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Abstract

In this work we study two, seemingly unrelated, notions. Locally Decodable Codes (LDCs)
are codes that allow the recovery of each message bit from a constant number of entries of
the codeword. Polynomial Identity Testing (PIT) is one of the fundamental problems of alge-
braic complexity: we are given a circuit computing a multivariate polynomial and we have to
determine whether the polynomial is identically zero. We improve known results on locally de-
codable codes and on polynomial identity testing and show a relation between the two notions.
In particular we obtain the following results:

1. We show that if E : F
n 7→ F

m is a linear LDC with 2 queries then m = exp(Ω(n)).
Previously this was only known for fields of size << 2n [GKST01].

2. We show that from every depth 3 arithmetic circuit (ΣΠΣ circuit), C, with a bounded
(constant) top fan-in that computes the zero polynomial, one can construct a locally
decodeable code. More formally: Assume that C is minimal (no subset of the multiplication
gates sums to zero) and simple (no linear function appears in all the multiplication gates).
Denote by d the degree of the polynomial computed by C and by r the rank of the linear
functions appearing in C. Then we can construct a linear LDC with 2 queries, that encodes
messages of length r/polylog(d) by codewords of length O(d).

3. We prove a structural theorem for ΣΠΣ circuits, with a bounded top fan-in, that compute
the zero polynomial. In particular we show that if such a circuit is simple and minimal
and of polynomial size then its rank, r, is only polylogarithmic in the number of variables
(a priory it could have been linear).

4. We give new PIT algorithms for ΣΠΣ circuits with a bounded top fan-in:

(a) A deterministic algorithm that runs in quasipolynomial time.

(b) A randomized algorithm that runs in polynomial time and uses only polylogarithmic
number of random bits.

Moreover, when the circuit is multilinear our deterministic algorithm runs in polynomial
time. Previously deterministic subexponential time algorithms for PIT in bounded depth
circuits were known only for depth 2 circuits (in the black box model) [GKS90, BOT88,
KS01]. In particular, for the special case of depth 3 circuits with 3 multiplication gates
our result resolves an open question asked by Klivans and Spielman [KS01].
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1 Introduction

Locally Decodable Codes (LDCs) are error correcting codes that allow the recovery of each symbol
of the message from a constant number of entries of the codeword. Polynomial Identity Testing
(PIT) is one of the fundamental problems of algebraic complexity: we are given a circuit computing
a multivariate polynomial and we have to determine whether the polynomial is identically zero. In
this paper we show a relation between this two notions - roughly, from every depth 3 circuit which
is identically zero, one can construct a locally decodable code. Using this relation and a new lower
bound on LDCs, we devise new PIT algorithms for depth 3 circuits.

1.1 Locally Decodable Codes

Locally decodable codes are error correcting codes that allow the recovery of each symbol of the
message, from a corrupted codeword, by looking at only a constant number of entries of the cor-
rupted word. Roughly, a (q, δ, ε)-locally decodeable code encodes x ∈ F

n to E(x) ∈ F
m, such

that for each index i ∈ [n], xi can be recovered from E(x) with probability1 > 1
|F| + ε by reading

only q (random) entries, even if E(x) was corrupted in δm positions.

Locally decodable codes have many applications - they are related to private information re-
trieval (PIR) schemes [CGKS95, KT00, GKST01], they can be used for amplification of hardness
[GL89, GRS00, AGS03] and for the construction of hard-core predicates for one-way permutations
[Lev87, FF93] (see [Tre04] for a survey on LDCs).

The notion of Locally decodable codes was explicitly discussed in [BFLS91] and explicitly defined
in [KT00]. Implicit constructions of local decoders can be found in the context of random self
reducibility and self correcting computations (see e.g. [Lip90, BF90, GLR+91, GS92, FF93]). There
are two main questions related to LDCs: Finding explicit constructions and proving limits of such
constructions (i.e. proving lower bounds on the length of the encoding). Explicit constructions were
given by [BFLS91, BI01, BIKR02]. The best current construction is due to Beimel et al [BIKR02]
who gave an LDC with q queries of length m = exp(nO(log log q/q log q)).

The problem of proving lower bounds was first studied by Katz and Trevisan [KT00] who

proved that for every LDC with q queries, the length of the codeword, m, is at least n
1+ 1

q−1 . This
is currently the best lower bound for general LDCs (see also [DJK+02]). It is a very challenging open
question to give tight lower bounds (or upper bounds) on the length of LDCs. Due to the difficulty
of the problem many works focused on the case of codes with two queries (q = 2). Exponential
lower bounds were first proved for linear codes [GKST01, Oba02] and then, by techniques from
quantum computation, for non-linear codes over GF (2) [KdW03]. The bound of Goldreich et al
[GKST01] actually holds for linear LDCs with 2 queries over any finite field, namely that m is at
least 2Ω(n)−log(|F|), where F is the underlined field. This result is (nearly) tight when the field is of
constant size, however it gives no significant bound for infinite fields.

1.2 Polynomial Identity Testing

Polynomial Identity Testing (PIT) is a fundamental problem in algebraic complexity: We are given
a multivariate polynomial (in some representation) over some field F and we have to determine

1If F is infinite then the probability of success is > ε.
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whether it is identically zero2. The importance of this problem follows from its many applica-
tions: Algorithms for primality testing [AB03, AKS02], for deciding if a graph contains a perfect
matching [Lov79, MVV87, CRS95] and more, are based on reductions to the PIT problem (see the
introduction of [LV98] for more applications).

Determining the complexity of PIT is one of the greatest challenges of theoretical computer
science. It is one of a few problems (and in some sense PIT is the most general problem) for
which we have coRP algorithms but no deterministic subexponential time algorithms. Recently
Kabanets and Impagliazzo [KI03] suggested an explanation for the lack of algorithms. They showed
that efficient deterministic algorithms for PIT imply that NEXP does not have polynomial size
arithmetic circuits. Specifically, if PIT has deterministic polynomial time algorithms then either
the Permanent cannot be computed by polynomial size arithmetic circuits or NEXP 6⊂ P/poly.

The first randomized algorithm for PIT was discovered independently by Schwartz [Sch80]
and Zippel [Zip79]. Their well known algorithm simply evaluates the polynomial at a random
point and accepts iff the polynomial vanishes at the point. If the polynomial is of degree d and
each variable is randomly chosen from a domain S, then the error probability is bounded by
d/|S|. Two kind of works followed the Schwartz-Zippel algorithm: Randomized algorithms that
use fewer random bits [CK97, LV98, AB03] and algorithms for restricted models of arithmetic
circuits. In [GKS90, BOT88, KS01] polynomial time deterministic PIT algorithms for depth 2
arithmetic circuits were given. More recently, [RS04] gave a polynomial time PIT algorithm for
non-commutative formulas. All algorithms, with the exception of [AB03, RS04], are black box
algorithms. That is, these algorithms do not have access to a circuit computing the polynomial
and they can only evaluate it on different inputs (as in the Schwartz-Zippel algorithm).

A result of a different nature was proved by Kabanets and Impagliazzo [KI03]. They designed
a deterministic quasipolynomial time algorithm based on unproved hardness assumptions.

1.3 Depth 3 arithmetic circuits

Proving lower bounds for general arithmetic circuits is the greatest challenge of algebraic complexity.
Unfortunately, except for the lower bounds of Strassen [Str73] and Baur-Strassen [BS83], no lower
bounds are known for general arithmetic circuits. Due to the difficulty of the problem research
focused on restricted models such as monotone circuits and bounded depth circuits. Exponential
lower bounds were proved on the size of monotone arithmetic circuits [SS77, JS80], and linear lower
bounds were proved on their depth [SS80, TT94]. However, unlike the situation in the boolean case,
only weak lower bounds were proved for bounded depth arithmetic circuits [Pud94, RS01]. Thus,
a more restricted model was considered - the model of depth 3 arithmetic circuits (also known as
ΣΠΣ circuits). A ΣΠΣ circuit computes a polynomial of the form

C =
k
∑

i=1

di
∏

j=1

Lij(x), (1)

where the Lij ’s are linear functions. Grigoriev and Karpinski [GK98] and Grigoriev and Razborov
[GR98] proved exponential lower bounds on the size of ΣΠΣ circuits computing the Permanent and
Determinant over finite fields. Over infinite fields exponential lower bounds are known only for the

2Note that we want the polynomial to be identically zero and not just to be equal to the zero function. For
example, x2

− x is the zero function over GF (2) but not the zero polynomial.
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restricted models of multilinear3 ΣΠΣ circuits and for homogeneous ΣΠΣ circuits [Nis91, NW95].
For general ΣΠΣ circuits over infinite fields only the quadratic lower bound of [SW99] is known.
Thus, proving exponential lower bounds for ΣΠΣ circuits over C is a major open problem in
arithmetic circuit complexity.

In this work we are interested in the problem of polynomial identity testing for depth 3 circuits.
As mentioned earlier there are no efficient PIT algorithms for arithmetic circuits, even if we just
consider bounded depth circuits. Thus, finding efficient algorithms for PIT in ΣΠΣ circuits seems
like the first step towards proving more general results.

1.4 Our Results

Lower Bounds for Linear Locally Decodable Codes with 2 Queries
We study linear LDCs with 2 queries over arbitrary fields and prove lower bounds on their length.
The first such lower bound was proved by Goldreich et al [GKST01]:

Theorem 1.1 (thm 1.4 of [GKST01]). Let δ, ε ∈ [0, 1], F a field, and let E : F
n → F

m be a
linear (2, δ, ε)-locally decodeable code. Then

m ≥ 2
ε δ n
16

−1−log2 |F|.

Note that this result only makes sense when |F| is finite. We prove the following theorem.

Theorem 1.2. Let δ, ε ∈ [0, 1], F a field, and let E : F
n → F

m be a linear (2, δ, ε)-locally decodeable
code. Then

m ≥ 2
ε δ n

4
−1.

Compared with Theorem 1.4 of [GKST01] our result removes the dependance on the size of
the field in the exponent and works for every field size, finite and infinite. The idea of the proof is
similar to the one in [GKST01] - we show that given a linear 2-LDC over an arbitrary field F we
can construct from it a linear 2-LDC over GF (2), with almost the same parameters, and then we
use the lower bound of [GKST01] for codes over GF (2).

