability of this algorithm is at most 2−t.

We would like to use the above algorithm where the vertices of an expander graph cor-
respond to seeds for Nisan’s pseudorandom generator. Unfortunately, to simulate languages
in RL using the output of Nisan’s generator the seed must be of size Ω(log2 n), which means
that the above algorithm will use at least Ω(log2 n) space just to keep track of the current
vertex. As such, we will have to come up with a very space-efficient method for traversing
an expander graph. To do this we will need to use the following result due to Gabber and
Galil [6]:

Theorem 10 (Gabber-Galil) Let Zm be the integers modulo m and let E be a graph with
vertex set Zm × Zm and edge relations (x, y) ⇒ (x, y) ∪ (x, x + y) ∪ (x, x + y + 1) ∪ (x +
y, y) ∪ (x + y + 1, y). (i.e. each vertex is connected to 5 other vertices via the above simple
arithmetic operations mod m). Then E is an expander graph with m2 vertices and degree 5.

5

Let m = Πk
i=1pi where each pi is a distinct prime. Then we can view each vertex in the

above expander graph via the Chinese remainder theorem as (a1, . . . , ak)× (b1, . . . , bk) where
each ai, bi ∈ Zpi

. Since we are interested in representing seeds of length O(log2 n), we can
think of m as the product of O(log n) primes, each of bit-length O(log n).

Our idea is that to walk on this graph, we need only keep track of an index, and two
residues a, b ∈ Zp for p a prime of bit-length at most O(log n). That is to say, we will store
a residue of the Chinese Remainder Representation of m, rather than the integer m itself,
and we can update the current residue during each step of the walk in log-space:

Lemma 11 Let E be the Gabber-Galil graph Zm × Zm as above where m = Πa log n
i=1 pi, the

product of a log n primes (for sufficiently large a) each of bit length at most O(log n). There
exists an O(log n) space algorithm W such that on input s, a starting vertex of E, a sequence
of edge labels t = (t1, . . . , t`), and 1 ≤ i ≤ a log n, a residue index, W outputs the ith residues
of the two integers representing the vertex reached by starting at s and traversing the edge
labels indicated by t.

Proof: Assume that s can be represented via the Chinese Remainder Theorem as
(a1, . . . , a`) × (b1, . . . , a`) where each ai, bi has bit-length O(log n). The edge relations of
the Gabber-Galil graph involve only an addition and may be carried out component-wise.
For example, if we are currently storing ai and bi and the next edge label tj is equal to 1,
then the new components we store are ai and ai + bi mod pi. Hence we need only remember
the two current residues, a prime pi, and the number of steps we have already taken. This
requires O(log n) space.

Thus, although we cannot store an entire vertex of our expander graph, we can compute
residues of vertices explored by a random walk on the graph. Unfortunately, Nisan’s gener-
ator requires a seed described by the original representation of vertices of the Gabber-Galil
graph. As such we will require a space-efficient routine for computing the ith bit of an integer
m if we are only given access to its residues modulo distinct primes. We will apply a recent
space-efficient algorithm for coverting to and from the Chinese Remainder Representation
due to Chiu, Davida and Litow [4]:

Theorem 12 (Chiu-Davida-Litow) Let a1, . . . , a` be the Chinese Remainder Represen-
tation of an integer m with respect to primes p1, . . . , p`. There exists a log-space algorithm
D such that on input a1, . . . , a`, primes p1, . . . , p`, and index i, D outputs the ith bit of the
binary representation of the integer m.

For a further discussion of space-efficient, uniform algorithms for arithmetic operations
such as division and converting from the Chinese Remainder Representation see Allender et
al. [2].

5 Putting It All Together

We can combine these space-efficient tools to prove our main result:

6

Theorem 13 RL ⊆ L/O(n)

Proof:
From the discussion at the beginning of Section 4, we know that for polynomial-time

advice taking Turing machines simulating RL, for every input length n there must exist a
good advice string A(n) of length O(n) consisting of an initial vertex on a suitable Gabber-
Galil expander graph with nO(log n) vertices and a sequence of 2n edge labels. Let us assume
that the vertices of the graph equal Zm × Zm where m is a product of O(log n) primes
p1, . . . , pk each of bit length O(log n) (such primes are guaranteed to exist by the Prime
Number Theorem). Augment our advice string A(n) with primes p1, . . . , pk. Call this advice
string A′(n).

