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Abstract

We describe a new proof of the PCP theorem that is based on a combinatorial amplification
lemma. The unsat value of a set of constraints C = {c1, . . . , cn}, denoted UNSAT(C), is the smallest
fraction of unsatisfied constraints, ranging over all possible assignments for the underlying variables.

We prove a new combinatorial amplification lemma that doubles the unsat-value of a constraint-
system, with only a linear blowup in the size of the system. Iterative application of this lemma yields
a proof for the PCP theorem.

The amplification lemma relies on a new notion of “graph powering” that can be applied to
systems of constraints. This powering amplifies the unsat-value of a constraint system provided that
the underlying graph structure is an expander.

We also apply the amplification lemma to construct PCPs and locally-testable codes whose length
is linear up to a polylog factor, and whose correctness can be probabilistically verified by making a
constant number of queries. Namely, we prove SAT ∈ PCP 1

2
,1

[log
2
(n · poly log n), O(1)]. This

answers an open question of Ben-Sasson et al. (STOC ’04).

1 Introduction

Let C = {c1, . . . , cn} be a set of constraints over a set of variables V . The unsat-value of C, denoted
UNSAT(C), is the smallest fraction of unsatisfied constraints, over all possible assignments for V . Clearly
C is satisfiable if and only if UNSAT(C) = 0. Also, if C is not satisfiable then UNSAT(C) ≥ 1/n.

Background The PCP Theorem is equivalent to stating that gap-3SAT is NP-hard, namely: for some
α > 0, given a set C of constraints such that each is a conjunction of three literals, it is NP-hard to distin-
guish between UNSAT(C) = 0 and UNSAT(C) > α. Historically, the PCP Theorem has been formulated
through interactive proofs and the concept of a probabilistic verifier that can check an NP witness by
randomly probing it at only O(1) bit locations. The [FGL+96, ALM+98] connection between this for-
mulation and the gap-3SAT formulation stated above came as a surprise, and together with the proof of
the PCP Theorem by [AS98, ALM+98], brought about a revolution of the field of inapproximability.
The proof of the theorem followed an exciting sequence of developments in interactive proofs. The
proof techniques were mainly algebraic including low-degree extension, low-degree test, parallelization
through curves, a sum-check protocol, and the Hadamard and quadratic functions encodings.

∗Hebrew University. Email: dinuri@cs.huji.ac.il. Supported by the Israel Science Foundation.

1

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 46 (2005)

ISSN 1433-8092




Gap Amplification In this paper we take a different approach for proving the PCP Theorem. Our
approach is quite natural in the context of inapproximability. Consider the NP-hard problem of deciding
if a given graph is 3-colorable or not. This is a system of inequality constraints, where each constraint
is over two variables, and the variables take values in the set {1, 2, 3}. Given such a system C, it is
NP-hard to distinguish between the cases (i) UNSAT(C) = 0 and (ii) UNSAT(C) ≥ 1/n, where n is the
number of constraints. We repeatedly apply the amplification lemma to C, doubling the unsat value at
each iteration. The outcome C ′ is a constraint system for which in the first case still UNSAT(C′) = 0, and
in the second case UNSAT(C ′) ≥ α for some constant α > 0. This proves that gap constraint satisfaction
is NP-hard, which is (or is equivalent to) the PCP Theorem.

What makes the unsat value double? Any two-variable constraint system naturally defines an under-
lying graph, in which the variables are vertices, and two variables are adjacent iff there is a constraint
over them. We call this a constraint graph. In order to amplify the unsat value of a constraint graph we
simply raise it to the power t, for some t = O(1). The graph powering operation is defined as follows:
The new underlying graph is the t-th power of the original graph (with the same vertex-set, and an edge
for each length-t path). Each vertex will hold a value over a larger alphabet, that describes its own value
plus it’s “opinion” about the values of all of its neighbors at distance ≤ t/2. The constraint over two ad-
jacent vertices u, v in the new graph will be satisfied iff the values and opinions of u and v are consistent
with an assignment that satisfies all of the constraints induced by u, v and their neighborhoods.

Our main lemma asserts that the unsat value is multiplied by a factor of roughly
√
t, as long as the

initial underlying graph is sufficiently well-structured.
The main advantage of this operation is that it does not increase the number of variables in each

constraint (which stays 2 throughout). Moreover, when applied to d-regular graphs for d = O(1), it
only incurs a linear blowup in the size (the number of edges is multiplied by dt−1), and an affordable
increase in the alphabet size (which goes from Σ to Σdt/2

). Combined with an operation that reduces the
alphabet back to Σ, we get an inductive step that can be repeated log n times until a constant unsat value
is attained.

Composition Reducing the alphabet size is an easy task assuming we have at our disposal a PCP re-
duction P . A PCP reduction is an algorithm that takes as input a single large-alphabet constraint, and
outputs a system of (perhaps many) constraints over a smaller alphabet. Indeed, all we need to do is to
run P on each of the constraints in our system1. This results in a new constraint system with a similar
unsat value, and over a smaller alphabet. At first read, this argument may appear to be circular, as the re-
duction P sounds very much like our end-goal. The point is that since in our setting the input to P always
has constant size, P is allowed to be extremely inefficient. This relaxation makes P significantly easier
to construct, and one can choose their favorite implementation, be it Long-code based or Hadamard-code
based. In fact, P can be found by exhaustive search, provided we have proven its existence in an inde-
pendent fashion. Composition with P is direct and simple, relying on the relatively recent ‘modularized’
notion of composition using “assignment-testers” [DR04] or “PCPs of proximity” [BGH+04].

Thus, our proof of the PCP Theorem roughly takes the following form: Let G encode a SAT instance.
Fix t = O(1), set G0 = G, and repeat the following step log |G| times:

Gi+1 = (Gi)
t ◦ P

Related Work This work follows [GS97, DR04] in the attempt to find an alternative proof for the PCP
Theorem that is combinatorial and/or simpler. In [DR04], a quasi-polynomial PCP Theorem was proven

1While ensuring consistency between the many invocations of P .
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combinatorially. While our proof is different, we do rely on the modular notion of composition due
to [BGH+04, DR04], and in particular on composition with a bounded-input assignment-tester, which
has already served as an ingredient in the constructions of [DR04].

This construction is inspired by the zig-zag construction of expander graphs due to [RVW02] and
by Reingold’s remarkable proof for SL = L [Rei05]. Although there is no direct technical connection
between these works and our construction, our proof has the same overall structure, consisting of a
logarithmic number of iterations, where each iteration makes a small improvement in the interesting
parameter (be it the unsat value in our case, or the spectral gap in Reingold’s case).

The steady increase of the unsat value is inherently different from the original proof of the PCP Theo-
rem. There, a constant unsat value (using our terminology) is generated by one powerful transformation,
and then a host of additional transformations are incorporated into the final result to take care of other
parameters. Composition is essential in both proofs.

Short PCPs and Locally Testable Codes The goal of achieving extremely-short Probabilistically
Checkable Proofs and Locally-Testable Codes (LTCs) has been the focus of several works [PS94, HS01,
GS02, BSVW03, BGH+04, BS05]. The shortest PCPs/LTCs are due to [BGH+04] and [BS05], each
best in a different parameter setting. For the case where the number of queries is constant, the short-
est construction is due to [BGH+04], and the proof-length is n · 2(log n)ε

. The construction of [BS05]
has shorter proof-length, n · poly logn, but the number of queries it requires is poly log n. Our result
combines the best parameters from both of these works. Our starting point is the construction [BS05].
We first transform this construction into a two-query constraint system C whose size is n · poly logn,
such that if the input was a ‘no’ instance, then UNSAT(C) ≥ 1

poly log n . Then, by applying our ampli-
fication lemma O(log logn) times, we raise the unsat value to a constant, while increasing the size of
the system by only another polylogarithmic factor. Namely, we show that SAT ∈ PCP 1

2
,1[log2(n ·

poly log n), O(1)].
We further extend our main amplification step to work for assignment-tester reductions (alternatively

called PCPs of Proximity). This carries over to extend our constructions of PCPs to constructions of
assignment-testers / PCPs of Proximity. By obtaining “short” assignment-testers (with comparable pa-
rameters to those of the short PCPs described above) one immediately gets short locally-testable codes
as well.

Organization Section 2 contains some preliminaries, including a formal definition of constraint graphs,
and some basic facts about expander graphs and probability. In Section 3 we describe the operations on
constraint graphs on which we base our construction. In Section 4 we prove the PCP Theorem. The proof
of the amplification lemma is given in Section 5. In Section 6 we describe a concrete (and inefficient)
construction of an assignment tester P based on the Long-Code, so as to make our result self-contained.
In Section 7 we construct PCPs and locally-testable codes whose length is linear up to a poly-logarithmic
factor. In Section 8 we describe how to extend our main amplification step for assignment-testers. We
include a short discussion about our amplification and parallel-repetition in Section 9.

2 Preliminaries

2.1 Constraint Graphs

In this paper we are interested in systems of constraints, as well as in the graph structure underlying
them. We restrict our attention to systems of two-variable constraints, whose structure is captured by
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‘constraint graphs’, defined as follows:

Definition 2.1 (Constraint Graph) G = 〈(V,E),Σ, C〉 is called a constraint graph, if

1. (V,E) is an undirected graph, called the underlying graph of G.

2. The set V is also viewed as a set of variables assuming values over alphabet Σ

3. Each edge e ∈ E, carries a constraint c(e) ⊆ Σ2, and C = {c(e)}e∈E . A constraint c(e) is said
to be satisfied by (a, b) iff (a, b) ∈ c(e).

An assignment is a mapping σ : V → Σ that gives each vertex in V a value from Σ. For any assignment
σ, define

UNSATσ(G) = Pr
(u,v)∈E

[(σ(u), σ(v)) 6∈ c(e)] and UNSAT(G) = min
σ

UNSATσ(G) .

