
Pseudorandom Bits for Constant Depth Circuits with

Few Arbitrary Symmetric Gates

Emanuele Viola∗

Division of Engineering and Applied Sciences
Harvard University

Cambridge, MA 02138
viola@eecs.harvard.edu

April 2, 2005

Abstract

We exhibit an explicitly computable ‘pseudorandom’ generator stretching l bits
into m(l) = lΩ(log l) bits that look random to constant-depth circuits of size m(l) with
log m(l) arbitrary symmetric gates (e.g. PARITY, MAJORITY). This improves on
a generator by Luby, Velickovic and Wigderson (ISTCS ’93) that achieves the same
stretch but only fools circuits of depth 2 with one arbitrary symmetric gate at the top.
Our generator fools a strictly richer class of circuits than Nisan’s generator for constant
depth circuits (Combinatorica ’91) (but Nisan’s generator has a much bigger stretch).

In particular, we conclude that every function computable by uniform poly(n)-
size probabilistic constant depth circuits with O(log n) arbitrary symmetric gates is in

TIME
(

2no(1)
)

. This seems to be the richest probabilistic circuit class known to admit

a subexponential derandomization.
Our generator is obtained by constructing an explicit function f : {0, 1}n → {0, 1}

that is very hard on average for constant-depth circuits of size nε·log n with ε log2 n

arbitrary symmetric gates, and plugging it into the Nisan-Wigderson pseudorandom
generator construction (FOCS ’88). The proof of the average-case hardness of this
function is a modification of arguments by Razborov and Wigderson (IPL ’93), and
Hansen and Miltersen (MFCS ’04), and combines H̊astad’s switching lemma (STOC
’86) with a multiparty communication complexity lower bound by Babai, Nisan and
Szegedy (STOC ’89).

∗Research supported by NSF grant CCR-0133096, US-Israel BSF grant 2002246, ONR grant N-00014-
04-1-0478.

1

Electronic Colloquium on Computational Complexity, Report No. 43 (2005)

ISSN 1433-8092

1 Introduction

A pseudorandom generator G : {0, 1}l → {0, 1}m is an efficient procedure that stretches l
input bits into m � l output bits such that the output distribution of the generator fools
small circuits. That is, for every circuit C of size m we have

∣

∣

∣
Pr

x∈{0,1}l
[C(G(x)) = 1] − Pr

x∈{0,1}m
[C(x) = 1]

∣

∣

∣
≤ 1

m
.

Pseudorandom generators have found a striking variety of applications in Complexity
Theory, most notably to derandomize probabilistic algorithms.

Starting with the seminal work of Nisan and Wigderson [NW], a series of results (e.g.
[BFNW, STV, SU, Uma]) show how to construct pseudorandom generators starting from an
explicit function that requires circuits of superpolynomial size. However, no such function
is known to exist.

On the other hand, pseudorandom generators that fool restricted kinds of circuits, such
as constant-depth circuits with unbounded fan-in, are already very interesting. They also
have a large variety of applications (e.g. [NW, HVV]) and are central to understanding
the power of randomness in restricted classes of algorithms. While there has been exciting
progress in constructing explicit functions that require superpolynomial size constant-depth
circuits with certain kinds of gates (e.g. [H̊as, Raz, Smo, HG, RW, HM]), no explicit function
is known to require superpolynomial size constant-depth circuits with MAJORITY gates (cf.
[RR]). This is an obstacle to construct pseudorandom generators, as most constructions need
such a function. This need is due to the fact that the reductions in the proofs of correctness
of these constructions use (a polynomial number of) MAJORITY gates (cf. [Agr, Vio]).

But when starting from an average-case hard function, the reduction in the proof of
correctness of the Nisan-Wigderson construction [NW] does not require MAJORITY gates
(where a function f : {0, 1}n → {0, 1} is average-case hard if polynomial-size circuits fail to
compute f with probability at least 1/2 − 1/nω(1) over random input). Thus, one can plug
average-case lower bounds into the Nisan-Wigderson construction to get a generator that
fools small constant-depth circuits. This approach is used in a celebrated work by Nisan
[Nis] (that actually predates the more general construction in [NW]) where he exhibits a

generator G : {0, 1}l → {0, 1}2lΩ(1)

that fools small AC0 circuits (i.e. constant-depth circuits
with AND and OR gates). This generator is based on the fact that PARITY is very average-
case hard for small AC0 circuits [H̊as].

Subsequently, Luby, Velickovic and Wigderson (Theorem 2 in [LVW]) build a generator

G : {0, 1}l → {0, 1}lΩ(log l)
that fools small SYM ◦ AND circuits, i.e. depth 2 circuits with one

arbitrary symmetric gate at the top and AND gates at the bottom. By arbitrary symmetric
gate we mean a gate that computes an arbitrary function whose value depends only on the
number of input bits being 1, important examples being PARITY and MAJORITY. This
generator is based on the fact that the ‘generalized inner product’ function is average-case
hard for small SYM ◦ AND circuits with small bottom fan-in [BNS, HG].

The above two generators ([Nis] and Theorem 2 in [LVW]) fool two incomparable classes
of circuits (i.e. small AC0 circuits and small SYM ◦ AND circuits). In this work we exhibit
a generator that fools a class of circuits strictly richer than both of them, namely small
constant-depth circuits with few arbitrary symmetric gates.

2

1.1 Our Results

In this paper we exhibit the following generator.

Theorem 1. For every constant d there is a constant ε > 0 such that for every l there is a
generator G : {0, 1}l → {0, 1}m, where m = m(l) := lε log l, such that for every circuit C of
size m and depth d with logm(l) arbitrary symmetric gates, we have:

∣

∣

∣

∣

Pr
x∈{0,1}m

[C(x) = 1] − Pr
x∈{0,1}l

[C(G(x)) = 1]

∣

∣

∣

∣

≤ 1

m
,

and given x ∈ {0, 1}l, i ≤ m, we can compute the i-th output bit of G(x) in time poly(l).

The generator in Theorem 1 improves on the generator by Luby, Velickovic and Wigderson
(Theorem 2 in [LVW]) that achieves the same stretch (up to a different constant ε) but only
fools circuits of depth 2 (as opposed to any constant depth) with one symmetric gate at the
top. (We elaborate more on the difference between the two generators in Section 6.) The
generator in Theorem 1 also fools a strictly richer class of circuits than Nisan’s generator that
fools constant depth circuits [Nis]. (However, Nisan’s generator has a much bigger stretch:

it stretches l bits to 2lΩ(1)
bits.)

As a standard consequence of Theorem 1 we obtain the following subexponential de-
randomization of probabilistic constant depth circuits with a constant number of arbitrary
symmetric gates. This seems to be the richest probabilistic circuit class known to admit
a subexponential derandomization. (See, e.g., [NW] for the connection between generators
and derandomization.)

Corollary 2. Let a function f be computed by a uniform family of probabilistic poly(n)-size
constant depth circuits with O(log n) arbitrary symmetric gates. Then f can be computed in

deterministic time exp(2O(
√

log n)) = 2no(1)
.

