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Abstract

We introduce a new measure notion on small complexity classes (called F -measure),
based on martingale families, that gets rid of some drawbacks of previous measure no-
tions: it can be used to define dimension because martingale families can make money
on all strings, and it yields random sequences with an equal frequency of 0’s and 1’s. As
applications to F -measure, we answer a question raised in [1] by improving their result to:
for almost every language A decidable in subexponential time, PA = BPP

A. We show that
almost all languages in PSPACE do not have small non-uniform complexity. We compare
F -measure to previous notions and prove that martingale families are strictly stronger
than Γ-measure [1], we also discuss the limitations of martingale families concerning finite
unions. We observe that all classes closed under polynomial many-one reductions have
measure zero in EXP iff they have measure zero in SUBEXP. We use martingale families
to introduce a natural generalization of Lutz resource-bounded dimension [13] on P, which
meets the intuition behind Lutz’s notion. We show that P-dimension lies between finite-
state dimension and dimension on E. We prove an analogue to the Theorem of Eggleston
in P, i.e. the class of languages whose characteristic sequence contains 1’s with frequency
α, has dimension the Shannon entropy of α in P.

1 Introduction

Resource-bounded measure has been successfully used to understand the structure of the ex-
ponential time classes E and EXP, see [12] for a survey. Recently resource-bounded measure
has been refined via effective dimension which is an effectivization of Hausdorff dimension,
yielding applications in a variety of topics, including algorithmic information theory, compu-
tational complexity, prediction, and data compression [13, 17, 14, 4, 2, 6].

Unfortunately both Lutz’s resource-bounded measure and dimension formulations [10, 13]
only work on classes containing E (apart from finite-state dimension). One reason for this is
that when a martingale is to bet on some string x depending on the history of the language for
strings y < x, the history itself is exponentially larger than the string x. Thus even reading
the history is far above the computational power of P.

One way to overcome this difficulty was proposed in [1], with a measure notion (called
Γ-measure) defined via martingales betting only on a sparse subset of strings of the history,
with the drawback that the class of sparse languages does not have measure zero. Nevertheless
it seems that sparse languages and more generally languages whose characteristic sequences
satisfy some frequency property should be small for an appropriate measure notion on P,
because there exists simple (exponential-time computable) martingales always making the
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same fixed bet that succeed on such languages. Such martingales are relatively ”simple”:
exponential computational power is only required to keep track of the current capital. This
also shows how important it is for a martingale to be able to bet on all strings, in order to
succeed. This ”betting on all strings” property becomes crucial in Lutz’s recent formulation
of effective Hausdorff dimension [13].

A stronger measure notion called dense martingale measure (denoted Γd) was then pro-
posed in [23], with the surprising result that the polynomial time version of Lutz’s hypothesis
”NP does not have measure zero in E” does not hold [3]. Γd-measure does not satisfy the finite
union property though; it was then showed that a restricted version (denoted Γ/(P)) of it
does, unfortunately Γ/(P)-measure has some unnatural properties: a language with infinitely
many easy instances can still be random.

Another limitation of previous martingale-based measure notions on P from [1, 23] and
on PSPACE [18] is the inability of the corresponding martingales to bet on all strings. Γ-
martingales can only bet on a polynomial number out of the exponentially many strings
of length n, whereas Γd and Γ/(P) martingales can only double their capital a polynomial
number of times while betting on (the exponentially many) strings of size n, with the direct
consequence that neither can be used to define a dimension notion, because the ability to
bet on every string is essential for this purpose (notice that simply keeping track of the
capital won by a martingale doubling its capital on every string is impossible in polynomial
time). Moreover the random sequences yielded by either of those two measure notions do
not have an equal frequency of 0’s and 1’s in the limit, whereas this property is captured by
Lutz’s resource-bounded measure notion on E, corresponding to the intuitive idea of a random
sequence.

In this paper we introduce a measure notion on P based on martingale families (called
F -measure), where martingale families can double their capital on all strings, thus enabling
us to define dimension in P. F -measure gets rid of the unnatural random sequences of Γ/(P)-
measure [23], and yields random sequences with an equal frequency of 0’s and 1’s, similarly
to Lutz resource-bounded measure [10]. Moreover F -measure is strictly stronger than Γ-
measure. United, we stand; divided, we fall is the key idea behind F -measure, i.e. whereas a
single polynomial time computable martingale is not able to make money on all exponentially
many strings of size n, a family of martingales working together and sharing their capital can.
The idea is to separate the exponentially many strings of size n into groups of polynomial size,
where each member of the family bets on one of these groups of strings. The family shares a
common bank account: When such a martingale bets on a string x, the capital at its disposal
amounts to the capital currently gathered by its family on predecessors of x, although it has
no information about how much this (possibly) exponentially large capital is.

Constructing a perfect measure on P has turned out to be much more difficult as previously
thought; it is now widely admitted that the perfect measure on P might be very difficult to
achieve, and that for any measure notion on P some desirable properties must be abandoned;
and F -measure is no exception. Similarly to Γd-measure [23], martingale families do not
satisfy the finite union property, but only satisfy the union property in some non-general
sense: we can only guarantee the union property for families with the same bank account
structure; however this is usually enough to prove theorems where the union property is
needed.

We show in Section 3.1 that except for general unions, martingale families satisfy the
basic measure properties, i.e. every single language has measure zero, and the whole class P

does not have measure zero, we then introduce uniform P-unions and show that the union
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property holds for those. We observe that it is easy to derive a F -measure notion on classes
between P and E like QUASIPOLY, SUBEXP and PSPACE; for BPP see [21].

Next we show that the concept of randomness yielded by F -measure is optimal regarding
frequency: every language L such that there are infinitely many n with |L[1 · · · n]| ≤ εn (with
ε < 1/2), has measure zero in P (Section 3.2).

As applications to F -measure, we answer a question raised in [1], improving their result
to: almost all (all except a measure zero class) languages computable in subexponential time,
are hard enough to derandomize BPP, i.e. a polynomial time algorithm can use almost every
language L ∈ SUBEXP to derandomize every probabilistic polynomial time algorithm, even
if the probabilistic algorithm has also oracle access to L.