We call UNSAT(G) the unsat-value of G, or just the unsat of G for short. We denote by size(G) the
size of the description of G, so size(G) = Θ(|V | + |E| · |Σ|2).

Proposition 2.1 (Constraint-Graph Satisfiability) Given a constraint graph G = 〈(V,E),Σ, C〉 with
|Σ| = 3, it is NP-hard to decide if UNSAT(G) = 0.

Proof: We reduce from graph 3-colorability. Given a graph G, let the alphabet be Σ = {1, 2, 3} for
the three colors, and equip the edges with inequality constraints. Clearly, G is 3-colorable if and only if
UNSAT(G) = 0.

We sometimes use the same letter G to denote the constraint graph and the underlying graph.

2.2 Expander Graphs

Expander graphs play an important role in many results in theoretical computer science. In this section
we will state some well-known properties of expander graphs. For an excellent exposition to this subject,
we refer the reader to [LW03].

Definition 2.2 Let G = (V,E) be a d-regular graph. Let E(S, S̄) =
∣

∣(S × S̄) ∩ E
∣

∣ equal the number
of edges from a subset S ⊆ V to its complement. The edge expansion of G is defined as

h(G) = min
S: |S|<|V |/2

E(S, S̄)

|S| .

Lemma 2.2 (Expanders) There exist d0 ∈ N and h0 > 0, such that there is a polynomial-time con-
structible family {Xn}n∈N

of d0-regular graphs Xn on n vertices with h(Xn) ≥ h0.

Proof: It is well-known that a random constant-degree graph on n-vertices is an expander. For a deter-
ministic construction, one can get expanders on 2k vertices for any k from the construction of [RVW02].
For n = 2k − n′ (n′ < 2k−1), one can, for example, merge n′ pairs of vertices. To make this graph reg-
ular one can add arbitrary edges to the non-merged vertices. Clearly, the edge expansion is maintained
up to a constant factor.

The adjacency matrix of a graph G = (V,E) is a |V | × |V | matrix A such that Aij = 1 iff (i, j) ∈
E and Aij = 0 otherwise. The second eigenvalue of a graph G is the second largest eigenvalue of
its adjacency matrix. The following important relation between the edge expansion and the second
eigenvalue is well-known, see, e.g., [LW03],
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Lemma 2.3 Let G be a d-regular graph, and let h(G) denote the edge expansion of G. Then

λ(G) ≤ d− h(G)2

d
.

Finally, we prove the following (standard) estimate on the random-like behavior of a random-walk on
an expander.

Proposition 2.4 Let G = (V,E) be a d-regular graph with second largest eigenvalue λ. Let F ⊆ E be
a set of edges. The probability p that a random walk that starts at a random edge in F takes the i+ 1st

step in F as well, is bounded by |F |
|E| +

(

|λ|
d

)i
.

Proof: LetK be the distribution on vertices induced by selecting a random edge in F , and then a random
vertex in it2. Let B ⊆ V be the support of K. Let A be the normalized n × n adjacency matrix of G,
i.e., Aij equals k/d where k is the number of edges between vertices i and j. The first and second
eigenvalues of A are 1 and λ̃ = λ/d respectively.

Let x be the vector corresponding to the distribution K, i.e. xv = PrK [v] equals the fraction of edges
touching v that are in F , divided by 2. Since the graph is d-regular, PrK [v] ≤ d

2|F | . Let yv be the

probability that a random step from v is in F , so y = 2|F |
d x. The probability p equals the probability of

landing in B after i steps, and then taking a step inside F ,

p =
∑

v∈B

yv(A
ix)v =

∑

v∈V

yv(A
ix)v =

〈

y,Aix
〉

.

Let 1 be the all 1 vector. Write x = x⊥ + x|| where x||
4
= 1

n1, is an eigenvector of A with eigenvalue

1, and x⊥
4
= x−x||. The vector x⊥ is orthogonal to x|| since 1 ·x⊥ =

∑

v PrK [v]−∑

v
1
n = 1−1 = 0.

Denote ‖x‖ =
√

∑

v x
2
v. Clearly,

‖Aix⊥‖ ≤ |λ̃|i‖x⊥‖ ≤ |λ̃|i‖x‖ .

Observe that ‖x‖2 ≤ (
∑

v |xv|) · (maxv |xv|) ≤ 1 · (maxv |xv|) ≤ d
2|F | . By Cauchy-Schwartz

〈

y,Aix⊥
〉

≤ ‖y‖ · ‖Aix⊥‖ ≤ 2 |F |
d

‖x‖ · |λ̃|i‖x‖ ≤ |λ̃|i .

Combining the above we get the claim,

〈

y,Aix
〉

=
〈

y,Aix||
〉

+
〈

y,Aix⊥
〉

≤ 2 |F |
dn

+ |λ̃|i =
|F |
|E| +

( |λ|
d

)i

2Let us adopt the convention that a self-loop is “half” an edge, and its probability of being selected is defined accordingly.
In the application F will contain no self-loops so this whole issue can be safely ignored.
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2.3 Probability

The following easy fact is a Chebychev-style inequality. It is useful for showing that for a non-negative
random variable X , Pr[X > 0] ≈ E[X] whenever E[X] ≈ E[X2].

Fact 2.5 For any non-negative random variable X , Pr[X > 0] ≥ E2[X]
E[X2]

.

Proof: Since X is non-negative, both E[X2] = E[X2|X > 0] · (Pr[X > 0]) and E[X|X > 0] =
E[X] · Pr[X > 0]. Thus

E
2[X]

E[X2]
=

(E[X|X > 0] · Pr[X > 0])2

E[X2|X > 0] · Pr[X > 0]
≤ Pr[X > 0]

where the inequality follows because E[X2|X > 0] ≥ E
2[X|X > 0] (to see this, observe that for any

random variable X ′, V ar[X ′] = E[X ′2] − E
2[X ′] ≥ 0, and we plug in X ′ to be the random variable

[X|X > 0]).

2.4 Error Correcting Codes

An error-correcting code is a collection of strings C ⊆ Σn, where Σ is some finite alphabet. n is
called the block-length of the code, and log|Σ| |C| is the rate of the code. The distance of the code is
minx6=y∈C dist(x, y) where dist(·, ·) refers to Hamming distance.

A one-to-one mapping e : D → Σn is also sometimes called an error-correcting code. Its rate and
distance are defined to be the respective rate and distance of its image e(D).

It is well-known that there exist families of codes {Cn ⊂ {0, 1}n}n∈N
for which both the distance and

the rate are Θ(n), and for which there is a polynomial-sized circuit that checks x
?∈ Cn, see e.g. [SS96].

3 Operations on Constraint Graphs

Our main theorem is proven by performing three operations on constraint graphs:

• Preprocessing: This simple operation preserves both the unsat-value (roughly) and the alphabet
size, but makes the constraint graph more nicely structured.

• Powering: The operation which amplifies the unsat-value, at the expense of increasing the alphabet
size.

• Composition: The operation which reduces the alphabet size, while maintaining the unsat-value
(roughly).

These operations are described in Sections 3.1, 3.2 and 3.3 respectively.

3.1 Preprocessing

We describe how to (easily) turn any constraint graph into a ‘nicely-structured’ one. By ‘nicely-structured’
we mean regular, constant-degree, and expanding.

Lemma 3.1 (Preprocessing) There exist constants 0 < λ < d and β1 > 0 such that any constraint
graph G can be transformed into a constraint graph G′, denoted G′ = prep(G), such that
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• G′ is d-regular with self-loops, and λ(G′) ≤ λ < d.

• G′ has the same alphabet as G, and size(G′) = O(size(G)).

• β1 · UNSAT(G) ≤ UNSAT(G′) ≤ UNSAT(G).

Note that the third item implies that completeness is maintained, i.e., if UNSAT(G) = 0 then UNSAT(G′) =
0. We prove this lemma in two steps, summarized in the next two lemmas.

Lemma 3.2 (Constant degree) Any constraint graph G = 〈(V,E),Σ, C〉 can be transformed into a
(d0 + 1)-regular constraint graph G′ = 〈(V ′, E′),Σ, C′〉 such that |V ′| = 2 |E| and

c · UNSAT(G) ≤ UNSAT(G′) ≤ UNSAT(G)

for some global constants d0, c > 0.

This lemma is a well-known ‘expander-replacement’ transformation, due to [PY91]. We include a proof
for the sake of completeness. The idea is to split each vertex v into deg(v) new vertices that are in-
terconnected via a constant-degree expander, placing equality constraints on the new edges. Intuitively,
this maintains UNSAT(G) because the expander edges “penalize” assignments for the new graph that
do not assign the same value to all copies of v; hence assignments for the new graph behave just like
assignments for G.

Proof: For each n, let Xn be a d0-regular expander on n vertices with edge expansion h(Xn) ≥ h0,
as guaranteed by Lemma 2.2. Fix d = d0 + 1.

The graph G′ will have, for each vertex v of G, a copy of Xdv where dv is the degree of v in G.
Denote the vertices of this copy of Xdv by [v] and so the vertices of G′ are

[V ]
4
= ∪v[v] .

Denote the union of the edges of Xdv for all v by E1, and place equality constraints on these edges.
In addition, for every edge (v, w) ∈ E we will put an edge between one vertex in [v] and one vertex

in [w] so that each vertex in [V ] sees exactly one such external edge. Denote these edges E2. Altogether
G′ = ([V ],E = E1 ∪ E2) is a d-regular graph, and |E| = d |E|.

We analyze UNSAT(G′). The (completeness) upper bound UNSAT(G′) ≤ UNSAT(G) is easy: An
assignment σ : V → Σ can be extended to an assignment σ ′ : [V ] → Σ by

∀v ∈ V x ∈ [v], σ′(x)
4
= σ(v).

The assignment σ′ causes the same number of edges to reject as does σ, which can only decrease as a
fraction.