1.2 Techniques

The generator in Theorem 1 is obtained by plugging into the Nisan-Wigderson pseudorandom
generator construction [NW] a function that is very hard on average for ‘small’ constant-
depth circuits with ‘few’ arbitrary symmetric gates (cf. Theorem 3 below). Here a simple and
crucial observation is that the reduction in the proof of correctness of the Nisan-Wigderson
generator (essentially) does not increase the number of arbitrary symmetric gates.

Given our average-case hardness result (Theorem 3), the construction of our generator is
simpler than the construction of the (weaker) generator by Luby, Velickovic and Wigderson
(Theorem 2 in [LVW]) that uses more involved combinatorial arguments than those in [NW].
These more involved combinatorial arguments were probably used because the generator in
[LVW] builds on a function that is hard on average for circuits of depth 2 (as opposed to any
constant depth), and thus one cannot use directly the Nisan-Wigderson construction [NW]
since the reduction in its proof of correctness increases the depth by 1.

We now state our average-case hardness result.

3

Theorem 3. There is a function f : {0, 1}∗ → {0, 1} computable in polynomial time such
that for every constant d there is a constant ε > 0 such that for every n and every circuit C
of size nε·log n, depth d and with ε log2 n arbitrary symmetric gates, the following holds:

Pr
x∈{0,1}n

[C(x) 6= f(x)] ≥ 1/2 − 1/nε·log n.

We now explain the techniques involved in proving Theorem 3. To simplify the discus-
sion we first focus on how to prove an average-case hardness result for ‘small’ constant-depth
circuits with one arbitrary symmetric gate at the top, i.e. ‘small’ SYM ◦ AC0 circuits (The-
orem 4). The extension to circuits with more arbitrary symmetric gates is deferred to the
paragraph “Circuits with more Arbitrary Symmetric Gates” below. We obtain our average-
case hardness result for ‘small’ SYM ◦ AC0 circuits through a modification of previous lower
bounds. We now discuss these previous lower bounds, then we discuss why they are not
sufficient for our purposes, and then we sketch the proof of our average-case hardness result
for ‘small’ SYM ◦ AC0 circuits.

Previous Lower Bounds: Babai, Nisan and Szegedy [BNS] prove that the “generalized
inner product” function (i.e., GIPn,s(x) :=

⊕

i≤n

∧

j≤s xi,j) is very hard on average for mul-
tiparty communication complexity protocols among ‘few’ parties that communicate ‘little’.

H̊astad and Goldmann [HG] notice that any function computed by a ‘small’ depth 2 cir-
cuit with an arbitrary symmetric gate of unbounded fan-in at the top and (arbitrary) gates
of ‘small’ fan-in at the bottom can be computed by a multiparty communication complex-
ity protocol among ‘few’ parties communicating ‘little’. Thus, by the above result [BNS],
they obtain that GIP is average-case hard for that kind of circuits. Now, by the so-called
“ε-discriminator lemma”1 of Hajnal et. al. [HMP+] they conclude that GIP cannot be com-
puted, in the worst-case, by ‘small’ depth 3 circuits with one majority gate of unbounded
fan-in at the top, arbitrary symmetric gates of unbounded fan-in in the middle, and (arbi-
trary) gates of ‘small’ fan-in at the bottom.

Razborov and Wigderson [RW] eliminate the constrain on the bottom fan-in: they exhibit
a new function RW that cannot be computed, in the worst-case, by ‘small’ depth 3 circuits
with one majority gate at the top, symmetric gates in the middle, and AND gates at the
bottom, where all the gates have unbounded fan-in (MAJ ◦ SYM ◦ AND circuits). Their
function RW is obtained from GIP by replacing each input variable with a parity function,
i.e. RW (x) :=

⊕

i≤n

∧

j≤log n

⊕

k≤n xi,j,k.
To explain their argument we introduce restrictions [FSS]. A restriction on m variables

x1, x2, . . . , xm is a map ρ : {x1, x2, . . . , xm} → {0, 1, ∗}. For a circuit C we denote by C|ρ the
circuit we get by doing the substitutions prescribed by ρ, followed by all obvious cancellations
made possible by applying ρ. The input variables of C|ρ are the variables which were given
the value * by ρ.

The argument in [RW] goes as follows: suppose that RW is computable by a ‘small’
MAJ ◦ SYM ◦ AND circuit C. Then there is a restriction ρ that accomplishes simultaneously
two things: (1) C|ρ has ‘small’ bottom fan-in and (2) C|ρ is still computing GIP as a

1This lemma states that if a function is computed by a ‘small’ circuit with a MAJORITY gate at the
top, then some input circuit to the MAJORITY gate computes the function ‘well’ on average.

4

subfunction. Note that, by definition of RW and by the nature of parity, (2) happens
whenever for every i, j there is k such that ρ(xi,j,k) = ∗. But (1) and (2) contradict the
above result by H̊astad and Goldmann.

Finally, Hansen and Miltersen [HM] observed that RW actually cannot be computed by
‘small’ circuits of any constant depth with one majority gate at the top, and one layer of
arbitrary symmetric gates immediately below it, where all the gates have unbounded fan-in
(MAJ ◦ SYM ◦ AC0 circuits). The argument in [HM] goes as follows: suppose that RW is
computable by a ‘small’ MAJ ◦ SYM ◦ AC0 circuit C. Then there is a restriction ρ that ac-
complishes simultaneously two things: (1’) C|ρ is equivalent to a ‘small’ MAJ ◦ SYM ◦ AND
circuit and (2’) C|ρ is still computing RW on an input of polynomially related size. (1’) is
obtained through H̊astad’s switching lemma [H̊as], and for (2’) they show that for every i, j
there are ‘many’ k’s such that ρ(xi,j,k) = ∗. But (1’) and (2’) contradict the above result by
Razborov and Wigderson.

Why Previous Lower Bounds Are Not Sufficient To Our Purposes: The main
problem with these previous lower bounds is that they only give a function that is worst-
case hard for SYM ◦ AC0 circuits, while as explained before we need a function that is
average-case hard. In fact, the choice of parameters in the definition of RW implies that
Prx[RW (x) = 0] = 1/2+Ω(1), and thus RW cannot be average-case hard (since the constant
size circuit that always outputs ‘0’ computes the function fairly well on average). Moreover
the choice of parameters for the restrictions in [RW] does not guarantee that the reduction
holds with high probability, which is needed to establish average-case hardness.

Proof Sketch of our Average-Case Hardness Result for SYM ◦ AC0 Circuits: We
define a function f (similar to RW , but with a different choice of parameters), and we show
that f is average-case hard for SYM ◦ AC0 circuits. Our argument simplifies the previous
ones and goes as follows: Suppose that C is a small SYM ◦ AC0 circuit computing f . We
argue that, with high probability

(

1 − n−Ω(log n)
)

over the choice of a random restriction ρ,
both the following two events happen:

• Event E1 := the function computed by C|ρ is computable by a multiparty communi-
cation complexity protocol among ‘few’ parties communicating ‘little’.

• Event E2 := C|ρ is computing GIP as a subfunction.

