
The PCP Theorem by Gap Amplification

Irit Dinur∗

April 16, 2005

Abstract

Let C = {c1, . . . , cn} be a set of constraints over a set of variables. The satisfiability-gap of
C is the smallest fraction of unsatisfied constraints, ranging over all possible assignments for the
variables.

We prove a new combinatorial amplification lemma that doubles the satisfiability-gap of a constraint-
system, with only a linear blowup in the size of the system. Iterative application of this lemma yields
a self-contained (combinatorial) proof for the PCP theorem.

The amplification lemma relies on a new notion of “graph powering” that can be applied to
systems of constraints. This powering amplifies the satisfiability-gap of a constraint system provided
that the underlying graph structure is an expander.

We also apply the amplification lemma to construct PCPs and locally-testable codes whose length
is quasi-linear, and whose correctness can be probabilistically verified by making a constant number
of queries. Namely, we prove SAT ∈ PCP 1

2
,1

[log
2
(n · poly log n), O(1)]. This answers an open

question of Ben-Sasson et al. (STOC ’04).

1 Introduction

Let C = {c1, . . . , cn} be a set of constraints over a set of variables V . The satisfiability-gap of C, denoted
SAT(C), is the smallest fraction of unsatisfied constraints, over all possible assignments for V . Clearly C
is satisfiable iff SAT(C) = 0. Also, if C is not satisfiable then SAT(C) ≥ 1/n.

Background The PCP theorem is equivalent to stating that gap-3SAT is NP-hard. In other words,
given a set C of constraints such that each is an OR of three literals, it is NP-hard to distinguish between
SAT(C) = 0 and SAT(C) > α for some α > 0. Historically, the PCP theorem has been formulated
through interactive proofs and the concept of a probabilistic verifier that can check an NP witness by
randomly probing it at only O(1) bit locations. The [FGL+96] connection between this formulation and
the gap-3SAT formulation stated above came as a surprise, and together with the proof of the PCP theo-
rem by [AS98, ALM+98], brought about a revolution of the field of inapproximability. The proof of the
theorem came following an exciting sequence of developments in interactive proofs. Proof techniques
are mainly algebraic including low-degree extension, low-degree test, aggregation through curves, sum-
check protocol, and the Hadamard and quadratic functions encodings.

∗Hebrew University. Email: dinuri@cs.huji.ac.il. Supported by the Israel Science Foundation.

1

Electronic Colloquium on Computational Complexity, Report No. 46 (2005)

ISSN 1433-8092

Gap Amplification In this paper we take a different approach for proving the PCP theorem. Our
approach is quite natural in the context of inapproximability. Start out with a 3SAT system C, so it is
NP-hard to decide if C is satisfiable or not. Namely, it is NP-hard to distinguish between the cases (i)
SAT(C) = 0 and (ii) SAT(C) ≥ 1/n. Now repeatedly apply the amplification lemma to C, doubling the
satisfiability gap at each iteration. The outcome C′ is a constraint system for which in the first case still
SAT(C′) = 0, and in the second case SAT(C ′) ≥ α for some α > 0. This gives a reduction from 3SAT to
gap-3SAT, thus proving the theorem.

What makes the gap double? Let us restrict ourselves to systems of constraints over two variables.
Satisfiability is still NP-complete for such systems, for some constant-size (non-Boolean) alphabet. A
two-variable constraint system naturally defines an underlying graph, in which the variables are vertices,
and two variables are adjacent iff there is a constraint over them. We call this a constraint graph. In
order to amplify the gap of a constraint graph we simply raise it to the power t, for some t = O(1).
The graph powering operation is defined as follows: The new underlying graph is the t-th power of the
original graph (with the same vertex-set, and an edge for each length-t path). Each vertex will hold a
value over a larger alphabet, that describes its own value plus it’s “opinion” about the values of all of
its neighbors at distance ≤ t/2. The constraint over two adjacent vertices u, v in the new graph will be
satisfied iff the values and opinions of u and v are consistent with an assignment that satisfies all of the
constraints induced by u, v and their neighborhoods.

Our main lemma asserts that the gap is multiplied by a factor of roughly
√
t, as long as the initial

underlying graph is sufficiently “well-structured”.
The main advantage of this operation is that it does not increase the number of variables in each

constraint (which stays 2 throughout). Moreover, when applied to d-regular graphs for d = O(1), it only
incurs a linear blowup in the size (the number of edges is multiplied by dt−1), and an affordable increase
in the alphabet size (which goes from Σ to Σdt/2

). Combined with an operation that reduces the alphabet
back to Σ, we get an inductive step that can be repeated log n times until a constant gap is attained.

Composition Reducing the alphabet size is an easy task assuming we have at our disposal a PCP re-
duction P . A PCP reduction is an algorithm that takes as input a single large-alphabet constraint, and
outputs a system of (perhaps many) constraints over a smaller alphabet. Indeed, all we need to do is to
run P on each of the constraints in our system. This results in a new constraint system with a similar
gap, and over a smaller alphabet. At first read, this argument may appear to be circular, as the reduction
P sounds very much like our end-goal. The point is that since the input to P always has constant size
in our setting, P is allowed to be extremely inefficient. This relaxation makes it significantly easier to
construct, and even a double-exponential construction via the Long-Code would do. Alternatively, the
exponential construction based on the Hadamard code is also fine. In fact, P can be found by exhaustive
search, provided we have proven its existence in an independent fashion. Composition with P is direct
and simple, relying on the relatively recent ‘modularized’ notion of composition using “assignment-
testers” [DR04] or “PCPs of proximity” [BGH+04].

Thus, our proof of the PCP theorem roughly takes the following form: Let G encode a SAT instance.
Fix t = O(1), set G0 = G, and repeat the following step logn times:

Gi+1 = (Gi)
t ◦ P

Related Work This construction is inspired by the zig-zag construction of expander graphs due to
[RVW] and by Reingold’s proof for SL = L [Rei05]. Reingold shows how one iteration of powering /

2

zigzagging, increases the spectral gap of any graph; so after logn iterations the initial graph becomes an
expander.

Our proof has the same overall structure, where each iteration consists of powering and composition.
In this proof it is the satisfiability gap, rather than the spectral gap, that is increased steadily in each step.

The steady increase of the satisfiability gap is inherently different from the original proof of the
PCP theorem. There, a constant satisfiability gap (using our terminology) is generated by one powerful
transformation, and then a host of additional transformations are incorporated into the final result to take
care of other parameters. Composition is essential in both proofs.

This work follows [DR04] in the attempt to find an alternative proof for the PCP theorem that is
combinatorial and/or simpler. In [DR04], a quasi-polynomial PCP theorem was proven combinatorially.
While our proof is different, we do rely on the modular notion of composition due to [BGH+04, DR04],
and in particular on composition with a bounded-input assignment-tester, which has already served as
an ingredient in the constructions of [DR04].

Short PCPs and Locally Testable Codes The goal of achieving extremely-short Probabilistically
Checkable Proofs and Locally-Testable Codes (LTCs) has been the focus of several works [PS94, HS01,
GS02, BSVW03, BGH+04, BS05]. The shortest PCPs/LTCs are due to [BGH+04] and [BS05], each
best in a different parameter setting. For the case where the number of queries is constant, the shortest
construction is due to [BGH+04], and the proof-length is n · 2(log n)ε

. The construction of [BS05]
has shorter proof-length, n · poly logn, but the number of queries it requires is poly log n. Our result
combines the best parameters from both of these works. Our starting point is the construction [BS05].
By applying the amplification lemma we bring the number of queries down toO(1), while increasing the
proof length by only another polylogarithmic factor. Namely, we show that SAT ∈ PCP 1

2
,1[log2(n ·

poly log n), O(1)].

Organization Section 2 contains some preliminaries, including a formal definition of constraint graphs,
and some basic facts about expander graphs. In Section 3 we describe the operations on constraint graphs
on which we base our construction. In Section 4 we prove the PCP theorem. The proof of the gap am-
plification lemma takes Section 5. In Section 6 we describe a concrete (and inefficient) construction of
an assignment tester P based on the Long-Code, so as to make our result self-contained. In Section 7
we prove SAT ∈ PCP 1

2
,1[log2(n · poly log n), O(1)], drawing on a result of [BS05].