For the (soundness) lower bound, let σ′ : [V ] → Σ be a ‘best’ assignment, i.e. violating the fewest
constraints, UNSATσ′(G′) = UNSAT(G′). Define σ : V → Σ according to plurality of σ′, i.e., let σ(v)
be the most popular value among (σ′(x))x∈[v]:

∀v ∈ V, σ(v)
4
= max arga∈Σ

{

Pr
x∈[v]

[

σ′(x) = a
]

}

. (1)

Let F ⊆ E be the edges of G that reject σ, and let F ⊆ E be the edges of G′ that reject σ′. Let S ⊆ [V ]
be the set of vertices of G′ whose value disagrees with the plurality,

S =
⋃

v∈V

{

x ∈ [v] |σ′(x) 6= σ(v)
}

.
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The external edge corresponding to an e ∈ F either rejects σ ′ (i.e. is in F), or has at least one endpoint

in S. Hence, for α
4
= |F |

|E| = UNSATσ(G),

|F| + |S| ≥ |F | = α · |E| . (2)

There are two cases,

• If |F| ≥ α
2 |E| we are done since α

2 |E| = α
2d |E| and so UNSAT(G′) ≥ UNSAT(G)/2d (recall that

d is a constant independent of the degree of G).

• Otherwise, |F| < α
2 |E|, so by (2), |S| ≥ α

2 |E|. Focus on one v, and let Sv = [v] ∩ S. We can
write Sv as a disjoint union of sets Sa = {x ∈ Sv |σ′(x) = a}. Since S is the set of vertices
disagreeing with the plurality value, we have |Sa| ≤ |[v]| /2, so by the edge expansion of the
appropriate expander Xdv , E(Sa, S̄a) ≥ h0 · |Sa|. All of the edges leaving Sa carry equality
constraints that reject σ′. So there are at least h0

∑

v |S ∩ [v]| = h0 |S| ≥ αh0
2 |E| edges that

reject σ′. Since |E| = |E| /d, we get UNSAT(G′) ≥ h0
2d UNSAT(G).

We have completed the proof, with c = min( 1
2d ,

h0
2d ).

Lemma 3.3 (Expanderizing) Let d0, h0 > 0 be some global constants. Any d-regular constraint graph
G can be transformed into G′ such that

• G′ is (d+ d0 + 1)-regular, has self-loops, and λ(G′) ≤ d+ d0 + 1 − h0
2

d+d0+1 < deg(G′),

• size(G′) = O(size(G)), and

• d
d+d0+1 · UNSAT(G) ≤ UNSAT(G′) ≤ UNSAT(G).

Proof: The idea is to add to G self-loops and edges of an expander and put trivial constraints on these
new edges (i.e., constraints that are satisfied always). By convention, a self loop adds 1 to the degree
of a vertex. Let X = (V,E ′) be a d0-regular expander on |V | vertices, with h(X) ≥ h0 (again, as
guaranteed by Lemma 2.2). Let Eloop = {(v, v) | v ∈ V }. Let G′ = (V,E ∪ E′ ∪ Eloop), where the
constraints associated with non-E edges are trivial constraints (satisfied always). Clearly the degree is
d+ d0 + 1. To bound λ(G′) we rely on the following well-known inequality (see Lemma 2.3),

λ(G) ≤ d(G) − h(G)2

d(G)
.

Clearly h(G′) ≥ h(X) ≥ h0, so plugging G′ in the above yields λ(G′) ≤ d + d0 + 1 − h0
2

d+d0+1 <
d+ d0 + 1.

Finally, since the new edges are always satisfied and since we increased the total number of edges by
factor c′ = d+d0+1

d , the fraction of unsatisfied constraints drops by at most c′.

Proof:(of Lemma 3.1) First apply Lemma 3.2 on G, and then apply Lemma 3.3 on the result. The
lemma is proven with β1 = c · d

d+d0+1 .

We conclude with a corollary of the above proofs that will be useful in Section 7.

Corollary 3.4 Let β1 > 0 be the constant from Lemma 3.1. Fix a constraint graph G, and let G′ =
prep(G). Let V be the vertices of G and let [V ] = ∪v∈V [v] be the vertices of G′. For any assignment
σ′ : [V ] → Σ, let σ : V → Σ be defined according to plurality of σ ′, as in Equation (1). Then,
UNSATσ′(prep(G)) ≥ UNSATσ(G) · β1.

8



Proof: Let G1 be the graph obtained from G after Lemma 3.2, and let G′ be the graph obtained from G1

after Lemma 3.3. Clearly from the proof of Lemma 3.3, for every σ ′, UNSATσ′(G′) ≥ UNSATσ′(G1) · c′.
More interestingly, looking into the proof of Lemma 3.2, we see that it actually proves UNSATσ′(G1) ≥
UNSATσ(G) · d

d+d0+1 (where σ is defined according to plurality of σ′ as in Equation (1)). Combining
the two inequalities,

UNSATσ′(G′) ≥ UNSATσ′(G1) · c′ ≥ UNSATσ(G) · d

d+ d0 + 1
· c′ = UNSATσ(G) · β1

3.2 Powering

This operation is a new operation on constraint systems, and it is the one that amplifies the unsat-value.

Let G = 〈(V,E),Σ, C〉 be a constraint graph , and let t ∈ N. We define Gt =
〈

(V,E),Σddt/2e
, Ct

〉

to

be the following constraint graph:

• The vertices of Gt are the same as the vertices of G.

• Edges: u and v are connected by k edges in E if the number of t-step paths from u to v in G is
exactly k.

• Alphabet: The alphabet ofGt is Σddt/2e
, where every vertex specifies values for all of its neighbors

reachable in t/2 steps. One may think of this value as describing v’s opinion of its neighbors’
values.

• Constraints: The constraint associated with an edge e = (u, v) ∈ E is satisfied iff the assignments
for u and v are consistent with an assignment that satisfies all of the constraints induced by the
t/2 neighborhoods of u and v.

If UNSAT(G) = 0 then clearly UNSAT(Gt) = 0. More interestingly, we prove that UNSAT(Gt) ≥
Θ(

√
t) · UNSAT(G), essentially.

Lemma 3.5 (Amplification Lemma) Let λ < d, and |Σ| be arbitrary constants. There exists a constant
β2 = β2(λ, d, |Σ|) > 0, such that for every t ∈ N and for every d-regular constraint graph G =
〈(V,E),Σ, C〉 with self-loops and λ(G) ≤ λ,

UNSAT(Gt) ≥ β2

√
t · min

(

UNSAT(G) ,
1

t

)

.

So, as long as UNSAT(G) ≤ 1
t , this means UNSAT(Gt) ≥ Θ(

√
t) ·UNSAT(G). This is our main technical

lemma, and its proof is given in Section 5.

3.3 Composition

In this section we describe a transformation on constraint graphs that reduces the alphabet size, while
roughly maintaining the unsat-value. We rely on composition which is an essential component in the
construction of PCPs. To understand composition let us ignore the underlying graph structure of a
constraint graph G, and view it simply as a system of constraints.

Let us step back for a moment and recall our overall goal of proving the PCP Theorem. What we
seek is a reduction from (say) SAT to gap constraint satisfaction. Such a reduction is a polynomial-time

9



algorithm that inputs a SAT formula on n Boolean variables, and generates a new system of constraints
C with the following gap property: Satisfiable formulae translate to systems C for which UNSAT(C) = 0,
and unsatisfiable formulae translate to systems C for which UNSAT(C) > α, for some α > 0.

With this kind of “PCP”-reductions in mind, one can imagine how to make use of composition. Sup-
pose we had a “PCP”-reduction whose output size is exponential in the input size3. We could potentially
use it as a subroutine in a (polynomial-time) “PCP”-reduction, making sure to run it on inputs that are
sufficiently small (≤ log n). This is the basic idea of composition.

How would this work with constraint graphs? Assume we have a “PCP”-reduction P as above, and
let G be a constraint graph. We can put each constraint of G in SAT form, and then feed it to P . The
output would be a constant-size constraint graph with alphabet Σ0. The final constraint graph would be
the union of the constant-size constraint-graphs output by running P over each of G’s constraints (these
constant-size constraint graphs will have vertices in common, so the union will not be a disjoint union).
Thus we have achieved our goal of reducing the size of the alphabet from Σ to Σ0. The only parameter
that depends on |Σ| is the size M(|Σ|) of each constant-size constraint graph output by P . The main
point is that as long as |Σ| = O(1), P can be allowed to be as inefficient as needed and still M(|Σ|) is
independent of n. Consequently, this procedure incurs only a linear overhead (with M(|Σ|) factoring
into the constant).

There is one subtle point that has been ignored so far. It is well-known that for composition to work,
consistency must be established between the many invocations of P . This point has been handled before
in a modular fashion by adding additional requirements on the reduction P . Such more-restricted reduc-
tions are called PCPs of Proximity in [BGH+04] or Assignment Testers in [DR04]. We describe these
formally below. Essentially, using an assignment-tester reduction P will force the different constant-size
constraint graphs to have common vertices, and that will ensure consistency. For an exposition as to why
assignment-testers are well-suited for composition, as well as a proof of a generic composition theorem,
please see [BGH+04, DR04].

The following is a stripped-down version of the definition of [DR04], that suffices for our purposes.
For a Boolean circuit Φ over n variables, denote by SAT(Φ) ⊆ {0, 1}n the set of assignments that
satisfy Φ.

Definition 3.1 (Assignment Tester) An Assignment Tester with alphabet Σ0 and rejection probability
ε > 0 is a polynomial-time transformation P whose input is a circuit Φ over Boolean variables X , and
whose output is a constraint graph G = 〈(V,E),Σ0, C〉 such that4 V ⊃ X , and such that the following
hold. Let V ′ = V \X , and let a : X → {0, 1} be an assignment.

• (Completeness) If a ∈ SAT(Φ), there exists b : V ′ → Σ0 such that UNSATa∪b(G) = 0.