To show E1 we use H̊astad’s switching lemma to argue that with high probability over ρ,
C|ρ is equivalent to a ‘small’ depth-2 circuit with a symmetric gate at the top (of unbounded
fan-in) and AND gates of ‘small’ fan-in at the bottom, and then use H̊astad and Goldmann’s
connection [HG] between these circuits and multiparty communication complexity protocols
(cf. paragraph “Previous Lower Bounds”). Now, when ρ satisfies both E1 and E2 we have
that Pry[C|ρ(y) 6= GIP(y)] ≥ 1/2 − n−Ω(log n) by the multiparty communication complexity
lower bound by Babai, Nisan and Szegedy [BNS]. Since we can think of a random input x
as being generated by first choosing a random restriction ρ and then a random input y for

5

the *’s of ρ (so that C(x) = C|ρ(y)), we have that

Pr
x

[C(x) 6= f(x)]

≥ Pr
y

[

C|ρ(y) 6= GIP(y)
∣

∣

∣
ρ satisfies E1 and E2

]

· Pr
ρ

[

ρ satisfies E1 and E2

]

≥
(

1/2 − n−Ω(log n)
)

·
(

1 − n−Ω(log n)
)

= 1/2 − n−Ω(log n).

We show that the above argument goes through for SYM ◦ AC0 circuits C of size nΩ(log n)

and this proves our average-case hardness result for SYM ◦ AC0 circuits.

Circuits with more Arbitrary Symmetric Gates: Before discussing how to extend
our techniques to get an average-case hardness result for ‘small’ constant-depth circuits with
ε log2 n arbitrary symmetric gates, we would like to mention two other approaches that give
weaker bounds. Beigel (Theorem 5.1 in [Bei]) shows that for every circuit of size S and depth
d with σ arbitrary symmetric gates there is another circuit of size S2σ+1 and depth d + 1
with one arbitrary symmetric gate at the top computing the same function. Combining
this with our average-case hardness result for SYM ◦ AC0 circuits one obtains an average-
case hardness result for constant-depth circuits of size nε·log n with a constant number of
arbitrary symmetric gates. But this approach gives weaker bounds (than nΩ(log n)) if the
circuits have σ = ω(1) arbitrary symmetric gates; and it gives nothing at all if the circuits
have σ = log log n arbitrary symmetric gates.

Chattopadhyay and Hansen [CH] prove a worst-case hardness result for constant-depth
circuits of size nε·log n with ε log2 n arbitrary symmetric gates. They obtain this result inde-
pendently from ours. Subsequently to our results for SYM ◦ AC0 circuits, they also prove an
average-case hardness result for constant-depth circuits of size nε·log n with fewer arbitrary
symmetric gates, namely ε log n.

Inspired by the work of Chattopadhyay and Hansen, we prove an average-case hardness
result for constant-depth circuits of size nε·log n with ε log2 n arbitrary symmetric gates (The-
orem 3). The proof of our result has the same structure of our result for SYM ◦ AC0 circuits
discussed in the previous paragraph. The only difference is proving that, if C is a ‘small’
constant-depth circuit with ε log2 n arbitrary symmetric gates, then with high probability
over a random restriction ρ the function computed by C|ρ is computable by a multiparty
communication complexity protocol P among ‘few’ parties communicating ‘little’ (cf. event
E1 in the previous paragraph). The idea is to let the protocol P compute the outputs of each
arbitrary symmetric gate in order. Specifically, first fix a topological order of the arbitrary
symmetric gates (the simple order induced by reading the gates level by level from the inputs
to the output node will do). Now consider the SYM ◦ AC0 subcircuit C1 whose root is the
first arbitrary symmetric gate in this order. We know that with high probability over the
restriction ρ, the function computed by C1|ρ is computable by a multiparty communication
complexity protocol P1 exchanging ‘few’ bits (cf. event E1 in the previous paragraph). Our
protocol P first simulates P1 to determine the output b1 of C1|ρ. Then it considers the
SYM ◦ AC0 circuit C2 whose root is the second arbitrary symmetric gate, and where the
first arbitrary symmetric gate is replaced with the constant b1. Again, we argue that the

6

function computed by C2|ρ is computable by a multiparty communication complexity pro-
tocol P2 exchanging ‘few’ bits. Our protocol P now simulates P2 to determine the output
b2 of C2|ρ. We continue in this way until all the arbitrary symmetric gates are computed.
Assuming w.l.o.g. that the output gate of the circuit is included in the arbitrary symmetric
gates, the protocol P computes C|ρ.

1.3 Organization

This paper is organized as follows. In Section 2 we fix some notation. In Section 3 we show
how our average-case hardness result (Theorem 3) implies our generator (Theorem 1). In
Section 4 we prove our average-case hardness result for SYM ◦ AC0 circuits. In Section 5 we
extend this to our average-case hardness result for constant-depth circuits with few arbitrary
symmetric gates, thus proving Theorem 3. In Section 6 we elaborate on why our generator
improves on the generator by Luby, Velickovic and Wigderson (Theorem 2 in [LVW]). The
proof of a result in this last section is given in Appendix A. In Section 7 we discuss some
open problems.

2 Preliminaries

An arbitrary symmetric gate is a gate that computes an arbitrary symmetric function, i.e.
a function whose value depends only on the number of input bits being 1 (e.g. PARITY,
MAJORITY). We use standard definitions of constant depth circuits, which we now briefly
recall. Constant depth circuits consist of AND, OR and possibly other gates (e.g. one
arbitrary symmetric gates). It is intended that all gates whose type is not specified are either
AND or OR, and that AND and OR gates are not counted towards arbitrary symmetric gates.
All circuit gates, unless specified otherwise, have unbounded fan-in. Circuits take both input
variables and their negations as input. Bottom gates are the one adjacent to the input bits.
The top gate is the output gate. Levels are numbered from the bottom. So the input bits
are at level 0, the bottom gates at level 1 and so on. Gates at level i are connected to gates
at levels i − 1 and i + 1 only. The depth of a circuit is the longest path from any input to
the output. The size of a circuit is the number of gates in it. Multiple edges between pairs
of nodes in the circuit are not allowed (otherwise an arbitrary symmetric gate can compute
any function; this convention is standard in the literature, e.g. [HG]).

3 From Average-Case Hardness to Pseudorandomness

In this section we show how our average-case hardness result (Theorem 3) implies our gen-
erator (Theorem 1). We restate the theorems for the reader’s convenience.

Theorem (1, restated). For every constant d there is a constant ε > 0 such that for every
l there is a generator G : {0, 1}l → {0, 1}m, where m = m(l) := lε log l, such that for every
circuit C of size m and depth d with logm(l) arbitrary symmetric gates, we have:

∣

∣

∣

∣

Pr
x∈{0,1}m

[C(x) = 1] − Pr
x∈{0,1}l

[C(G(x)) = 1]

∣

∣

∣

∣

≤ 1

m
,

7

and given x ∈ {0, 1}l, i ≤ m, we can compute the i-th output bit of G(x) in time poly(l).

Theorem (3, restated). There is a function f : {0, 1}∗ → {0, 1} computable in polynomial
time such that for every constant d there is a constant ε > 0 such that for every n and every
circuit C of size nε·log n, depth d and with ε log2 n arbitrary symmetric gates, the following
holds:

Pr
x∈{0,1}n

[C(x) 6= f(x)] ≥ 1/2 − 1/nε·log n.