Our claim is that A′(n) is a good advice string for a log-space Turing machine M which
computes the above simulation of RL using the following procedures:

1. Simulate the RL machine 2n times using the output from Nisan’s generator on seeds
corresponding to the vertices reached by the walk given on the advice string. If any
simulation results in accept then accept.

2. When Nisan’s generator requires a bit from the seed, walk on the Gabber-Galil graph
to obtain the ith bit of the binary representation of that vertex.

3. When the ith bit of a vertex from the graph is required, apply the Chinese Remainder
Representation algorithm given from Theorem 12 and use Lemma 11 to obtain any
residue required by the CRR algorithm of Theorem 12.

Note that each procedure can be performed in log-space, and the entire algorithm is a
composition of three log-space procedures. Therefore, the entire simulation carried out by
M can be performed in log-space. We use the fact that the initial vertex and edge labels
are written on a tape in a critical way: whenever the algorithm needs a bit of the ith vertex
label from the walk on the graph, we can move our tape head back to the initial vertex and
walk from the beginning for i steps.

We note here that our space-efficient walk can be used on graphs with 2n vertices (rather
than O(nlog n) vertices), as we can represent each vertex as the product of more than just
O(log n) primes.

6 Connectivity for Expander Graphs in NC
1?

We conclude with the following question: is the undirected connectivity problem for expander
graphs in NC

1? We can give an NC
1 algorithm for walking on the Gabber-Galil graphs used

for our main theorem (assuming the edge labels are on an input tape). Is it possible that for
a general expander graph connectivity is in RNC

1? Such a result would lead to the intriguing
possibility that more general connectivity problems are not only in L but in NC

1.

7

7 Acknowledgments

Thanks to Jaikumar Radhakrishnan and Rahul Santhanam for helpful discussions.

References

[1] L. Adleman. Two theorems on random polynomial time. In Proceedings of the 19th
IEEE Symposium on Foundations of Computer Science, pages 75–83. IEEE, New York,
1978.

[2] E. Allender, D. Barrington, and W. Hesse. Uniform circuits for division: Consequences
and problems. In Annual IEEE Conference on Computational Complexity, volume 16,
2001.

[3] Z. Bar-Yossef, O. Goldreich, and A. Wigderson. Deterministic amplification of space-
bounded probabilistic algorithms. In Proceedings of the 14th IEEE Conference on Com-
putational Complexity, pages 188–199. IEEE, New York, 1999.

[4] A. Chiu, G. Davida, and B. Litow. Division in logspace-uniform NC1. RAIRO - Theo-
retical Informatics and Applications, 35:259–275, 2001.

[5] A. Cohen and A. Wigderson. Dispensers, deterministic amplification, and weak random
sources (extended abstract). In Proc. 30th Ann. IEEE Symp. on Foundations of Com-
puter Science, pages 14–25, Research Triangle Park, NC, October 1989. IEEE Computer
Society Press.

[6] O. Gabber and Z. Galil. Explicit constructions of linear-sized superconcentrators. Jour-
nal of Computer and System Sciences, 22(3):407–420, June 1981.

[7] O. Goldreich and A. Wigderson. Derandomization that is rarely wrong from short
advice that is typically good. In Proceedings of the 6th International Workshop on Ran-
domization and Approximation Techniques, volume 2483 of Lecture Notes in Computer
Science, pages 209–223. Springer, Berlin, 2002.

[8] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proceedings of
the 30th IEEE Symposium on Foundations of Computer Science, pages 248–253. IEEE,
New York, 1989.

[9] R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity
classes. In Proceedings of the 12th ACM Symposium on the Theory of Computing, pages
302–309. ACM, New York, 1980.

[10] N. Linial and A. Wigderson. Lecture notes on expander graphs and their applications.
http://www.math.ias.edu/˜boaz/ExpanderCourse/index.html, 2002.

8

[11] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, 1997.

[12] N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[13] O. Reingold. Undirected st-connectivity in log-space. In Proceedings of the 36th ACM
Symposium on the Theory of Computing. ACM, New York, 2005. To appear.

[14] O. Reingold, L. Trevisan, and S. Vadhan. Pseudorandom walks in biregular graphs
and the RL vs. L problem. Technical Report TR05-022, Electronic Colloquium on
Computational Complexity, 2005.

[15] M. Saks and S. Zhou. BPHSPACE(S) ⊆ DPSPACE(S3/2). Journal of Computer and
System Sciences, 58(2):376–403, April 1999.

9

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