2 Preliminaries

2.1 Constraint Graphs

In this paper we are interested in systems of constraints, as well as in the graph structure underlying
them. We restrict our attention to systems of two-variable constraints, whose structure is captured by
‘constraint graphs’, defined as follows:

Definition 2.1 (Constraint Graph) G = 〈(V,E),Σ, C〉 is called a constraint graph, if

1. (V,E) is an undirected graph, called the underlying graph of G.

2. The set V is also viewed as a set of variables assuming values over alphabet Σ

3. Each edge e ∈ E, carries a constraint ce : Σ2 → {T,F}, and C = {ce}e∈E .

3

An assignment is a mapping σ : V → Σ that gives each vertex in V a value from Σ. For any assignment
σ, define

SATσ(G) = Pr
(u,v)∈E

[ce(σ(u), σ(v)) = T] and SAT(G) = max
σ

SATσ(G) .

Also define SATσ(G) = 1 − SATσ(G) and SAT(G) = 1 − SAT(G). We call SAT(G) the satisfiability-
gap of G, or just the gap of G for short. We denote by size(G) the size of the description of G, so
size(G) = θ(|V | + |E| · |Σ|2).

Proposition 2.1 (Constraint-Graph Satisfiability) Given a constraint graph G = 〈(V,E),Σ, C〉 with
|Σ| ≤ 7, it is NP-hard to decide if SAT(G) = 1.

Proof: Reduce from 3SAT. Put a vertex for each clause and let the alphabet be {1, . . . , 7}, standing for
all possible assignments that satisfy that clause. Put a consistency constraint for every pair of clauses
that share a variable.

We sometimes use the same letter G to denote the constraint graph and the underlying graph. In
particular, we refer to the degree of G and we write λ(G) to signify the second largest eigenvalue value
of the adjacency matrix of the graph underlying G.

2.2 Expander Graphs

Definition 2.2 Let G = (V,E) be a d-regular graph. Let E(S, S̄) =
∣

∣(S × S̄) ∩ E
∣

∣ equal the number
of edges from a subset S ⊆ V to its complement. The edge expansion is defined as

h(G) = min
S,|S|<|V |/2

E(S, S̄)

|S| .

Lemma 2.2 (Expanders) There exist d0 ∈ N and h0 > 0, such that there is a polynomial-time con-
structible family {Xn}n∈N

of d0-regular graphs Xn on n vertices with h(Xn) ≥ h0.

Proof: It is well-known that a random constant-degree graph on n-vertices is an expander. For a deter-
ministic construction, one can get expanders on 2k vertices for any k from the construction of [RVW].
For n = 2k − n′ (n′ < 2k−1), one can, for example, merge n′ pairs of vertices. To make this graph reg-
ular one can add arbitrary edges to the non-merged vertices. Clearly, the edge expansion is maintained
up to a constant factor.

The following relation between the edge expansion and the second eigenvalue is known, see, e.g.,
[LW03],

Lemma 2.3 Let G be a d-regular graph, and let h(G) denote the edge expansion of G. Then

λ(G) ≤ d− h(G)2

d
.

Finally, we prove the following (standard) estimate on the random-like behavior of a random-walk on
an expander.

Proposition 2.4 Let G = (V,E) be a d-regular graph with second largest eigenvalue λ. Let F ⊆ E be
a set of edges. The probability p that a random walk that starts at a random edge in F takes the i+ 1st

step in F as well, is bounded by |F |
|E| +

(

|λ|
d

)i
.

4

Proof: LetK be the distribution on vertices induced by selecting a random edge in F , and then a random
vertex in it1. Let B be the support of K. Let A be the normalized n × n adjacency matrix of G so Aij

equals q/d where q is the number of edges between vertices i and j. The first and second eigenvalues of
A are 1 and λ̃ = λ/d respectively.

Let x be the vector corresponding to the distribution K, i.e. xv = PrK [v] equals the fraction of edges
touching v that are in F , divided by 2. Since the graph is d-regular, PrK [v] ≤ d

2|F | . Let yv be the

probability that a random step from v is in F , so y = 2|F |
d x. The probability p equals the probability of

landing in B after i steps, and then taking a step in F ,

p =
∑

v∈B

yv(A
ix)v =

∑

v∈V

yv(A
ix)v = 〈y,Aix〉 .

Let 1 be the all 1 vector. Write x = x⊥ + x|| where x|| = 1
n1, is an eigenvector of A with eigenvalue

1, and x⊥ = x−x||. The vector x⊥ is orthogonal to x|| since 1 ·x⊥ =
∑

v PrK [v]−∑

v
1
n = 1−1 = 0.

Denote ‖x‖ =
√

∑

v x
2
v. Observe that ‖x‖2 ≤ (

∑

v |xv|) · (maxv |xv|) ≤ 1 · (maxv |xv|) ≤ d
2|F | .

Clearly,

‖Aix⊥‖2 ≤ |λ̃|i‖x⊥‖2 ≤ |λ̃|i‖x‖2 ≤ |λ̃|i(max
v
xv)

1/2 ≤ |λ̃|i
√

d

2 |F |
By Cauchy-Schwartz

〈y,Aix⊥〉 ≤ ‖y‖ · ‖Aix⊥‖ ≤ 2 |F |
d

|λ̃|i‖x‖2 ≤ |λ̃|i

Combining the above we get the claim,

〈y,Aix〉 = 〈y,Aix||〉 + 〈y,Aix⊥〉 ≤ 2 |F |
dn

+ |λ̃|i =
|F |
|E| +

(|λ|
d

)i

3 Operations on Constraint Graphs

Our main theorem is proven by performing three operations on constraint graphs:

• Preprocessing: This simple operation preserves both the gap (roughly) and the alphabet size, but
makes the constraint graph more nicely structured.

• Powering: The operation which amplifies the gap, at the expense of increasing the alphabet size.

• Composition: The operation which reduces the alphabet size, while maintaining the gap (roughly).

These operations are described in Sections 3.1, 3.2 and 3.3 respectively.

1Let us adopt the convention that a self-loop is “half” an edge, and its probability is of being selected is defined accordingly.
In the application F will contain no self-loops so this whole issue can be safely ignored.

5

3.1 Preprocessing

We describe how to (easily) turn any constraint graph into a ‘nicely-structured’ one. By ‘nicely-structured’
we mean regular, constant-degree, and expanding.

Lemma 3.1 (Preprocessing) There exist constants 0 < λ < d and β1 > 0 such that any constraint
graph G can be transformed into a constraint graph G′, denoted G′ = prep(G), such that

• G′ is d-regular with self-loops, and λ(G′) ≤ λ < d.

• G′ has the same alphabet as G, and size(G′) = O(size(G)).

• β1 · SAT(G) ≤ SAT(G′) ≤ SAT(G).

Note that the third item implies that completeness is maintained, i.e., if SAT(G) = 1 then SAT(G′) = 1.
We prove this lemma in two steps, summarized in the next two lemmas.

Lemma 3.2 (Constant degree) Any constraint graph G = 〈(V,E),Σ, C〉 can be transformed into a
(d0 + 1)-regular constraint graph G′ = 〈(V ′, E′),Σ, C′〉 such that |V ′| = 2 |E| and

SAT(G)/c ≤ SAT(G′) ≤ SAT(G)

for some global constants d0, c > 0.

This lemma is a well-known ‘expander-replacement’ transformation, due to [PY91]. We include a proof
for the sake of completeness. The idea is to split each vertex v into deg(v) new vertices that are intercon-
nected via a constant-degree expander, placing equality constraints on the new edges. Intuitively, this
maintains SAT(G) because the expander edges “penalize” assignments for the new graph that do not as-
sign the same value to all copies of v; hence assignments for the new graph behave just like assignments
for G.

Proof: For each n, let Xn be a d0-regular expander on n vertices with edge expansion h(Xn) ≥ h0,
as guaranteed by Lemma 2.2. Fix d = d0 + 1. We replace each vertex v with a copy of Xdv where dv

denotes the degree of v in G. Denote the vertices of Xdv by [v] and let [V] = ∪v[v]. Denote the union
of the edges of Xdv for all v by E1, and place equality constraints on these edges.

In addition, for every edge (v, w) ∈ E we will put an edge between one vertex in [v] and one vertex
in [w] so that each vertex in [V] sees exactly one such external edge. Denote these edges E2. Altogether
G′ = ([V],E = E1 ∪ E2) is a d-regular graph, and |E| = d |E|.

