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Abstract

An important extension of the proof of the PCP theorem by Irit Dinur (J. ACM 54(3),
also ECCC TR05-046) is a gap amplification theorem for Assignment Testers. Specifically,
this theorem states that the rejection probability of an Assignment Tester can be amplified
by a constant factor, at the expense of increasing the output size of the Assignment Tester by
a constant factor. We point out a gap in the proof of this theorem, and show that this gap
can be filled.

In this note we discuss a gap in one of the proofs in the work of Dinur [D05, D07], and show how it
can be filled. The gap refers to the amplification of Assignment Testers, and the underlying issue
does not occur in the case of standard PCPs. We refer both to the journal version of the work
|DO07] and to the version posted on ECCC |D05], since both of them are cited in the literature.

1 Background

We begin by recalling the definition of [D05, D07| of the notions of Assignment Testers, also known
as PCPs of Proximity (see also [BGHSV04, DRO06]):

Definition 1 (|D05, Definition 3.1|, [D07, Definition 2.8]). An Assignment Tester with alphabet 3,
and rejection probability ¢ > 0 is a polynomial-time transformation P whose input is a circuit ®
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over Boolean variables X, and whose output is a constraint graph G = ((V, E), ¥y, C) such that
X CV (where the elements of X are viewed both as variables and as vertices), and such that the
following hold. Let V' = V\ X, and let a : X — {0, 1} be an assignment, then

e (Completeness) If a € SAT(®), there exists b : V' — ¥, such that UNSAT,, (G) = 0.
e (Soundness) If a a ¢ SAT(®) then for all b: V' — X, UNSAT,,(G) > e - dist (a, SAT (®)).

The main technical result of [D05, D07| is a gap amplification theorem for PCPs. The following
important extension of this theorem to Assignment Testers is also provided in [D05, DO7]:

Theorem 2 (|[D05, Theorem 8.1|, [D07, Theorem 9.1]). There exists t € N such that given an
assignment-tester with constant-size alphabet > and rejection probability €, one can construct an
assignment-tester with the same alphabet and rejection probability at least min{2e,1/t}, such that
the output size of the new reduction is bounded by at most by a constant factor times the output
size of the given reduction.

The assignment, tester of Theorem 2 is constructed in two steps: First, an intermediate assign-
ment tester with alphabet »? and rejection probability p = ) (min {\/1_5 e, 1/ t}) for a constant
d € N and an arbitrary ¢ € N is constructed. Then, a composition theorem of Dinur and Reingold
[DRO6] is applied to the intermediate assignment tester in order to reduce its alphabet’s size, result-
ing in an assignment tester with alphabet ¥ and rejection probability Q(p) = Q (min {/¢ - ,1/t}).
The number ¢ is then fixed to some sufficiently large natural number that yields the desired rejec-
tion probability.

The subject of this note is a gap in the first step of the foregoing construction, namely, the
construction of the intermediate assignment tester. Specifically, we show that under certain cir-
cumstences, the intermediate assignment tester has output size which is quadratic in the output
size of the input assignment tester, failing to establish Theorem 2. Such an increase in the output
size can not be afforded by the applications of Theorem 2 presented in [D05| and [D07]. We com-
ment that those circumstences do not seem to occur in the applications of Theorem 2 presented in
of [D05]. In this note we show that the proof of Theorem 2 can be corrected so the theorem holds
under any circumstences.

We recall the way in which the intermediate assignment tester is constructed: Let ® be a circuit
over Boolean variables X.

1. First, the intermediate assignment tester runs the input assignment tester on input &, yield-
ing a constraint graph G = ((V, E),%,C). For any vertex v € V, let deg (v) denote the
degree of v in G.

!Note that [D07] denotes the relative Hamming distance by rdist, and therefore the foregoing inequality is
phrased as UNSAT, ,(G) > ¢ - dist (a, SAT (®)).



2. Next, the intermediate assignment tester constructs the constraint graph H = (prep(G))".
We denote the set of vertices of H by V. Recall that prep(G) is the graph in which every
vertex v of G is replaced by an expander graph [v] of deg, v vertices, whose vertices represent
“copies” of v and whose edges correspond to equality constraints. Note that the X ¢ Vy,

since each = € X was replaced by [z].

3. Finally, the intermediate assignment tester constructs and outputs a constraint graph H’,
whose set of vertices is Vz U X and whose edges consist of the edges of H and of “consistency
edges” that check consistency between V; and X. The edges are reweighted such that the
consistency edges form half of the edges of H'. For every v € Vi U X, let degy, (v) denote
the degree of v in H'.

