Electronic Collogquium on Computational Complexity, Comment 2 on Report No. 46 (2005)

Gap amplification using lazy random walks

Jaikumar Radhakrishnan
jaikumar@tti-c.org

November 2, 2005

Abstract

This note is based on the original version of Irit Dinur’s paper (ECCC TR05-046). It contains
two suggestions concerning the product construction. First, instead of using paths of a fixed
length ¢, one can use paths with varying lengths in order to simplify some calculations. Second,
one can view Proposition 2.4 as guaranteeing some sort of pairwise independence, and use the
second-moment method instead of explicitly bounding the overcount (as in Lemma 5.3).

The product graph: The vertices of G! are the same as the vertices of G. The alphabet of G*
is Zdt, where every vertex specifies values (its opinion) for all vertices reachable within ¢ steps. We
will describe the constraints of G indirectly using a verifier who probes two assignments.

The verifier picks a random vertex a in V(G). She then performs a random walk in G,
but after each step she stops with probability % Let the sequence of vertices generated
by the walk be

a = vy,V1,...,07 = b,

where T' > 1 is a random variable with mean ¢. If for some edge e = (v;, vi+1), vertex
a has an opinion for v; and b has an opinion for v;41, and these opinions violate the
constraint ¢®, then reject. Otherwise, accept.

Remark: At present there is no bound on the length of the walks. We will argue that the required
amplification can be achieved even if the verifier’s walks are truncated to 7™ = [5¢1n |||, and she
just accepts if her walk has not stopped within these many steps. Then, the number of edges in
G! is at most 2|V (GQ)| - (dt)T*. (We can label edges coming out of any vertex by distinct sequences
of length 7™ from the set [d] x [t]). With this modification, we now have the following variant of
Lemma 3.4.

Lemma 0.1 Let A < d, d and |X| be arbitrary constants. There ezists a constant § = (A, d) >0
such that for every d-regular constraint graph G = (V, E, %, C) with self-loops with \(G) < A
p

1
> Ltomin)
SAT(G") > Bl t - min SAT(G),t

Fact about the random walk: We will need the following fact about the lazy random walk
(without truncation) described above. Consider the verifier’s walks conditioned on the event that
it uses (u, v) exactly k times (for some k& > 1), that is, the number of ¢’s for which (v;, v;+1) = (u,v)
is exactly k.

ISSN 1433-8092

[F1] Let the starting vertex of the random walk be a and the ending vertex of this walk be b
(these are random variables). Then, a and b are independent. Furthermore, a has the same
distribution as the random vertex obtained by the following random process.

Start the random walk at u, but stop with probability % before making each move
(so we stop at u itself with probability %) Output the final vertex.

Note that the above random walk could use the move (v,u) any number of times, but the
distribution on the destination does not depend on the number of times (v,u) is used; in
particular, it is the same if we condition on the event that the walk does not use (v,u) even
once. Similarly, we can generate the distribution for endpoint b by a random walk starting
from v, stopping with probability % before each step.

The new assignment for G: Fix an assignment & for G!. Motivated by Fact [F1], we will
construct the new assignment o for G. To obtain o(u), we use the random walk starting at u
mentioned above (stopping with probability % before each step). This generates a distribution
on the vertices of G. Restrict attention to those vertices that have an opinion for u. For each
letter in the alphabet determine the probability (under this distribution) that the vertex assigns
that letter to u. Then, pick the letter that has the highest probability. With probability at least
1—(1- %)t > %, the walk stops within ¢ steps, so the vertices that do have an opinion have total
probability at least % Thus, with probability at least

1

a5 (1)

the random walk from u will reach a vertex whose opinion on u is the same as o(u).

Notation: Let F be the set of edges of G that are not satisfied by this assignment ¢. From now
on, when we say an edge (u,v) we mean the ordered pair; so we think of F' and F as sets of ordered
pairs. Each undirected edge will give rise to two edges in E (but self-loops will appear only once).
As in the paper, we will assume that % < % We will refer to (v;,v;y1) as the i-th edge of the

walk. We care about the orientation, so unless this is a self-loop, (v;t1,v;) is not the i-th edge of
the walk. We say that the i-th edge (say (v;, vi+1) = (u,v)) of the verifier’s walk is faulty if

1. (u,v) € F and
2. the starting vertex of the walk a has an opinion for v; and it agrees with o(u) and

3. the final vertex b has an opinion for v and it agrees with o(v).