• (Soundness) If a 6∈ SAT(Φ) then for all b : V ′ → Σ0, UNSATa∪b(G) ≥ ε · dist(a, SAT(Φ)).

Notice that no restriction is imposed on the running time of P or on size(G). In particular, we
ignored the size of the circuit Φ, which we allow to be even exponential in |X|. We describe an explicit
construction of such an algorithm in Section 6 (see Lemma 6.2). As mentioned earlier, such a reduction
(that works only on inputs of some fixed bounded size) can also be found by exhaustive search, provided
we have proven its existence independently. Our main lemma in this section is the following,

3The implicit assumption here is that such (inefficient) reductions are significantly easier to come by, indeed, see e.g.
Section 6.

4In a constraint graph, the set V plays a double role of both variables and vertices. By V ⊃ X it is meant that some of the
vertices of V are identified with the X variables.
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Lemma 3.6 (Composition) Assume the existence of an assignment tester P , with constant rejection
probability ε > 0, and alphabet Σ0, |Σ0| = O(1). There exists β3 > 0 that depends only on P ,
such that any constraint graph G = 〈(V,E),Σ, C〉 can be transformed into a constraint graph G′ =
〈(V ′, E′),Σ0, C′〉, denoted G ◦ P , such that size(G′) = M(|Σ|) · size(G), and

β3 · UNSAT(G) ≤ UNSAT(G′) ≤ UNSAT(G)

Proof: We describe the construction in two steps: robustization and composition.

• (Robustization:) First, in order to run P on each of the constraints of G, the constraints must be
cast in the form of an input to P . This basically amounts converting each constraint of G, which
is defined over two non-Boolean variables, into a function over O(log |Σ|) Boolean variables. A
naı̈ve way to do this is by having dlog |Σ|e Boolean variables encode the binary representation of
each Σ-variable. However, for subtle issues that are discussed at length in [DR04] (and which will
show up in the proof below), it is necessary to encode the values in Σ via an error-correcting code.

So let e : Σ → {0, 1}` be any encoding with linear rate and relative distance ρ > 0. In other
words, ` = O(log |Σ|), and for every σ1 6= σ2 ∈ Σ, the strings e(σ1) and e(σ2) differ on at
least ρ` bits. Replace each variable v ∈ V by a set of ` Boolean variables denoted [v]. These are
supposed to represent the encoding via e of v’s assignment. Replace each constraint c ∈ C over
variables v, w by a constraint c̃ over 2` Boolean variables [v]∪ [w]. c̃ is satisfied iff the assignment
for [v] ∪ [w] is the legal encoding via e of an assignment for v and w that would have satisfied c.

• (Composition:) Run an assignment tester P on each c̃. This makes sense since c̃ is a Boolean
constraint over Boolean variables [v] ∪ [w]. Let Gc = 〈(Vc, Ec),Σ0, Cc〉 denote the resulting
constraint graph, and recall that [v] ∪ [w] ⊂ Vc. Assume, wlog, that Ec has the same cardinality
for each c, and define the new constraint graph G′ = 〈(V ′, E′),Σ0, C〉, where

V ′ =
⋃

c∈G

Vc, E′ =
⋃

c∈G

Ec, C′ =
⋃

c∈G

Cc .

First, let us verify that size(G′) = M(|Σ|) · size(G). The inputs fed into P are constraints c̃ :

{0, 1}2` → {T,F}. There is a finite number of these, at most 22
2`

. Let M denote the maximal size of
the output of P over all such inputs. Clearly, size(G′) ≤M · size(G) and M is a constant that depends
only on Σ and P .

It remains to be seen that β3 · UNSAT(G) ≤ UNSAT(G′) ≤ UNSAT(G). The proof is straightforward
and follows exactly the proof of the composition theorem in [DR04]. Let us sketch the first inequality
(that corresponds to the soundness argument). We need to prove that every assignment for G′ violates
at least β3 · UNSAT(G) fraction of G′’s constraints. So let σ′ : V ′ → Σ0 be an assignment for G′. We
first extract from it an assignment σ : V → Σ for G by letting for each v ∈ V σ(v) to be a value whose
encoding via e is closest to σ′([v]). By definition, a fraction UNSATσ(G) ≥ UNSAT(G) of constraints
reject σ. Let c ∈ C be a constraint over variables u, v that rejects σ. We will show that a constant fraction
of the constraints of the graph Gc reject σ′. Since |E′| =

∑

c∈C |Ec|, and we assumed that |Ec| is the
same for all c ∈ C, this will prove the required inequality. The main observation is that the input to c̃
(i.e., the restriction of σ′ to [u] ∪ [v]) is at least ρ/4-far from a satisfying input (where ρ denotes the
code-distance of e), i.e., dist(σ′|[u]∪[v], SAT(c̃)) ≥ ρ/4. The reason is that a ρ/2 fraction of the bits
in either [u] or [v] (or both) must be changed in order to change σ ′ into an assignment that satisfies c̃.
By the soundness property of P , at least ε · ρ/4 = Ω(1) fraction of Gc’s constraints reject. Altogether,
UNSAT(G′) ≥ ερ

4 · UNSAT(G) = β3 · UNSAT(G) setting β3 = ερ/4 > 0.
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4 Main Theorem

Based on the constraint graph operations described in the previous section, we are now ready to prove
our main theorem.

Theorem 4.1 (Main) For any Σ, |Σ| = O(1), there exists constants C > 0 and 0 < α < 1, such that
given a constraint graph G = 〈(V,E),Σ, C〉 one can construct, in polynomial time, a constraint graph
G′ = 〈(V ′, E′),Σ0, C′〉 such that

• size(G′) ≤ C · size(G) and |Σ0| = O(1).

• (Completeness:) If UNSAT(G) = 0 then UNSAT(G′) = 0

• (Soundness:) UNSAT(G′) ≥ min(2 · UNSAT(G), α).

Proof: We construct G′ from G by
G′ = ( prep(G) )t ◦ P

for an appropriately selected constant t ∈ N. Let us break this into three steps:

1. (Preprocessing step:) Let H1 = prep(G) be the result of applying Lemma 3.1 to G.

So there exists some global constants λ < d and β1 > 0 such that H1 is d-regular, has the same
alphabet as G, λ(H1) ≤ λ < d, and β1 · UNSAT(G) ≤ UNSAT(H1) ≤ UNSAT(G).

2. (Amplification step:) Let H2 = (H1)
t, for a large enough constant t > 1 to be specified below.

According to Lemma 3.5, there exists some constant β2 = β(λ, d, |Σ|) > 0 for which UNSAT(H2) ≥
β2

√
t · min(UNSAT(H1),

1
t ). However, the alphabet grows to Σddt/2e

.

3. (Composition step:) Let G′ = H2 ◦ P be the result of applying Lemma 3.6 to H2 relying on an
assignment tester P , as guaranteed in Lemma 6.2.

This reduces the alphabet to Σ0 while still β3 · UNSAT(H2) ≤ UNSAT(G′) ≤ UNSAT(H2), for a
constant β3 > 0.

Let us verify the properties claimed above. The size of G′ is linear in the size of G because each step
incurs a linear blowup. Specifically, in step 2, since deg(H1) = d and t = O(1), the number of edges
in H2 = (H1)

t is equal to the number of edges in H1 times a constant factor of dt−1. In step 3, the total
size grows by a factor M that depends on the alphabet size of H2, which equals |Σddt/2e | = O(1), and
on P which is fixed throughout the proof, so M is constant.

Completeness is clearly maintained at each step. Choose now t = d( 2
β1β2β3

)2e, and let α = β3β2/
√
t.

Altogether,

UNSAT(G′) ≥ β3 · UNSAT(H2) (step 3, Lemma 3.6)

≥ β3 · β2

√
t · min(UNSAT(H1),

1

t
) (step 2, Lemma 3.5)

≥ β3 · β2

√
t · min(β1UNSAT(G),

1

t
) (step 1, Lemma 3.1)

≥ min(2 · UNSAT(G), α)

As a corollary of the main theorem we get,
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Corollary 4.2 (PCP Theorem) Gap-3SAT is NP-hard. (Alternatively, SAT ∈ PCP 1
2
,1[O(logn), O(1)]).

Proof: We reduce from constraint graph satisfiability. According to Proposition 2.1 it is NP-hard to
decide if for a given constraint graph G with |Σ| = 3, UNSAT(G) = 0 or not. So let G be an instance of
constraint-graph satisfiability with |Σ| = 3. The basic idea is to repeatedly apply the main theorem until
the unsat-value becomes a constant fraction.

LetG0 = G and letGi (i ≥ 1) be the outcome of applying the main theorem onGi−1. Then for i ≥ 1
Gi is a constraint graph with alphabet Σ0. LetE0 be the edge-set ofG0, and let k = log |E0| = O(logn).
Observe that the size of Gi for i ≤ k = O(logn) is at most C i · size(G0) = poly(n).

Completeness is easy: if UNSAT(G0) = 0 then UNSAT(Gi) = 0 for all i. For soundness, assume
UNSAT(G0) > 0. If for some i∗ < k, UNSAT(Gi∗) ≥ α/2 then the main theorem implies that for all
i > i∗ UNSAT(Gi) ≥ α. For all other i it follows by induction that

UNSAT(Gi) ≥ min(2i UNSAT(G0), α) .

If UNSAT(G0) > 0 then UNSAT(G0) ≥ 1
|E0| , so surely 2kUNSAT(G0) > α. Thus UNSAT(Gk) ≥ α.

This proves that gap constraint satisfaction is NP-hard, for two-variable constraints and alphabet size
|Σ0|. If one is interested specifically in gap-3SAT, a local gadget reduction takes Gk to 3SAT form (by
converting each constraint into a constant number of 3CNF clauses), while maintaining the unsat-value
up to some constant.