Relation between Depth 3 circuits and Locally Decodeable Codes
The main result of the paper is that from every ΣΠΣ circuit, that computes the zero polynomial,
one can construct a linear LDC with 2 queries. Relations between arithmetic circuits and error
correcting codes were known before [Bsh89, Shp03], however this is the first time that LDCs appear
in the context of arithmetic circuits. More formally, let C be a ΣΠΣ circuit, as in equation 1,
computing the zero polynomial. We say that C is minimal if no subset of the multiplication
gates sums to zero. We say that C is simple if there is no linear function that appears in all the
multiplication gates (up to a multiplicative constant). Denote with r the rank of the linear functions
appearing in C.

Theorem 1.3. Let k ≥ 3, d ≥ 2, and let C ≡ 0 be a simple and minimal ΣΠΣ circuit of degree d,
with k multiplication gates and n inputs. Then we can construct a linear (2, 112 ,

1
4)-locally decodable

3More accurately for pure multilinear ΣΠΣ circuits.
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code E : F
n1 → F

n2, with

r

2O(k2) log(d)k−3
≤ n1 and n2 ≤ k · d.

Thus, if k is a constant then we can construct a linear (2, 112 ,
1
4)-LDC that encodes messages of

length r/polylog(d) by codewords of length O(d). As a corollary of theorem 1.2 and theorem 1.3
we get:

Theorem 1.4. Let k ≥ 3, d ≥ 2, and let C ≡ 0 be a simple and minimal ΣΠΣ circuit of degree d
with k multiplication gates and n inputs, then r ≤ 2O(k

2) log(d)k−2.

Notice that the bound on r depends only on the degree and the number of multiplication
gates and not on the number of variables! If the degree is polynomial in n (i.e. the circuit is of
polynomial size) then the rank is bounded by polylog(n), where a priory the rank could have been n.

PIT algorithms for depth 3 circuits
We design algorithms for PIT of depth 3 circuits with a constant number of multiplication gates.
In particular we get a deterministic quasipolynomial time algorithm, and a randomized polynomial
time algorithm that uses only polylog random bits. If the circuit is multilinear, i.e. every mul-
tiplication gate computes a multilinear polynomial, then we give a deterministic polynomial time
algorithm for PIT. Our algorithms are non black-box - all of them use the circuit computing the
polynomial. We prove the following result.

Theorem 1.5. Let C be a ΣΠΣ circuit of degree d, with k multiplication gates and n inputs. Then
we can check if C ≡ 0:

1. Deterministically, in time exp
(

2O(k
2) logk−1(d)

)

. Thus, for a constant k the running time is

exp(polylog(d)).

2. Probabilistically, in time 2O(k)poly(d, 1ε ), using 2
O(k2)logk−2(d) log(1/ε) random bits, with er-

ror probability ε. For constant k the running time is poly(d, 1ε ) and the number of random
bits is polylog(d) log(1/ε).

3. If C is also multilinear then we can check if C is identically zero deterministically in time
exp(2O(k

2)) · poly(d). For constant k the running time is poly(d).

Prior to our work the only algorithms that were designed for bounded depth circuits were
the deterministic algorithm of [RS04] for pure multilinear depth 3 circuits, and the black box
algorithms of [GKS90, BOT88, KS01] for polynomials computed by depth 2 circuits (also known
as sparse polynomials). None of the algorithms for sparse polynomials work in the case of depth
3 circuits, as such circuits can compute polynomials with exponentially many monomials. In fact,
Klivans and Spielman [KS01] ask whether one could derandomize PIT for ΣΠΣ circuits with only
3 multiplication gates (k=3 in our notations). We give a deterministic algorithm that runs in
quasipolynomial time for this case, thus resolving the question of [KS01].
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1.5 Organization

In Section 2 we analyze linear locally decodable codes, and derive Theorem 1.2. Section 3 is devoted
to ΣΠΣ circuits and their properties, and serves as an introduction to the main part of the paper.
In Section 4 we give the proof of Theorem 1.3, and discuss the relation between ΣΠΣ circuits
and locally decodable codes. Finally, in Sections 5 and 6 we use our results to prove a structural
theorem for zero ΣΠΣ circuits, and devise PIT algorithms based on this theorem.

2 Locally Decodable Codes

In this section we prove Theorem 1.2. We start by formally defining locally decodable codes.

For a natural number n, let [n] , {1, . . . , n}. Let F be a field. For a vector x ∈ F
n we write

xi for the i’th coordinate of x. We denote by ei the i’th unit vector. For two vectors y, z ∈ F
m,

denote by ∆(y, z) the number of coordinates in which y and z differ.

Definition 2.1. Let δ, ε ∈ [0, 1], q an integer. We say that E : F
n → F

m is a (q, δ, ε)-locally
decodeable code if there exists a probabilistic oracle machine A such that:

• In every invocation, A makes at most q queries (non-adaptively).

• For every x ∈ F
n, for every y ∈ F

m with ∆(y,E(x)) < δm, and for every i ∈ [n], we have

|F| <∞ : Pr[Ay(i) = xi] ≥
1
|F| + ε

|F| =∞ : Pr[Ay(i) = xi] ≥ ε

where the probability is taken over the internal coin tosses of A.

We say the the code E is a linear code, if E is a linear transformation between F
n and F

m.

We are now ready to prove Theorem 1.2. To ease the reading of the paper we repeat its
formulation here:

Theorem 1.2 Let δ, ε ∈ [0, 1], F a field, and let E : F
n → F

m be a linear (2, δ, ε)-locally
decodable code. Then

m ≥ 2
ε δ n

4
−1.

Our proof will build upon the methods of [GKST01], together with a novel reduction from LDCs
over arbitrary fields to LDCs over GF (2). We start by reviewing the results of [GKST01]. The first
step of their proof, given by lemma 2.2, is a reduction from the problem of proving lower bounds
for LDCs, to a graph-theoretic problem. The first such reduction was given in [KT00], where it was
used to prove lower bounds on general LDCs. We note that in [GKST01] the lemma was proved
only over finite fields, however, it is easy to modify the proof to work for infinite fields as well.

Lemma 2.2. (Implicit in [GKST01]) Let E : F
n → F

m be a linear (2, δ, ε)-locally decodable
code, and let a1, . . . , am ∈ F

m be vectors such that:

E(x) = (〈a1, x〉, . . . , 〈am, x〉)
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(〈·, ·〉 denotes the standard inner product). Then, for every i ∈ [n], there exists a setMi ⊂ [m]×[m],
of at least ε δ m

4 disjoint pairs, such that for every (j1, j2) ∈Mi, ei ∈ Span{aj1 , aj2}.

From Lemma 2.2 we see that in order to prove lower bounds for 2-query locally decodable
codes, it is sufficient to deal with the more combinatorial setting in which a given multiset of
vectors contain many disjoint pairs spanning each unit vector.

The next step in the proof of [GKST01] is a reduction from arbitrary finite fields to GF (2).
The next lemma summarizes the reduction given by [GKST01].

Lemma 2.3. (implicit in [GKST01]) Let F be a finite field, and let a1, . . . , am ∈ F
n. For every

i ∈ [n] let Mi ⊂ [m]× [m] be a set of disjoint pairs of indices, such that ei ∈ Span{aj1 , aj2} for every
(j1, j2) ∈Mi. Then, there exist m

′ vectors b1, . . . , bm′ ∈ {0, 1}n, and n setsM ′
1, . . . ,M

′
n ⊂ [m′]×[m′]

of disjoint pairs, such that:

1. for every (j1, j2) ∈M ′
i , bj1 ⊕ bj2 = ei.

2. m′ = (|F| − 1)m.

3.
∑n

i=1 |Mi| ≤ 2m+ 2
|F|−1

∑n
i=1 |M

′
i |.

The third and final step in the proof of [GKST01] is a lemma which bounds the size of the
matchings Mi, when the underlying field is GF (2).

Lemma 2.4. ([GKST01]) Let a1, . . . , am be elements of {0, 1}n. For every i ∈ [n] let Mi ⊂
[m]× [m] be a set of disjoint pairs of indices, such that ei = aj1 ⊕ aj2 for every (j1, j2) ∈Mi. Then

n
∑

i=1

|Mi| ≤
1

2
m log(m).

Our proof differs from that of [GKST01] only in its second part - the reduction from F to GF (2).
Our reduction holds for any field, in particular for infinite F, and does not involve the field size as
a parameter.

Lemma 2.5. Let F be any field, and let a1, . . . , am ∈ F
n. For every i ∈ [n] let Mi ⊂ [m] × [m] be

a set of disjoint pairs of indices, such that ei ∈ Span{aj1 , aj2} for every (j1, j2) ∈Mi. Then, there
exist m vectors b1, . . . , bm ∈ {0, 1}n, and n sets M ′′

1 , . . . ,M
′′
n ⊂ [m] × [m] of disjoint pairs, such

that:

1. for every (j1, j2) ∈M ′′
i , bj1 ⊕ bj2 = ei.

2.
∑n

i=1 |Mi| ≤ 2
∑n

i=1 |M
′′
i |+m.

Before giving the proof of the Lemma we combine Lemma 2.2, Lemma 2.5, and Lemma 2.4, to
prove Theorem 1.2.

Proof of Theorem 1.2. Let a1, . . . , am ∈ F
n be vectors such that

E(x) = (〈a1, x〉, . . . , 〈am, x〉).
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From Lemma 2.2, we know that there exist n sets, M1, . . . ,Mn ⊂ [m] × [m], of disjoint pairs of
indices, such that for every (j1, j2) ∈Mi, we have ei ∈ Span{aj1 , aj2}. We also know that

∀ i ∈ [n] , |Mi| ≥
ε δ m

4
.

Now, let b1, . . . , bm ∈ {0, 1}
n and M ′′

1 , . . . ,M
′′
n ⊂ [m]× [m] be as in Lemma 2.5. That is:

1. for every (j1, j2) ∈M ′′
i , bj1 ⊕ bj2 = ei.