We also investigate the nonuniform complexity of languages of PSPACE, and show that
almost all languages in PSPACE do not have small nonuniform complexity, thus reducing the
resource-bounds of a similar result in [11].

Next we compare F -measure to previous measure notions on P, and show that F -measure
is strictly stronger than Γ-measure, i.e. every Γ-measure zero set has F -measure zero, and
there are classes with Γ-measure non-zero that have F -measure zero. Due to their intrinsic dif-
ferences, we cannot compare Γd-measure and Γ/(P)-measure [23] to F -measure. Nevertheless
all sets proved to be small for Γ/(P)-measure in [23] are also small for F -measure. Regarding
density arguments, F -measure performs better; indeed a (Lebesgue) random language has
(1/2− o(1))2n words of length n (with high probability), and this property is captured by F -
measure, whereas for Γ/(P)-measure, the set of languages having o(2n) words of length n has
Γ/(P)-measure zero. The advantage of Γ/(P)-measure over F -measure is that it satisfies the
finite union property. Concerning Γd-measure and F -measure, both their respective strengths
are different, whereas Γd-measure cannot be used to define dimension in P, F -measure fails
to capture the Γd-measure zero sets in [3].

We also show that all classes closed under polynomial many-one reductions have measure
zero in EXP iff they have F -measure zero in Eα, which reduces the time bounds of many
results [8, 19, 8, 7] from measure on E to measure on SUBEXP.

The second part of the paper is devoted to dimension in P. Lutz resource-bounded dimen-
sion [13], has been introduced on a wide variety of complexity classes ranging from finite state
automata, exponential time and space up to the class of recursively enumerable languages
[17], with the exception of small classes like P.

Hausdorff dimension is a refinement of Lebesgue measure, where every measure zero class
of languages is assigned a real number between 0 and 1, called its Hausdorff dimension. The
key idea of Lutz is to receive a tax after each round (even if the martingale did not bet during
that round): the largest tax rate which can be received without preventing the martingale
from succeeding on a given class represents the dimension of the class.

Trying to bridge the gap between finite state automata and exponential time requires
a measure notion which is able to bet and double the capital at every round. Whereas all
previous measure notions on P [1, 23] are unable to do so, it is not a problem for martingale
families. This leads to a natural generalization of Lutz resource-bounded dimension [13] on
P, which meets the idea behind Lutz’s notion.

We give some evidence that P-dimension is a natural extension to P of previously ex-
isting dimension notions, by showing that it lies exactly between finite-state dimension and
dimension on E, i.e. we show that for any sequence S, dimFS(S) ≥ dimP(S) ≥ dimE(S).

Finally we prove an analogue to the Theorem of Eggleston [5] in P, i.e. the class of
languages whose characteristic sequences contain 1’s with frequency α, has strong dimension
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the Shannon entropy of α in P.

Due to space constraints, all proofs are postponed to the Appendix.

2 Preliminaries

Let us fix some notations for strings and languages. A string is an element of {0, 1}n for
some integer n. For a string x, its length is denoted by |x|. s0, s1, s2 . . . denotes the standard
enumeration of the strings in {0, 1}∗ in lexicographical order, where s0 = λ denotes the empty
string. Note that |w| = 2O(|s|w||). If x, y are strings, we write x ≤ y if |x| < |y| or |x| = |y|
and x precedes y in alphabetical order. A sequence is an element of {0, 1}∞. If F is a string
or a sequence and 1 ≤ i ≤ |w| then w[i] and w[si] denotes the ith bit of F . Similarly w[i . . . j]
and w[si . . . sj] denote the ith through jth bits.

For two string x, y, the concatenation of x and y is denoted xy. If x is a string and y is
a string or a sequence extending x i.e. y = xu, where u is a string or a sequence, we write
x v y. We write x < y if x v y and x 6= y.

A language is a set of strings. A class is a set of languages. The cardinal of a language
L is denoted |L|. Let n be any integer. The set of strings of size n of language L is denoted
L=n. Similarly L≤n denotes the set of strings in L of size at most n.

A language L is said to be polynomially dense if there exists a polynomial p, such that
|L=n| ≥ 2n/p(n). We identify language L with its characteristic function χL, where χL is the
sequence such that χL[i] = 1 iff si ∈ L. Thus a language can be seen as a sequence in {0, 1}∞.
L � sn denotes the initial segment of L up to sn given by L[s0 · · · sn].

We use standard notation for traditional complexity classes; see for instance [22]. For

ε > 0, denote by Eε the class Eε =
⋃

δ<ε DTIME(2n
δ
). SUBEXP is the class ∩ε>0Eε, and quasi

polynomial time refers to the class QUASIPOLY = ∪k≥1DTIME(nlogk n).

2.1 Martingales

Lutz measure on E [11] is obtained by imposing appropriate resource-bounds on a game
theoretical characterization of classical Lebesgue measure, via martingales. A martingale is
a function d : {0, 1}∗ → R+ such that, for every w ∈ {0, 1}∗, 2d(w) = d(w0) + d(w1) This
definition can be motivated by the following betting game in which a gambler puts bets on
the successive membership bits of a hidden language A. The game proceeds in infinitely many
rounds where at the end of round n, it is revealed to the gambler whether sn ∈ A or not.
The game starts with capital 1. Then, in round n, depending on the first n − 1 outcomes
w = χA[0 . . . n − 1], the gambler bets a certain fraction εwd(w) of his current capital d(w),
that the nth word sn ∈ A, and bets the remaining capital (1−εw)d(w) on the complementary
event sn 6∈ A. The game is fair, i.e. the amount put on the correct event is doubled, the one
put on the wrong guess is lost. The value of d(w), where w = χA[0 . . . n] equals the capital of
the gambler after round n on language A. The player wins on a language A if he manages to
make his capital arbitrarily large during the game, i.e. lim supn→∞ d(χA[0 . . . n]) = ∞.

3 A New Measure on P via Martingale Families

The following equivalent alternative to martingales will be useful.
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Definition 3.1 A rate-martingale is a function D : {0, 1}∗ → [0, 2] such that for every
w ∈ {0, 1}∗ D(w0) +D(w1) = 2.

A rate-martingale outputs the factor by which the capital is increased after the bet, whereas
a martingale outputs the current capital.