We analyze SAT(G′). The (completeness) upper bound SAT(G′) ≤ SAT(G) is easy: An assignment
σ : V → Σ can be extended to [V] by assigning each x ∈ [v] the value σ(v). This will cause the same
number of edges to reject, which can only decrease as a fraction.

For the (soundness) lower bound, let σ′ : [V] → Σ be a ‘best’ assignment, i.e. violating the fewest

constraints, SATσ′(G′) = SAT(G′)
4
= α. Define σ : V → Σ according to plurality of σ′, i.e., let σ(v)

be the most popular value among (σ′(x))x∈[v]. Let S ⊆ [V] be the set of vertices whose value disagrees
with the plurality. Let E∗ ⊆ E be the edges that reject σ, and let E∗ be the edges that reject σ′. The
external edge corresponding to an e ∈ E∗ either rejects σ′, or has at least one endpoint in S. So

|E∗| + |S| ≥ |E∗| = α |E|

If |E∗| ≥ α
2 |E| we are done since α

2 |E| = α
2d |E| and so SAT(G′) ≥ SAT(G)/2d. So assume that

|S| ≥ α
2 |E|. Focus on one [v], and let Sv = [v] ∩ S. We can write Sv as a disjoint union of sets

6

Sa = {x ∈ Sv |σ′(x) = a}. Since S is the set of vertices disagreeing with the plurality value, we have
|Sa| ≤ 1

|Σ| ≤ 1/2, so by the edge expansion of the appropriate expanderXdv , E(Sa, S̄a) ≥ h0 · |Sa|. All

of these edges carry equality constraints that reject σ ′. So there are at least h0
∑

v |S ∩ [v]| = h0 |S| ≥
αh0
2 |E| edges that reject σ′. Since |E| = |E| /d, we get SAT(G′) ≥ h0

2d SAT(G). We have completed the
proof, with c = min(1

2d ,
h0
2d).

Lemma 3.3 (Expanderizing) Let d0, h0 > 0 be some global constants. Any d-regular constraint graph
G can be transformed into G′ such that

• G′ is (d+ d0 + 1)-regular, has self-loops, and λ(G′) ≤ d+ d0 + 1 − h0
2

d+d0+1 < deg(G′).

• size(G′) = O(size(G))

• d
d+d0+1 · SAT(G) ≤ SAT(G′) ≤ SAT(G)

Proof: The idea is to add to G self-loops and edges of an expander and put void constraints on these
new edges (i.e., constraints that are satisfied always). By convention, a self loop adds 1 to the degree
of a vertex. Let X = (V,E ′) be a d0-regular expander on |V | vertices, with h(X) ≥ h0 (again, as
guaranteed by Lemma 2.2). Let Eloop = {(v, v) | v ∈ V }. Let G′ = (V,E ∪ E′ ∪ Eloop), where the
constraints associated with non-E edges are void constraints (satisfied always). Clearly the degree is
d+ d0 + 1. To bound λ(G′) we rely on the following well-known inequality (see Lemma 2.3),

λ(G) ≤ d(G) − h(G)2

d(G)
.

Clearly h(G′) ≥ h(X) ≥ h0, so plugging G′ in the above yields λ(G′) ≤ d + d0 + 1 − h0
2

d+d0+1 <
d+ d0 + 1.

Finally, since the new edges are always satisfied and since we increased the total number of edges by
factor c′ = d+d0+1

d , the fraction of unsatisfied constraints drops by at most c′.

Proof:(of Lemma 3.1) First apply Lemma 3.2 on G, and then apply Lemma 3.3 on the result. The
lemma is proven with β1 = c · d

d+d0+1 .

3.2 Powering

This operation is a new operation on constraint systems, and it is the one that gains us the gap. Let
G = 〈(V,E),Σ, C〉 be a constraint graph , and let t ∈ N. We define Gt = 〈(V,E),Σddt/2e

, Ct〉 to be the
following constraint graph:

• The vertices of Gt are the same as the vertices of G.

• Edges: u and v are connected by k edges in E if the number of t-step paths from u to v in G is
exactly k.

• Alphabet: The alphabet ofGt is Σddt/2e
, where every vertex specifies values for all of its neighbors

reachable in t/2 steps. One may think of this value as describing v’s opinion of its neighbors’
values.

• Constraints: The constraint associated with an edge e = (u, v) ∈ E is satisfied iff the assignments
for u and v are consistent with an assignment that satisfies all of the constraints induced by the
t/2 neighborhoods of u and v.

7

If SAT(G) = 1 then clearly SAT(Gt) = 1. More interestingly,

Lemma 3.4 (Amplification Lemma) Let λ < d, and |Σ| be arbitrary constants. There exists a constant
β2 = β2(λ, d, |Σ|) > 0, such that for every t ∈ N and for every d-regular constraint graph G =
〈(V,E),Σ, C〉 with self-loops and λ(G) ≤ λ,

SAT(Gt) ≥ β2

√
t · min

(

SAT(G) ,
1

t

)

.

This is our main technical lemma, and its proof is given in Section 5.

3.3 Composition

In this section we describe a transformation on constraint graphs that reduces the alphabet size, while
roughly maintaining the gap. We rely on composition which is an essential component in PCP con-
structions, described next. To understand composition let us ignore the underlying graph structure of a
constraint graph G, and view it simply as a system of constraints.

Let us step back for a moment and recall our overall goal of proving the PCP theorem. What we
seek is a reduction from (say) 3SAT to gap-3SAT. Such a reduction is a polynomial-time algorithm that
inputs some 3SAT formula on n Boolean variables, and generates a new system of 3CNF clauses with
the following gap property: Satisfiable inputs translate to satisfiable 3SAT systems, and unsatisfiable
inputs translate to 3SAT systems that are only 1 − α satisfiable (i.e. any assignment can satisfy only
1 − α of the clauses), for some α > 0.

With these “gap-generating” reductions in mind, one can imagine how to make use of composition.
Suppose we had such a gap-generating reduction whose output size is exponential in the input size2. We
could potentially use it as a subroutine in a (polynomial-time) gap-generating reduction, making sure to
run it on inputs that are sufficiently small (≤ logn). This is the basic idea of composition.

How would this work with constraint graphs? Assume we have a gap-generating reduction P as
above, and let G be a constraint graph. We can put each constraint of G in 3SAT form, and then feed it
to P . The output would be a system of 3SAT clauses, which can be easily viewed as constraints over a
small alphabet ≤ 23 = 8. The new system would be the union of the 3SAT systems output by P over
all of G’s constraints. Thus we have achieved our goal of reducing the size of the alphabet, from Σ,
|Σ| = O(1), to |Σ0| ≤ 23. The main point is that as long as |Σ| = O(1), P can be allowed to be as
inefficient as needed, and still this composition would only incur a linear overhead.

There is one subtle point that has been ignored so far. It is well-known that for composition to
work, consistency must be established between the many invocations of P . This point has been handled
before in a modular fashion by adding additional requirements on the reduction P . Such more-restricted
reductions are called PCPs of Proximity in [BGH+04] or Assignment Testers in [DR04]. We describe
these formally below. For an exposition as to why these objects are well-suited for composition, as well
as a proof of a generic composition theorem, please see [BGH+04, DR04].

The following is a stripped-down version of the definition of [DR04], that suffices for our purposes:

Definition 3.1 (2-Query Assignment Tester) A 2-Query Assignment Tester with parameters δ0,Σ0 is
a reduction algorithm P whose input is a Boolean constraint ϕ over a set of Boolean variables X . P
outputs a system of constraints Ψ over variables X and auxiliary variables Y such that

• The variables in Y take values in an alphabet Σ0.

2The implicit assumption here is that such reductions are significantly easier to construct, see e.g. Section 6.

8

• Each ψ ∈ Ψ is over two variables from X ∪ Y .

• For every assignment a : X → {0, 1},

1. [Completeness:] If a satisfies ϕ then there exists an assignment b : Y → Σ0 such that a ∪ b
satisfies every constraint in Ψ.

2. [Soundness:] For every δ ≤ δ0, if a is δ-far3 from every satisfying assignment for ϕ, then
for every assignment b : Y → Σ0, at least Ω(δ) of the constraints in Ψ reject a ∪ b.