Proof of Theorem 1, assuming Theorem 3. The generator is obtained by plugging the func-
tion from Theorem 3 into Nisan-Wigderson’s pseudorandom generator construction [NW].

Specifically, they show how given a function f : {0, 1}
√

l/2 → {0, 1} and a parameter m
(which we set to be m(l) := lε·log l) to construct a generator G : {0, 1}l → {0, 1}m such that
every circuit C for which

∣

∣

∣

∣

Pr
x∈{0,1}m

[C(x) = 1] − Pr
x∈{0,1}l

[C(G(x)) = 1]

∣

∣

∣

∣

> 1/m

can be transformed into another circuit C ′ of size |C|+ poly(m) that computes the function
f correctly with probability (over random input) greater than 1/2 + 1/m2 = 1/2 + 1/l2ε log l.

As observed in [Nis, NW], C ′ is simply C with one more layer of AND (or OR) gates at
the bottom, and possibly negating the output. Adding one layer of AND (or OR) gates at
the bottom clearly does not increase the number of arbitrary symmetric gates in C, and we
can think of negating the output by, say, including the top gate in the arbitrary symmetric
gates and complementing it. Thus, if C is a circuit of size m = m(l) = lε log l of depth d with
logm(l) = ε log2 l arbitrary symmetric gates we obtain another circuit C ′ of size lO(ε log l) of

depth d+1 with 1+ ε log2 l arbitrary symmetric gates that computes f : {0, 1}
√

l/2 → {0, 1}
with probability greater than 1/2 + 1/l2ε log l. This contradicts Theorem 3 for sufficiently
small ε.

The complexity of the generator follows from the arguments in [Nis, NW] and the fact
that f is computable in time poly(l).

4 Average-Case Hardness for SYM ◦ AC0 circuits

In this section we prove our average-case hardness result for ‘small’ constant-depth circuits
with one arbitrary symmetric gate at the top.

Theorem 4. There is a function f : {0, 1}∗ → {0, 1} computable in polynomial time such
that for every constant d there is a constant ε > 0 such that for every n and every circuit C
of size nε·log n, depth d, with 1 arbitrary symmetric gate at the top, the following holds:

Pr
x∈{0,1}n

[C(x) 6= f(x)] ≥ 1/2 − 1/nε·log n.

In the rest of this section we prove Theorem 4. In the proof we use two results which we
describe in the following two subsections. The first is a version of H̊astad’s switching lemma
[H̊as] due to Beame [Bea], and the second is the multiparty communication complexity lower
bound for GIP by Babai, Nisan and Szegedy [BNS].

8

4.1 Switching Lemma

We now describe the switching lemma we use in the proof of Theorem 4. As in [HM], the
crucial property that we need is that the DNF obtained after applying the restriction is such
that all the terms are mutually contradictory, i.e. no input satisfies more than one term.
This allows us to merge the top OR gate of the DNF in the symmetric gate at the top (cf.
Fact 6). The fact that this property holds for H̊astad’s switching lemma was already noted
by Boppana and H̊astad in [H̊as] (inside the proof of Lemma 8.3). However, there does not
seem to be a full proof of this fact in the literature. For this reason we use a slightly different
version of the H̊astad’s switching lemma, due to Beame [Bea].

A restriction on m variables x1, x2, . . . , xm is a map ρ : {x1, x2, . . . , xm} → {0, 1, ∗}. For a
function f : {0, 1}m → {0, 1} we denote by f |ρ the function we get by doing the substitutions
prescribed by ρ. f |ρ will be a function of the variables that were given the value * by ρ.
Similar conventions hold for circuits. If ρ and ρ′ are restrictions, and ρ′ is defined on the
variables mapped to * by ρ we write ρρ′ for the restriction obtained by combining ρ and
ρ′, so that f |ρρ′ = (f |ρ) |ρ′ . Let Rδ·m

m denote the uniform distribution on restrictions on m
variables assigning exactly δm variables to ∗, and assigning random values to the others.

A decision tree on m variables is a labelled binary tree where edges and leaves are labelled
with 0 or 1, and internal nodes with variables. A decision tree computes a function in the
intuitive way, starting at the root and following the path according to the values of the input
variables, and outputting the value at the reached leaf.

Lemma 5 ([Bea]). Let ϕ be a DNF or a CNF formula in m variables with bottom fan-in at
most r. For every s ≥ 0, p < 1/7, the probability over ρ ∈ Rp·m

m that the function computed
by ϕ|ρ is not computable by a decision tree of height strictly less than s is less than (7pr)s.

We will use Lemma 5 in combination with the following fact.

Fact 6. Let f be a symmetric function of S decision trees of height h. Then f is computable
by a depth 2 circuit of size S · 2h + 1 with a symmetric gate of unbounded fan-in at the top
and AND gates of fan-in h at the bottom.

Proof. Write each decision tree as a DNF with bottom fan-in h, where each term corre-
sponds to a path leading to 1. The number of terms in each DNF is at most 2h, i.e. at
most the number of paths in a decision tree of height h. Because every input to a deci-
sion tree follows a unique path, each DNF we construct has the property that every in-
put satisfies at most one term. Thus we can merge the top OR gate of all these DNFs
with the top symmetric gate of the circuit. Specifically, if the original symmetric gate was
ψ(x1, x2, . . . , xS) = g(

∑

i≤S xi) for some arbitrary function g : [S] → {0, 1}, the new sym-
metric gate is simply ψ′(x1, x2, . . . , xS·2h) := g(

∑

i≤S·2h xi).

4.2 Multiparty Communication Complexity

In this section we describe some results on communication complexity that will be used in the
proof of our main results. The model of interest is the multiparty communication complexity
model. In this model there are s parties, each having unlimited computational power, who
wish to collaboratively compute a certain function. The input bits to the function are

9

partitioned in s blocks, and the i-th party knows all the input bits except those corresponding
to the i-th block in the partition. The communication between the parties is by “writing on
a blackboard” (broadcast): any bit sent by any party is seen by all the others. The parties
exchange messages according to a fixed protocol. The measure of interest is the number of
bits exchanged by the parties. We refer the reader to the book by Kushilevitz and Nisan
[KN] for background on this model.

Babi, Nisan and Szegedy [BNS] prove a multiparty communication complexity lower
bound for the generalized inner product function GIPn,s : {0, 1}n·s → {0, 1}, which is defined
as follows:

GIPn,s(x) :=
n

⊕

i=1

s
∧

j=1

xi,j.

Lemma 7 ([BNS]). There is a partition of the inputs to GIPn,s in s blocks such that the
following holds: Let P be a s-party communication complexity protocol exchanging at most
.1 · (n/4s − log(1/γ)) bits of communication, then

Pr
x∈{0,1}n·(.3 log n)

[

P (x) 6= GIPn,.3 log n(x)
]

≥ 1/2 − γ.