To get to soundness of 1
2 , in the SAT ∈ PCP 1

2
,1[O(logn), O(1)] version, one can apply simple

(sequential) repetition u = 1/ log( 1
1−α) = O(1). I.e., create new constraints that are ANDs of all

possible u-tuples of the old constraints. This, of course, increases the number of queries per constraint
to 2u.

5 Soundness Amplification Lemma

Lemma 3.5 Let λ < d, and |Σ| be arbitrary constants. There exists a constant β2 = β2(λ, d, |Σ|) > 0,
such that for every t ∈ N and for every d-regular constraint graph G = 〈(V,E),Σ, C〉 with self-loops
and λ(G) ≤ λ,

UNSAT(Gt) ≥ β2

√
t · min

(

UNSAT(G) ,
1

t

)

.

In other words, as long as UNSAT(G) ≤ 1/t, we have UNSAT(Gt) > Ω(
√
t) · UNSAT(G).

Throughout this section all constants including O(·) and Ω(·) notation are independent of t but may
depend on d, λ and |Σ|. Also, let us assume for notation clarity that t is even.

Why does Gt have a larger unsat-value than G? An assignment ~σ : V → Σdt/2
assigns each vertex a

vector of dt/2 values from Σ that supposedly represent its opinions about all of its neighbors at distance
t/2. Intuitively, since each vertex gets more information, and since it is compared against vertices that
are further away, there is more chance to detect inconsistencies.

The idea of the proof is as follows. Let us refer to the edges of Gt as paths, since they come from
t-step paths inG, and let us refer to the edges ofG as edges. Given an assignment forGt, ~σ : V → Σdt/2

we extract from it a new assignment σ : V → Σ, by assigning each vertex v the most popular value
among the “opinions” (under ~σ) of v’s neighbors. We then relate the fraction of edges falsified by this
“popular-opinion” assignment σ to the fraction of paths falsified by ~σ. The probability that a random
edge rejects this new assignment is, by definition, at least UNSAT(G). The idea is that a random path
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passes through some rejecting edge with even higher probability. Moreover, we will show that if a path
does pass through a rejecting edge, it itself rejects with constant probability.

Proof: Let ~σ : V → Σdt/2
be a ‘best’ assignment for Gt, UNSAT(Gt) = UNSAT~σ(Gt). For each v,

~σ(v) assigns a vector of dt/2 values in Σ, interpreted as values for every vertex w within distance t/2 of
v. We denote ~σ(v)w ∈ Σ the restriction of ~σ(v) to w. This can be thought of as the opinion of v about
w. Define an assignment σ : V → Σ as follows. Let Xv be a random variable that assumes a value a
with probability that a t/2-step random walk from v ends at a vertex w for which ~σ(w)v = a. Define
σ(v) = a for a value a which maximizes Pr[Xv = a]:

∀v ∈ V, σ(v)
4
= max arga∈Σ {Pr[Xv = a]} . (3)

As mentioned above, the assignment σ can be interpreted as being the “popular opinion” about v among
v’s neighbors.

Let F be a subset of edges5 that reject σ, so that |F |
|E| = min(UNSATσ(G), 1

t ). From now on ~σ, σ, F
will be fixed for the rest of the proof.

Denote by E = E(Gt) the edge set of Gt. There is a one-to-one correspondence between edges
e ∈ E and paths of length t in G. With some abuse of notation we write e = (v0, v1, . . . , vt) where
(vi−1, vi) ∈ E for all 1 ≤ i ≤ t.

Definition 5.1 A path e = (v0, . . . , vt) ∈ E is hit by its i-th edge if

1. (vi−1, vi) ∈ F , and

2. Both ~σ(v0)vi−1 = σ(vi−1) and ~σ(vt)vi = σ(vi).

Let I =
{

t
2 −

√
t < i ≤ t

2 +
√
t
}

⊂ N be the set of “middle” indices. For each path e, we define
N(e) to be the number of times e is hit in its middle portion:

N(e) = |{ i ∈ I | i hits e}| .

N(e) is an integer between 0 and 2
√
t. Clearly,N(e) > 0 implies that e rejects under ~σ (because having

e hit by, say, the i-th edge, means σ(vi−1) is inconsistent with σ(vi), and this inconsistency carries over
to the constraint on ~σ(v0) and ~σ(vt)). Thus,

Pr
e

[N(e) > 0] ≤ Pr
e

[e rejects ~σ] = UNSAT(Gt) .

We will prove

Ω(
√
t) · |F ||E| ≤ Pr

e

[N(e) > 0] . (4)

Since by definition

min(UNSAT(G),
1

t
) ≤ min(UNSATσ(G),

1

t
) =

|F |
|E| ,

combining the above three equations we get

Ω(
√
t) · min(UNSAT(G),

1

t
) ≤ Ω(

√
t) · |F ||E| ≤ Pr

e

[N(e) > 0] ≤ UNSAT(Gt) (5)

which gives the lemma.
We will prove (4) by estimating the first and second moments of the random variable N ,

5F is simply the set of all edges that reject σ, as long as this set is not too large.
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Lemma 5.1

Ee[N(e)] ≥ Ω(
√
t) · |F ||E|

Lemma 5.2

Ee[(N(e))2] ≤ O(
√
t) · |F ||E|

Equation (4) follows by relying on Fact 2.5, hence Pr[N > 0] ≥ E
2[N ]/E[N2] = Ω(

√
t) · |F |

|E| .

5.1 Proof of Lemma 5.1

Define an indicator variable Ni by setting Ni(e) = 1 iff the path e is hit by its i-th edge, as in defini-
tion 5.1. Recall I =

{

t
2 −

√
t < j ≤ t

2 +
√
t
}

. Clearly, N =
∑

i∈I Ni. In order to estimate E[N ] we
will estimate E[Ni], and use linearity of expectation.

Fix i ∈ I . In order to estimate E[Ni] we choose a random e ∈ E according to the following procedure:

1. Choose a random e = (u, v) ∈ E

2. Choose a random path of length i− 1 starting from u, denote it by (u = vi−1, vi−2, . . . , v1, v0).

3. Choose a random path of length t− i starting from v, denote it by (v = vi, vi+1, . . . , vt).

4. Output the path e = (v0, . . . , vt)

SinceG is d-regular, the stationary distribution is uniform, so this procedure outputs a uniformly random
e ∈ E. According to Definition 5.1, e is hit by its i-th edge iff (u, v) ∈ F and ~σ(v0)u = σ(u) and
~σ(vt)v = σ(v).

Clearly, the probability that step 1 results in an edge (u, v) ∈ F equals exactly |F |
|E| . Observe also that

the choice of v0 in step 2 only depends on u, and the choice of vt in step 3 only depends on v. Therefore

Pr[Ni > 0] =
|F |
|E| · pu · pv (6)

where pu = Prv0 [~σ(v0)u = σ(u)] and pv = Prvt [~σ(vt)v = σ(v)]. It remains to analyze pu and pv. Let
us focus on pu as the case of pv is symmetric.

Define a random variable Xu,` as follows. Xu,` takes a value a ∈ Σ with probability that a random
`-step walk from u ends in a vertex w for which ~σ(w)u = a. In these terms pu = Pr[Xu,i−1 = σ(u)],
(and pv = Pr[Xv,t−i = σ(v)]). Recall that by definition σ(u) equals a value a ∈ Σ that maximizes
Pr[Xu,t/2 = a]. In particular, Pr[Xu,t/2 = σ(u)] ≥ 1

|Σ| . For i − 1 = t/2 it follows immediately that
pu ≥ 1/ |Σ|.

We will prove that for all `

If |`− t/2| ≤
√
t then Pr[Xu,` = a] >

τ

2
· Pr[Xu,t/2 = a] (7)

for some τ > 0 to be determined. The intuition for (7) is that the self-loops ofGmake the distribution of
vertices reached by a random t/2-step walk from u roughly the same as distribution on vertices reached
by an `-step walk from u, for ` ∈ I .

Mark one self-loop on each vertex, and observe that any length-` path from u inG can be equivalently
described by (i) specifying in which steps the marked edges were traversed, and then (ii) specifying the
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remaining steps conditioned on choosing only non-marked edges. Let X ′
u,k be a random variable that

assumes a value a with probability that a k-step random walk conditioned on walking only on non-
marked edges reaches a vertex w for which ~σ(w)u = a. In other words, for a binomial variable B`,p

with Pr[B`,p = k] =
(

`
k

)

pk(1 − p)`−k and p = 1 − 1/d,

Pr[Xu,` = a] =
∑̀

k=0

Pr[B`,p = k] Pr[X ′
u,k = a] . (8)

The point is that if |`1 − `2| is small, then the distributions B`1,p and B`2,p are similar, as formalized in
the following lemma:

Lemma 5.3 For every p ∈ [0, 1] and c > 0 there exists some 0 < τ < 1 such that if `1−
√
`1 ≤ `2 < `1,

then

∀k, |k − p`1| ≤ c
√

`1, τ ≤ Pr[B`1,p = k]

Pr[B`2,p = k]
≤ 1

τ

The proof is a straightforward computation, and can be found in Appendix A. We apply the lemma with
`1 = t/2 and `2 = i−1 and choose c so that Pr[B t

2
,p 6∈ I] ≤ 1

2|Σ| for the set I =
{

k
∣

∣ |k − p`| ≤ c
√
t
}

;
and let τ be the appropriate constant from the lemma. Clearly c can be chosen independently of t since
k 6∈ I implies |k − pt/2| ≥ |k − p`| − |p`− pt/2| > (c− 1)

√
t. We now have

Pr[Xu,` = a] ≥
∑

k∈I

Pr[B`,p = k] Pr[X ′
u,k = a]

≥ τ ·
∑

k∈I

Pr[Bt/2,p = k] Pr[X ′
u,k = a]

≥ τ ·
(

Pr[Xu,t/2 = a] − 1

2 |Σ|

)

≥ τ

2
· Pr[Xu,t/2 = a]

where the last inequality holds since Pr[Xu,t/2 = a] ≥ 1
|Σ| . So (7) is established, and so pu, pv >

τ
2|Σ|

because both i− 1, t− i are at most
√
t away from t/2. Plugging this into Equation (6), we get E[Ni] ≥

|F |
|E| · Ω(1), and this completes the proof of Lemma 5.1.