The key idea to define our measure on small complexity classes is that instead of con-
sidering a single martingale as usual, we consider families of rate-martingales which share
their wins. These rate-martingales are computed by Turing machines with random access to
their input, i.e. machines that have oracle access to their input and can query any bit of it.
To enable such machines to compute the length of their input F without reading it, we also
provide them with s|w|; this convention is denoted by Mw(s|w|). Since these Turing machines
need to approximate real numbers, we assume their output to be two binary numbers (a, b)
corresponding to the rational number a

b . With this convention, rational numbers such as 1/3
can be said to be computed exactly. Here is a definition of such a family of rate-martingales.

Definition 3.2 (martingale families) A P-family of rate-martingales ({Di}i, {Qi}i, ind), is a
family of rate-martingales {Di}i, where Qi : N → P({0, 1}∗) are disjoint polynomial-printable
query sets (i.e. there is a Turing machine that on input (i, 1n) outputs all strings in Qi(n) in
time polynomial in n), i.e. Qi(n)∩Qj(n) = ∅ and Qi(m) ⊆ Qi(n) for m < n, ind : {0, 1}∗ → N

is a polynomial time computable function, such that Di(L � x) is computable by a random
access Turing machine M in time polynomial in |x| i.e. ML�x(x, i) = Di(L � x) where M
queries its oracle only on strings in Qi(|x|), and ind(x) is an index i such that x 6∈ Qj(|x|)
for every j 6= i.

For simplicity we omit the indexes and denote the family of rate-martingales by (D,Q, ind),
unless needed. Each rate-martingale Di of the family only bets on strings inside its query set
Qi. The function ind on input a string x, outputs which rate-martingale is to (possibly) bet
on x. The idea is that the rate-martingales share their wins, and have the ability to divide
the bets along all members of the family. We are interested in the total capital such a family
wins.

Definition 3.3 Let (D,Q, ind) be a P-family of rate-martingales such that Di(λ) ≤ 1 for
every i. The wins of a P- family of rate-martingales is the function WD : {0, 1}∗ → Q, where
WD(L � x) =

∏

i≤2|x|
∏

y≤xDi(L � y).

For simplicity we simply write i for the index of the first product, unless needed. Remember
that Di(L � x) is the factor by which the capital is multiplied after the bet on x. Thus
the product in Definition 3.3 is exactly the total capital the whole family of rate-martingales
would win, would they be able to share their wins after each bet. Note that the function
WD is not polynomial, but only exponential time computable. This is a major difference to
previous measure notions on P: computing the global wins of the family of rate-martingales
is above the computational power of P.

A class has measure zero if there is a family of rate-martingales whose wins on the lan-
guages of the class are unbounded. Here is a definition.

Definition 3.4 A class C of languages has P-measure zero, denoted µP(C) = 0, if there is
a P-family of rate-martingales (D,Q, ind) such that for every L ∈ C, lim supn→∞WD(L �

sn) = ∞.
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Whenever D’s capital grows unbounded on L, we say that the family of rate-martingales
succeeds on L, and write L ∈ S∞[D]. We call our measure notion F -measure.

It is easy to see that at higher complexity levels such as EXP, F -measure is equivalent to
Lutz’s measure notion [10], by taking a family containing a unique rate-martingale.

To prove a non-general union property we need rate-martingales that succeed indepen-
dently, i.e. where every member in the family succeeds starting from any capital.

Definition 3.5 The independent success set of a P-family of rate-martingales (D,Q, ind) de-
noted S∞

I [D] is the set of languages L such that for every α > 0, lim supn→∞

∏

i α
∏

y≤sn
Di(L �

y) = ∞.

It is sometimes more convenient to output the current capital of a rate-martingale, rather
than the factor of increase. It is easy to check that Definition 3.2 can be reformulated by
taking families of martingales instead of rate-martingales. We call such a family a P-family
of martingales. Both definitions are equivalent, i.e. if (D,Q, ind) is a P-family of rate-
martingales then (d,Q, ind) with di(L � x) =

∏

{y|y≤x and y∈Qi(|x|)}
Di(L � y) is a P-family of

martingales with the same win function. For the other direction take Di(L � x) = di(L�x)
di(L�x−1) .

Since both definitions are equivalent we shall switch from one to the other depending on which
is the most appropriate in a given context.

Sometimes we need approximable martingales instead of exactly computable ones. Here
is a definition.

Definition 3.6 A P-approximable family of martingales ({di}i, {Qi}i, ind), is a family of
martingales {di}i, where Qi and ind are as in Definition 3.2 and such that di(L � x) is
k-approximable by a random access Turing machine M in time polynomial in |x| + k, i.e.
|ML�x(x, i, k) − di(L � x)| ≤ 2−k where M queries its oracle only on strings in Qi(|x|).

3.1 The Basic Measure Properties

Let us show the union property for the following non-general case, where the query sets Qi

are the same for each family of rate-martingales to be considered for the union.

Definition 3.7 A P-union of measure zero sets is a family of classes {Cj}j such that there
exists a P-family of rate-martingales ({Di,j}i,j, {Qi}i, ind) such that for every j ≥ 1, Cj ⊆
S∞
I [{Di,j}i].

As the following result shows, the basic measure properties hold for F -measure, as long
as we restrict ourselves to P-unions.

Theorem 3.1 1. Let L be any language in P, then {L} has P-measure zero.

2. P does not have P-measure zero.

3. Let {Cj}j be a P-union of measure zero sets, and let C =
⋃

j Cj, then C has P-measure
zero.

It is easy to check that F -measure on P can be extended to a measure notion on QUASIPOLY,
Eε, and PSPACE, by taking the corresponding time and space bounds. For a measure on BPP

we refer the reader to [21].
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3.2 Applications: Some Classes of Measure Zero

3.3 Smallness of Languages with Low Density

As mentioned earlier martingale families can bet on every string, thus yielding a randomness
notion which is optimal in terms of density of random languages.

Theorem 3.2 Let 0 ≤ ε < 1/2. The set Dε of languages L such that for infinitely many n
|L[s1, s2, · · · , sn]| ≤ εn, has P-measure zero.

An immediate Corollary of Theorem 3.2 is that the class SPARSE of languages containing
few information is small in P, as opposed to Γ-measure [1].