Notice that no restriction is imposed on the running time of P or on |Ψ|. In particular, we ignored the
format of the input to P , which may as well be a truth table. We describe an explicit construction of
such an algorithm in Section 6 (see Lemma 6.2). As mentioned earlier, such an algorithm (that works
only on inputs of some fixed bounded size) can also be found by exhaustive search, provided we have
proven its existence independently. Our main lemma in this section is the following,

Lemma 3.5 (Composition) Assume the existence of a 2-query assignment tester P , with δ0 > 0 and
alphabet Σ0, |Σ0| = O(1). There exists β3 > 0 that depends only on P , such that any constraint system
G = 〈V,Σ, C〉 can be transformed into a constraint system G′ = 〈V ′,Σ0, C′〉, denoted G ◦ P , such that
size(G′) = M(|Σ|) · size(G), and

β3 · SAT(G) ≤ SAT(G′) ≤ SAT(G)

Proof: We describe the construction in two steps:

• (Robustization:) Let e : Σ → {0, 1}` be any error-correcting-code with linear rate and relative
distance ρ > 0 , so ` = O(log |Σ|). Replace each variable v ∈ V by a set of ` Boolean variables
denoted [v]. These are supposed to represent the encoding via e of v’s assignment. Replace each
constraint c ∈ C by a constraint c̃ over variables [v] ∪ [w]. c̃ is satisfied iff the assignment for
[v] ∪ [w] is the legal encoding via e of an assignment for v and w that would have satisfied c.

• (Composition:) Run an assignment tester P on each c̃. This makes sense since c̃ is a Boolean
constraint over Boolean variables [v] ∪ [w]. Let Yc be the resulting set of auxiliary variables, and
let Ψc the resulting set of constraints. Define the new constraint system G′ = 〈(V ′, E′),Σ0, C′〉
as follows:

V ′ =
⋃

v∈V

[v] ∪
⋃

c∈C

Yc , C′ = ∪c∈CΨc

(where C ′ implicitly defines E′).

First, let us verify that size(G′) = M(|Σ|) · size(G). The inputs fed into P are constraints c̃ :

{0, 1}O(`) → {T,F}. There is a finite number of these, at most 22
O(`)

. Let M denote the maximal size
of the output of P over all such inputs. Clearly, size(G′) ≤ M · size(G) and M is a constant that
depends only on Σ and P .

It remains to be seen that β3 · SAT(G) ≤ SAT(G′) ≤ SAT(G). The proof is simple and follows exactly
the proof of the composition theorem in [DR04]. Let us sketch the first inequality (that corresponds
to the soundness argument). Given an assignment σ ′ : V ′ → Σ0, we extract from it an assignment
σ : V → Σ by letting for each v ∈ V σ(v) to be a value whose encoding via e is closest to σ ′([v]).
By definition, a fraction SATσ(G) ≥ SAT(G) of constraints reject σ. Let c ∈ C be a constraint over
variables u, v that rejects σ. We will show that a constant fraction of the constraints in Ψc reject σ′. The

3Two assignments a, a′ are δ-far if Prx[a(x) 6= a′(x)] ≥ δ.

9

main observation is that the input to c̃ (i.e., the restriction of σ ′ to [u] ∪ [v]) is at least ρ/4-far from a
satisfying input (where ρ denotes the code-distance of e). The reason is that a ρ/2 fraction of the bits
in either [u] or [v] (or both) must be changed in order to change σ ′ into an assignment that satisfies c̃.
Set δ = min(δ0, ρ/4). By the soundness property of P , at least Ω(δ) fraction of Ψc reject. Altogether,
SAT(G′) ≥ Ω(δ) · SAT(G) = β3 · SAT(G) for some β3 > 0.

4 Main Theorem

Based on the constraint graph operations described in the previous section, we are now ready to prove
our main theorem.

Theorem 4.1 (Main) For any Σ, |Σ| = O(1), there exists constants C > 0 and 0 < α < 1, such that
given a constraint graph G = 〈(V,E),Σ, C〉 one can construct, in polynomial time, a constraint graph
G′ = 〈(V ′, E′),Σ0, C′〉 such that

• size(G′) ≤ C · size(G) and |Σ0| = O(1).

• (Completeness:) If SAT(G) = 1 then SAT(G′) = 1

• (Soundness:) SAT(G′) ≥ min(2 · SAT(G), α).

Proof: We construct G′ from G by
G′ = (prep(G))t ◦ P

for an appropriately selected constant t ∈ N. Let us break this into three steps:

1. (Preprocessing step:) Let H1 = prep(G) be the result of applying Lemma 3.1 to G.

So there exists some global constants λ < d and β1 > 0 such that H1 is d-regular, has the same
alphabet as G, λ(H1) ≤ λ < d, and β1 · SAT(G) ≤ SAT(H1) ≤ SAT(G).

2. (Amplification step:) Let H2 = (H1)
t, for a large enough constant t > 1 to be specified below.

According to Lemma 3.4, there exists some constant β2 = β(λ, d, |Σ|) > 0 for which SAT(H2) ≥
β2

√
t · min(SAT(H1),

1
t). However, the alphabet grows to Σddt/2e

.

3. (Composition step:) Let G′ = H2 ◦ P be the result of applying Lemma 3.5 to H2 relying on a
2-query assignment tester P , as guaranteed in Lemma 6.2.

This reduces the alphabet to Σ0 while still β3 · SAT(H2) ≤ SAT(G′) ≤ SAT(H2), for a constant
β3 > 0.

Let us verify the properties claimed above. The size of G′ is linear in the size of G because each step
incurs a linear blowup. Specifically, in step 2, since deg(H1) = d and t = O(1), the number of edges
in H2 = (H1)

t is equal to the number of edges in H1 times a constant factor of dt−1. In step 3, the total
size grows by a factor M that depends on the alphabet size of H2, which equals |Σddt/2e | = O(1), and
on P which is fixed throughout the proof, so M is constant.

10

Completeness is clearly maintained at each step. Choose now t = d(2
β1β2β3

)2e, and let α = β3β2/
√
t.

Altogether,

SAT(G′) ≥ β3 · SAT(H2) (step 3, Lemma 3.5)

≥ β3 · β2

√
t · min(SAT(H1),

1

t
) (step 2, Lemma 3.4)

≥ β3 · β2

√
t · min(β1SAT(G),

1

t
) (step 1, Lemma 3.1)

≥ min(2 · SAT(G), α)

As a corollary of the main theorem we get,

Corollary 4.2 (PCP Theorem) Gap-3SAT is NP-hard. (Alternatively, SAT ∈ PCP 1
2
,1[O(logn), O(1)]).

Proof: We reduce from constraint graph satisfiability. The basic idea is to repeatedly apply the main
theorem until after logn iterations the gap is a constant fraction.

According to Proposition 2.1 it is NP-hard to decide if for a given constraint graph G0 with |Σ| ≤ 7,
SAT(G0) = 1 or not. Fix such a G0.

Let Gi (i ≥ 1) be the outcome of applying the main theorem on Gi−1. Then for i ≥ 1 Gi is a
constraint graph with alphabet Σ0. Let k = log |E(G0)| = O(log n). Observe that the size of Gi for
i ≤ k = O(logn) is bounded by C i · size(G0) = poly(n).

Completeness is easy: if SAT(G0) = 1 then SAT(Gi) = 1 for all i. For soundness, assume SAT(G0) <
1. If for some i∗ < k, SAT(Gi∗) ≥ α/2 then the main theorem implies that for all i > i∗ SAT(Gi) ≥ α.
For all other i it follows by induction that

SAT(Gi) ≥ min(2i SAT(G0), α) .

If SAT(G0) > 0 then SAT(G0) ≥ 1
|E(G0)| , so surely 2kSAT(G0) > α. Thus SAT(Gk) ≥ α.

Finally, a local gadget reduction takesGk to 3SAT form (by converting each constraint into a constant
number of 3CNF clauses), while maintaining the gap up to some constant. To get to soundness of 1

2 , in
the SAT ∈ PCP 1

2
,1[O(logn), O(1)] version, one can apply simple (sequential) repetition.

5 Soundness Amplification Lemma

Lemma 3.4 Let λ < d, and |Σ| be arbitrary constants. There exists a constant β2 = β2(λ, d, |Σ|) > 0,
such that for every t ∈ N and for every d-regular constraint graph G = 〈(V,E),Σ, C〉 with self-loops
and λ(G) ≤ λ,

SAT(Gt) ≥ β2

√
t · min

(

SAT(G) ,
1

t

)

.

Throughout the proof all constants includingO(·) and Ω(·) notation are independent of t but may depend
on d, λ and |Σ|. Let us assume for notation clarity that t is even.