2 The gap

The gap in the proof arises in the way the consistency edges between X and Vy are defined.
Specifically, we show that if the graph G is highly non-regular, the construction of H’ may contain
too many consistency edges. For simplicity, let us assume that ¢ = 0, but note that the argument
holds for any value of ¢t. For ¢ = 0, it holds that H = prep (G) and that Vi = |, . [v], where [v]
is the set of vertices that represent “copies” of the vertex v of G.

The work of [D05, D07] defined the consistency edges based on a randomized testing procedure.
This procedure is given oracle access to an assignment A : Vy U X — ¥ to H’', and is allowed to
make two queries to A. The procedure then decides whether to accept or reject A.

The consistency edges are defined using the procedure as follows: For every possible coin tosses
w, let v¢ and v denote the vertices that the procedure queries on coin tosses w. For every possible
coin tosses w, a consistency edge is placed between v{ and v§, and this edge accepts an assignment
A: Vg UX — ¥ if and only if the procedure accepts on coin tosses w when given oracle access to
A. Under the assumption that ¢t = 0, the aforementioned procedure is as follows:

veV

1. Select z € X uniformly at random.

2. Select z € [z] uniformly at random (recall that [z] is the set of vertices in H that are copies
of x).

3. Accept if and only if A(z) = A(2).

Note that for every x € X, the number deg,, (z) is equal to the number of consistency edges
connected to x using the foregoing procedure. The problem is now as follows:



e Since the procedure chooses x € X uniformly at random (at Step 1), it follows that every
variable z € X must have the same degree in H’. That is, for every two variables =,y € X,
it holds that deg,, (x) = degy: (v).

e Since the procedure chooses z € [z] uniformly at random (at Step 2), every variable z € X
must satisfy degy (z) > |[z]| = degq ().

e Combining the previous two items, it follows that the degree of every variable z € X is
at least max,cx {degq (z)}, and therefore the number of consistency edges added by the
foregoing procedure is at least | X |- max,cx {deg. (2)}.

Now, suppose that |X| = Q(size (G)) and that there exists xy € X for which deg, (zo) =
(2 (size (G)) (observe that this can be the case if G is highly non-regular). In such a case,
the number of consistency edges that will be added in the construction of H’ will be at least
|1 X| - degg; (w9) = Q (size (G)?), and therefore we will have size (H') = Q (size (G)?), contradicting
the claim of Theorem 2. Note that this problem does not occur if GG is a regular graph, since in
such case we have that

[X] - max {degg (2)} = ) _ degg (x) < size (G)

zeX

and therefore we will have size (H') = O (size (G)), as required.

3 Filling the gap

We turn to describe how the gap can be filled. In order to fill the gap, we modify the foregoing
randomized procedure as follows. For every z € [z], fix [z]' to be an arbitrary subset of [z] of size
min {|[z]|,size (H) /| X|}. The modified procedure is the same as the original procedure, except
for that in Step 2, it chooses z uniformly at random from the set [z]' instead of [r]. Observe
that this modification indeed solves the problem, since now the degree of every variable x € X in
H' is bounded by size (H) /| X|, and therefore the total number of consistency edges is at most
size (H) = O(size (G)).

The reason that the modified procedure works is roughly as follows: Consider some given
assignment to X. Ideally, we would like that if a variable x € X is assigned a value that is
inconsistent with most of [z], then this variable violates Q(1/|X|)-fraction of the edges of H'.
Suppose now that some variable z € X is assigned a value that is inconsistent with most of the
vertices in [z]. Then, either that x is inconsistent with most of the set [x]’, or most of the set [z]’
is inconsistent with most of the set [z|. In the first case, at least {2(1/|X]|)-fraction of the edges
are violated, since the modified procedure chooses x with probability 1/ |X| and then chooses with
probability at least 1 a vertex z € [z]' that is inconsistent with .
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The case where 7 is consistent with most of [z] is more problematic, since the procedure is likely
to choose z € [7]’ that is consistent with z. Not that such a case is only possible if []' # [z] (since
x is inconsistent with most of [z]), and therefore the set [z]' is of size at least s = size (H) /| X].
Thus, there is a subset of [z] of size 2 (s) that is inconsistent with most of [z], and therefore by
the mixing properties of the expander [z], about € (s) inner edges of [z] are violated. It follows
that the fraction of violated edges is at least

Q) Q) (1
size (H') O (size (H)) & <|X|)

as required. Below we give a rigorous proof of this argument.
We describe the modified procedure for an arbitrary value of ¢ (rather than just ¢t = 0):

1. Select z € X uniformly at random.

2. Select z € [z]' uniformly at random (recall that [z]" is an arbitrary subset of [z] of size
min {|[z]|, size (H) / [ X]}).

3. Take a t/2-step random walk in prep (G) starting from z, and let w be the endpoint of the
walk. Accept if and only if A (w), = A(x).