2.
∑n

i=1 |Mi| ≤ 2
∑n

i=1 |M
′′
i |+m.

Using Lemma 2.4 we now have

n
∑

i=1

|M ′′
i | ≤

1

2
m log(m).

This implies

n ·
ε δ m

4
≤

n
∑

i=1

|Mi| ≤ 2
n
∑

i=1

|M ′′
i |+m ≤ m log(m) +m.

Which, after division by m, gives the bound stated by the theorem.

We now give the proof of Lemma 2.5.

Proof of Lemma 2.5: The proof will consist of two stages. First, we will remove a relatively small
number of ”bad” pairs from the given matchings Mi, then we will transform the vectors a1, . . . , am
to vectors in {0, 1}n, while preserving a large portion of the pairs spanning the unit vectors.

Let (j1, j2) be a pair in Mi for some i, such that either aj1 or aj2 are proportional to the unit
vector ei. w.l.o.g assume aj1 = c · ei. We replace this pair with the pair (j1, j1). We do the same
for all pairs containing a vector proportional to the unit vector spanned by this pair. This change
does not affect the parameters of the lemma, and is done only to simplify the analysis.

Next, we define a function θ : F
n\{0} → [n] by

θ(v) = min{i : vi 6= 0}.

For the rest of the proof we assume w.l.o.g that in each pair (j1, j2) we have θ(aj1) ≤ θ(aj2) (note
that we can assume w.l.o.g that the vectors a1, . . . , am are all different from zero). We remove from
each matching Mi all the pairs (j1, j2) in which θ(aj1) = i (this includes all pairs (j1, j1) described
in the previous paragraph, and more). Denote the resulting matchings by M ′

i . We claim that the
total number of pairs removed in this stage is at most m:

Claim 2.6.
n
∑

i=1

|Mi| ≤
n
∑

i=1

|M ′
i |+m. (2)

Proof. let p1 = (j1, j2) and p2 = (k1, k2) be two removed pairs . If p1 and p2 were in the same
matching Mi , then they are disjoint, and so j1 6= k1. If the pairs belonged to two different
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matchings , say Mi1 and Mi2 , then θ(aj1) = i1 and θ(ak1) = i2, and again we get that j1 6= k1.
It follows that every removed pair has a distinct first element in the set [m]. Therefore, the total
number of removed pairs cannot exceed m.

In the following we assume w.l.o.g that the first non-zero coordinate of each aj is one (we can
assume that because we are allowed to use arbitrary linear combinations of the aj ’s when spanning
the ei’s). The next claim asserts an important property of the matchings M ′

i .

Claim 2.7. For every i ∈ [n],and (j1, j2) ∈M ′
i :

ei ∈ Span{aj1 − aj2}.

Proof. Let u = aj1 , v = aj2 . We know that there exist two non-zero coefficients α, β ∈ F such that
αu + βv = ei (both coefficients are non-zero because we removed from Mi all pairs containing a
vector proportional to ei). From this property it is clear that θ(u) ≤ i (remember that θ(u) ≤ θ(v)).
As we removed all pairs in which θ(aj1) = i we conclude that θ(u) < i . This in turn implies that
θ(u) = θ(v) < i, because if θ(v) > θ(u), then the vector αu + βv = ei would have a non-zero
coordinate in position θ(u) < i. Now, since vθ(v) = uθ(u) = 1 we have that α+ β = (αu+ βv)θ(u) =
(ei)θ(u) = 0. Hence ei ∈ Span{aj1 − aj2}.

Let us now proceed to the second stage of the proof of Lemma 2.5, in which we move from the
field F to GF (2). We will use a probabilistic argument to show the existence of a transformation
that maps F to GF (2), while preserving a large portion of the pairs that span a given unit vector.

For each i ∈ [n], let aji denote the i’th coordinate of the vector aj . Let V = {aji}j∈[m],i∈[n] be
the set of all field elements appearing in one of the vectors a1, . . . , am. We pick a random function
f : V → {0, 1}, and apply f to all the coordinates in all the vectors. Let

bj = (f(aj1), . . . , f(ajn))

be the vector in {0, 1}n obtained from aj after the transformation. We say that a pair (j1, j2) ∈M ′
i

”survived” the transformation if ei = bj1 ⊕ bj2 .

Claim 2.8. The expected number of surviving pairs is 12
∑n

i=1 |M
′
i |.

Proof. Consider a pair (j1, j2) ∈M ′
i . Since ei ∈ Span{aj1−aj2} we know that the vectors aj1 , aj2 are

identical in all coordinates different from i. Hence, the vectors bj1 , bj2 will also be identical in those
coordinates. From this we see that ei = bj1 ⊕ bj2 iff bj1 and bj2 differ in their i’th coordinate. This
happens with probability of one half. By linearity of expectation we can conclude that the expected
number of surviving pairs is at least half the number of original pairs, which was

∑n
i=1 |M

′
i |.

From the above claim we can assert that there exist a function f for which the number of
surviving pairs is at least 1

2

∑n
i=1 |M

′
i |. Thus, we have shown that there exist a set of vectors

b1, . . . , bm ∈ {0, 1}n and matchings M ′′
i ⊂ [m] × [m] such that for every (j1, j2) ∈ M ′′

i , we have
ei = bj1 ⊕ bj2 . Furthermore, we can assume that

n
∑

i=1

|M ′
i | ≤ 2

n
∑

i=1

|M ′′
i |, (3)
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which completes the proof of the lemma, since now

n
∑

i=1

|Mi| ≤
n
∑

i=1

|M ′
i |+m ≤ 2

n
∑

i=1

|M ′′
i |+m.

The next Corollary combines the results of Lemma 2.5 and Lemma 2.4 in a compact form. This
Corollary will be used in the proof given in Section 4.

Corollary 2.9. Let F be any field, and let a1, . . . , am ∈ F
n. For every i ∈ [n] let Mi ⊂ [m] × [m]

be a set of disjoint pairs of indices (j1, j2) such that ei ∈ Span{aj1 , aj2}. Then

n
∑

i=1

|Mi| ≤ m log(m) +m.

3 ΣΠΣ Circuits

In this section we give some definitions related to ΣΠΣ circuits, and describe some elementary
operations that can be preformed on them. These definitions and operations will be used in the
following sections.

3.1 Definitions

In the following we treat vectors in F
n also as linear forms in F[x1, . . . , xn].

Definition 3.1. Let u ∈ F
n, u = (u1, . . . , un). Then:

u(x) = u1x1 + u2x2 + · · ·+ unxn.

Definition 3.2. Let v, u ∈ F
n\{0}. We write u ∼ v if there exists c ∈ F such that u = c · v.

We proceed to the main definition of this section:

Definition 3.3. Let F be a field. A ΣΠΣ circuit, C, over F, with n inputs, and k multiplication
gates (i.e. top fan-in is k) is the formal expression

C(x) =
k
∑

i=1

ci

di
∏

j=1

Lij(x),

where for each i ∈ [k], j ∈ [di], Lij is a non constant linear function:

Lij(x) = L0ij + L1ij · x1 + · · ·+ Ln
ij · xn,

and ci, L
t
ij ∈ F for all i, j, t.
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For every i ∈ [k] define Ni to be the i’th multiplication gate of C:

Ni(x) ,

di
∏

j=1

Lij(x).

For each i ∈ [k], di is the degree of Ni. The number k denotes the number of different multiplication
gates, and is referred to as the top fan-in of the circuit. The total degree of C is max{di}, and the
size of C is

∑k
i=1 di. We denote with rank(C) the rank of C:

rank(C) , dim(Span{Lij : i ∈ [k] , j ∈ [di]}).

Comment: when dealing with ΣΠΣ circuits, we will always assume that all the linear functions
appearing in the circuit are different from zero.

We are interested in ΣΠΣ circuits that compute the zero polynomial in F[x1, . . . , xn]. If C is
such a circuit, we write C ≡ 0. When dealing with circuits of this kind, it is sufficient to consider
circuits of limited structure. This notion is made precise by the following definition and the lemma
that follows.

Definition 3.4. Let k, d > 0 be integers. A ΣΠΣ circuit C is called a ΣΠΣ(k, d) circuit if the
following three conditions hold:

• the top fan-in of C is k.

• d1 = d2 = · · · = dk = d.

• for every i ∈ [k] and j ∈ [d], Lij is a homogenous linear form, that is: Lij(x) = L1ij · x1 +
· · ·+ Ln

ij · xn (the free coefficient in each linear function is zero).

When dealing with ΣΠΣ(k, d) circuits we will treat the linear functions Lij also as vectors in
F
n, that is: Lij = (L1ij , . . . , L

n
ij).

Lemma 3.5. There exists a polynomial time algorithm, such that given as input a ΣΠΣ circuit
C, with top fan-in k, and total degree d > 0, outputs a ΣΠΣ(k, d) circuit C ′, such that: C ≡ 0 iff
C′ ≡ 0. The circuit C ′ is called the corresponding ΣΠΣ(k, d) circuit of C.

Proof. We introduce a new variable y, and define C ′ to be a circuit with input variables x1, . . . , xn, y.
Let

Lij(x) = L0ij +
n
∑

t=1

Lt
ij · xt

be a linear function appearing in C. Define

L′
ij(x, y) = L0ij · y +

n
∑

t=1

Lt
ij · xt,

and define C′ to be

C′(x, y) =
k
∑

i=1

ci y
d−di

di
∏

j=1

Lij(x, y).

10



Clearly, C′ is a ΣΠΣ(k, d) circuit, and can be computed from C in time polynomial in the size
of C. Note that if we write

C(x) =
d
∑

i=0

Pi(x),

where Pi(x) denotes the homogeneous part of degree i of C(x), then

C′(x, y) =
d
∑

i=0

Pi(x)y
d−i.

Therefore C ≡ 0 iff C ′ ≡ 0.

Lemma 3.5 shows that in order to achieve our final goal, which is to derive PIT algorithms
for ΣΠΣ circuits, it is sufficient to consider ΣΠΣ(k, d) circuits. For the rest of the paper we will
deal only with ΣΠΣ(k, d) circuits, and we shall sometimes refer to them simply as ΣΠΣ circuits,
omitting the suffix (k, d) where it is not needed.