The idea of the proof is as follows. Let us refer to the edges of Gt as paths, since they come from
t-step paths in G, and let us refer to the edges of G as edges. An assignment for Gt, is a mapping
~σ : V → Σdt/2

where each vertex specifies Σ values for itself as well as all of its neighbors at distance
≤ t/2. Let us define a new assignment mapping V into Σ, by assigning each vertex the most popular

11

value among the values assigned to it by its neighbors. The probability that a random edge rejects this
new assignment is, by definition, at least SAT(G). We will show that the probability that a random path
rejects ~σ is Ω(

√
t) times larger (we say that a path rejects ~σ if the constraint on it is not satisfied by ~σ).

This is done by charging to each rejecting edge, all rejecting paths that pass through it. The main
point is that each rejecting edge is potentially responsible for t · dt−1 rejecting paths, while the total
number of edges in Gt is only a factor dt−1 larger than that in G.

We first show (Lemma 5.1) that paths in which one of the ‘middle’ edges is rejecting, have a con-
stant probability of rejecting themselves. Middle edges are those that are traversed by the path at step
i ∈

{

t/2 −
√
t, . . . , t/2 +

√
t
}

. Hence we end up charging Θ(
√
t) · dt−1 rejecting paths to each reject-

ing edge. We then show (Lemma 5.3) that almost all paths are charged no more than O(1) times. This is
where the expansion property of G is used, as we prove that a random path is expected to pass through
any (small) fixed set of edges a number of times that is a constant independent of t.

Proof: Denote by E = E(Gt) the edge set of Gt. An edge e = (e1, . . . , et) ∈ E is a path of length t
in G. Since G is d-regular, Gt is dt-regular, and |E| = dt−1 |E|.

Let ~σ : V → Σdt/2
be a ‘best’ assignment for Gt, SAT(Gt) = SAT~σ(Gt). For each v, ~σ(v) assigns

values for v and every vertex w within distance ≤ t/2 of v. We denote ~σ(v)w ∈ Σ the restriction of
~σ(v) to w. This can be thought of as the opinion of v about w. Define an assignment σ : V → Σ as
follows. For every j = 1, . . . , t let Xv,j be a random variable that assumes a value a with probability
that a j-step random walk from v ends at a vertex w for which ~σ(w)v = a. Define σ(v) = a for a value
a which maximizes Pr[Xv,t/2 = a].

Let F be a subset of edges that reject σ, so that |F |
|E| = min(SATσ(G), 1

t). Let

Γi,e = {e ∈ E | ei = e} , Γi =
⋃

e∈F

Γi,e, Γ =
⋃

i

Γi .

Also denote Γ∗
i = {e ∈ Γi | e rejects ~σ} and Γ∗ = ∪Γ∗

i . The set Γ∗ contains all rejecting paths that pass

through F , but there can be other rejecting paths as well, so |Γ∗|
|E| ≤ SAT~σ(Gt) = SAT(Gt). We will show

that for some β > 0, β
√
t · |F |

|E| ≤
|Γ∗|
|E| so

β
√
t · min(SAT(G),

1

t
) ≤ β

√
t · min(SATσ(G),

1

t
)

= β
√
t · |F ||E|

≤ |Γ∗|
|E|

≤ SAT~σ(Gt) = SAT(Gt) .

where the middle equality follows from the definition of F . We next show that a random path whose ith
step equals some fixed e ∈ F has constant probability of rejecting,

Lemma 5.1 Let I =
{

t
2 −

√
t < i ≤ t

2 +
√
t
}

⊂ N. There exists some α > 0 that depends only on |Σ|
and d, such that for every e ∈ F , and every i ∈ I

Pr
e∈Γi,e

[

e ∈ Γ∗
i,e

]

> α .

12

Proof: Fix e = (u, v) ∈ F , and let a = σ(u) and b = σ(v). Since e ∈ F , the constraint on e rejects
the values a and b. We show that with constant probability, a random path in Γi,e starts at a vertex u0 for
which ~σ(u0)u = a, and ends at a vertex ut for which ~σ(ut)v = b. This implies, by definition, that the
path rejects ~σ. The reason is that if the path is randomly chosen in Γi,e, then the endpoints u0 and ut are
sufficiently random, and will see the plurality opinion often enough.

Fix i ∈ I . The idea is that every path e ∈ Γi,e can be written uniquely as e = p1ep2 where p1,p2

are paths of lengths i− 1 and t− i:

p1 = ((u1, u2), (u2, u3), . . . , (ui−1, u)) and p2 = ((v, v1), (v1, v2), . . . , (vt−i−1, vt−i))

Moreover, this path clearly rejects if ~σ(u1)u = a and ~σ(vt−i)v = b. These events are Xu,i−1 = a and
Xv,t−i = b respectively. Moreover, since the choice of p1 is independent of the choice of p2, we have

PrΓi,e

[

Γ∗
i,e

]

≥ Pr[Xu,i−1 = a] · Pr[Xv,t−i = b].

Observe that by definition Pr[Xu,t/2 = a] ≥ 1
|Σ| and Pr[Xu,t/2 = b] ≥ 1

|Σ| , since a, b are the most
popular values for u, v respectively. Had it been possible that i − 1 = t/2 and t − i = t/2, the lemma
would follow immediately from the definition of σ, taking α = 1

|Σ|2
. We will prove that for all `

If |`− t/2| ≤
√
t then Pr[Xu,` = a] >

τ

2
· Pr[Xu,t/2 = a] (1)

for some τ > 0 to be determined, and a symmetric argument will hold for Pr[Xv,` = b]. The intuition
for (1) is that the self-loops of G make the distribution of vertices reached by a random t/2-step walk
from u roughly the same as distribution on vertices reached by an `-step walk from u, for ` ∈ I .

Mark one self-loop on each vertex, and observe that any length-` path from u inG can be equivalently
described by (i) specifying in which steps the marked edges were traversed, and then (ii) specifying the
remaining steps conditioned on choosing only non-marked edges. Let X ′

u,k be a random variable that
assumes a value σ with probability that a k-step random walk conditioned on walking only on non-
marked edges reaches a vertex w for which ~σ(w)u = σ. In other words, for a binomial variable B`,p

with Pr[B`,p = k] =
(

`
k

)

pk(1 − p)`−k and p = 1 − 1/d,

Pr[Xu,` = a] =
∑̀

k=0

Pr[B`,p = k] Pr[X ′
u,k = a] . (2)

The point is that if |`1 − `2| is small, then the distributions B`1,p and B`2,p are similar, as formalized in
the following lemma:

Lemma 5.2 For every p ∈ [0, 1] and c > 0 there exists some 0 < τ < 1 such that if n− √
n ≤ m < n,

then

∀k, |k − pn| ≤ c
√
n, τ ≤ Pr[Bn,p = k]

Pr[Bm,p = k]
≤ 1

τ

The proof is a straightforward computation, and can be found in Appendix A. The lemma implies that
the distributions of Xu,`1 and Xu,`1 are similar. Indeed let us choose c so that Pr[B t

2
,p 6∈ I] ≤ 1

2|Σ| for

the set I =
{

k
∣

∣ |k − p`| ≤ c
√
t
}

; and let τ be the appropriate constant from the lemma. Clearly c can
be chosen independently of t since k 6∈ I implies |k − pt/2| ≥ |k − p`| − |p`− pt/2| > (c− 1)

√
t. We

13

now have

Pr[Xu,` = a] ≥
∑

k∈I

Pr[B`,p = k] Pr[X ′
u,k = a]

≥ τ ·
∑

k∈I

Pr[Bt/2,p = k] Pr[X ′
u,k = a]

≥ τ ·
(

Pr[Xu,t/2 = a] − 1

2 |Σ|

)

≥ τ

2
· Pr[Xu,t/2 = a]

where the last inequality holds since Pr[Xu,t/2 = a] ≥ 1
|Σ| . So (1) is established, and the proof of

Lemma 5.1 is complete with α =
(

τ
2 · 1

|Σ|

)2
.