We now use the procedure to define the consistency edges as before, and then reweight the edges
of H' such that the consistency edges form half of the edges of H'. It is not hard to see that this
modification solves the problem: Indeed, this construction requires placing at most size (H) /| X|
consistency edges on H’ for every variable in X, which sums up to only O (size (H)) = O (size (G))
consistency edges.

It remains to show that the intermediate assignment tester that uses the modified randomized
procedure has rejection probability (2 (min{\/z_f e, 1 /t}) In order to do it, we prove a result
analogous to [D05, Lemma 8.2] and |[D07, Lemma 9.2|. The reason that we prove again such a
result is that [D05, DO7| proves the result for her construction of H', while we prove it for the
modified version of this construction. The following lemma also differs from [D05, Lemma 8.2] and
D07, Lemma 9.2] in some (hidden) constant factors.

Lemma 3. Assume that € < 1/t and fix an assignment a : X — {0,1}. Then

o Ifa € SAT(®) then there exists b: Vi — %% such that UNSAT,, (H') = 0.

o If § = dist(a,SAT(®)) > 0 then for every b : Vi — X% it holds that UNSAT,, (H') =
Q(Vt-e)-6.



Proof The first item of the lemma can be proved using the same proof as in [D05, D0O7]. Turning
to the second item, assume that § = dist (a, SAT (®)) > 0 and fix an assignment b : Vi — 2% to
H. We prove that UNSAT,;, (H') = Q(v/1-¢) -d. As in [D05, D07], let b; be the assignment to
prep (G) decoded from b using a plurality vote, and let by the assignment to G decoded from b;
using plurality vote. The case where dist (by|x,a) < §/2 can be proved using the same proof as in
|D05, D07|, which roughly says as follows: If dist (bg|x,a) < §/2, then using the triangle inequality
it can be shown that dist (by|x, SAT (®)) > §/2, and therefore by the definition of G it holds that
UNSAT,, (G) > €-§/2. Thus, by the properties of preprocessing and graph powering proved in
[D05, DO7], it holds that UNSAT, (H) = Q(+/t - €) - 6. Finally, since the edges of H form half of
the edges of H', it follows that UNSAT,., (H') = Q(\/t - €) - §, as required.

We turn to handle the case where dist (by|x,a) > d/2. Assume that dist (bo|x,a) > d/2. We
prove that in such case it holds that UNSAT,, (H') = Q(§), which implies the required result.
Let by be an assignment for G constructed as follows: For every v € V, the value b (v) is decided
according to a plurality vote among the values assigned by b; to the vertices in [v], i.e., b (v)
is the value that maximizes the probability Prycpy [b1(u) = b(v)]. Recall that, in contrast, b, is
defined by plurality vote in among [v]. We consider two possible cases: dist (by|x, by|x) < J/4 and
dist (b0|X, b6|X) > 5/4

e Suppose that dist (bo|x, bf|x) < 6/4. We show that in such case aUb violates at least §/16 of
the consistency edges of H', by considering the action of the modified randomized procedure
defined above. Using the triangle inequality, it holds that dist(b)|x,a) > 6/4. It follows that
with probability at least 6/4, the procedure chooses in Step 1 a vertex x € [z] such that
bo(x) # a(x). The value bj(z) is defined to be the most popular value assigned by b; to
the vertices of [z]’, and therefore with probability at least % the procedure chooses in Step
2 a vertex z € [x] such that b;(z) # a(x). Similiarly, conditioned on b;(z) # a(x), with
probability at least § the procedure chooses in Step 3 a vertex w such that b(w). # a(x).
Thus, it follows that in this case the randomized procedure rejects a U b with probability at

least 2 -1 -1 =§/16, and therefore UNSAT,, (H') = Q(0), as required.

e Suppose that dist (by|x, by|x) > /4. We show that in such case UNSAT, (H) = Q(J), due
to the violation of the equality constraints of prep (G). Recall that prep (G) is constructed
by replacing every vertex v of G with a set of copies [v] of size deg, (v), placing the edges
of an expander on [v] and associating those edges with equality constraints. Observe that
the inequality bo(z) # bj(x) can only hold for variables € X for which [z] # [z], since for
other variables = the definitions of by () and b () coincide. Thus, for every z € X such
that by(z) # by(z), it holds that |[z]'| = size (H) /| X|, by definition of [x]".
Now, observe for every = € X that satisfies by(x) # by (), it holds that Q(|[2]'|) = Q (size (H) / |X])
equality edges of [z] are violated by b;, due to the mixing properties of the expander that
was used for the construction of prep (G). It follows that in this case the number of edges of
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prep (G) that are violated by b is at least

(dist (Bolx, B ) - |X]) - © (Siz‘e)gf)) Q5 - size (H))

The latter equality implies that UNSAT, (H) = Q(¢), and therefore UNSAT,, (H') = £ (9),
as required.
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