H̊astad and Goldmann [HG] show that the function computed by a ‘small’ SYM ◦ AND
circuit with ‘small’ bottom fan-in can be computed by a multiparty communication com-
plexity protocol among ‘few’ parties exchanging ‘few’ bits.

Lemma 8 ([HG]). Let C be a depth-2 circuit of size S with an arbitrary symmetric gate
(of unbounded fan-in) at the top, and AND gates of fan-in strictly less than s at the bottom.
Then the function computed by C can be computed (under any partition of the input) by a
s-party communication complexity protocol exchanging 1 + s log S bits.

The idea in Lemma 8 is that since each bottom AND gate has fan-in strictly less than
s then, for any partition of the input in s blocks, the input bits to each AND can lie in at
most s−1 distinct blocks. Therefore we can assign each AND gate to some party that knows
all the input bits necessary to compute it. Now each party broadcasts the number of AND
gates assigned to him that evaluate to 1, which takes at most log S bits. Since the top gate
is symmetric this information is sufficient to compute the output of the circuit.

Our next lemma combines the above observation by H̊astad and Goldmann with the
“switching lemma” results from the previous section to argue the following: for every small
SYM ◦ AC0 circuit, w.h.p. over a suitable restriction ρ, the function computed by C|ρ
can be computed by a multiparty communication complexity protocol among ‘few’ parties
exchanging ‘few’ bits.

Lemma 9. For every constant d there is a constant ε > 0 such that the following holds.
Let C : {0, 1}n → {0, 1} be a circuit of size nε·log n, depth d, with 1 arbitrary symmetric
gate at the top. Let ρ be a random restriction on the n input variables that assigns * to a

subset of the variables of relative size 1/n.1 , i.e. let ρ ∈ R
n/n.1

n . Then with probability at
least 1 − n−Ω(log n) over ρ, the function computed by C|ρ is computable (under any partition
of the input) by a .3 log n-party communication complexity protocol exchanging log3 n bits of
communication.

10

Proof. The proof amounts to a combination of the previous lemmas for some specific setting
of parameters.

Claim 10. With probability 1 − n−Ω(log n) over ρ ∈ R
n/n.1

n , the function computed by C|ρ
is computable by a depth-2 circuit of size |C| · 2.3 log n with a symmetric gate (of unbounded
fan-in) at the top and AND gates of fan-in strictly less than .3 log n at the bottom.

The lemma follows by the above claim using Lemma 8, which implies that the function
computed by a depth-2 circuit of size S = |C| · 2.3 log n ≤ nlog n with a symmetric gate (of
unbounded fan-in) at the top and AND gates of fan-in strictly less than .3 log n at the
bottom is computable by a .3 log n-party communication complexity protocol exchanging
1 + (.3 log n) log S ≤ log3 n bits.

We now prove Claim 10. Similar calculations have already been done elsewhere (e.g.,
Lemma 2 in [LMN]). However, we have not found the exact claim we need in the literature.

Proof of Claim 10. We see the restriction ρ as d − 1 successive applications of restrictions
ρ1, ρ2, . . . , ρd−1 each mapping to * a subset of variables of relative size 1/nα of the (remaining)
variables. Taking α = .1/(d− 1) we have that, after applying all d− 1 restrictions, the total
number of variables mapped to * is n · (1/nα)d−1 = n/n.1, and so this distribution on

restrictions is exactly R
n/n.1

n .
For every i ∈ [d − 1] let DT i be the event that, after applying the first i restrictions

ρ1, ρ2, . . . , ρi, the function computed by every gate at level i is computable by a decision tree
of height strictly less than .3 log n. We now bound Prρ[not DT d−1]. Note that it is at most

Pr
ρ1

[not DT 1] + Pr
ρ1,ρ2

[not DT 2|DT 1] + . . .+ Pr
ρ1,ρ2,...,ρd−1

[not DT d−1|DT d−2].

We now bound each term. Fix any i ≤ d− 1 and consider Prρ1,ρ2,...,ρi
[not DT i|DT i−1] (if

i = 1, think of the input variables as functions computed by decision trees of depth 1, and
define DT 0 := TRUE). Fix any gate ϕ at level i. Without loss of generality assume ϕ is an
OR gate (otherwise we can consider its negation, apply the same reasoning, and then negate
again). Since we are conditioning over DT i−1, all the functions computed by gates at level
i − 1 can be computed by decision trees of height (strictly) less than .3 log n. Write each
such function as a DNF with terms of size at most .3 log n (where each term corresponds to
a path in the decision tree leading to ‘1’). Merging the top OR gates of all these DNFs with
ϕ we see that, given DT i−1, the function computed by ϕ is a DNF with terms of size at most
r = .3 log n. By Lemma 5 the probability over the choice of the i-th restriction ρi that the
function computed by ϕ|ρ1ρ2···ρi

cannot be computed by a decision tree of depth strictly less
than s = .3 log n is at most

(7pr)s = (7 · (1/nα) · (.3 log n)).3 log n = n−Ω(log n).

Thus by a union bound we have that

Pr
ρ1,ρ2,...,ρi

[not DT i|DT i−1]

is at most n−Ω(log n) times the number of gates at level i. Therefore, if the circuit C has size
nε log n for sufficiently small ε we have

Pr
ρ

[not DT d−1] ≤ n−Ω(log n) · |C| = n−Ω(log n).

11

We have shown that with probability 1 − n−Ω(log n) (over ρ) the function computed by
C|ρ is computable by a symmetric function of |C| decision trees of height strictly less than
.3 log n. By Fact 6 we can write each decision tree as a DNF and merge the top OR gates of
these DNFs into the top symmetric gate of C, thus proving the claim.

4.3 Proof of Theorem 4

We now prove Theorem 4. We restate the theorem for the reader’s convenience.

Theorem (4, restated). There is a function f : {0, 1}∗ → {0, 1} computable in polynomial
time such that for every constant d there is a constant ε > 0 such that for every n and every
circuit C of size nε·log n, depth d, with 1 arbitrary symmetric gate at the top, the following
holds:

Pr
x∈{0,1}n

[C(x) 6= f(x)] ≥ 1/2 − 1/nε·log n.

Proof of Theorem 4. Similarly to [RW], we consider the function obtained by attaching PAR-
ITY gates on n bits at the bottom of GIPn,.3 log n. That is, let fn : {0, 1}n2(.3 log n) → {0, 1}
be defined as

fn(x) :=
n

⊕

i=1

.3 log n
∧

j=1

n
⊕

k=1

xi,j,k.

We will prove Theorem 3 with fn as hard function. While fn is a function on m =
m(n) := n2(.3 log n) bits, it will be convenient to parameterize it by n. Since we will prove
nΩ(log n) lower bounds for fn and the input length of fn is m = poly(n), we also obtain
mΩ(log m) lower bounds for fn (for a different hidden constant in the Ω(·)).

It is easy to see that fn is computable in polynomial time.

Let C : {0, 1}m → {0, 1} be a circuit as in the statement of Theorem 4, for a sufficiently
small constant ε. Let ρ be a random restriction on the m input variables that assigns * to a

subset of the variables of relative size 1/m.1 , i.e. let ρ ∈ R
m/m.1

m .
Consider the following two events.