3.2 Identically zero ΣΠΣ Circuits

Simple Circuits:

It might be the case that there exist a linear function, L, that appears (up to a constant) in all
multiplication gates of C. In this case, we can divide each multiplication gate by L, and get a
simpler circuit C ′, whose degree is smaller then that of C by one. Clearly C ≡ 0 iff C ′ ≡ 0. The next
two definitions deal with this case in a more general way.

Definition 3.6. Let C be a ΣΠΣ circuit, and let N1, . . . , Nk be its multiplication gates. Define
4

gcd(C) , g.c.d.(N1(x), . . . , Nk(x)).

Since each multiplication gate is a product of linear forms: Ni(x) =
∏di

j=1 Lij(x), we get that gcd(C)
is the product of all the linear forms that appear in all the multiplication gates (up to multiplication
by constants). Note also that gcd(C) can be easily computed from C.

It is clear that C ≡ 0 iff C
gcd(C) ≡ 0. This fact motivates the following definition.

Definition 3.7. A ΣΠΣ circuit C is called simple if gcd(C) = 1. Let us also define sim(C) to be
the simple circuit obtained from C by dividing each multiplication gate by gcd(C). It is clear that
sim(C) is always simple, and that

C(x) = sim(C)(x) · gcd(C)(x).

Example 3.8. Let

C(x) = (x1 + 2x2 + x3 + 1)(2x1 + 4x2 + 5x3 + 2)(2x1 + 4x2 + 2x3)

+ (x1 + 2x2 + x3 + 1)(6x1 + 4x2 + 5x3)(1x1 + 1x2 + 2x3 + 4)

+ (2x1 + 4x2 + 2x3 + 2)(4x2 + 1x3)(7x1 + 4x2 + 2x3).

4g.c.d. stands for greatest common divisor.
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Then
gcd(C) = x1 + 2x2 + x3 + 1,

and

sim(C)(x) = (2x1 + 4x2 + 5x3 + 2)(2x1 + 4x2 + 2x3)

+ (6x1 + 4x2 + 5x3)(1x1 + 1x2 + 2x3 + 4)

+ 2 · (4x2 + 1x3)(7x1 + 4x2 + 2x3).

Minimal Circuits:

Suppose we have two ΣΠΣ circuits C1 and C2, both of them equal to zero. Let k1, k2 denote the top
fan-in of C1 and of C2 respectively. We can add C1 to C2 to create a new circuit C = C1 + C2, with
top fan-in k1+k2, that will also be equal to zero. This new circuit C however, can be ’broken down’
into two smaller subcircuits that are zero. In the following we will be interested in circuits that
cannot be broken down into smaller subcircuit that are equal to zero. The next two definitions
deal with circuits of this type.

Definition 3.9. Let C be a ΣΠΣ circuit , and let ∅ 6= T ⊆ [k]. Then CT is defined to be the
subcircuit of C composed of the multiplication gates whose indices appear in T :

CT (x) ,
∑

i∈T
ci

di
∏

j=1

Lij(x) =
∑

i∈T
ciNi(x).

Definition 3.10. Let C ≡ 0 be a ΣΠΣ circuit. We say that C is minimal if for every non-empty
subset T ⊂ [k] ,apart from [k] itself, we have CT 6≡ 0.

The following easy claim shows that most properties of a ΣΠΣ circuit C remain when we move
to the corresponding ΣΠΣ(k, d) circuit. The proof is immediate from the proof of lemma 3.5.

Claim 3.11. Let C be a ΣΠΣ circuit, and let C ′ be the corresponding ΣΠΣ(k, d) circuit (as defined
in Lemma 3.5). Then we have the following:

• rank(C) ≤ rank(C ′) ≤ rank(C) + 1.

• C is simple iff C ′ is simple.

• C is minimal iff C ′ is minimal.

Taking a Linear Transformation:

We start with a simple operation of setting one of the variables to zero. This operation can be
looked at as projecting all the linear functions in the circuit on a sub-space of co-dimension 1.

Definition 3.12. Let C be a ΣΠΣ circuit, and let t ∈ [n]. Define C|xt=0 to be the circuit obtained
from C by setting the variable xt to zero (this is the same as changing the t’th coordinate in each
linear form Lij to zero). The polynomial computed by C|xt=0 is therefore

(C|xt=0)(x) = C(x1, . . . , xt−1, 0, xt+1, . . . , xn).
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We can generalize the operation just defined, by applying a general linear transformation on
the linear functions of the circuit.

Definition 3.13. Let

C(x) =
k
∑

i=1

ci

d
∏

j=1

Lij(x)

be a ΣΠΣ(k, d) circuit on n variables, and let π : F
n → F

n be a linear transformation. Define π(C)
to be the circuit obtained from C by applying π on all linear forms appearing in the circuit5. That
is

π(C)(x) =
k
∑

i=1

ci

d
∏

j=1

π(Lij)(x).

The following claim is easy to verify.

Claim 3.14. Let C be a ΣΠΣ(k, d) circuit, and let π : F
n → F

n be an invertible linear transforma-
tion. Then

• C ≡ 0 iff π(C) ≡ 0.

• C is simple iff π(C) is simple.

• C is minimal iff π(C) is minimal.

• rank(C) = rank(π(C)).

4 ΣΠΣ Circuits and Locally Decodable Codes

In this section we prove Theorem 1.3, which is the main result of the paper. This theorem shows
the relation between ΣΠΣ circuits and linear locally decodable codes. It is more convenient to us
to prove the theorem for ΣΠΣ(k, d) circuits instead of general ΣΠΣ circuits. From claim 3.11, we
know that moving from C to its corresponding ΣΠΣ(k, d) circuit does not affect any of the relevant
properties of C, so the following theorem is equivalent to Theorem 1.3.

Theorem 4.1. Let k ≥ 3, d ≥ 2, and let C ≡ 0 be a simple and minimal ΣΠΣ(k, d) circuit, on n
inputs, over a field F. Then, there exists a linear (2, 112 ,

1
4)-locally decodable code E : F

n1 → F
n2,

with
rank(C)

P (k) log(d)k−3
≤ n1 and n2 ≤ k · d, where P (k) = 2O(k

2).

We prove Theorem 4.1 by induction on k. We devote Section 4.1 to the base case of k = 3, and
give the proof of the inductive step in Section 4.2.

Before moving on to the proof of Theorem 4.1 we should explain why we are only dealing with
circuits whose top fan-in is at least 3. The reason for this is that the structure of a zero ΣΠΣ(k, d)

5Remember that we identify linear forms with vector in F
n.
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circuit with k = 1, 2 is trivial. If C has only one multiplication gate (k = 1), then it is zero iff one
of the linear functions appearing in it is the zero function. The case of k = 2 is equally trivial, as
seen by the next claim.

Claim 4.2. Let C = c1N1(x) + c2N2(x), be a ΣΠΣ(2, d) circuit. Suppose C ≡ 0. Then, the linear
functions, appearing in the two multiplication gates N1 and N2, are the same, up to an ordering
and multiplication by constants.

Proof. Since C ≡ 0, we have that c1N1(x) ≡ −c2N2(x). Each multiplication gate Ni is a product of
linear functions. Since every polynomial can be written, in a unique way, as a product of irreducible
polynomials, and since every linear function is irreducible, we have that the linear functions in the
two gates must be the same (up to an ordering and multiplication by constants).

4.1 Proof of Theorem 4.1 for k=3

Let r = rank(C). Then there exists r linearly independent functions L1, . . . , Lr in C. Using
Claim 3.14 we can assume w.l.o.g that for every t ∈ [r] , Lt(x) = xt (or in other words: Lt = et).
Consider the circuit C|xt=0 for some t ∈ [r]. Clearly C|xt=0 ≡ 0. From the fact that the function
Lt = et appears in one of the multiplication gates, we know that this gate will become zero in C|xt=0.
The following claim assures us that neither of the other two multiplication gates will become zero
in C|xt=0.

Claim 4.3. Let L and L′ be two linear functions appearing in two different multiplication gates of
C. Then L 6∼ L′.

Proof. Assume for a contradiction that L divides both N1 and N2. As c3N3(x) = −c1N1(x) −
c2N2(x) we get that N3(x) is also divisible by L. But, C is simple so this is a contradiction.

How can a circuit with two non-zero multiplication gates be zero ? From Claim 4.2, this is only
possible if the two gates contain the same linear functions, up to an ordering and multiplication by
constants.

We thus get that every variable xt, t ∈ [r], induces a matching on the linear functions of
the circuit. This matching contains d pairs of linear functions, such that for every pair (L,L′)
in the matching, we have that L and L′ belong to two different multiplication gates, and that
L|xt=0 ∼ L′|xt=0. Denote with Mt the matching induced by xt. The next claim gives us more
information about the pairs appearing in those matchings.

Claim 4.4. Let t ∈ [n], and let L,L′ ∈ F
n such that: L 6∼ L′, and L|xt=0 ∼ L′

xt=0. Then

et ∈ Span{L,L′}.

Proof. Let L = (a1, . . . , an), L
′ = (b1, . . . , bn). Since L|xt=0 ∼ L′|xt=0, we know that there exists

a constant c ∈ F, such that for all j 6= t we have aj = c · bj . The fact that L 6∼ L′ implies that
at 6= c · bt. It follows that et ∼ L− c · L′. In particular we get that et ∈ Span{L,L′}.

From Claim 4.4 we see that every pair (L,L′) ∈Mt span the vector et. We also have that all the
matchings {Mt}t∈r are contained in a set of 3d linear functions, and that each matching contains

14



d pairs. We can now construct a linear locally decodable code in the following way: For each
i ∈ [3], j ∈ [d], let lij ∈ F

r be the projection of Lij on the first r coordinates. define E : F
r → F

3d

by
Eij(x) = lij(x).

In order to show that E is a (2, 112 ,
1
4)-locally decodable code, we need to show a decoding algorithm

for it. For each t ∈ [r] we know that there are d disjoint pairs of code positions that span et (note
that taking the projection on the first r coordinates doesn’t affect this property). In order to
decode xt we simply pick a random pair, uniformly, among these d pairs, and compute the linear
combination giving et. Suppose we picked lij(x) and li′j′(x). We know that there exist constants
a, b ∈ F such that

a · lij + b · li′j′ = et.