Corollary 3.1 SPARSE has P-measure zero.

3.4 Almost Every Language in SUBEXP Can Derandomize BPP

We improve a former result of [1] by showing that almost every language A in Eε can deran-
domize BPPA.

Theorem 3.3 For every ε > 0, the set of languages A such that PA 6= BPPA has Eε -measure
zero.

3.5 Almost Every Language in PSPACE does not have Small Circuit Com-

plexity

The following result shows that almost every language in PSPACE does not have small nonuni-
form complexity.

Theorem 3.4 Let c > 0, SIZE(nc) has PSPACE-measure zero.

3.6 Comparison with Previous Measure Notions

The following result shows that F -measure is strictly stronger than Γ-measure [1].

Theorem 3.5 µP is stronger than µΓ, i.e. for every class C, µΓ(C) = 0 implies µP(C) = 0
and there are classes C such that µΓ(C) 6= 0 and µP(C) = 0.

We cannot compare F -measure to Γ/(P)-measure [23] directly, due to their intrinsic dif-
ferences: a language L is said to have Γ/(P)-measure zero if there exists a ”game strategy”
which succeeds on any subsequences of L. This leads to the unnatural situation where for any
random language L, L∪{0}∗ does not have Γ/(P)-measure zero, although there are infinitely
many easy instances. It is easy to check that such a set has P-measure zero. Nevertheless all
sets proved to be small for Γ/(P)-measure in [23] are also small for F -measure. Regarding
density arguments, F -measure performs better; indeed a (Lebesgue) random language has
with high probability (1/2 − o(1))2n words of length n, and this property is captured by F -
measure in Theorem 3.2, whereas for Γ/(P)-measure, the set of languages having o(2n) words
of length n has Γ/(P)-measure zero. The advantage of Γ/(P)-measure over F -measure is that
it satisfies the finite union property. Since Γ/(P)-measure is derived from Γd-measure [23], we
cannot compare Γd-measure to F -measure, and both their respective strength are different:
whereas Γd-measure cannot be used to define dimension in P, F -measure fails to capture the
Γd-measure zero sets in [3].
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3.7 Equivalence Between Measure on EXP and SUBEXP

Many results have been obtained from the plausible hypothesis µE(NP) 6= 0 see for instance
[16, 8], and the E-measure of all classes ZPP,RP,BPP,SPP is now well understood, [19, 8, 7].
The following theorem shows that all these results follow from the a priori weaker assumption
in terms of measure in Eε.

Theorem 3.6 Let C be a class downward closed under ≤p
m-reducibilities, and let α > 0. We

have µEα(C) 6= 0 iff µEXP(C) 6= 0.

4 Dimension on P

To define a dimension notion from F -measure, we need some minor modification for technical
reasons. From now on we only consider P-families where the query sets of Definition 3.2 cover
all strings of some size, and where the number of martingales allowed to bet on strings of size
n is bounded, i.e. we require ∪i≤2n/nQi(n) = {0, 1}≤n.

Lutz’s key idea to define resource-bounded dimension is to tax the martingales’ wins. The
following definition formalizes this tax rate notion.

Definition 4.1 Let s ∈ [0, 1] and (D,Q, ind) be a P-family of rate-martingales, and let L be
a language. We say D s-succeeds on L, if lim supn→∞ 2(s−1)nWD(L � n) = ∞.

Similarly D s-succeeds on class C, if D s-succeeds on every language in C.

The dimension of a complexity class is the highest tax rate that can be received on the
martingales’ wins without preventing them from succeeding on the class.

Definition 4.2 Let C be a class of languages. The P-dimension of C is defined as dimP(C) =
inf{s ∈ [0, 1] : there is a P-family of rate-martingales D that s-succeeds on C }.

We say C has dimension s in P denoted dim(C|P) if dimP(C∩P) = s. If lim sup is replaced
with lim inf in Definition 4.1, we say strongly s-succeed, and denote by DimP the associated
dimension notion. This is similar to the packing dimension notion from [2].

P-dimension satisfies a non-general union property, as shown in the following result.

Theorem 4.1 Let {Cj}j be a family of classes, and let {sj}j with sj ∈ [0, 1] such that for
every ε > 0 there exists a P-family of martingales {di,j}i,j such that {di,j}i (sj + ε)-succeeds
on Cj. Let C =

⋃

j Cj, then dimP(C) ≤ supj{sj}.

It is easy to check that P-dimension can be extended to classes above P like QUASIPOLY,
subexponential time and PSPACE; for BPP see [21].

4.1 Finite-State Dimension versus P-dimension

The following result gives some evidence that P-dimension is a natural extension of previous
dimension notions to the class P.

Theorem 4.2 Let S be a language. Then dimFS(S) ≥ dimP(S) ≥ dimE(S).
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4.2 Application: Connecting Frequency and Shannon Entropy

In this section we show a polynomial time version of the Theorem of Eggleston [5], i.e. we
prove that the class of languages with asymptotic frequency α have strong dimension the
Shannon entropy of α in P. Analogue version of the theorem of Eggleston have been proved
for various resource bounds [4, 13].

Let us introduce the following notations. First the Shannon entropy refers to the following
continuous function H : [0, 1] → [0, 1], H(α) = α log 1

α + (1 − α) log 1
1−α .

For a language A and n ∈ N, let freqA(n) = #(1,A[0...n−1])
n , where #(1, A[0 . . . n−1]) is the

number of 1’s in A[0 . . . n−1]. For α ∈ [0, 1], let FREQ(α) = {A ∈ {0, 1}∞| limn→∞ freqA(n) =
α}.

The following is a polynomial time version of the Theorem of Eggleston [5].

Theorem 4.3 For all E-computable α ∈ [0, 1], we have Dim(FREQ(α)|P) = H(α).