5.2 Proof of Lemma 5.2

For a path e, let ei denote its i-th edge. In order to upper bound Ee[N
2] (all expectations are taken

over uniform choice of e) we define a random variable Z(e) = |{ i ∈ I | ei ∈ F}| that counts how many
times e intersects F in the middle portion (recall I =

{

t
2 −

√
t < j ≤ t

2 +
√
t
}

). Clearly,N(e) ≤ Z(e)
for all e, so E[N2] ≤ E[Z2].

Let Zi(e) be an indicator random variable that is 1 iff ei ∈ F . So Z(e) =
∑

i∈I Zi(e), and by
linearity of expectation,

E[Z2] =
∑

i,j∈I

Ee[Zi(e)Zj(e)] =
∑

i∈I

E[Zi] + 2
∑

i < j
i, j ∈ I

E[ZiZj ] = |I| |F ||E| + 2
∑

i < j
i, j ∈ I

E[ZiZj ] (9)

As it turns out, E[Z2] is not much larger than |I||F |
|E| ≈

√
t |F |
|E| . The intuitive reason is that since the graph

G is an expander, correlations between the i-th and the j-th steps of a random walk cannot last long, so
∑

E[ZiZj ] is small.
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Proposition 5.4 Fix i, j ∈ I, i < j, and F ⊆ E. Then,

E[ZiZj ] ≤
|F |
|E|

( |F |
|E| + λj−i

)

.

Let us first see that combining the proposition with (9) completes the lemma. Indeed, since |I| = 2
√
t

and since |F |
|E| ≤

1
t ,

∑

i < j
i, j ∈ I

E[ZiZj ] ≤
|F |
|E|

∑

i < j
i, j ∈ I

( |F |
|E| + λj−i

)

< |I|2
( |F |
|E|

)2

+ |I| |F ||E|

2
√

t
∑

i=1

λi = O(
√
t) · |F ||E|

where the ‘O’ notation depends only on λ. Let us now prove the Proposition.
Proof: Observe that ZiZj ∈ {0, 1}, and Pr[Zj > 0] = |F |

|E| . Thus,

E[ZiZj ] = Pr[ZiZj > 0] = Pr[Zi > 0] Pr[Zj > 0 |Zi > 0] =
|F |
|E| · Pr[Zj > 0 |Zi > 0] .

Assume first i = 1. By Proposition 2.4,

Pr
e

[Zj(e) > 0 |Z1(e) > 0] ≤ |F |
|E| + λj−1

where λ < 1 is the normalized second eigenvalue of the graph G. If i > 1, we don’t care where the
random path e visited during its first i − 1 steps, so we can ignore those steps. In other words the last
t − i + 1 steps of a random walk of length t are a random walk of length t − i + 1. This is formalized
by writing

Pr
|e|=t

[Zj(e) > 0 |Zi(e) > 0] = Pr
|e′|=t−i+1

[Zj−i+1(e
′) > 0 |Z1(e

′) > 0] .

Now by applying Proposition 2.4 on paths of length t−i+1, the right hand side cannot exceed |F |
|E|+λ

j−i.

This completes the proof of the amplification lemma
Finally, we state an immediate corollary of this proof which will be useful for Section 7.

Corollary 5.5 For every ~σ : V → Σdt/2
let σ : V → Σ be defined according to “popular opinion” (as

in Equation (3) above). Then,

UNSAT~σ(Gt) ≥ β2

√
t · min

(

UNSATσ(G) ,
1

t

)

.

Proof: This follows directly from Equation (4) (and from the definition of F and N(·)).

6 An Explicit Assignment Tester

In this section we outline a construction of an assignment tester, as needed in Section 3.3. Let ψ be a
Boolean constraint over Boolean variables x1, . . . , xs. We describe an algorithm P whose input is ψ and
whose output will be a constraint graph satisfying the requirements of Definition 3.1.

Let L = {f : {0, 1}s → {0, 1}} be the set of all functions on s bits, and define the encoding (via the
Long-Code) of a string a = (a1, . . . , as) ∈ {0, 1}s to be a table

Aa : L→ {0, 1} such that ∀f, Aa(f) = f(a) .

Recall that two tables A,A′ : L→ {0, 1} are δ-far from one another if Prf [A(f) 6= A′(f)] ≥ δ.
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Theorem 6.1 There exists a Long-Code Test T such that for any ψ : {0, 1}s → {0, 1},

• The test tosses some random coins, based on which it makes 3 queries to a table A : L→ {0, 1}.

• The test has perfect completeness: If a ∈ {0, 1}s such that ψ(a) = T, then the table Aa satisfies
the test with probability 1.

• For every δ ∈ [0, 1], if a table A : L → {0, 1} is at least δ-far from Aa for all a for which
ψ(a) = T, then the test rejects with probability ≥ Ω(δ).

For the sake of completeness, we include a proof of this theorem in Appendix B. In order to complete
the construction we take two (rather standard) steps,

1. Let X = {x1, . . . , xs} be a set of s Boolean variables. Also, let there be an auxiliary (Boolean)
variable per each f ∈ L. With slight abuse of notation we identify L with this set of variables,
and interpret an assignment for these variables as a table A : L→ {0, 1}.

Define a new test T′ as follows. With probability 1/2 run the Long-Code test T (as specified in
Theorem 6.1), and with probability 1/2 choose a random xi ∈ X and a random f ∈ L, and test
that σ(xi) = A(f) ⊕A(f + ei).

2. Introduce a new variable zr per outcome r of the coin tosses of T ′. These variables will input
values in {0, 1}3, supposedly specifying the correct values of all three variables queried by T ′ on
coin tosses r. The final system of constraints will be the following: there will be a constraint for
every possible choice of zr ∈ Z and a variable y of the three accessed by T ′ on coin toss r (so
y ∈ X ∪ L). This constraint will check that the assignment for zr would have satisfied T′, and
that it is consistent with the assignment for y.

The constraint graph G will have vertices X ∪ L ∪ Z, constraints (and edges) as specified above, and
alphabet Σ0 = {0, 1}3.

Lemma 6.2 The reduction taking ψ to G is an assignment tester, with Σ0 = {0, 1}3 and constant
rejection probability.

Proof: (sketch) Perfect completeness is evident. For soundness, assume that σ : X → {0, 1} is an
assignment such that dist(σ, SAT(ψ)) = δ, for some δ > 0. Let us first show that for every A : L →
{0, 1}, the tables σ,A cause T ′ to reject with probability at least Ω(δ). First assume that A : L→ {0, 1}
is δ/2 far from a legal long-code encoding. Then by Theorem 6.1 T rejects with probability at least
Ω(δ), so T ′ rejects with probability at least half of that, which is also Ω(δ). Otherwise, A is δ/2-close
to the long-code encoding of some σ′ : X → {0, 1} which satisfies ψ. By assumption on σ and by
the triangle inequality, Pri[σ(xi) 6= σ′(xi)) > δ/2. Now recall that with probability 1/2, T ′ chooses a
random i and a random f and checks that A(f)⊕A(f + ei) = σ(xi). Since A is close to the long-code
encoding of σ′, for all i:

Pr
f∈L

[

A(f) ⊕A(f + ei) = σ′(xi)
]

≥ Pr
f∈L

[

A(f) = f(σ′) and A(f + ei) = (f ⊕ ei)(σ
′)
]

≥ 1 − 2 · δ/2 = 1 − δ

The check fails whenever i, f are such that σ′(xi) 6= σ(xi) and yet A(f) ⊕ A(f + ei) = σ′(xi).
Altogether this occurs with probability at least (1 − δ)δ/2 ≥ δ/4, and T ′ runs this test with probability
1/2, so it rejects again with probability Ω(δ).

Now consider the final system, generated in step 2. Let B : Z → {0, 1}3. We have established that
for every table A, the assignments σ,A for X ∪L must cause T ′ to reject with probability at least Ω(δ).
So the associated Z variables must be assigned a value inconsistent with σ,A, and each inconsistency
will be detected with probability ≥ 1/3. Thus at least Ω(δ)

3 = Ω(δ) fraction of the constraints reject.
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7 Short PCPs and Locally Testable Codes

In this section we describe how to construct extremely-short Probabilistically Checkable Proofs and
Locally-Testable Codes (LTCs). Our starting point is the construction of Ben-Sasson and Sudan [BS05].
The case of short PCPs follows rather directly from our main theorem (Theorem 4.1) and is described
first, in Subsection 7.2. The case of short LTCs is analogous, and is obtained similarly from a variant of
the main theorem. This variant is an adaptation of our reduction between constraint graphs into a special
kind of reduction called an assignment tester or a PCP of Proximity. We feel that this adaptation may be
of independent interest, and it is described fully in Section 8. Assuming this adaptation, we describe our
short LTCs in Subsection 7.3. Let us first begin with some definitions and notations.

7.1 Definitions and Notation

Given a system of constraints Φ, we denote its unsat-value by UNSAT(Φ): the minimum over all possible
assignments for Φ’s variables, of the fraction of unsatisfied constraints. This is a natural extension of the
unsat-value of a constraint graph.

Definition 7.1 (PCPs,c[log `, q]) We define the class of languages PCPs,c[log2(`(n)), q(n)], with pa-
rameters s(n), c(n) and `(n) and q(n) as follows. A language L is in this class iff there is a reduction
taking an instance x to a system of constraints Φ(x) such that, for n = |x|,

• |Φ(x)| ≤ `(n); and each constraint ϕ ∈ Φ(x) accesses at most q(n) variables.