Therefore
a · Ei,j(x) + b · Ei′,j′(x) = a · lij(x) + b · li′j′(x) = et(x) = xt.

If our codeword has at most 1
12(3d) =

d
4 corrupted positions, then at least 3

4 of the d pairs are
uncorrupted, and our algorithm will succeed with probability greater then 3

4 .

In the notation of the theorem, we have n1 = r, and n2 = 3d = kd. Let P (3) = 1, then

n1 = r ≥
r

P (k) log(d)k−3
,

and the theorem follows for k = 3.

4.2 Proof of Theorem 4.1 for k ≥ 4

The proof is by induction on k. The idea behind the proof is the following: Assume that x1 appears
as a linear function in the circuit. A natural thing to do is to consider C|x1=0. This circuit contains
less multiplication gates and so we would like to find an LDC in it by induction. A possible problem
is that the rank of every minimal subcircuit is low. We can overcome this problem by showing that
there are many variables x1, ..., xm (m ≥ r/2k) such that there exists I ⊂ [k] for which CI 6≡ 0, but
for every t ∈ [m], (CI)|xt=0 is identically zero and minimal. In particular we show that this implies
that the rank of CI is at least m. We would like to construct a code from CI , so we consider, say,
(CI)|x1=0. This circuit is identically zero and minimal, but it is not necessarily simple. Therefore
we take sim((CI)|xt=0). However, it might be the case that the rank of this circuit is very small,
i.e. that we lost a lot of rank when we removed the g.c.d. We overcome this difficulty, by proving
that there are relatively few (≈ log d) variables, say x1, ..., xlog d, such that the span of the linear
functions in sim((CI)|xt=0)t=1,...,log d contains almost all the functions of CI . In particular, for some
t, the rank of sim((CI)|xt=0) is relatively high, so we can apply the induction hypothesis on this
circuit. Proving the existence of such t is the main technical difficulty of the proof (claim 4.8). We
now give the formal proof.

Let k ≥ 4, and assume the correctness of Theorem 4.1 for all 3 ≤ k′ < k. Let

C(x) =
k
∑

i=1

ci

d
∏

j=1

Lij(x),

15



be a ΣΠΣ(k, d) circuit satisfying the conditions of the theorem. As in the proof for k = 3, let
r = rank(C), and w.l.o.g assume that the circuit contains the first r unit vectors e1, . . . , er. We can
also assume that

r ≥ P (k) log(d)k−3, (4)

for otherwise the theorem is trivially true, since we can always construct a 2-query locally decodable
code whose message size is 1, satisfying the requirements of the theorem.

Claim 4.5. For every t ∈ [r] there exists a set It ⊂ [k] such that:

1. 2 ≤ |It| ≤ k − 1

2. (C|xt=0)It is identically zero and minimal.

Proof. Let t ∈ [r]. Clearly C|xt=0 ≡ 0. Denote with k′ the number of multiplication gates in C
that become zero when xt = 0 (these are exactly those multiplication gates that contain a linear
function proportional to et). Since we assumed that C contains et, we know that k′ ≥ 1. It is also
easy to verify that k′ ≤ k−2 (if k′ = k then C is not simple, and if k′ = k−1 then C is not divisible
by xt - as in Claim 4.3). Therefore, the circuit C|xt=0 is identically zero, and contains at least two
(and at most k − 1) non-zero multiplication gates. Hence, we can decompose C|xt=0 into minimal
subcircuits, each of top fan-in at least two and at most k − 1. Take It to be the index set of any
one of these minimal subcircuits.

From Claim 4.5 we can conclude that there are m ≥ r
2k

variables (w.l.o.g: x1, . . . , xm) that have
the same set It. Let I = I1 = · · · = Im, and define

Ĉ = sim(CI).

The next claim summarizes several facts we know about the circuit Ĉ.

Claim 4.6.

1. Ĉ is a ΣΠΣ(k̂, d̂) circuit with 2 ≤ k̂ ≤ k − 1, 0 < d̂ ≤ d.

2. Ĉ is simple.

3. Ĉ 6≡ 0.

4. For all t ∈ [m], Ĉ|xt=0 ≡ 0 and is minimal.

5. For all t ∈ [m], et does not appear in Ĉ.

Proof. Parts (1) and (2) follow from the definition of Ĉ (the fact that 0 < d̂ follows from (3) and
(4)). (3) is true because we assumed that C is minimal. (4) follows from the fact that Ĉ = sim(CI)
and that (CI)|xt=0 ≡ 0 is minimal for all t ∈ [m]. Finally, (5) is a direct consequence of (4).

Let r̂ , rank(Ĉ). The next claim shows that the rank of our chosen subcircuit Ĉ, is not
considerably smaller then the rank of C.

Claim 4.7. r̂ ≥ m
(

≥ r
2k

)

.
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Proof. In order to prove the claim, we will show that the linear functions of Ĉ span the unit
vectors e1, . . . , em. Suppose, on the contrary, that there exists an index t ∈ [m] for which et is not
spanned by the linear functions of Ĉ. Assume w.l.o.g that t = 1. There exists an invertible linear
transformation π : F

n → F
n, that satisfies the following two constraints:

• π(e1) = e1.

• The variable x1 does not appear in the circuit π(Ĉ) (equivalently, all the linear functions in
π(Ĉ) are orthogonal to e1).

From Claim 4.6 we know that Ĉ 6≡ 0, and that Ĉ|x1=0 ≡ 0. Hence Ĉ(x) can be written as

Ĉ(x) ≡ x1 · g(x),

where g(x) is a nonzero polynomial. We can look at the transformation π as a linear change of
variables, and denote with π(g) the polynomial obtained from g(x) after this change. Thus,

π(Ĉ)(x) ≡ π(x1) · π(g)(x) ≡ x1 · π(g)(x). (5)

Now, since g(x) 6≡ 0, and since π is invertible, claim 3.14 implies6 that π(g)(x) 6≡ 0. From this, and
from Equation 5 we see that π(Ĉ)(x) is a nonzero polynomial divisible by x1. This is a contradiction,
since we assumed that x1 does not appear in π(Ĉ).

We would like to use the inductive hypothesis on a well chosen circuit among Ĉ|x1=0, . . . , Ĉ|xm=0.
However, there are two obstacles in the way. The first is that the top fan-in of Ĉ might be equal to
2 (the theorem only holds for k ≥ 3). This case is rather simple, since we can use the analysis given
in Section 4.1 to construct a locally decodable code satisfying the conditions of the theorem (a
detailed analysis of this special case is deferred to the end of this section). From now on we assume
that k̂ ≥ 3. The second obstacle is that these circuits are not necessarily simple. We overcome this
obstacle by using the inductive hypothesis on sim(Ĉ|xt=0) instead. The next claim, whose proof is
deferred to Section 4.3, tells us which of these circuits we should pick.

For each t ∈ [m], let rt , rank(sim(Ĉ|xt=0)).

Claim 4.8. There exists t ∈ [m], such that

rt ≥
r̂

2k+1 log(d)
.

Claim 4.8 assures us that one of the rt’s is large (we assume w.l.o.g. that t = 1). We get that

r1 ≥
r̂

2k+1 log(d)
. (6)

Our next step is to apply the induction hypothesis to the circuit sim(Ĉ|x1=0). However, In order
to use Theorem 4.1, we require that the degree of the given circuit is at least two. The next claim
shows that the degree of sim(Ĉ|x1=0) is indeed at least two.

6It is easy to see that this part of Claim 3.14 holds also for general polynomials, and not just ΣΠΣ circuits.
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Claim 4.9. Let d1 denote the degree of sim(Ĉ|x1=0). Then d1 ≥ 2.

Proof. If d1 < 2, then r1 < k (the number of linear functions is at most k̂ < k). By Equation 6 we
get that

r̂ ≤ k2k+1 log(d).

Now, using the fact that r̂ ≥ m ≥ r
2k

(Claim 4.7), we conclude that

r ≤ 2kr̂ ≤ k22k+1 log(d),

contradicting Equation 4, for an appropriate choice of P (k) = 2O(k
2).

Therefore sim(Ĉ|x1=0) satisfies all the conditions of Theorem 4.1. The induction hypothesis,
applied on sim(Ĉ|x1=0), asserts that there exists a (2, 112 ,

1
4)-locally decodable code, E : F

n1 → F
n2 ,

with
n1 ≥

r1

P (k̂) log(d1)k̂−3
and n2 ≤ k̂ · d1(≤ k · d).

Using Equation 6, and the fact that k̂ ≤ k− 1 and r̂ ≥ m ≥ r
2k
, we derive the following inequalities

n1 ≥
r1

P (k̂) log(d1)k̂−3

≥
r1

P (k − 1) log(d)k−4

≥
r̂

2k+1P (k − 1) log(d)k−3

≥
r

22k+1P (k − 1) log(d)k−3

≥
r

P (k) log(d)k−3

(for an appropriate choice of P (k) = 2O(k
2)). This completes the proof of the inductive step, and

of Theorem 4.1.

4.2.1 A special case : k̂ = 2

In this subsection we analyze a special case of the proof of Theorem 4.1. This case is when k̂ (the
top-fanin of the circuit Ĉ) is equal to 2. The analysis of this case differs from the analysis of the
general (k̂ ≥ 3) case because we cannot apply the inductive hypothesis on Ĉ (or more precisely, on
the circuits C|xt=0). We now show how to complete the proof of the theorem (that is, to construct
an LDC satisfying the requirements of the thorem) in this case.

Denote by N̂1 and N̂2 the two multiplication gates of Ĉ. We can write

Ĉ(x) ≡ c1N̂1(x) + c2N̂2(x).

Now, since Ĉ is simple and non-zero, we have

gcd(Ĉ) ≡ gcd(N̂1(x), N̂2(x)) ≡ 1.
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Next, let t ∈ [m], and consider what happens to Ĉ after we set xt to zero. We know that Ĉ|xt=0 ≡ 0,
and so

c1N̂1|xt=0 ≡ −c2N̂2|xt=0.