5 Conclusion

From the quest for the perfect measure on P a widespread consensus has emerged that for
measure on small complexity classes some properties need to be renounced. The main con-
tribution of our measure notion is that unlike previous measure notions on P, it leads to a
reasonable way to define dimension in P. The price to pay is that martingale families only
satisfy a non-general union property. We expect our measure and dimension notions to be
useful for further measure-based investigations in small complexity classes.
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A Appendix

A.1 Proof of Theorem 3.1

Notation: L|sn+1 denotes the initial segment of L up to sn given by L[s0 · · · sn]. Let L ∈ P

and M be a polynomial time Turing machine deciding L. Divide {0, 1}n into 2n/n zones of
n consecutive strings denoted Bn

i , with i = 1, 2, · · · 2n/n. Consider the following P-family

of rate-martingales (D,Q, ind) where Qi(n) =
⋃n
j=1B

j
i and ind(x) is the index i such that

x ∈ Qi(|x|). Let A be any language. Strategy Di bets all its capital on strings in Qi according
to M , i.e. let x ∈ Bn

i , then Di(A � x) = 2 whenever A(x) = M(x), otherwise Di(A � x) = 0.
It is easy to check that (D,Q, ind) is a P-family of rate-martingales. L ∈ S∞[D] because the
family of rate-martingales doubles its capital after every bet, i.e. lim supn→∞WD(L � sn) =
lim supn→∞

∏

i

∏

y≤sn,
Di(L � y) = lim supn→∞ 2n = ∞, which ends the proof of the first

property.

For the second property, let (D,Q, ind) be a P-family of rate-martingales. Consider the
following language L ∈ P. Let x ∈ {0, 1}∗, define L(x) = 0 iff Di((L|x)0) ≤ 1 where i =
ind(x). L is computable in polynomial time because the machine computing Di((L|x)0) only
queries L|x on strings contained in Qi(|x|), therefore requiring only a polynomial number of
recursive steps. Because the Qi’s are disjoint, only computations of Di have to be performed.
Thus L ∈ P. The strategy family does not succeed on L, since lim supn→∞WD(L � sn) =
lim supn→∞

∏

i

∏

y≤sn,
Di(L � y) ≤ 1 i.e. L 6∈ S∞[D], which ends the proof.

For the third property, we need the following Lemma.

Lemma A.1 Let (d,Q, ind) be a P-approximable family of martingales, then there exists a
P-computable family of martingales (d′, Q, ind) with the same query set and ind function, such
that for any w ∈ {0, 1}∗ and every i d′i(w) ≥ di(w).

Let (d,Q, ind) be as above and let i ≥ 1. Denote by {di,k} the approximation of di where
|di,|w|(w) − di(w)| ≤ 1

|w|2
. Consider the following martingale d′i, with initial capital d′i(λ) = 2

where for wb with w ∈ {0, 1}∗, and b ∈ {0, 1} is the membership bit of some string x, with

x ∈ Qi(|x|), is defined as follows. Let d′i(wb) = d′i(w)+
di,|wb|(wb)−di,|wb|(wb̄)

2 . If x 6∈ Qi(|x|), then
d′i(wb) = d′i(w). Since Qi(|x|) is poly-printable, computing d′i(wb) only requires a polynomial
number of recursive steps. It is easy to check that d′i is a martingale, thus (d′, Q, ind) is P-
family of martingales. Let us check that d′i(w) ≥ di(w)+ 1

|w| by induction. The inequality holds

for w = λ. Let w ∈ {0, 1}∗ and b ∈ {0, 1}, we have d′i(wb) = d′i(w) +
di,|wb|(wb)−di,|wb|(wb̄)

2 ≥

di(w) + 1
|w| +

di,|wb|(wb)−di,|wb|(wb̄)

2 by induction hypothesis. Since di,|wb|(wb) ≥ di(wb) −
1

|wb|2

we have d′i(wb) ≥ di(w) + 1
|w| + di(wb)−di(wb̄)

2 − 1
|wb|2

. Because di is a martingale, we have

di(w) − 1
2di(wb̄) = 1

2di(wb) thus d′i(wb) ≥ di(wb) + 1
|w| −

1
|wb|2

≥ di(wb) + 1
|wb| which ends the

proof of the lemma.

Let us prove the theorem. Let {Cj}j be a P-union of measure zero sets, and let (d,Q, ind)
be a family of rate-martingales witnessing this fact. Consider the following family of mar-
tingales given by d′i(w) =

∑

j≥1
1
2j di,j(w). Let us show that d′i is P-approximable. Consider

the following approximation d′ki (L � x) =
∑q(k+|x|)

j=1
1
2j di,j(L � x) where q is a polynomial

to be determined later. Because all di,j ’s have polynomial size query set, so does d′ki and
therefore it is polynomial time computable in |x| + i+ k. We have |d′i(L � x) − d′ki (L � x)| ≤
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∑

j>q(k+|x|)
1
2j di,j(L � x). Since di,j(L � x) ≤ 2|x|

c
for some c > 0, we have |d′i(L � x) − d′ki (L �

x)| ≤ 2|x|
c

2q(k+|x|) ≤ 2−k by choosing q(y) = yc+1.

By Lemma A.1 there exists a P-computable family of martingale d̄i such that d̄i(L �

x) ≥ d′i(L � x) for all strings x, and 1
2 d̄i(λ) ≤ 1. Thus 1

2 d̄i(L � x) ≥ 1
2·2j di,j(L � x)

for all i, j, x. Let j > 0 and let L ∈ S∞
I [{di,j}i]. We have lim supn→∞

∏

i
1
2 d̄i(L � sn) ≥

lim supn→∞

∏

i
1

2j+1 di,j(L � sn) = ∞ i.e. Cj ⊆ S∞[d̄]. ut

A.2 Proof of Theorem 3.2

Let 0 ≤ ε < 1/2 and let α = 1/2 − ε. Divide the strings of size n into 2n/n blocks of size
n denoted B1, . . . , B2n/n. Consider the following family of rate-martingales {Di}i, where Di

bets a fraction α of its current capital that the strings in Bi have membership bits zero. It is
easy to check that {Di}i is a P-family of rate-martingales; thus whenever Di’ s bet is correct
(resp. false), the capital is multiplied by a factor 1 + α (resp. 1 − α). Let L ∈ Dε, we have

for infinitely many n WD(L � sn) =
∏

i

∏

y≤sn
Di(L � y) ≥ [(1 + α)(

1
2
+α)(1 − α)(

1
2
−α)]n. Since

(1 + α)(
1
2
+α)(1 − α)(

1
2
−α) > 1 we have L ∈ S∞[D] ut

A.3 Proof of Theorem 3.3

We use the standard model of oracle Boolean circuits see [22] for more details. For a bound
function t we denote by SIZE(t(n)) the set of languages decided by a family of circuits of
size t(n), where n is the size of the input. The circuit complexity of a Boolean function
f : {0, 1}n → {0, 1}, is the size of the smallest circuit computing f .