Clearly, the verifier rejects whenever she sees a faulty edge on her walk. If a walk has been truncated
no edge on it is considered faulty.

F
Goal: We wish to show that Pr[Verifier rejects] > % . %

Amplification: Let us first see how the calculation works when we don’t truncate the walk.
Consider the random walk chosen by the verifier. Say, the starting vertex is ¢ and the final vertex
is b. Let the random variable Ny denote the number of faulty edges on the walk (if the same edge

(u,v) appears faulty several times, each occurrence contributes once to Nr). We wish to show that
the probability that Ng > 0 is large. We have two claims.

Claim 1: E[Np] >t _1

Claim 2: E[N?] < Ct‘ E|‘ where C is a constant depending on the d and A of the constraint
graph G.

Our goal follows from Claims 1 and 2, by using the inequality (see, e.g., Alon & Spencer (2000),
Section 4.8, Exercise 1)

E[NF]®
PI‘[NF > O] > m

Proof of Claim 1: We will estimate the expected number of faulty occurrences for each in F.
Fix one such edge e = (u,v). The expected number of occurrences of (u,v) in the walk is exactly
t/|E|. Condition on the event that the walk has exactly k occurrences of (u,v) in it. Now, the
starting vertex a can be generated by the same process that was used to construct o (by Fact [F1]).
The final vertex b can also be similarly generated. Further, ¢ and b are independent. Thus, with
probability at least ﬁ (see (1) above) both a and b have opinions that agree with o for u and
v respectively. In this case, (u,v) is declared faulty. So, overall, the expected number of faulty
occurrences of (u,v) in the verifier’s walk is at least

t 1
B 45>

Claim 1 now follows using linearity of expectation by summing over all |F| possibilities for (u,v).
Proof of Claim 2: Let x; be the random variable indicating whether the 4-th edge (i = 0,1,...)
of the walk is in F'. Then, Ng < Y, x;. Also, Pr[x; = 1] = Ll (1 — %)Z Furthermore,

T E]

ENZ] < 2 Y Ebuxl

0<i<j< 00
< 2ZPTX1—1 ZPIXJ_1|XZ_1]
|7 -1
< 2 P =1 {1 1-2) (= + 2
< 2Py [+;()(|E|<>)] &)

< 22131«;@_1 [1+Z<1__>£%+(X 1]

2>1

\F\ (|1)

< 2 +
Bl \'|E]

We use Proposition 2.4 to justify (2). The claim follows because we have assumed that % < %

Verifier with truncated walks: When the verifier uses truncated walks, we only need to redo
Claim 1, removing the contribution to E[Np] from long walks. The contribution to E[NF] from
walks of length £ is at most £|F|/|E| times the probability that T = £. So, the contribution to
E[Nr] from walks of length at least k + 1 is

F
Pr[Tzk+1]-E[T|Tzk+1]-%.

The first factor is at most (1 — %)k, the second is k + ¢. So, the quantity we need to remove from
our previous lower bound for E[Np| (in Claim 1) is at most

k F|
LAY il
exp(—)(k+9) - 7]
We let k& = [5tIn|X|], so that this quantity is much less than ¢t - J|£|l . 8|§‘2- Thus, we have the

following.

Revised Claim 1: Let N} be the random variable that counts the number of faulty edges on
the walk when the verifier truncates the walks at [5¢1n|3|]. Then,

|Fl 1

Ni >¢- b
BINEl =115 g

Note that NJ, < Np, so Claim 2 applies to N, as well, and the goal is established as before using
Chebyshev’s inequality.

Acknowledgments. Thanks to Eli Ben-Sasson, Irit Dinur, Prahladh Harsha, Adam Kalai and
Nanda Raghunathan for their comments.

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