Now, since N̂1|xt=0 and N̂2|xt=0 are both non-zero (e1, . . . , em do not appear in Ĉ), we can deduce,
as we did in Section 4.1, that there exists m matchings Mt, t ∈ [m], of size |Mt| = d̂, of linear
functions appearing in Ĉ, such that for every pair (L,L′) ∈Mt, et ∈ Span{L,L′}. Projecting each
linear function in Ĉ on the first m coordinates, and using the construction from Section 4.1, we see

that there exists a (2, 112 ,
1
4)-locally decodable code 7 E : F

m → F
2d̂. In the notation of the theorem,

we have
n2 = 2d̂ ≤ kd,

and
n1 = m ≥

r

2k
≥

r

P (k) log(d)k−3
,

as required by the theorem.

4.3 Proof of Claim 4.8

In this section we prove Claim 4.8. We start by defining some new notations, required for the proof.

4.3.1 Notations

Let N̂1, . . . , N̂k̂ denote the multiplication gates of Ĉ. We will treat Ĉ, N̂1, . . . , N̂k̂ also as sets of
indices. We shall abuse notations and write

Ĉ = {(i, j) | i ∈ [k̂], j ∈ [d̂]},

N̂i = {(i, j) | j ∈ [d̂]}.

For a set H ⊂ Ĉ, we denote with rank(H) the dimension of the vector space spanned by the linear
functions whose indices appear in H. That is

rank(H) , dim (Span{Lij : (i, j) ∈ H}) .

For the rest of the proof we will treat subsets of Ĉ interchangeably as sets of indices and as (multi)sets
of linear functions.

We would next like to define, for each t ∈ [m], certain subsets of Ĉ that capture the structure of
Ĉ|xt=0. Fix some t ∈ [m], and consider what happens to Ĉ when we set xt to be zero. The resulting
circuit Ĉ|xt=0 is generally not simple, and can therefore be partitioned (see Definition 3.7) into two
disjoint sets: A set containing the indices of the linear functions appearing in gcd(Ĉ|xt=0), and a set
containing the indices of the remaining linear functions (these are the linear funcitons appearing in
sim(Ĉ|xt=0)). To be more precise, denote by δt the degree of gcd(Ĉ|xt=0). In every multiplication
gate N̂i, there are δt linear functions such that the restriction of their product to xt = 0 is equal to
gcd(Ĉ|xt=0). Denote the set of indices of these functions by Gi

t, and let Ri
t , N̂i\G

i
t be the set of

7We could have actually taken δ to be 1
8
instead of 1

12
, because the number of multiplication gates is 2 and not 3.
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indices of the remaining linear functions of this multiplication gate. We thus have (for some choice
of constants {ci})

sim(Ĉ|xt=0) =
k̂
∑

i=1

ci
∏

(i,j)∈Ri
t

(Lij |xt=0),

and,

∀i ∈ [k̂] , gcd(Ĉ|xt=0) =
∏

(i,j)∈Gi
t

(Lij |xt=0).

We now define, for each t ∈ [m], the sets Rt ,
⋃k̂

i=1R
i
t, and Gt ,

⋃k̂
i=1G

i
t. The following claim

summarizes some facts that we will later need.

Claim 4.10. For every t ∈ [m] :

1. Rt ∩Gt = ∅.

2. Ĉ = Rt ∪Gt.

3. |Gt| = k̂ · deg( gcd(Ĉ|xt=0) ) = k̂ · δt.

4. Rt contains the indices of the linear functions appearing in sim(Ĉ|xt=0).

5. rt = rank(sim(Ĉ|xt=0)) = rank(Rt).

Proof. Follows directly from the previous paragraph and from Definition 3.7.

4.3.2 The Proof

We will start by assuming that the claim is false. In other words we assume that for every t ∈ [m]

rt <
r̂

2k+1 log(d)
. (7)

Having defined, for each t ∈ [m], the sets Rt and Gt, we would now like to show that there exist
a ’small’ (∼ log(d)) number of sets Rt, such that their union covers almost all of Ĉ. As rank(Ĉ)
is relatively high, and for each t, rt = rank(Rt) is (assumed to be) relatively small, we will get a
contradiction. We construct the cover step by step, in each step we will find an index t ∈ [m] such
that the set Rt covers at least half of the linear functions not yet covered. This idea is made precise
by the following claim.

Claim 4.11. For every integer 1 ≤ q ≤ log(d̂) there exist q indices t1, . . . , tq ∈ [m] for which

∣

∣

∣

∣

∣

q
⋃

s=1

Rts

∣

∣

∣

∣

∣

≥ k̂d̂(1− 2−q).

Proof. by induction on q:
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Base case q = 1: In order to prove the claim for q = 1, it is sufficient to show that there exists
t ∈ [m] for which |Rt| ≥

1
2 k̂d̂. Suppose, on the contrary, that for all t ∈ [m], |Rt| <

1
2 k̂d̂. Claim 4.10

implies that for all t ∈ [m], |Gt| ≥
1
2 k̂d̂. This in turn implies that for all t ∈ [m]

|G1t | ≥
1

2
d̂. (8)

The next lemma shows that, under the conditions just described, the linear functions of Ĉ
’contain’ a 2-query locally decodable code. We will then apply our results on LDCs from Section 2
(namely Corollary 2.9) to derive a contradiction. Lemma 4.12 is more general than what is required
at this point, however, we will need it in its full generality when we handle q > 1.

Lemma 4.12. Let C be a simple ΣΠΣ(k, d) circuit with n inputs. Let t ∈ [n], it ∈ [k]. Denote
δt = deg(gcd(C|xt=0)). Suppose that the linear functions in Nit are ordered such that

gcd(C|xt=0) = (Lit1|xt=0)(x) · (Lit2|xt=0)(x) · . . . · (Litδt |xt=0)(x).

Then, there exist a matching, M = {P1, . . . ,Pg} ⊆ C × C, consisting of δt disjoint pairs of linear
functions, such that for each j ∈ [δt]:

• The two linear functions in Pj span et.

• The first element of Pj is Litj.

Proof. We can reorder the linear functions in each gate Ni, i 6= it, such that

∀j ∈ [δt] : L1j |xt=0 ∼ L2j |xt=0 ∼ . . . ∼ Litj |xt=0 ∼ . . . ∼ Lkj |xt=0.

As C is simple, it cannot be the case that, for some j, Litj divides all the multiplication gates.
Therefore, for every j ∈ [δt] there exists an index α(j) ∈ [k], such that Litj 6∼ Lα(j)j . From
Claim 4.4 it follows that,

∀j ∈ [δt] : et ∈ Span{Litj , Lα(j)j}.

For each j ∈ [δt] let Pj = (Litj , Lα(j)j). Set M = {P1, . . . ,Pδt}. It is clear that each Pj satisfies
the two conditions of the lemma, and that the Pj ’s are disjoint.

We continue with the proof of Claim 4.11. From Equation 8 and Lemma 4.12 we conclude that
for each t ∈ [m], there exists a matching Mt ⊂ C × C, containing at least 1

2 d̂ disjoint pairs of linear
functions, such that every pair in Mt spans et. Corollary 2.9 implies that

1

2
d̂m ≤

m
∑

t=1

|Mt| ≤ k̂d̂ log(k̂d̂) + k̂d̂

which gives
m ≤ 2k̂ log(k̂d̂) + 2k̂ < log(d)k−3P (k)2−k

(for an appropriate choice of P (k) = 2O(k
2)). Now, since m ≥ r

2k
, we have that

r < log(d)k−3P (k),
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contradicting Equation 4. Therefore our initial assumption was wrong and we conclude that there
exists t1 with |Rt1 | ≥

1
2 k̂d̂. This completes the proof of Claim 4.11 for the case of q = 1.

Induction step: Let us now assume that we have found q − 1 indices t1, . . . , tq−1 ∈ [m] for which

∣

∣

∣

∣

∣

q−1
⋃

s=1

Rts

∣

∣

∣

∣

∣

≥ k̂d̂(1− 2−(q−1)).

Let

R ,

q−1
⋃

s=1

Rts ,

S , Ĉ\R.

Then, by our assumption
|S| ≤ k̂d̂2−(q−1). (9)

The proof goes along the same lines as the proof for q = 1: we show that there exists an index
t ∈ [m], such that Rt covers at least half of S. We will argue that if such an index does not exists,
then a contradiction to Equation 4 can be derived. Our main tools in doing so are Lemma 4.12
and Corollary 2.9.

Claim 4.13. There exists t ∈ [m], such that for all i ∈ [k̂],

|Gi
t ∩ S| < d̂2−q.

Roughly, the lemma states that there exists some variable, xt, such that most of the linear
functions in S do not belong to gcd(Ĉ|xt=0). In particular it implies that Rt covers a large fraction
of S, as needed.

Proof. Assume, on the contrary, that for every t ∈ [m], there exists it ∈ [k̂], for which

|Git
t ∩ S| ≥ d̂2−q.

From Lemma 4.12 we get that, for every t ∈ [m], there exists a matching Mt, consisting of d̂2−q

disjoint pairs of linear functions, such that each pair spans et, and that the first element in each
pair is in Git

t ∩ S (from the lemma we actually get that Mt contains deg(gcd(Ĉ|xt=0)) number of
pairs, but we are only interested in the pairs whose first element is in Git

t ∩ S).

We would now like to apply Corollary 2.9 on the matchings {Mt}t∈[m], however, for our needs,
we would also like that all the linear functions in all the matchings will belong to S. We achieve
this by projecting all functions in R to zero.

Claim 4.14. There exists a subset A ⊂ [m], of size |A| ≥ m
2 , and a linear transformation π : F

n →
F
n such that

• ker(π) = Span(R).