• Event E1 := the function computed by C|ρ is computable (under any partition of the
input) by a .3 log n-party communication complexity protocol exchanging n.2 bits.

• Event E2 := for every i ∈ [n], j ∈ [.3 log n] there is k ∈ [n] such that ρ(xi,j,k) = ∗. (In
other words, for each of the n · (.3 log n) bottom parity functions of fn, ρ maps some
of its input variable to *.)

Claim 11. Pr
ρ∈R

m/m.1
m

[E1 ∧ E2] ≥ 1 − n−Ω(log n).

Before proving Claim 11 let us see how we can use it to prove Theorem 4. Suppose that

some ρ ∈ R
m/m.1

m satisfies both E1 and E2. Then

Pr
y∈{0,1}m/m.1

[C|ρ(y) 6= fn|ρ(y)] ≥ 1/2 − n−Ω(log n). (1)

12

This holds by Lemma 7. Specifically, fix any restriction ρ′ taken on the variables mapped
to * by ρ, such that for every i ∈ [n], j ∈ [.3 log n] there is exactly one k ∈ [n] such that
ρρ′(xi,j,k) = ∗. We then have that fn|ρρ′ equals GIPn,.3 log n (up to possibly negating some
input variables). If the function computed by C|ρ is computable by a s-party communication
complexity protocol exchanging n.2 bits then clearly the same holds for the function computed
by C|ρρ′ . Therefore by the multiparty communication complexity lower bound for GIP
(Lemma 7) we obtain (noticing that for s = .3 log n, γ = 2−n.3

we have .1·(n/4s − log(1/γ)) =
Ω(n.4 − n.3) > n.2):

Pr
z∈{0,1}n(.3 log n)

[C|ρρ′(z) 6= fn|ρρ′(y)] ≥ 1/2 − 1/2nΩ(1) ≥ 1/2 − n−Ω(log n).

Equation 1 follows noticing that we can think of a random y as choosing first a random ρ′

as above and then a random z ∈ {0, 1}n(.3 log n) for the *’s of ρ′ (so that C|ρ(y) = C|ρρ′(z)).
Thus we have:

Pr
x

[C(x) 6= fn(x)]

= Pr
ρ∈R

m/m.1
m ,y∈{0,1}m/m.1

[C|ρ(y) 6= fn|ρ(y)]

≥ Pr
ρ∈R

m/m.1
m ,y∈{0,1}m/m.1

[C|ρ(x) 6= fn|ρ(x)|E1 ∧ E2] · Pr[E1 ∧ E2]

≥
(

1/2 − n−Ω(log n)
)

·
(

1 − n−Ω(log n)
)

(by Equation 1 and Claim 11)

= 1/2 − n−Ω(log n),

which proves Theorem 3.
It is only left to prove Claim 11.

Proof of Claim 11. We show that E1 and E2 each do not happen with probability at most
n−Ω(log n).

The bound on Prρ[not E1] is given by Lemma 9. (The direct application of Lemma 9
gives communication complexity poly log(n) � n.2 for circuits of size mε log m ≥ nε log n).

We now bound Prρ[not E2]. Fix i ∈ [n], j ∈ [.3 log n]. The probability that for every
k ∈ [n] we have ρ(xi,j,k) 6= ∗ is the probability that a random subset A ⊆ [m] of size
m/m.1 = m.9 does not intersect a fixed subset B ⊆ [m] of size n. This probability is at most
the probability that m.9 independent random elements uniformly distributed in [m] all fall
outside B (to see this, think of choosing the random subset A one element at the time, and
note that when an element falls outside B it is more likely for the next element to fall inside
B). This latter probability is

(

1 − n

m

)m.9

≤ exp(−m.9n/m) ≤ exp(−mΩ(1)) � n−Ω(log n)

where we used that m = n2 · (.3 log n). By a union bound we have

Pr[not E2] ≤ n · (.3 log n) · n−Ω(log n) = n−Ω(log n).

13

We point out that Theorem 4 is tight for the particular choice of

fn(x) =
n

⊕

i=1

.3 log n
∧

j=1

n
⊕

k=1

xi,j,k.

Namely, fn is computable by PARITY ◦ AND circuits of size nO(log n). This can be seen by
writing the function computed by each AND as a PARITY of nO(log n) AND’s (cf. [RW]).

5 Fooling Circuits with more Arbitrary Symmetric Gates

In this section we prove our average-case hardness result for constant-depth circuits of size
nε log n with ε log2 n arbitrary symmetric gates (Theorem 3). The proof has the same structure
as the proof of our average-case hardness result for circuits with one arbitrary symmetric gate
(Theorem 4). The only difference is that now we want to argue that event E1 happens with
high probability even for circuits with ε log2 n arbitrary symmetric gates, i.e. we want to show
that with high probability over the restriction ρ, the function computed by C|ρ is computable
by a multiparty communication complexity protocol among ‘few’ parties exchanging ‘few’
bits. Thus the proof of Theorem 3 follows from the next lemma.

Lemma 12. For every constant d there is a constant ε > 0 such that the following holds.
Let C : {0, 1}n → {0, 1} be a circuit of size nε·log n, depth d, with ε log2 n arbitrary symmetric
gates. Let ρ be a random restriction on the n input variables that assigns * to a subset of the

variables of relative size 1/n.1 , i.e. let ρ ∈ R
n/n.1

n . Then with probability at least 1−n−Ω(log n)

over ρ, the function computed by C|ρ is computable (under any partition of the input) by a
.3 log n-party communication complexity protocol exchanging log5 n bits of communication.

Proof. Assume without loss of generality that the output gate of the circuit C is included
in the arbitrary symmetric gates. Fix a topological order of the arbitrary symmetric gates
(the simple order induced by reading the gates level by level from the inputs to the output
node will do). For every i ∈ {1, . . . , ε log2 n}, z ∈ {0, 1}i−1, define Ci,z as the subcircuit of
C whose output gate is the i-th arbitrary symmetric gate but where the previous arbitrary
symmetric gates are replaced with z (i.e., the j-th gate is replaced with the j-th bit in z).
Note Ci,z is a SYM ◦ AC0 circuit.

Claim 13. For a sufficiently small constant ε > 0, with probability 1 − n−Ω(log n) over ρ ∈
R

n/n.1

n we have that for every i ∈ {1, . . . , ε log2 n} and z ∈ {0, 1}i−1 the function computed
by Ci,z|ρ is computable (under any partition of the input) by a .3 log n-party communication
complexity protocol Pi,z exchanging log3 n bits of communication.

Proof. The claim follows by noting that the number of SYM ◦ AC0 circuits Ci,z is at most
(

ε log2 n
)

· 2ε log2 n ≤ n1+ε log n

and then using a union bound and Lemma 9, which states that for each fixed circuit Ci,z,
with probability 1 − n−Ω(log n) over ρ, the function computed by Ci,z|ρ is computable by a
.3 log n-party communication complexity protocol exchanging log3 n bits.