It is easy to verify that |Γi| = |F | · |Γi,e| = |F | dt−1 since Γi = ∪e∈F Γi,e and this is a disjoint union.
By Lemma 5.1,

∀i ∈ I |Γ∗
i | =

∑

e∈F

|Γ∗
i,e| ≥ |F |α |Γi,e| = α |Γi|

Summing over all i ∈ I ,
∑

i∈I

|Γ∗
i | ≥ α

∑

i∈I

|Γi| ≥ α |I| |F | dt−1. (3)

If we divide the right hand side by |E|, we get SAT(G) times α |I| = Ω(
√
t). Intuitively, the left hand

side should more-or-less equal the number of rejecting paths inGt, which lower bounds SAT(Gt). If that
were so, we would get the desired lower bound. However, a path e will be over-counted in the left-hand
side if it belongs to Γ∗

i for more than one i ∈ I , or in other words, if it steps in F more than once. The
second part of the proof uses the expansion of G to bound this event.

For any path e, let NF (e) be the number of steps e takes in F , NF (e) = |{e ∩ F}|. For clarity we
omit F from the notation and write N(e). Fix M > 0 to be specified later, and let Bi be the set of paths
that are overcounted in (3),

1 ≤ i ≤ t, Bi = {e ∈ Γi |N(e) ≥M} . (4)

Then
∑

i∈I

|Γ∗
i \Bi| ≤

∑

e∈Γ∗\(∪iBi)

N(e) ≤M |Γ∗ \ (∪iBi)| ≤M |Γ∗| (5)

We will show that Bi is a small fraction of Γi,

Lemma 5.3 There exists M > 0 such that for all 1 ≤ i ≤ t, and for Bi defined in (4), PrΓi [Bi] ≤ α/2.

This will conclude the proof because
∑

i∈I

|Γ∗
i \Bi| =

∑

i∈I

(|Γ∗
i | − |Bi|) ≥ |I| |F | dt−1(α− α/2) ≥ |F | dt−1 · α

√
t (6)

where the first inequality follows from Equation (3) and Lemma 5.3. Combining Equations (5) and (6),

|Γ∗| ≥ α

M
·
√
t |F | dt−1

which proves Lemma 3.4 with β = α/M . It remains to prove Lemma 5.3. We will first prove that for
all j, the expected value of N(e) over e ∈ Γj is constant.

14

Lemma 5.4 For every 1 ≤ j ≤ t, and every F ⊆ E, EΓj [N] ≤ 2t |F |
|E| +O(1).

Proof: Assume first j = 1. Define indicator variables Fi(e) to equal 1 if ei ∈ F and 0 otherwise.
Clearly N(e) =

∑t
i=1 Fi(e), so by linearity of expectation,

EΓ1 [N] = Ee∈Γ1

[

t
∑

i=1

Fi(e)

]

=

t
∑

i=1

Pr
e∈Γ1

[Fi(e) = 1] .

We now apply Proposition 2.4 to deduce that

Pr
e∈Γ1

[Fi(e) = 1] ≤ |F |
|E| + λi−1

So

EΓ1 [N] ≤
t

∑

i=1

(|F |
|E| + λi−1

)

= t
|F |
|E| +O(1) .

For j > 1 the estimates on Fi are slightly different, but this at most doubles the expectation: EΓj [Fi]
is the probability over random paths whose jth step is a random edge in F , that the ith step is in F .
If i ≥ j then we can ignore the part of the path before the jth step, and EΓj [Fi] = EΓ1 [Fi−j+1]. If
i < j think of the reverse path: choose a random e ∈ F and then take j − i random steps from it. So
EΓj [Fi] = EΓ1 [Fj−i+1]. Altogether the expectation at most doubles.

Now it is easy to derive Lemma 5.3,
Proof: Let N0 = maxj(EΓj [N]). Since |F | / |E| ≤ 1/t, Lemma 5.4 implies N0 = O(1). Markov’s

inequality yields

Pr
Γj

[Bj] = Pr
e∈Γj

[

N(e) ≥ M

N0
·N0

]

≤ N0/M .

Choosing M = 2N0
α concludes the proof of Lemma 5.3, and thus also the proof of Lemma 3.4, with

β = α
M = α2

2N0
.

6 An Explicit 2-Query Assignment Tester

In this section we outline a construction of an assignment tester, as needed in Section 3.3. Let ψ be a
Boolean constraint over Boolean variables x1, . . . , xs. We describe an algorithm P whose input is ψ and
whose output will be a system of constraints satisfying the requirements of Definition 3.1.

Let L = {f : {0, 1}s → {0, 1}} be the set of all functions on s bits, and define the encoding (via the
Long-Code) of a string a = (a1, . . . , as) ∈ {0, 1}s to be a table

Aa : L→ {0, 1} such that ∀f, Aa(f) = f(a) .

The table-entries will be the variables. Recall that two tables A,A′ : L → {0, 1} are δ-far from one
another if Prf [A(f) 6= A′(f)] ≥ δ.

Theorem 6.1 There exists a Long-Code Test such that for any ψ : {0, 1}s → {0, 1},

• The test tosses some random coins, based on which it makes 3 queries to a table A : L→ {0, 1}.

• The test has perfect completeness: If a ∈ {0, 1}s such that ψ(a) = T, then the table Aa satisfies
the test with probability 1.

15

• For every 0 < δ < 1/4, if a table A : L → {0, 1} is δ-far from Aa for all a for which ψ(a) = T,
then the test rejects with probability ≥ Ω(δ).

For the sake of completeness, we include a proof of this theorem in Appendix B. In order to complete
the construction we take two (rather standard) steps,

1. Add the variables X = {x1, . . . , xs}. An assignment now is made of two tables σ : X →
{0, 1} and A : L → {0, 1}. Place two types of constraints as follows: The first type will be
3-variable constraints over variables indexed by L, as specified by the test in Theorem 6.1 (one
constraint per outcome of random coin tosses). The second type is comparison constraints, defined
as follows. For each choice of i ∈ {1, . . . , s} and f ∈ L place a constraint that is satisfied iff
σ(xi) = A(f) ⊕ A(f + ei). Assume wlog that there is an equal number of first-type constraints
and second-type constraints4.

2. Let ψ1, . . . , ψN be the set of constraints defined in the previous step (so N = 2O(2s)). Introduce
a new variable zi per ψi, and let Z = {zi}i. These variables will input values in {0, 1}3, and let
B : Z → {0, 1}3 be an assignment for these variables. The final system of constraints will be the
following: there will be a constraint for every possible choice of zi ∈ Z and a variable y of the
three accessed by ψi (so y ∈ X ∪L). This constraint will check that B(zi) satisfies ψi, and that it
is consistent with the assignment for y.

Lemma 6.2 The constructed constraint system is a two-query assignment tester, with δ0 = 1/4 and
Σ0 = {0, 1}3.

Proof: (sketch) Clearly the new constraints each access two variables from X ∪ L ∪ Z (the variables
L ∪ Z are the ‘auxiliary’ variables). Perfect completeness is evident. For soundness, assume that σ :
X → {0, 1} is an assignment which is δ-far from every satisfying assignment for ψ. Let us first show
that for every A : L → {0, 1}, the tables σ,A cause at least Ω(δ) of the constraints constructed at the
end of step 1 to reject. First assume that A : L → {0, 1} is δ far from a legal long-code encoding.
Then by Theorem 6.1 at least Ω(δ) of the long-code tests reject, and this is an Ω(δ) fraction of all of the
constraints. If A is not δ far from a legal long-code encoding then it is δ-close to the long-code encoding
of some σ′ : X → {0, 1} which satisfies ψ. By assumption on σ, Pri[σ(xi) 6= σ′(xi)) > δ, so we claim
Ω(δ) fraction of the comparison constraints must reject. Indeed, for each i we have

Pr
f∈L

[

A(f) ⊕A(f + ei) = f(σ′) ⊕ (f ⊕ ei)(σ
′)
]

≥ 1 − 2δ (7)

and if σ(xi) 6= σ′(xi), then f(σ′) ⊕ (f ⊕ ei)(σ
′) = σ′(xi) 6= σ(xi). Hence every f that satisfies the

equality in (7) causes the corresponding comparison constraint to reject. Altogether at least (1− 2δ)δ ≥
δ/2 fraction of the constraints reject, in this case too.

Now consider the final system, generated in step 2. Let B : Z → {0, 1}3. We have established that
for every table A, the assignments σ,A for X ∪ L must cause at least Ω(δ) of the constraints to reject.
So the associated Z variables must be assigned a value inconsistent with σ,A, which will be detected
with probability 1/3. Thus at least Ω(δ)

3 = Ω(δ) fraction of the constraints reject.