• ∀t ∈ A , π(et) = et.
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Proof. Calculating, we get that

rank(R) = rank(

q−1
⋃

s=1

Rts) ≤

q−1
∑

s=1

rank(Rts) =

q−1
∑

s=1

rts

≤ (q − 1)
r̂

log(d)2k+1
≤

r

2k+1
≤

m

2
, (10)

where the second inequality follows from Equation 7, the third inequality follows from the fact
that q ≤ log d̂ ≤ log d and r̂ ≤ r, and the last inequality follows from the fact that r

2k
≤ m. Let

m′ = m− rank(R). From Equation 10 we get that m′ ≥ m/2. In particular, there exists a subset
A ⊂ [m], of size |A| = m′, such that Span({xt|t ∈ A}) ∩ Span(R) = {0}. Hence, there exists a
linear transformation π : F

n → F
n such that

• ker(π) = Span(R).

• ∀t ∈ A , π(et) = et.

This completes the proof of the claim.

Let A be the set obtained from the above claim, and π the corresponding linear transformation.
We assume, w.l.o.g., that A = [m′]. From here on, we only consider variables xt such that t ∈ [m′]
(i.e. t ∈ A). Fix such t ∈ [m′], and let M ′

t = π(Mt). In other words, M ′
t = {(π(L), π(L

′))}(L,L′)∈Mt
.

Clearly,
|M ′

t | = |Mt| ≥ d̂2−q. (11)

Note that the pairs in M ′
t still span et, as for any pair (L.L′) ∈ Mt, with et = αL + βL′, we

have that
et = π(et) = π(αL+ βL′) = απ(L) + βπ(L′).

Since all the linear functions appearing in R were projected to zero, we know that all the pairs
in each M ′

t are contained in the multiset8 S′ , {π(L) : L ∈ S}.

After this long preparation we apply Corollary 2.9 to the matchingsM ′
t , and derive the following

inequality:
m′
∑

t=1

|M ′
t | ≤ |S

′| log(|S′|) + |S′|. (12)

As |S′| = |S| (remember that S ′ is a multiset), we get by Equation 9 that

|S′| ≤ k̂d̂2−(q−1). (13)

By Equations 11, 12 and 13, it follows that

m′ · (d̂2−q) ≤
m′
∑

t=1

|M ′
t | ≤ |S

′| log(|S′|) + |S′|

≤ k̂d̂2−(q−1) log(k̂d̂2−(q−1)) + k̂d̂2−(q−1).

8Note that, as in the proof of Lemma 2.5, we can replace each pair in M
′
t , that contains the zero vector, with a

singleton.
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From the fact that k ≥ 4 and m′ ≥ m/2 (and some simple manipulations), we see that for an
appropriate choice of P (k) = 2O(k

2)

m < 2−kP (k) log(d)k−3.

As m ≥ r
2k
, we get that

r < P (k) log(d)k−3,

contradicting Equation 4. This completes the proof of Claim 4.13.

Let us now proceed with the proof of Claim 4.11. Take tq to be the index described by
Claim 4.13, that is:

∀i ∈ [k̂] : |Gi
tq ∩ S| < d̂2−q.

In particular
|Gtq ∩ S| < k̂d̂2−q.

As the complement of
⋃q

s=1Rts is exactly Gtq ∩ S, we get that adding Rtq to R gives

∣

∣

∣

∣

∣

q
⋃

s=1

Rts

∣

∣

∣

∣

∣

≥ k̂d̂(1− 2−q).

This completes the proof of the Claim 4.11.

Having proved Claim 4.11, we are now just steps away from completing the proof of Claim 4.8.
Taking q to be blog(d̂)c in Claim 4.11, we get that there exist indices t1, . . . , tblog(d̂)c ∈ [m], such
that

∣

∣

∣

∣

∣

∣

blog(d̂)c
⋃

s=1

Rts

∣

∣

∣

∣

∣

∣

≥ k̂d̂− 2k̂...

Thus

r̂ − 2k̂ ≤ rank





blog(d̂)c
⋃

s=1

Rts



 ≤

blog(d̂)c
∑

s=1

rts .

The last inequality tells us that there exists some t ∈ [m] for which

rt ≥
r̂ − 2k̂

blog(d̂)c
≥

r̂ − 2k̂

log(d)
. (14)

In order to finish the proof of Claim 4.8 we prove the following inequality

Claim 4.15.

r̂ − 2k̂ ≥
r̂

2k+1
.

Proof. Using Equation 4 we get

r̂ ≥ m ≥ 2−kr ≥ 2−kP (k) log(d)k−3.
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Therefore we can choose P (k) = 2O(k
2) such that

r̂ > 2k̂
2k+1

2k+1 − 1
.

This implies the inequality in the claim.

Combining Claim 4.15 with Equation 14, we conclude that there exists t ∈ [m] for which

rt ≥
r̂

log(d)2k+1
,

which contradicts our initial assumption (Eq. 7). This completes the proof of Claim 4.8.

5 A Structural Theorem For Zero ΣΠΣ Circuits

The main result of this section is a structural theorem for ΣΠΣ circuits which are identically zero.
The proof is based on the results of Section 4. To ease the notations we will prove our results only
for ΣΠΣ(k, d) circuits, however from Claim 3.11 it will follow that all the results also hold for ΣΠΣ
circuits with k multiplication gates of degree d.

Theorem 5.1. (Structural Theorem) Let C ≡ 0 be a ΣΠΣ(k, d) circuit. Then, there exist a
partition of [k]: T1, . . . , Ts ⊂ [k], with the following properties.

• C =
∑s

i=1 CTi
=
∑s

i=1 gcd(CTi
) · sim(CTi

).

• ∀i ∈ [s] sim(CTi
) ≡ 0, and is simple and minimal.

• ∀i ∈ [s] rank(sim(CTi
)) ≤ 2O(k

2) log(d)k−2.

In other words the theorem says that every zero ΣΠΣ circuit, can be ’broken down’ into zero
subcircuits of low rank (ignoring the g.c.d.). This fact will be used in the next section, in which we
devise PIT algorithms for ΣΠΣ circuits.

Before giving the proof of the theorem we prove a lemma that bounds the rank of a zero, simple
and minimal ΣΠΣ circuit. Note that Theorem 1.4 follows from the lemma and Claim 3.11.

Lemma 5.2. Let k ≥ 3, d ≥ 2, and let C ≡ 0 be a simple and minimal ΣΠΣ(k, d) circuit. Then

rank(C) ≤ 2O(k
2) log(d)k−2.

Proof. From Theorem 4.1 we know that there exists a linear (2, 112 ,
1
4)-locally decodable code E :

F
n1 → F

n2 , with

rank(C)

P (k) log(d)k−3
≤ n1 and n2 ≤ k · d, where P (k) = 2O(k

2).

Theorem 1.2 now tells us that
n2 ≥ 2

1
96

n1−1.

Combining the above inequalities we get the required bound on rank(C).
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We now use Lemma 5.2 to prove Theorem 5.1:

Proof of Theorem 5.1. Since C is equal to zero, we can find a partition T1, . . . , Ts ⊂ [k], such that
the circuits CT1 , . . . , CTs are all zero and minimal. Thus, the circuits sim(CT1), . . . , sim(CTs) are all
zero, simple and minimal. By Lemma 5.2 we get that if |Ti| ≥ 3 and deg(sim(CTi

)) ≥ 2 then

rank(sim(CTi
)) ≤ 2O(k

2) log(d)k−2.

If |Ti| = 2 then by Claim 4.2 we get that deg(sim(CTi
)) = 0 and so its rank is 1. If deg(sim(CTi

)) ≤ 1
then its rank is at most k. Thus, we have covered all the possible cases and the lemma follows.

6 PIT Algorithms

In this section we use the structural theorem (Theorem 5.1), proved in the previous section, to
devise the PIT algorithms of Theorem 1.5. Again, to simplify the notations, we give algorithms for
ΣΠΣ(k, d) circuits, that work in the same manner also for ΣΠΣ circuits with k multiplication gates
of degree d. We state our results for a general k, however, our algorithms will be most applicable
when k is a constant.9

From Theorem 5.1 we know that every zero ΣΠΣ circuit can be broken down into zero sub-
circuits whose ranks are small. The next two lemmas show that checking whether these low-rank
circuits are zero or not, can be done efficiently.

Lemma 6.1. Let C be a ΣΠΣ(k, d) circuit, with rank(C) = r. Then, there exists a polynomial time
algorithm, transforming C into a ΣΠΣ(k, d) circuit C ′. Such that

• C ≡ 0 iff C′ ≡ 0.

• C′ contains only r variables.

Proof. This is a direct consequence of Claim 3.14: we apply an invertible linear transformation on
C, taking a set of r linearly-independent vectors to e1, . . . , er. The transformed circuit will contain
only the first r variables, and will be zero iff C was zero.

Lemma 6.2. Let C be a ΣΠΣ(k, d) circuit, and let r = rank(C), s = size(C). Then we can check
if C ≡ 0:

1. Deterministically, in time poly(s) · (r + d)r.

2. Probabilistically, in time poly(s+ 1
ε ), using r ·

(

log(d) + log( 1ε )
)

random bits, with error prob-
ability ε.

Proof. Using Lemma 6.1, we can transform C into a circuit C ′ with at most r variables, such that
C ≡ 0 iff C′ ≡ 0. Since C′ contains only r variables, the number of different monomials in C ′(x) is
bounded by

(

r+d−1
r−1

)

< (r + d)r. We can thus check if C ′ ≡ 0 by computing the coefficients of all
the monomials and seeing if they are all zero. This can be done in time poly(s) · (r + d)r. For the
second part of the corollary, note that we can also check if C ′ ≡ 0 probabilistically using the well
known Schwartz-Zippel algorithm [Sch80] [Zip79] .

9Our methods give sub-exponential time (2o(n)) algorithms also if k = o(
√

log n).
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We are now ready to describe our PIT algorithm for ΣΠΣ(k, d) circuits.

Algorithm 1 - Deterministic Algorithm

input: A ΣΠΣ(k, d) circuit C.

(1) For every subset T ⊂ [k] do the following:
− (1.1) Compute rT = rank(sim(CT )).
− (1.2) If rT ≤ 2O(k

2) log(d)k−2, then:
− -check if sim(CT ) ≡ 0 using part 1 of Lemma 6.2.

(2) If there exists a partition of [k], such that for every set T ⊂ [k] in the partition sim(CT ) ≡ 0,
then accept. Otherwise reject.