14

The lemma follows by noting that whenever ρ satisfies the conclusion of the above claim
we have (under any partition of the input bits) the following .3 log n-party communication
complexity protocol P for C|ρ: On input x compute C|ρ(x) as follows. Simulate P1 to
compute b1 = C1|ρ(x). Then simulate P2,b1 to compute b2 = C2,b1|ρ(x). Then simulate
P3,b1◦b2 to compute b3 = C3,b1◦b2 |ρ(x). Continue in this way until Cε log2 n,z(x) = C|ρ(x) (this
last equality is easy to verify).

Since each protocol Pi,z exchanges at most log3 n bits of communication, and we simulate
ε log2 n of these protocols, the total number of bits exchanged by the protocol P is at most
log5 n.

It is perhaps interesting to note that, unlike the corresponding protocol in the proof of
Theorem 4, the protocol in the above lemma is not simultaneous, i.e. the bits sent by a party
in general depend on the bits previously sent by other parties (cf. [KN] for background on
simultaneous protocols). Thus in our proof we are taking advantage of the fact that the lower
bound for GIP (Lemma 7) holds even for non-simultaneous protocols. We do not know how
to prove the same result starting from a multiparty communication complexity lower bound
for simultaneous protocols.

6 Our Generator vs. Luby, Velickovic and Wigderson’s

In this section we elaborate on why our generator (Theorem 1) improves on the generator by
Luby, Velickovic and Wigderson (Theorem 2 in [LVW]). Recall that the generator in [LVW]
fools ‘small’ depth 2 circuits with one arbitrary symmetric gate at the top (SYM ◦ AND
circuits). On the other hand our generator fools ‘small’ circuits of any constant depth with
‘few’ arbitrary symmetric gates.

We note that there are several results (e.g. [Raz, Smo, All, Yao, BRS, BT]) showing that
‘small’ circuits in certain ‘rich’ constant-depth circuit classes can be converted into ‘not-too-
big’ SYM ◦ AND circuits. Thus one may wonder whether we can use these results to deduce
that the generator in [LVW] is already powerful enough to give our main result (Theorem 1),
i.e. whether it can fool ‘small’ constant-depth circuits with ‘few’ arbitrary symmetric gates.

The problem with this idea is that in all these conversion results the blow-up in the
circuit size is bigger than the saving of the generator. More specifically, these conversion
results show how to convert, say, a AC0 circuit of size S into a SYM ◦ AND circuit of size
quasi -polynomial, i.e. S logO(1) S, where the constant in the O(1) depends on the depth of the

original circuit. However, to fool a circuit of size S logO(1) S, the generator in [LVW] needs a
seed of length at least S, and therefore it is of no use in this particular setting.

It seems natural to ask whether the known conversion results are the best possible,
i.e. if the quasi-polynomial blow-up is inherent in the conversion. There are works (e.g.
[BRS, RW]) suggesting that this is indeed the case. We give another result of this flavor.

Specifically, we show how to modify the lower bound in Theorem 4 to get a function
computable by polynomial size PARITY ◦ AC0 circuits that is average-case hard for super-
polynomial size SYM ◦ AND circuits. The idea is to change the fan-in of the bottom parities
of f so that they are computable by polynomial size AC0 circuits (specifically we change
their fan-in from n to log3 n). While our lower bound is only ‘slightly’ superpolynomial

15

(i.e. nΩ(log log n)), it shows that the parameters of our generator (Theorem 1) cannot be ob-
tained combining a conversion result with Theorem 2 in [LVW], even if we only want to fool
PARITY ◦ AC0 circuits.

Theorem 14. There is a function f : {0, 1}∗ → {0, 1} computable by uniform polyno-
mial size PARITY ◦ AC0 circuits and a constant ε > 0 such that for every n and every
SYM ◦ AND circuit C of size nε·log log n, the following holds:

Pr
x∈{0,1}n

[C(x) 6= f(x)] ≥ 1/2 − 1/nε·log log n.

The proof of Theorem 14 is given in Appendix A.

7 Open Problems

Can the techniques in this paper be used to prove (average-case) hardness results for constant-
depth circuits with ω(log2 n) arbitrary symmetric gates? Such a hardness result would follow
from a positive answer to the following open question: Let C be constant-depth circuit of
size nε log n with ω(log2 n) arbitrary symmetric gates, and let ρ be a restriction as in the
statement of Lemma 9. Is it true that with high probability over ρ the function computed
by C|ρ is computable by a .9 log n-party communication complexity protocol exchanging n.9

bits?

8 Acknowledgments

We thank Salil Vadhan for his helpful reading of this paper. We thank Chattopadhyay and
Hansen for sending us their paper [CH], and the anonymous referees for helpful comments.

References

[Agr] M. Agrawal. Hard Sets and Pseudo-random Generators for Constant Depth Cir-
cuits. In Twenty First Foundations of Software Technology and Theoretical Com-
puter Science, December 13-15, Bangalore, India, pages 58–69. Springer-Verlag,
2001.

[All] E. Allender. A Note on the Power of Threshold Circuits. In 30th Annual Sym-
posium on Foundations of Computer Science, pages 580–584, Research Triangle
Park, North Carolina, 30 Oct.–1 Nov. 1989. IEEE.

[BFNW] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP Has Subexponential Time
Simulations Unless EXPTIME has Publishable Proofs. Computational Complexity,
3(4):307–318, 1993.

[BNS] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom genera-
tors for logspace, and time-space trade-offs. J. Comput. System Sci., 45(2):204–232,
1992. Twenty-first Symposium on the Theory of Computing (Seattle, WA, 1989).

16

[Bea] P. Beame. A switching lemma primer. Technical Report UW-CSE-95-07-01, De-
partment of Computer Science and Engineering, University of Washington, Novem-
ber 1994. Available from http://www.cs.washington.edu/homes/beame/.

[Bei] R. Beigel. When do extra majority gates help? polylog(N) majority gates are
equivalent to one. Comput. Complexity, 4(4):314–324, 1994. Special issue devoted
to the 4th Annual McGill Workshop on Complexity Theory.

[BRS] R. Beigel, N. Reingold, and D. A. Spielman. The Perceptron Strikes Back. In
Structure in Complexity Theory Conference, pages 286–291, 1991.

[BT] R. Beigel and J. Tarui. On ACC. Comput. Complexity, 4(4):350–3–66, 1994.
Special issue devoted to the 4th Annual McGill Workshop on Complexity Theory.
Preliminary version in FOCS ’91.

[CH] A. Chattopadhyay and K. A. Hansen. Lower Bounds for Circuits With Few Mod-
ular and Symmetric Gates. Manuscript, 2005.

[FSS] M. L. Furst, J. B. Saxe, and M. Sipser. Parity, Circuits, and the Polynomial-Time
Hierarchy. Mathematical Systems Theory, 17(1):13–27, April 1984.

[HMP+] A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, and G. Turán. Threshold circuits of
bounded depth. J. Comput. System Sci., 46(2):129–154, 1993.

[HM] K. A. Hansen and P. B. Miltersen. Some Meet-in-the-Middle Circuit Lower Bounds.
In Proceedings of the 29th International Symposium on Mathematical Foundations
of Computer Science (MFCS), Lecture Notes in Computer Science, Volume 3153,
pages 334 – 345, August 22–27 2004.