Definition A.1 Let A be any language. The hardness HA(Gm,n) of a random generator
Gm,n : {0, 1}m −→ {0, 1}n, is defined as the minimal s such that there exists an n-input
circuit C with oracle gates to A, of size at most s, such that |Prx∈{0,1}m [C(Gm(x)) = 1] −

Pry∈{0,1}n [C(y) = 1]| ≥ 1
s .

We need the following pseudorandom generator from [9].

Theorem A.1 (Klivans-Melkebeek) Let A be any language. There is a polynomial-time
computable function F such that for every ε > 0, there exists a, b ∈ N such that F : {0, 1}n

a
×

{0, 1}b log n → {0, 1}n, and if r is the truth table of a (a log n)-variables Boolean function of
A-oracle circuit complexity at least nεa, then the function Gr(s) = F (r, s) is a generator with
hardness HA(Gr) > n.

Lt us prove Theorem 3.3. Let ε > 0, let 0 < δ < max(ε, 1/2), and b > 0 be some constant
to be determined later. Consider the following martingale d betting only on strings of size
m = n + 1

b log n for some integer n. Let Zm be the set of strings of the form 02b|u|
u where

u ∈ {0, 1}
1
b

log n, clearly Zm ⊂ {0, 1}m. Denote by Cw(l, t) with l ≤ t the set of F -oracle l-
inputs circuits of size less than t, and denote by Cw(l, t, u) the set of circuits C in Cw(l, t) such

that for every z = 02b|v|
v ∈ Zm whose membership bit is is in the u zone of wu, where wu is

viewed as the prefix of the characteristic sequence of some language, we have C(v) = wu[z]. It
is well known [22] that |Cw(l, t)| ≤ 2t log t. Let B(w, u,m) denote the number of z ∈ Zm whose
membership bits are in the u zone of wu. Let F be the prefix of the characteristic sequence of
some language L, coding for words up to size ≤ m−1, and let u ∈ {0, 1}∗, with 0 < |u| ≤ 2m.
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Let d(wu) =
|Cw( 1

b
log n,nδ/b,u)|

|Cw( 1
b

log n,nδ/b)|
2B(w,u,m)d(w). It is easy to check that d is a martingale. d is

computable in time 2m
ε
, because there are 2n

2δ/b
circuits to simulate which takes time less

than 2m
ε

for an appropriate choice of b. For the dependency set, since the circuits to be
simulated have size less than nδ/b, they can only query F on the membership bits of strings of
size at most nδ/b, moreover d only bets on strings in Zm, thus G(m) =

⋃m
j=1 Zj ∪ {0, 1}≤n

δ/b
,

which has size less than 2n
δ/b

+mn1/b which is less than 2m
ε
.

Let A be any language and consider F (A) := {u|02b|u|
u ∈ A}. It is clear that F (A) ∈ EA.

Consider HA
δ the set of languages L such that every n-input circuits with oracle gates for A of

size less than 2δn fails to compute L. We have, F (A) ∈ HA
δ implies PA = BPPA by Theorem

A.1.

We show that d succeeds on every language A such that F (A) 6∈ HA
δ . Let A be any such

language, let F be the prefix of A coding for strings up to size m− 1 as above, and let u ∈

{0, 1}2m
, thus for n large, d(wu) =

|Cw( 1
b

logn,nδ/b,u)|

|Cw( 1
b

log n,nδ/b)|
2B(w,u,m)d(w) ≥ 1

|Cw( 1
b

log n,nδ/b)|
2n

1/b
d(w)

≥ 2n1/b

2n2δ/b d(w) ≥ 2n
1/2b

d(w), i.e. A ⊆ S∞[{di}i]. ut

A.4 Proof of Theorem 3.4

Let c > 0. For n ≤ t denote by C(n, t) the number of n-inputs Boolean circuits of size t.
Divide the strings of size n into consecutive blocks of size nc+1 denoted Rn1 , · · · , R

n
2n/nc+1 .

Consider the following family of martingales {di}i, where di bets on strings in Ri. Let F be
the initial segment of a language L coding for strings up to Rn

i−1, and let 0 < |u| ≤ nc+1.

Consider di(wu) = C(n,nc,w,u)
C(n,nc) 2|u|di(w) where C(n, t, w, u) is the number of n-inputs Boolean

circuits of size t deciding some language A ∈ {0, 1}n such that u v A[Rni ]. It is easy to check
that di is a martingale. {di}i is a DSPACE(nc+2)-family of martingales because C(n, nc, w, u)
and C(n, nc) are computable in DSPACE(nc+2) by constructing all corresponding circuits and
reading the input on u, thus Qi(n) =

⋃

j≤nR
j
i .

Let L be a language in SIZE(nc), then for w, |u| = nc+1 as above we have

di(wu) = C(n,nc,w,u)
C(n,nc) 2n

c+1
di(w) ≥ 1

C(n,nc)2
nc+1

di(w) ≥ 2n
c+1−ncc log ndi(w) ≥ 2

nc+1

2 di(w). Thus

L ∈ S∞[d]. ut

A.5 Proof of Theorem 3.5

The Γ-measure introduced in [1] is defined through single P-computable martingales with
poly-printable query sets. Let (d,Qd) be such a martingale, running in time nc. Divide the
strings of size n into blocks of size n denoted Rn

1 , · · · , R
n
2n/n. Consider the following family

of rate-martingales {di}i, where d0 = d di ≡ 1 for i ≥ 1 Qi(m) =
⋃m
j=1R

j
i − Qd(m) and

Q0(m) = Qd(m). Let ind(x) = 0 for all x. It is easy to check that {di}i is a P-family of
martingales, whose win function is equal to the single martingale d. Finally, it is shown in [1]
that the class SPARSE does not have Γ-measure zero, thus Theorem 3.2 ends the proof. ut

A.6 Proof of Theorem 3.6

Let α > 0. Let C be a class downward closed under ≤p
m-reducibilities, and such that