Theorem 6.3. Let C be a ΣΠΣ(k, d) circuit, s = size(C). Then, Algorithm 1 will check if C ≡ 0.

Further, the algorithm will run in time poly(s) · exp
(

2O(k
2) log(d)k−1

)

.

Proof. First, note that if C is non-zero, then the algorithm will never accept (the algorithm ac-
cepts only when a partition of C into zero sub-circuits was found). Assume that C is zero.
Then, by Theorem 5.1, there exists be a partition, T1, . . . , Ts ⊂ [k], of [k], such that the cir-
cuits sim(CT1), . . . , sim(CTs) are all zero, and that for all i ∈ [s], the rank of sim(CTi

) is bounded
by 2O(k

2) log(d)k−2. Therefore, for every CTi
we will check whether sim(CTi

) ≡ 0 in step (1.2) of the
algorithm. Since we go over all subset of [k], we are bound to find the above partition, and accept.

As for the running time of the algorithm, notice that we only apply the algorithm from
Lemma 6.2 on circuits whose rank is smaller then 2O(k

2) log(d)k−2. Therefore, by Lemma 6.2,
the time spent in each invocation of step (1.2) is at most

poly(s) · exp
(

2O(k
2) log(d)k−1

)

.

Step (1.2) is run at most 2k times, and so the total running time is also

poly(s) · exp
(

2O(k
2) log(d)k−1

)

(the running times of all the other steps of the algorithm are ”swallowed up” by the running time
of step (1.2)).

We can modify Algorithm 1 so that it will use a probabilistic check in step (1.2). This will
result in a probabilistic PIT algorithm for ΣΠΣ circuits, that uses fewer random bits than previous
algorithms.

Theorem 6.4. Let C be a ΣΠΣ(k, d) circuit, s = size(C). Then, Algorithm 2 will check if C ≡ 0.

Further, the algorithm will run in time poly
(

s+ 2k

ε

)

, use 2O(k
2) log(d)k−1 log(1ε ) random bits, and

will make an error with probability less then ε.

Proof. Using the same reasoning as in the proof of Theorem 6.3, we see that the algorithm can
make an error only if one of the checks in step (1.2) fails. By the union bound, this happens with
probability of at most ε.
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Algorithm 2 - Probabilistic Algorithm

input: A ΣΠΣ(k, d) circuit C. An error probability ε.

(1) For every subset T ⊂ [k] do the following:
− (1.1) Compute rT = rank(sim(CT )).
− (1.2) If rT ≤ 2O(k

2) log(d)k−2, then: check if sim(CT ) ≡ 0 probabilistically,
− using part 2 of Lemma 6.2, with error probability ε2−k.

(2) If there exists a partition of [k], such that for every set T ⊂ [k] in the partition sim(CT ) ≡ 0,
then accept. Otherwise reject.

Each check in step (1.2) takes time poly
(

s+ 2k

ε

)

. And so the total running time is

2k · poly

(

s+
2k

ε

)

= poly

(

s+
2k

ε

)

.

By part 2 of Lemma 6.2, the number of random bits used in step (1.2) is at most rT ·
(

log(d) + log( 1ε )
)

. Since we run the probabilistic check only when rT ≤ 2O(k
2) log(d)k−2, it follows

that the number of random bits used in each invocation of step (1.2) is bounded by 2O(k
2) log(d)k−1 log(1ε ).

As we can use the same random bits in all tests, this is also the total number of random bits
needed.

We restate the last two theorems for the case when k is a constant.

Theorem 6.5. Let C be a ΣΠΣ(k, d) circuit, k a constant, s = size(C). Then we can check if
C ≡ 0:

1. Deterministically, in quasi-polynomial time.

2. Probabilistically, in time poly(s+ 1
ε ), using O

(

log(d)k−1 log(1ε )
)

random bits, with error prob-
ability ε.

Note that Theorems 6.3,6.4 and 6.5 imply the first 2 claims of Theorem 1.5.

6.1 Multilinear circuits

this section deals with a special kind of ΣΠΣ circuits, described by the following definition.

Definition 6.6. A ΣΠΣ circuit C is multilinear, if each of its multiplication gates computes a
multilinear polynomial (a polynomial is multilinear if the degree of every variable is at most one).

Let

C(x) =
k
∑

i=1

ci

di
∏

j=1

Lij(x)

be a ΣΠΣ circuit. Denote by Vij ⊂ [n], the set of variables appearing in the linear form Lij . From
Definition 6.6 we see that C is multilinear iff for every i ∈ [k], and for every j1 6= j2, we have

Vij1 ∩ Vij2 = ∅.
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This condition implies that, for every i ∈ [k], the linear functions {Lij}j∈[di] are linearly indepen-
dent. This leads to the following observation.

Observation 6.7. If C is a multilinear ΣΠΣ circuit of degree d, then rank(C) ≥ d.

Combining this observation and Theorem 1.4 we get the following theorem.

Theorem 6.8. Let C ≡ 0 be a multilinear ΣΠΣ circuit with k multiplication gates (k ≥ 3), which
is simple and minimal. Let d = deg(C), then

d ≤ 2O(k
2) log(d)k−2. (15)

Corollary 6.9. There exists an integer function D(k) = 2O(k
2), such that every multilinear ΣΠΣ

circuit C with k multiplication gates, which is simple and equal to zero, and of degree d = deg(C) >
D(k), is not minimal.

Proof. Fix k, and consider Equation 15. This inequality holds only if d ≤ 2O(k
2) = D(k). Thus,

if d > D(k), then the conditions of Theorem 6.8 are not satisfied. In particular, if C ≡ 0 and is
simple, then it is not minimal.

We can use Corollary 6.9 in order to improve the algorithm given in Section 6, in the case that
the given circuit is multilinear.

Theorem 6.10. Let C be a multilinear ΣΠΣ circuit, of size s, with k multiplication gates. We

can check if C ≡ 0 in time poly(s) · exp
(

2O(k
2)
)

. Thus, if k is constant, the algorithm runs in

polynomial time.

Proof sketch. The algorithm is the same as Algorithm 1 (it doesn’t matter that our circuit is not a
ΣΠΣ(k, d) circuit). The only difference is that we only have to consider sub-circuits CT such that
the degree of sim(CT ) is less then D(|T |) = 2O(k

2).

Theorem 6.10 implies the third claim of Theorem 1.5, thus completing the proof of the theorem.

7 Conclusions and open problems

Finding efficient deterministic PIT algorithms for general arithmetic circuits is a long standing open
problem. We made the first step towards an efficient algorithm for PIT for depth 3 circuits by giving
PIT algorithms for depth 3 circuits with bounded top fan-in, however the general case of depth 3
circuits is still open. In view of [KI03] it is natural to look for algorithms for PIT for restricted
models of arithmetic circuits in which lower bounds are known. Recently Raz [Raz04] proved a
quasipolynomial lower bound for multilinear arithmetic formulas computing the determinant and
the permanent. Thus, giving PIT algorithms for multilinear formulas is a very interesting, and
maybe even a solvable, problem.

The key to our result is the relation we have found between LDCs and depth 3 circuits. Pre-
viously, relations between circuits and error correcting codes were known only for bilinear circuits
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over finite fields [Bsh89, Shp03]. It should be very interesting to find new relations between codes
and arithmetic circuits. Another interesting question is whether the relation that we have found is
tight. In particular we believe that in theorem 1.3 one should be able to replace r/2O(k

2)log(d)k−3

with O(r/k). A related question is to improve theorem 1.4: We believe that for minimal and simple
circuits the rank should be O(k). Currently we have found circuits, which are minimal and simple,
with r = 3k − 2, and we think that it is an interesting task to come up with (minimal and simple)
circuits that have larger rank.

We conclude this section with a geometrical problem related to depth 3 circuits with 3 multi-
plication gates. It is well known that every set of n points in the plane, that have the property that
every line that contains two points from the set also contains a third point from the set, is contained
in a line. Consider the following generalization of the problem (colored version in the projective
plane): Instead of one set of points we have 3 different sets. Each set is of size n. The points in the
sets correspond to vectors from the r-dimensional sphere, and every two such vectors are linearly
independent. The condition on the sets is that every 2 dimensional subspace that contains points
from two different sets, also contains a point from the 3rd set10. What can be said about r in this
case? Clearly the r-dimensional sphere can be embedded into the (r+1)-dimensional sphere so we
only consider ”irreducible” arrangements in which the vectors corresponding to the points, span
the whole space. Using our lower bound on LDCs we can show that r is at most O(logn), however
we think that this can be improved. In particular we conjecture that r is bounded (maybe even
r = 2). If our conjecture is true then it will serve as an evidence that for k = 3 the rank of every
simple and minimal depth 3 circuit, which is identically zero, is bounded.

We now give an example that shows the relation of the problem to identically zero depth 3
circuits with 3 multiplication gates. Consider the following equality xn

1 − xn2 =
∏n−1

i=0 (x1 − wix2),
where w is a primitive n’th root of unity. We get that

k−1
∑

i=1

n−1
∏

j=0

(xi − wjxi+1) +
n−1
∏

j=0

(xk − wjx1) = 0.

Notice that this is an identically zero depth 3 circuit with k multiplication gates. For the special
case of k = 3 we get that

n−1
∏

j=0

(x1 − wjx2) +
n−1
∏

j=0

(x2 − wjx3) +
n−1
∏

j=0

(x3 − wjx1) = 0.

Each multiplication gate corresponds to a different set of points: We map each linear function
x1 − wjx2 from the first gate to the point ( 1√

2
, −wj√

2
, 0), similarly we map the functions of the 2nd

multiplication gate to {(0, 1√
2
, −wj√

2
)}j=0...n−1 etc. Clearly all the points belong to the 2 dimensional

sphere in C
3. It is easy to see that for each point from the first set (i.e. point coming from the

first multiplication gate) and each point from the second set there is a unique point from the third
set that belongs to the same 2 dimensional space (similarly if we pick the first and third sets etc.).
Therefore this construction satisfies our requirements. Our question is, can such arrangements be
found in higher dimensions.

10Alternatively, the points belong to the r-dimensional projective space and every line that contains points from
two different sets also contains a point from the third set.
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