[H̊as] J. H̊astad. Computational limitations of small-depth circuits. MIT Press, 1987.

[HG] J. H̊astad and M. Goldmann. On the power of small-depth threshold circuits.
Comput. Complexity, 1(2):113–129, 1991.

[HVV] A. Healy, S. Vadhan, and E. Viola. Using nondeterminism to amplify hardness.
In Proceedings of the Thirty-Six Annual ACM Symposium on the Theory of Com-
puting, pages 192–201, Chicago, IL, 13–15 June 2004. Invited to SIAM Journal of
Computing, STOC Special Issue.

[KN] E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University
Press, Cambridge, 1997.

[LMN] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform,
and learnability. J. Assoc. Comput. Mach., 40(3):607–620, 1993.

[LVW] M. Luby, B. Velickovic, and A. Wigderson. Deterministic Approximate Counting
of Depth-2 Circuits. In In Proceedings of the 2nd Israeli Symposium on Theoretical
Computer Science (ISTCS), pages 18–24, 1993.

17

[Nis] N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–
70, 1991.

[NW] N. Nisan and A. Wigderson. Hardness vs Randomness. J. Computer & Systems
Sciences, 49(2):149–167, Oct. 1994.

[RW] A. Razborov and A. Wigderson. nΩ(log n) lower bounds on the size of depth-3
threshold circuits with AND gates at the bottom. Inform. Process. Lett., 45(6):303–
307, 1993.

[Raz] A. A. Razborov. Lower bounds on the dimension of schemes of bounded depth in a
complete basis containing the logical addition function. Mat. Zametki, 41(4):598–
607, 623, 1987.

[RR] A. A. Razborov and S. Rudich. Natural Proofs. J. Comput. Syst. Sci., 55(1):24–35,
Aug. 1997.

[SU] R. Shaltiel and C. Umans. Simple Extractors for All Min-Entropies and a New
Pseudo-Random Generator. In 42nd Annual Symposium on Foundations of Com-
puter Science. IEEE, 14–17 Oct. 2001.

[Smo] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing, pages 77–82, New York City, 25–27 May 1987.

[STV] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the
XOR lemma. J. Comput. System Sci., 62(2):236–266, 2001. Special issue on the
Fourteenth Annual IEEE Conference on Computational Complexity (Atlanta, GA,
1999).

[Uma] C. Umans. Pseudo-random generators for all hardnesses. In Proceedings of the 34th
ACM Symposium on Theory of Computing, pages 627–634. ACM Press, 2002.

[Vio] E. Viola. The Complexity of Constructing Pseudorandom Generators from Hard
Functions. Comput. Complexity, 13(3-4):147–188, 2004.

[Yao] A. C. Yao. On ACC and threshold circuits. In In Proc. 31st Ann. IEEE Symp.
Found. Comput. Sci., pages 619–627, 1990.

A Proof of Theorem 14

Proof of Theorem 14. The proof follows closely the proof of Theorem 4. Let

gn : {0, 1}n(.3 log n) log3 n → {0, 1}

be defined as

gn(x) :=
n

⊕

i=1

.3 log n
∧

j=1

log3 n
⊕

k=1

xi,j,k.

18

We will prove Theorem 14 with gn as hard function. While gn is a function on m =
m(n) := n · (.3 log n) · (log3 n) bits, it will be convenient to parameterize it by n. Since we
will prove nΩ(log log n) lower bounds for gn and the input length of gn is m = n · poly log n, we
also obtain mΩ(log log m) lower bounds for gn (for a different hidden constant in the Ω(·)).

Note that gn is computable by a (uniform) polynomial size circuit of depth 5 with one
PARITY gate at the top. To see this note that each of the bottom parities in the definition
of gn is only on log3 n bits, and therefore it can be computed by a (uniform) circuit of size
poly(n) and depth 4 (see e.g. [H̊as], Theorem 2.2).

Let C : {0, 1}m → {0, 1} be a circuit as in the statement of Theorem 14, for a sufficiently
small constant ε. Let ρ be a random restriction on the m input variables that assigns * to a
subset of the variables of relative size 1/ log(n) , i.e. let ρ ∈ R

m/ log(n)
m .

Consider the following two events.

• Event E ′
1 := the function computed by C|ρ is computable (under any partition of the

input) by a .3 log n-party communication complexity protocol exchanging n.2 bits.

• Event E ′
2 := for every i ∈ [n], j ∈ [.3 log n] there is k ∈ [log3 n] such that ρ(xi,j,k) = ∗.

(In other words, for each of the n · (.3 log n) bottom parity functions of fn, ρ maps
some of its input variable to *.)

As before, Theorem 14 follows from the next claim (cf. the proof of Theorem 4).

Claim 15. Pr
ρ∈R

m/ log(n)
m

[E ′
1 ∧ E ′

2] ≥ 1 − n−Ω(log log n).

Proof. We show that E ′
1 and E ′

2 each do not happen with probability at most n−Ω(log log n).
We now bound Prρ[not E ′

1]. Analogously to the proof of Lemma 9, the main step is

proving the following claim: with high probability
(

1 − n−Ω(log log n)
)

over ρ ∈ R
m/ log(n)
m ,

the function computed by C|ρ is computable by a depth 2 circuit of size |C| · 2.3 log n =
nε·log log n · 2.3 log n with a single symmetric gate (of unbounded fan-in) at the top and AND
gates of fan-in strictly less than .3 log n at the bottom.

While this probability can be bound directly, similarly to what is done in [RW], it seems
simpler to use again the Switching Lemma. Fix a bottom AND gate ϕ of C, and think of the
input variables to ϕ as clauses of size r = 1. By Lemma 5 the probability over the choice of
ρ that the function computed by ϕ|ρ cannot be computed by a decision tree of depth strictly
less than s = .3 log n is at most

(7pr)s = (7 · (1/ log(n)) · 1).3 log n = n−Ω(log log n).

Therefore if the circuit C has size nε log log n for sufficiently small ε we have, by a union
bound, that with probability 1 − n−Ω(log log n) (over ρ) the function computed by C|ρ is
computable by a symmetric function of |C| decision trees of height strictly less than .3 log n.
By Fact 6 we can write each decision tree as a DNF and merge the top OR gates of these
DNFs into the top symmetric gate of C, and thus E ′

1 holds.
We now bound Prρ[not E ′

2]. Fix i ∈ [n], j ∈ [.3 log n]. The probability that for every
k ∈ [log3 n] we have ρ(xi,j,k) 6= ∗ is is the probability that a random subset A ⊆ [m] of size
m/ log(n) does not intersect a fixed subset B ⊆ [m] of size log3 n. This probability is at

19

most the probability that m/ log(n) independent random elements uniformly distributed in
[m] all fall outside B (to see this, think of choosing the random subset A one element at the
time, and note that when an element falls outside B it is more likely for the next element
to fall inside B). This latter probability is

(

1 − log3 n

m

)m/ log(n)

≤ exp(−Ω(log2 n)) � n−Ω(log log n).

By a union bound we have

Pr[not E ′
2] ≤ n · (.3 log n) · n−Ω(log log n) = n−Ω(log log n).

20

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