µEXP(C) = 0; Let d denote the martingale witnessing this fact, and suppose d runs in time
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2n
k
. For a language L denote by L′ the following padded version of L where L′ = {0|x|

k/α
1x :

x ∈ L}. Clearly L′ ≤p
m L, thus L′ ∈ C. For a prefix X of some characteristic sequence, let X ′

be given by X ′(y) = X(0|y|
k/α

1y). Consider the following Eα-computable martingale d′ that

bets only on strings of the form 0|x|
k/α

1x, and defined by d′(X � 0|x|
k/α

1x) = d(X ′ � x). It is
easy to check that d′ is computable in time 2n

α
, and has a query set of size 2n

α
. Let L ∈ C,

thus L′ ∈ C, and d′(L � 0|x|
k/α

1x) = d(L′ � x). Since L′ ∈ S∞[d] this ends the proof. ut

A.7 Proof of Theorem 4.1

The proof is similar to Theorem 3.1. Let ε > 0, s = supj{sj} and let {di,j}i,j be a P-family
of martingales such that {di,j}j (sj + ε/2)-succeeds on Cj. Denote by d′i the sum of the
family of martingales as in Theorem 3.1. Let us check that d′i (s + ε)-succeeds on C. Let
L ∈ Cj for some j, we have d′(w) ≥ 1

2j di,j(w) for every i, and 1
2d

′(λ) ≤ 1. Let d′ denote
1
2d

′, we have lim supn→∞ 2(s+ε−1)nWd′(L � sn) = lim supn→∞ 2(s+ ε
2
−1)n2( ε

2
)n ∏

i d
′
i(L � sn) ≥

lim supn→∞ 2(s+ ε
2
−1)n2

( ε
2
− j+1

log n
)n ∏

i di,j(L � sn) ≥ lim supn→∞ 2
εn
4 2(sj+

ε
2
−1)nW{di,j}i

(L � sn) =
∞. ut

A.8 Proof of Theorem 4.2

Finite-state dimension is defined via martingale computable by finite-state machines (called
FSG: finite-state gamblers), see [4] for more details.

Let p : {0, 1}l → [0, 1] be a probability measure, i.e.
∑

x∈{0,1}l p(x) = 1. The Shannon
entropy of p is given by

H(p) = Ep log
1

p(x)
=

∑

x∈{0,1}l

p(x) log
1

p(x)
.

The Kullback-Leibler divergence between two probability measures p, q is

D(p, q) =
∑

x∈{0,1}l

p(x) log
p(x)

q(x)
.

Any binary sequence S, yields a probability measure called its empirical block probability
measure πln(S)(w) : {0, 1}l → [0, 1] given by

πln(S)(w) = freq(w,S[1 . . . ln]) =
#(w,S[1 . . . ln])

ln

where #(w, x) = |{u ∈ {0, 1}∗ : uw v x}| is the number of occurrences of w in x.

The following theorem is implicit in [24].

Theorem A.2 For a binary sequence S, and s ∈ [0, 1], the following are equivalent.

1. There is a FSG that s-succeeds on S.

2. There exist l ∈ Z+ such that lim infn→∞H(πln(S)) < sl.
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Let us prove Theorem 4.2 (the proof is similar to [15]). Let S be a binary sequence, and
let s > dimFS(S). By definition of finite-state dimension, there is a FSG that s-succeeds on
S. By Theorem A.2, there exists l ∈ Z+ such that

lim inf
n→∞

H(πln(S)) < sl.

Since the set of probability measures on {0, 1}l is compact, there is a probability measure ψ :
{0, 1}l → [0, 1] and a sequence of natural numbers n1 < n2 < . . . such that, H(ψ) < sl and for

any w ∈ {0, 1}l, limk→∞ πlnk
(S)(w) = ψ(w). Let δ = sl−H(ψ)

4 . Because D is continuous, there

exist a positive rational probability measure ψ ′ : {0, 1}l → Q ∩ [0, 1] such that D(ψ|ψ′) < δ.
Since H,D are continuous, there is an integer m such that for k ≥ m we have

H(πlnk
(S)) < H(ψ) + δ

D(πlnk
(S)|ψ′) < D(ψ|ψ′) + δ.

Let us divide {0, 1}=n into 2n/nl groups of nl consecutive strings, I1, I2, . . . , I2n/nl, where

martingale di will bet on Ii. Extend ψ′ to a function ψ′ : {0, 1}≤l → [0, 1] by ψ′(u) =
∑

v∈{0,1}l−|u| ψ′(uv). For a string xw, where w corresponds to the membership bits of the
strings in Ii, let

di(xw[0 . . . k]) = 2k+1di(x)ψ
′(w[0 . . . k]).

It is easy to check that di is a martingale. Moreover di is computable in polynomial
time, because ψ′ is. Therefore the di’s are a P-computable family of martingales, whose wins
function is given by (for x ∈ {0, 1}ln and u ∈ {0, 1})

W (ux) = W (u)2nl
∏

w∈{0,1}l

ψ′(w)#(w,x).

Denote xk = S[0 . . . nkl − 1], hence taking tax rate 1 − s we have

log
W (xk)

2(1−s)|xk |
= snkl +

∑

w∈{0,1}l

#(w, xk) log ψ′(w)

= nk[sl +
∑

w∈{0,1}l

πlnk
(S)(w) log ψ′(w)]

= nk[sl − Eπl
nk

(S) log(
1

πlnk
(S)(w)

·
πlnk

(S)(w)

ψ′(w)
)]

= nk[sl −H(πlnk
(S)) −D(πlnk

(S)|ψ′)].

Therefore

log
W (xk)

2(1−s)|xk|
≥ nk[sl −H(ψ) − 3δ] = δnk.

Since δ > 0, W s-succeeds on S, i.e. dimP(S) ≤ s, thus dimP(S) ≤ dimFS(S). ut
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A.9 Proof of Theorem 4.3

The following result gives an upper bound on the strong P-dimension of FREQ(α).

Theorem A.3 For all α ∈ [0, 1], we have DimP(FREQ(α)) ≤ H(α).

Proof. Wlog let α ∈ (0, 1
2 ]. Let s > H(α), δ = s − H(α) > 0, and let ε > 0 such that

( α
1−α )ε ≥ 2−

δ
2 . Divide {0, 1}n into consecutive blocks of size n, denoted Rn

1 , R
n
2 , · · · , R

n
2n/n.