4This can be achieved by placing multiple copies of the constraints with appropriate multiplicity for each type.

16

7 Short PCPs and Locally Testable Codes

7.1 Short PCPs

Theorem 7.1 SAT ∈ PCP 1
2
,1[log2(n · poly log n), O(1)].

We prove this theorem by relying on a recent result of Ben-Sasson and Sudan,

Theorem 7.2 ([BS05, Theorem 1]) SAT ∈ PCP 1
2
,1[log2(n · poly log n), poly logn].

This result can be manipulated into the following form,

Lemma 7.3 There exist constants c1, c2 > 0 and a polynomial-time reduction that transforms any SAT
instance ϕ of size n into a constraint graph G = 〈(V,E),Σ, C〉 such that

• size(G) ≤ n(log n)c1 and |Σ| = O(1).

• If ϕ is satisfiable, then SAT(G) = 1.

• If ϕ is not satisfiable, then SAT(G) ≤ 1 − 1
(log n)c2

.

Before proving the lemma, let us see how it implies the theorem,
Proof:(of Theorem 7.1) We apply the main theorem (Theorem 4.1) iteratively k = c2 · log logn

times. This results in a constraint-graph G′ for which SAT(G′) ≥ min(2k · SAT(G) , α) = α, and such
that size(G′) = Cc2 log log n · n · (log n)c1 = n · (log n)c1+c2 log C = n · poly log n.

To get an error-probability of 1
2 one can apply standard techniques for ‘clever’ amplification through

expander neighborhoods.
Proof:(of Lemma 7.3) Basically, the idea is to replace each constraint in the constraint system from

Theorem 7.2 with a new constraint system, using composition.
Theorem 7.2 yields some constants a1, a2 > 0 and a reduction from SAT to a system of at most

m = n · (log n)a1 constraints, each over at most (log n)a2 variables such that satisfiable inputs go to
satisfiable systems, and unsatisfiable inputs result in systems for which any assignment satisfies at most
1
2 of the constraints.

Two-variable Constraints Let us introduce one new variable per constraint, over alphabet Σ =
{0, 1}(log n)a2 . The number of new variables is m = n · (logn)a1 . Introduce (log n)a2 new tests per new
variable: Each test will query the new variable and exactly one of the original variables queried by the
corresponding test. The test will check that the value for the new variable satisfies the original test, and
that it is consistent with the second variable. Call this system Ψ and observe that |Ψ| = n · (log n)a1+a2 .

What is SAT(Ψ)? Given an assignment for the original variables it must cause at least m/2 (original)
tests to reject. Each new variable that corresponds to a rejecting test must participate in at least one new
rejecting constraint. Indeed, even if it is assigned a value that differs from this assignment, it will be
inconsistent with at least one original variable. Altogether, at least m/2

m·(log n)a2
≥ (log n)−(a2+1) fraction

of the constraints in Ψ must reject.

Composition We next apply composition to reduce the alphabet size from log |Σ| = poly log n to
O(1). This is exactly as done in Lemma 3.5 except that we use a different assignment tester algorithm
P (or equivalently: a PCP of Proximity). Here are the parameters we need of P: the error probability ε
and the output alphabet size are arbitrary constants; the number of queries is q = 2; and the proximity
parameter is any value 0 < δ < 1

4 . Most importantly we only require that the size of the output is

17

polynomial (and not quasi-linear) in the input size. Existence of such an algorithm P is an implicit
consequence of the proof of the PCP theorem of [AS98, ALM+98], and was explicitly described in
[BGH+04, DR04].

Here is a brief summary of the construction of Lemma 3.5: We encode each variable via a linear-rate,
linear-distance error-correcting-code, treating the ‘small’ variable in each constraint as if its value lies
in the large alphabet. We then run P on each constraint and let the new system Ψ′ be the union of the
output constraint systems.

The soundness analysis shows that SAT(Ψ′) ≥ SAT(Ψ) · (1 − ε) = Ω((log n)−(a2+1)) = 1
poly log n

where the middle equality holds since ε is a constant. Since the input size for P was the size of one
constraint in Ψ, i.e., poly log n, it follows that the size of the constraint system output by P is also
poly log n. This means that |Ψ′| = |Ψ| · poly logn = n · poly log n

7.2 Short Locally Testable Codes

A similar construction to Theorem 7.1 can be used to obtain quasi-linear locally-testable codes (with
block-length n · poly log n) that are testable with a constant number of queries. This calls for more
attention to the difference between a PCP reduction (which is what we have constructed in Theorem 4.1)
and a stronger assignment-tester reduction. In the terminology of [BGH+04, BS05] this is the difference
between PCPs and PCPs of Proximity. The latter object, as it turns out, can be easily made into a locally-
testable code with similar block-length, see [BGH+04, Construction 4.3].

hIn order to get locally testable codes, we enhance every step of our construction with ‘proximity’.
The main observation is that our proofs always follows through a “local-decoding” argument: an assign-
ment for the new constraint graph is translated into an assignment for the original constraint graph in a
local way, and so the ‘proximity’ is easy to maintain. We postpone details to the full version.

Acknowledgements

I am thankful to Omer Reingold and Luca Trevisan for many discussions about combinatorial analyses
of graph powering, which were the direct trigger for the amplification lemma. I would also like to thank
David Arnon, Miki Ben-Or, Ehud Friedgut, and Alex Samorodnitsky for helpful comments.

References

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and in-
tractability of approximation problems. J. ACM, 45(3):501–555, 1998.

[AS98] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. J.
ACM, 45(1):70–122, 1998.

[BGH+04] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust
PCPs of proximity, shorter PCPs and applications to coding. In Proc. 36th ACM Symp. on
Theory of Computing, 2004.

[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs, and
nonapproximability—towards tight results. SIAM Journal on Computing, 27(3):804–915,
June 1998.

18

[BS05] Eli Ben-Sasson and Madhu Sudan. Robust PCPs of proximity, shorter PCPs and applica-
tions to coding. In Proc. 37th ACM Symp. on Theory of Computing, 2005.

[BSVW03] Eli Ben-Sasson, Madhu Sudan, Salil P. Vadhan, and Avi Wigderson. Randomness-efficient
low degree tests and short PCPs via epsilon-biased sets. In Proc. 35th ACM Symp. on Theory
of Computing, pages 612–621, 2003.

[DR04] Irit Dinur and Omer Reingold. Assignment testers: Towards combinatorial proofs of the
PCP theorem. In Proceedings of the 45th Symposium on Foundations of Computer Science
(FOCS), 2004.

[FGL+96] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating clique is
almost NP-complete. Journal of the ACM, 43(2):268–292, 1996.

[FKN02] E. Friedgut, G. Kalai, and A. Naor. Boolean functions whose fourier transform is concen-
trated on the first two levels. Adv. in Applied Math., 29:427–437, 2002.

[GS02] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear length.
In Proc. 43rd IEEE Symp. on Foundations of Computer Science, pages 13–22, 2002.

[Hås01] Johan Håstad. Some optimal inapproximability results. Journal of ACM, 48:798–859, 2001.

[HS01] Prahladh Harsha and Madhu Sudan. Small PCPs with low query complexity. In STACS,
pages 327–338, 2001.

[LW03] N. Linial and A. Wigderson. Expander graphs and their applications. Lecture notes of a
course: http://www.math.ias.edu/ boaz/ExpanderCourse/, 2003.

[PS94] A. Polishchuk and D. Spielman. Nearly linear size holographic proofs. In Proc. 26th ACM
Symp. on Theory of Computing, pages 194–203, 1994.

[PY91] C. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity classes.
Journal of Computer and System Sciences, 43:425–440, 1991.

[Rei05] Omer Reingold. Undirected st-connectivity in log-space. In Proc. 37th ACM Symp. on
Theory of Computing, 2005.

[RVW] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and
new constant-degree expanders and extractors. Annals of Mathematics.

A A Lemma about similar binomial distributions

For n ∈ N and p ∈ [0, 1] let Bn,p denote a binomially distributed random variable, i.e., Pr[Bn,p = k] =
(

n
k

)

pk(1 − p)n−k. The following lemma asserts that if n,m are close, then the distributions of Bn,p and
Bm,p are close.
Lemma 5.2 For every p ∈ [0, 1] and c > 0 there exists some 0 < τ < 1 such that if n− √

n ≤ m < n,
then

∀k ∈ N, |k − pn| ≤ c
√
n, τ ≤ Pr[Bn,p = k]

Pr[Bm,p = k]
≤ 1

τ
.