• If x ∈ L then 1 − UNSAT(Φ(x)) ≥ c(n)

• If x 6∈ L then 1 − UNSAT(Φ(x)) ≤ s(n)

Definition 7.2 (Locally Testable Codes) A codeC ⊂ Σn is (q, δ, ε)-locally testable if there is an oracle
algorithm A of query complexity q such that

• For every x ∈ C, Pr[Ax accepts] = 1.

• For every string y ∈ Σn such that dist(y, C) ≥ δ, Pr[Ay rejects] ≥ ε.

7.2 Short PCPs

Our main theorem in this section is,

Theorem 7.1 SAT ∈ PCP 1
2
,1[log2(n · poly log n), O(1)].

We prove this theorem by relying on a recent construction of Ben-Sasson and Sudan,

Theorem 7.2 ([BS05, Theorem 1]) SAT ∈ PCP 1
2
,1[log2(n · poly log n), poly logn].

From this result, we derive SAT ∈ PCP1− 1
poly log n

,1[log2(n · poly logn), O(1)]. More precisely,

Lemma 7.3 There exist constants c1, c2 > 0 and a polynomial-time reduction that transforms any SAT
instance ϕ of size n into a constraint graph G = 〈(V,E),Σ, C〉 such that

• size(G) ≤ n(log n)c1 and |Σ| = O(1).

• If ϕ is satisfiable, then UNSAT(G) = 0.
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• If ϕ is not satisfiable, then UNSAT(G) ≥ 1
(log n)c2

.

Before proving the lemma, let us see how it implies Theorem 7.1,
Proof:( of Theorem 7.1 ) Given a SAT instance of size n, we rely on Lemma 7.3 to reduce it to a

constraint graph G whose size we denote by m = n · (log n)c1 . Then, we apply the main theorem
(Theorem 4.1) iteratively k = c2 · log logm < 2c2 log logn times. This results in a constraint-graph G′

for which UNSAT(G′) ≥ min(2k · UNSAT(G) , α) = α, and such that size(G′) = Cc2 log log m ·m ≤
n · (log n)c1+2c2 log C = n · poly log n.

To get an error-probability of 1
2 one can apply standard techniques for efficient amplification through

expander neighborhoods.

Proof:( of Lemma 7.3 ) Theorem 7.2 yields some constants a1, a2 > 0 and a reduction from SAT
to a system Ψ0 of at most m = n · (log n)a1 constraints, each over at most (log n)a2 variables such
that satisfiable inputs go to satisfiable systems, and unsatisfiable inputs result in systems for which
any assignment satisfies at most 1

2 of the constraints. Our goal is to reduce the number of queries per
constraint. Basically, this is done by introducing new variables over a large alphabet, which enables few
queries in a naive way (which causes the rejection probability to deteriorate). Then, the alphabet size is
reduced through composition.

Two-variable Constraints For each constraint in Ψ0, let us introduce one new (big) variable. This
variable will take values over alphabet Σ = {0, 1}(log n)a2 that supposedly represent values to all of the
original (small) variables queried in that constraint. The number of big variables is m = n · (log n)a1 .
Introduce (log n)a2 new constraints per big variable: Each constraint will query the big variable and
exactly one of the small variables queried by the corresponding constraint. The constraint will check
that the value for the big variable satisfies the original constraint, and that it is consistent with the second
(small) variable. Call this system Ψ and observe that |Ψ| = n · (log n)a1+a2 .

What is UNSAT(Ψ)? Given an assignment for the original variables it must cause at least m/2 (orig-
inal) constraints to reject. Each big variable that corresponds to a rejecting constraint must now partic-
ipate in at least one new rejecting constraint. Indeed, even if it is assigned a value that is accepting, it
must differ from this assignment, so it will be inconsistent with at least one original (small) variable.
Altogether, at least m/2

m·(log n)a2
≥ (log n)−(a2+1) fraction of the constraints in Ψ must reject.

Composition We next apply composition to reduce the alphabet size from log |Σ| = poly log n to
O(1). This is exactly as done in Lemma 3.6 except that we are somewhat more restricted in our choice
of the assignment tester algorithm P (or equivalently: a PCP of Proximity), in that the output size of
P must be polynomial in the input size. Observe that we only require that the size of the output is
polynomial (and not quasi-linear) in the input size, so there is no circularity in our argument. Existence
of such an algorithm P is an implicit consequence of the proof of the PCP Theorem of [AS98, ALM+98],
and was explicitly described in [BGH+04, DR04].

Here is a brief summary of the construction of Lemma 3.6: We encode each variable via a linear-rate,
linear-distance error-correcting-code, treating the ‘small’ variable in each constraint as if its value lies
in the large alphabet. We then run P on each constraint and let the new system Ψ′ be the union of the
output constraint systems.

The soundness analysis shows that UNSAT(Ψ′) ≥ UNSAT(Ψ) · ε = Ω((log n)−(a2+1)) = 1
poly log n

where the middle equality holds since the rejection probability ε is a constant. Since the input size for
P was the size of one constraint in Ψ, i.e., poly log n, it follows that the size of the constraint system
output by P is also poly logn. This means that |Ψ′| = |Ψ| · poly log n = n · poly logn
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7.3 Short Locally Testable Codes

A similar construction to that of Theorem 7.1 can be used to obtain locally-testable codes with inverse
poly-logarithmic rate (i.e., mapping k bits to k ·poly log k bits), that are testable with a constant number
of queries.

The way we go about it is by relying on a variant of the main theorem (Theorem 4.1). Recall that the
main theorem is a reduction from G to G′ = (prep(G)t) ◦P . We will need a stronger kind of reduction,
that is an assignment tester (also called a PCP of Proximity), as defined in Definition 3.1.

In the next section we will prove that the main amplification step (as in Theorem 4.1) can also work
for assignment-testers. Formally,

Theorem 8.1 There exists t ∈ N such that given an assignment-tester with constant-size alphabet Σ
and rejection probability ε, one can construct an assignment-tester with the same alphabet and rejection
probability at least min(2ε, 1/t), such that the output size of the new reduction is bounded by at most by
a constant factor times the output size of the given reduction.

Just as our main theorem (Theorem 4.1) could be combined with the construction of [BS05] yielding
a short PCP, Theorem 8.1 can be combined with the construction of [BS05] to yield short PCPs of
Proximity / assignment-tester reductions.

Corollary 7.4 There exists an assignment-tester with constant size alphabet, and constant rejection
probability ε > 0, such that inputs of size n are transformed to outputs of size at most n · poly logn.

Proof: As in the proof of Theorem 7.1, we begin with a lemma that follows from the construction of
[BS05],

Lemma 7.5 There exist a polynomial-time assignment-tester with constant alphabet size and rejection
probability ε ≥ 1

(log n)O(1) , such that inputs of size n are transformed to outputs of size at most n ·
poly log n.

The difference between this lemma and Lemma 7.3 is that here we require the reduction to be an
assignment-tester. This can be derived from the construction of [BS05], in a similar way to the proof of
Lemma 7.3.

Let A0 be the assignment-tester from Lemma 7.5. Let Ai be the result of applying Theorem 8.1 on
Ai−1. For i = O(log log n), the reduction Ai will have the required parameters.

Finally, we claim that Corollary 7.4 directly implies the existence of locally testable codes of rate
1/poly logn.

Corollary 7.6 For every δ > 0 there exists an ε = Ω(δ) > 0, and an infinite family of codes {CN}N

with rate 1/poly logN , such that CN is (2, δ, ε)-locally-testable.

Proof: We apply the construction of [BGH+04, Construction 4.3] to the assignment-tester from Corol-
lary 7.4. We give a brief sketch. We construct CN as follows. Fix n ∈ N and let C ′

n ⊂ Σn be an error
correcting code with rate and distance Θ(n). Let Φ be a circuit over variables X = {x1, . . . , xn} that
accepts iff the assignment for X is a codeword in C ′

n. We can assume that |Φ| = O(n) (using, e.g.,
expander codes [SS96]). Run the reduction of Corollary 7.4 on Φ, and let G be the output constraint
graph, size(G) = n · poly logn. Let Y = V \ X be the new variables added by the reduction, and
denote m = |Y |, m ≤ n · poly log n. Let ` = 2m

δn , N = n`+m, and define a new code

CN =
{

a`b ∈ Σn`+m
∣

∣

∣
a ∈ C ′

n, b ∈ Σm and UNSATσ(G) = 0 where σ|X = a and σ|Y = b
}

⊂ ΣN .
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where a`b denotes the concatenation of ` copies of a with b. Clearly, the rate of CN is 1/poly logN . We
claim that CN is (2, δ, ε)-locally-testable. Here is the testing algorithm for a given word w ∈ Σn`+m.
Denote the i-th bit of w by wi.

1. Flip a random coin.

2. If heads, choose a random i ∈ [n] and a random j ∈ {1, 2, . . . , `− 1}, and accept iff wi = wi+j·`

3. If tails, choose a random constraint in G. View w[1, . . . , n] as an assignment for X and w[n` +
1, . . . , n`+m] as an assignment for Y . Accept iff the constraint is satisfied by this assignment.

Clearly, every w ∈ CN passes the test with probability 1. If dist(w′, CN ) > δ, then for any codeword
σ = a`b ∈ CN , since m ≤ n` · δ

2 , the strings w′ and σ must differ on δn`/2 of their first n` bits. The
reader may verify that the test rejects with probability at least Ω(δ).

Remark 7.1 (Constant Relative Distance) The codes above also have a constant relative distance.
This follows almost immediately from the distance of C ′

n, except for the following caveat. A problem
would arise if for some assignment a for X that satisfies Φ there were two assignments b1, b2 for Y such
that both UNSATa∪b1(G) = 0 and UNSATa∪b2(G) = 0. This would imply that a`b1, a

`b2 ∈ CN , and
their distance can be quite small. However, this can be ruled out if every assignment a has only one
unique assignment b such that UNSATa∪b(G) = 0. This can be ensured here, and therefore we conclude
that the above does yield codes with constant relative distance.