Consider the following P-family of martingales di, where di bets a fraction 1 − 2α of its
current capital that the membership bit of strings in Ri is 0. Whenever this bet is correct
(resp. false), the capital is multiplied by a factor 2(1 − α) (resp. 2α ). Let A ∈ FREQ(α),

and let N ∈ N be such that ∀n ≥ N, freqA(n) ≤ α + ε. Thus for n ≥ N we have, Wd(A|n)

2(1−s)n =
(2α)#(1,A|n)(2(1−α))#(0,A|n)

2(1−s)n = [ (2α)freqA(n)(2(1−α))1−freqA(n)

21−s ]n = [2sαfreqA(n)(1 − α)1−freqA(n)]n ≥

[2sαα+ε(1 − α)1−(α+ε)]n = [2sαα(1 − α)1−α( α
1−α)ε]n ≥ [2s−H(α)− δ

2 ]n = 2
δ
2
n. Because δ > 0, F

is unbounded, i.e. d strongly s-succeeds on A. ut
For the other direction, we need the following notation. Let d be a P-computable family

of martingales, let i ≥ 1, w, v ∈ {0, 1}∗. Suppose that the ordered dependency set of di is of
the form Qi = {· · · , s|w0|, s|w1|, s|w2|, · · · , s|w|v||, · · · } where s|w0| ≤ s|w| and s|w| < s|wi| ∀i =

1, 2, · · · |v|. Define (wv)∗ = {wz : wz[s|wi|] = vi for i = 1, 2, · · · , |v| and s|wz| = s|w|v||}. and

let di((wv)
∗) = di(wz) where wz ∈ (wv)∗. di((wv)

∗) is well defined because di only bets on
strings whose membership bits correspond to v.

We need the following generalization of Kraft inequality, which says that there are only a
few strings on which taxed martingales win money.

Lemma A.2 Let s ∈ [0, 1], let d be a P-family of martingales. For all w ∈ {0, 1}∗, i, l ∈ N

there are less than 2sn strings u ∈ {0, 1}l such that di((wv)∗)

2(1−s)|v| > di(w).

Proof. Let s, d, w, i, l be as above. Consider the following random variable X over {0, 1}k ,
X(u) = di((wu)

∗). Thus E(X) =
∑

u∈{0,1}k 1/2kX(u) = 1/2k
∑

u∈{0,1}k di((wu)
∗) =

1/2k−1(
∑

u∈{0,1}k−1 di((w(u))∗)) = . . . = d(w). Using Pru∈{0,1}k [X(u) > αE(X)] < 1/α with

α = 2(1−s)k ends the proof. ut
The following result gives a lower bound on the P-dimension of FREQ(α).

Theorem A.4 Let α ∈ [0, 1] be E-computable, we have DimP(FREQ(α) ∩ P) ≥ H(α).

Proof. Let α be as above. Wlog α ∈ (0, 1). Let d be a P-family of martingales. Let 0 < s <
H(α). Let α′ denote the E-approximation of α, i.e. |α′(n)−α| ≤ 1

n , where α′(n) is computable
in time polynomial in n. Consider m(n) = blog(2n)c and k(n) = bα′(m(n))m(n)c. We have

α′(m(n)) − 1
m(n) ≤ k(n)

m(n) ≤ α′(m(n)), thus | k(n)
m(n) − α| ≤ 2

m(n) . Therefore, limn→∞
k(n)
m(n) = α.

Because H is continuous we have limn→∞H( k(n)
m(n) ) = α.

Let Dn = {u ∈ {0, 1}m(n) : #(1, u) = k(n)}. Using, e(ne )
n < n! < en(ne )

n for n ≥ 1, yields

|Dn| =
(m(n)
k(n)

)

> 2
m(n)H(

k(n)
m(n)

)

ek(n)(m(n)−k(n)) ≥ 42
m(n)H(

k(n)
m(n)

)

em2(n)
> 2

m(n)H(
k(n)
m(n)

)−2 logm(n)
. By continuity of H

there exists s′ > s such that for sufficiently large n, H( k(n)
m(n) ) ≥ s′. Thus for sufficiently large

n, |Dn| > 2sm(n)+(s′−s)m(n)−2 logm(n) ≥ 2sm(n).
Consider the following language L. Let x ∈ {0, 1}∗, with |x| = n. Compute i = ind(x), and

Q=n
i (n). We have |Q=n

i (n)| = q(n)m(n)+ r(n) where q is a polynomial and 0 ≤ r(n) < m(n).
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Order the strings in Q=n
i (n) lexicographically and divide them into consecutive blocks of size

m(n) denoted Bn
1 , B

n
2 , · · · , B

n
q(n), B

n
q(n)+1 except for the last one which has size r(n). Let

w = L � Bn
k with 1 ≤ k ≤ q(n). Find the first string u ∈ Dn such that di((wu)∗)

2(1−s)|u| ≤ di(w) Such
a string u exists by Lemma A.2. Define L to be u on strings in Bn

k+1, i.e. if x is the jth string
of Bn

k+1, then L(x) = uj . For strings in Bn
q(n)+1 repeat the construction by trying all u’s of

size r(n).
L is polynomial time computable because since Qi(n) is poly-printable, only a polynomial

number of recursive steps needs to be performed. There are less than 2n strings u to try by
definition of Dn. Thus L ∈ P.

Let us show that L ∈ FREQ(α). Because d is a P-family, we have Qi(n) = ∅ for i >
2n

n . Whenever |Q=n
i (n)| ≡ 0 mod m(n) the part of L defined on strings in Q=n

i (n) has

optimal frequency k(n)
m(n) . So suppose (worst case) |Q=n

i (n)| ≡ m(n) − 1 mod m(n). We have

freq(L=n) = #(1,L=n)
2n ≤

2n

n
(m(n)−1)+k(n)

2n− 2n
n (m(n)−1)

m(n)

2n , thus limn→∞ freq(L=n) ≤ α. Similarly
limn→∞ freq(L=n) ≥ α, i.e. L ∈ FREQ(α). Since d does not strongly s-succeed on L, this
ends the proof. ut
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