19

Proof: Write n = m+ r for some 0 ≤ r ≤ √
n. We will use the identity

(

m+1
k

)

= m+1
m+1−k

(

m
k

)

,

Pr[Bn,p = k] =

(

m+ r

k

)

pk(1 − p)m+r−k

=
m+ 1

m+ 1 − k
· m+ 2

m+ 2 − k
· · · m+ r

m+ r − k

(

m

k

)

· pk(1 − p)m−k(1 − p)r

= X · pk(1 − p)m−k

(

m

k

)

= X · Pr[Bm,p = k]

where X = (1 − p)r m+1
m+1−k · m+2

m+2−k · · · m+r
m+r−k is bounded as follows. For all a ≤ r ≤ √

n,

m+ a

m+ a− k
≥ m

(1 − p)m+ (c+ 1)
√
n
≥ 1

1 − p

(

1 − c+ 1

(1 − p)
√
n

)

where the first inequality holds since m− k ≤ m− pn+ c
√
n ≤ (1 − p)m+ c

√
n. Also,

m+ a

m+ a− k
≤ m+

√
n

(1 − p)m− c
√
n
≤ 1

1 − p

(

1 +
4c

(1 − p)
√
n

)

The product of r such terms cancels the (1 − p)r and leaves a factor at least τ = e
− 4c+1

1−p , and at most
1/τ .

B The Long Code Test

We prove Theorem 6.1. This is basically reworking a test of Håstad [Hås01], into our easier setting:

Standard Definitions. We identify L = {f : [n] → {−1, 1}} with the Boolean hypercube {1,−1}n,
and use letters f, g for points in the hypercube. We use letters A,B or χ to denote functions whose
domain is the hypercube5. For α ⊂ [n], define

χα : {−1, 1}n → {−1, 1}, χα(f)
4
=

∏

i∈α

f(i) .

The characters {χα}α⊆[n] form an orthonormal basis for the space of functions {A : {−1, 1}n → R},
where inner product is defined by 〈A,B〉 = Ef [A(f)B(f)] = 2−n

∑

f A(f)B(f). It follows that any

function A : {−1, 1}n → {−1, 1} can be written as A =
∑

α Âαχα, where Âα = 〈A,χα〉. We also
have Parseval’s identity,

∑

α |Âα|2 = 〈A,A〉 = 1.

The Test. Let ψ : [n] → {−1, 1} be some predicate, and fix some τ > 0. Let A : {−1, 1}n →
{−1, 1}. A functionA : {1,−1}n → {1,−1} is the legal encoding of the value a ∈ [n] iffA(f) = f(a)
for all f ∈ L. The following procedure tests whetherA is close to a legal encoding of some value a ∈ [n]
that satisfies ψ.

1. Select f, g ∈ L at random

5We consider here functions whose domain is an arbitrary set of size n, and wlog we take the set [n]. In the application this
set is usually some {0, 1}s but we can safely ignore this structure, and forget that n = 2s.

20

2. Fix τ = 0.01. Set h = gµ where µ ∈ L is selected by doing the following independently for every
y ∈ [n]. If f(y) = 1 set µ(y) = −1. If f(y) = −1 set

µ(y) =

1 w. prob. 1 − τ

−1 w. prob. τ
.

3. Accept unless A(g) = A(f) = A(h) = 1.

Folding. As usual, we fold A over true and over ψ, as done in [BGS98]. This means that whenever
the test needs to read A[f], it reads A[f ∧ ψ] instead. In addition, we fold over true which means for
every pair f,−f we let A specify only one, and access the other through the identity A[f] = −A[−f].
In other words, we assume wlog that A(f) = A(f ∧ ψ) and A(f) = −A(−f) for all f .

It is well-known that Âα = 0 whenever (i) |α| is even, or (ii) ∃i ∈ α for which ψ(i) = 1 (recall that
1 corresponds to false). The reason is that we can partition {1,−1}n into pairs f, f ′ such that

Âα = 2−n
∑

f

A(f)χα(f) = 2−n · 1

2

∑

f

(A(f)χα(f) +A(f ′)χα(f ′)) = 2−n−1
∑

f

0 = 0 .

In (i) let f ′ = −f , so χα(f) = χα(f ′) but A(f) = −A(f ′). In (ii) let f ′ = f + ei where i is an index
for which ψ(i) = 1; so χα(f) = −χα(f ′) but A(f) = A(f ′).

Correctness. It is easy to check completeness: We fix some a ∈ [n] and assign for all f ,A(f) = f(a).
Clearly if A(f) = f(a) = −1 then the test accepts. Also, if A(f) = f(a) = 1 then A(h) = h(a) =
−g(a) = −A(g) 6= A(g), and again the test accepts.

For soundness, arithmetize the acceptance probability as follows

Pr[Test accepts] = Ef,g,h

[

1 − (1 +A(f))(1 +A(g))(1 +A(h))

8

]

=

and note that since the pairs (f, g) and (f, h) are pairs of random independent functions, and since A is
folded, this equals,

=
7

8
− 1

8
Eg,h [A(g)A(h)] − 1

8
Ef,g,h [A(f)A(g)A(h)] .

The first expectation can be expanded as

Eg,h

∑

α,β⊆[n]

ÂαÂβχα(g)χβ(h)

 =
∑

α⊆[n]

Â2
α(−τ)|α|

which is bounded by τ in absolute value, since Âφ = 0. For the acceptance probability to be above 1−ε,
the second expectation (whose value let us name W) must be ≤ −1 + τ + 8ε. We write it as

−1 + τ + 8ε ≥W = Eg,f,µ

∑

α,β,γ⊆[n]

ÂαÂβÂγχα(g)χβ(gµ)χγ(f)

 =

=
∑

α,γ⊆[n]

ÂγÂ
2
αEf,µ [χα(µ)χγ(f)]

=
∑

γ⊆α⊆[n]

ÂγÂ
2
α(−1 + τ)|γ|(−τ)|α\γ| .

21

We now bound the absolute value of this sum, following [Hås01]. First we claim that

∑

γ⊆α

((1 − τ)|γ|(τ)|α\γ|)2 ≤ (1 − τ)|α| .

The left hand side is the probability that tossing 2 |α| independent τ -biased coins results in a pattern
γγ where γ ∈ {0, 1}|α|. This probability is (τ 2 + (1 − τ)2)|α| ≤ (1 − τ)|α| since τ < 1 − τ . By
Cauchy-Schwartz,

∑

γ⊆α

|Âγ |(1 − τ)|γ|(τ)|α\γ| ≤
√

∑

γ⊆α

|Âγ |2 ·
√

∑

γ⊆α

((1 − τ)|γ|(τ)|α\γ|)2 ≤ (1 − τ)|α|/2

so, splitting the sum into |α| = 1 and |α| > 1,

|W | ≤
∑

|α|=1

|Â2
α|(1 − τ) +

∑

|α|>1

|Âα|2(1 − τ)|α|/2 .

Denoting by ρ =
∑

|α|>1 |Âα|2, we have |W | ≤ (1 − ρ)(1 − τ) + ρ(1 − τ)3/2, since Âα = 0 for |α|
even. Thus

1 − τ − 8ε ≤ |W | ≤ (1 − τ)((1 − ρ) + ρ
√

1 − τ) ⇒ ρ ≤ 8ε

(1 − τ)(1 −
√

1 − τ)
.

Since τ is fixed, we can choose ε = Θ(δ) small enough so that this entire expression is Θ(δ).
At this point we use the following result,

Theorem B.1 ([FKN02]) Let ρ > 0 and let A : {1,−1}n → {1,−1} be a Boolean function for which
∑

α,|α|>1 |Âα|2 < ρ. Then either |Âφ|2 = 1 −O(ρ) or |Â{i}|2 = 1 −O(ρ) for some i ∈ [n].

Thus, by folding, there must be some i ∈ [n] for which ψ(i) = −1 and dist(A,χ{i}) ≤ O(ρ). (Note
that Theorem B.1 allows also for dist(A,−χ{i}) = O(ρ) but this would cause the test to have failed
with probability ≈ 1/4, contradicting our assumption.)

We have proven that unless the table A is δ-close to some χ{i} for a value of i that satisfies ψ, at least
ε = Ω(δ) of the tests must reject.

22

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