8 Adapting the Main Theorem for Assignment-Testers

In this section we show how to adapt the main amplification step (Theorem 4.1), that was described as a
reduction between constraint graphs, to work within the more demanding framework of an assignment-
tester. This gives an extension of our main theorem (and Corollary 4.2), to assignment-testers / PCPs of
proximity.

Theorem 8.1 There exists t ∈ N such that given an assignment-tester with constant-size alphabet Σ
and rejection probability ε, one can construct an assignment-tester with the same alphabet and rejection
probability at least min(2ε, 1/t), such that the output size of the new reduction is bounded by at most by
a constant factor times the output size of the given reduction.

Suppose we have a reduction taking Φ to G. We construct from G a new graph G′ and prove that the
reduction taking Φ to G and then to G′ has the desired properties.

LetH = (prep(G))t be the result of running the preprocessing step (Lemma 3.1) and then raising the
resulting constraint graph to the power t. What are the variables of H? Going from G to prep(G) each
variable v ∈ V is split into many copies, and we denote the set of copies of v by [v]. Next ,going from
prep(G) to H = (prep(G))t, the variables of H are identical to those of prep(G), while taking values
from a larger alphabet. So denoting the variables of H by VH , we have VH = ∪v∈V [v]. Syntactically,
VH is disjoint from V , although the values for VH are supposed to “encode” values for V . Indeed, an
assignment σ : V → Σ can be mapped to an assignment σ2 : VH → Σdt/2

that “encodes” it, by the
following two steps.

1. First define a mapping σ 7→ σ1, where the assignment σ1 : VH → Σ for prep(G) is defined by
assigning all copies of v the same value as σ(v):

∀v ∈ V w ∈ [v], σ1(w)
4
= σ(v). (10)

22



Let us name this mappingm1. Observe also that given any assignment for prep(G), σ ′ : VH → Σ,
it can be “decoded” into an assignment forG according to maximum likelihood as follows. Simply
set σ = m−1

1 (σ′) to be an assignment σ : V → Σ for which m1(σ) is closest6 in Hamming
distance to σ′.

2. Next, define a mapping σ1 7→ σ2, where the assignment σ2 : VH → Σdt/2 for H is defined by
assigning each vertex w a vector consisting of the σ1-values of all of its neighbors at distance t/2

∀w ∈ VH , σ2(w)v
4
= σ1(v) for all v at distance t/2 from w in G . (11)

Let us name this mapping m2, and again, given any assignment σ′ : VH → Σdt/2
for (prep(G))t

it can be “decoded” into an assignment for prep(G) as follows. Simply set σ = m−1
2 (σ′) to be an

assignment σ : VH → Σ for which m2(σ) is closest in Hamming distance to σ′.

Going back to our reduction, we recall that in order for our reduction to be an assignment-tester, our
output constraint graph must have the variables X of Φ contained in its set of variables. Then, we must
also verify that the completeness and soundness conditions (that refer to X) hold.

The GraphH ′ We next transformH toH ′ so as to includeX among the variables ofH ′. The vertices
of H ′ will be VH ∪X . The constraints of H ′ will include all of the constraints of H , and also additional
constraints that will check that the assignment for VH is a correct encoding, according to the mapping
m2 ◦m1 which maps σ to σ2 (via σ1), of the assignment for X .

We describe the constraints between X and VH by the following randomized procedure. Let A :

VH → Σdt/2
and let a : X → {0, 1}.

1. Select x ∈R X .

2. Select z ∈R [x] (recall that [x] is the set of vertices in prep(G) that are copies of x).

3. Take a t/2-step random walk in prep(G) starting from z, and let w be the endpoint of the walk.
Accept if and only if A(w)z = a(x).

For every possible random choice of the test, we will place (an edge and) a constraint between w and
x, that accepts iff the test accepts. We will reweigh the constraints (by duplication) so that the weight
of the comparison constraints defined by the random procedure is half of the total weight of the edges.
This completes the description of H ′. Observe that the size of H ′ is at most a constant times the size
of G, because prep(G) is d-regular for d = O(1), so every vertex w ∈ VH participates in exactly
dt/2 = O(1) new comparison constraints. The next lemma states that the reduction from Φ to H ′ is an
assignment-tester with large alphabet, and rejection probability Θ(

√
t) · ε.

Lemma 8.2 Assume ε < 1/t, and fix a : X → {0, 1}.

• If a ∈ SAT(Φ), there exists b : VH → Σdt/2
such that UNSATa∪b(H

′) = 0.

• If δ = dist(a, SAT(Φ)) > 0, then for every b : VH → Σdt/2
, UNSATa∪b(H

′) > δ·min( 1
16 , (β1β2

√
t/2)ε).

We prove this lemma shortly below. First, note that the constraint graph H ′ is almost what we need,
except that it is defined over the alphabet Σdt/2

, rather than over Σ. Let us now proceed to construct the
final graph G′.

6Breaking ties arbitrarily.
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The Graph G′ To reduce the alphabet of H ′, we use composition. I.e., we assume that we have at
our disposal an assignment-tester P such that its rejection probability is some constant ε0 > 0, and its
alphabet is Σ. We make no requirements about the length of the output of P , because we will only
run it on constant size inputs. For example, we can use the construction given in Section 6, whose
rejection-probability is a constant (and this parameter is implicit in the Definition 3.1).

Now, the Composition Theorem of assignment-testers, [DR04, Theorem 3.7], states that given any
two such reductions, their composition is well defined (it is essentially described in the proof of Lemma 3.6
herein) and is itself an assignment-tester, with the following parameters:

• The alphabet size is that of the inner reduction P , thus the constraints in G′ are over alphabet Σ,
as desired.

• The output size is the product of the output sizes of the two reductions. In our case, this means that
the output size of the reduction Φ ⇒ H ′ is multiplied by a constant factor that is the maximum
size of the output of P when run on a constraint of H ′.

• The rejection probability is the product of the rejection probabilities of the two reductions. Thus,
it is a constant multiple (ε0) of the rejection probability of the reduction Φ ⇒ H ′. Since this value
was min( 1

16 , (β1β2

√
t/2)ε), by choosing t large enough, even after multiplying by ε0 it is still

larger than 2ε for all small enough (but constant) ε.

This completes the description of the transformation taking Φ to G′. It remains to prove Lemma 8.2.
Proof: (of Lemma 8.2) In this proof, there are four constraint graphs that we keep in mind

G ⇒ prep(G) ⇒ H = (prep(G))t ⇒ H ′ .

Recall that we encode assignments forG viam1, obtaining assignments for prep(G). These are encoded
via m2, giving assignments for H . We can also go in the opposite direction where an assignment for H
can be decoded into an assignment for prep(G) via m−1

2 , and similarly an assignment for prep(G) can
be decoded via m−1

1 into as assignment for G.

• Suppose a ∈ SAT(Φ). Then, by assumption on the reduction from Φ to G, there is an assignment
b : V → Σ such that σ = a ∪ b satisfies all constraints in G. The assignment σ is mapped, via
m1 to an assignment σ1 for prep(G), and σ1 in turn is mapped via m2 into an assignment for H:
σ2 : VH → Σdt/2

. By the completeness of the preprocessing and the powering, σ2 will satisfy
all constraints in H . It is easy to verify that σ2 will also satisfy (together with a) all of the new
comparison constraints, so UNSATa∪σ2(H

′) = 0

• Assume now dist(a, SAT(Φ)) = δ > 0. Fix some assignment b : VH → Σdt/2
. We will

show that the assignment a ∪ b violates many of the constraints. The idea is to first “decode” b
(through maximum likelihood decoding of the encoding m2 ◦m1) thereby getting an assignment
b0 : V → Σ. Then, we show that either b0 is close to the assignment a, in which case it is far from
SAT(Φ), so by amplification b must violate many of the constraints in H . Otherwise, if b0 is far
from a, then many (a constant fraction!) of the comparison constraints will fail.

So let b1 = m−1
2 (b) be an assignment for the vertices of prep(G), and let b0 = m−1

1 (b1) be
an assignment for the vertices of G, where notation m−1

1 ,m−1
2 refers to maximum-likelihood

decoding. There are two cases.

– If dist(b0|X , a) ≤ δ/2, then dist(b0|X , SAT(Φ)) > δ/2 by the triangle inequality. Since
the reduction from Φ to G is an assignment-tester with rejection probability ε, this means
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that no matter what b0|(V \X) is, UNSATb0(G) > εδ/2. Now we claim that b1 must also be
violating a similar fraction of the constraints of prep(G):

UNSATb1(prep(G)) > εδ/2 · β1. (12)

Indeed, recall Corollary 3.4 that asserts that for every G and for every assignment σ ′ for
prep(G), the fraction of constraints of prep(G) violated by σ ′ is proportional to the fraction
of constraints of G violated by m−1

1 (σ′). Plugging in b1 for σ′, and since b0 = m−1
1 (b1),

this implies (12).
Next, we claim that b must be violating an even larger fraction of H = (prep(G))t than
UNSATb1(prep(G)):

UNSATb((prep(G))t) > UNSATb1(prep(G)) · β2

√
t . (13)

Indeed, recall Corollary 5.5 that states that for every G and every assignment ~σ for Gt,
the fraction of constraints of Gt violated by ~σ is larger than the fraction of constraints of G
violated by the “popular opinion” assignment, by factor Ω(

√
t). Observe that indeedm−1

2 (~σ)
is the “popular opinion” assignment. Plugging in b for ~σ, and since b1 = m−1

2 (b), (and since
ε < 1/t) this implies (13). Combining (12) and (13),

UNSATb(H) > εδ/2 · β1 · β2

√
t .

Since the constraints of H are half of the constraints of H ′, we have

UNSATa∪b(H
′) ≥ 1

2
UNSATb(H) ≥ εδ/4 · β1 · β2

√
t

– If dist(b0|X , a) > δ/2, then we will show that δ/8 fraction of the comparison constraints
reject. Indeed, with probability δ/2 step 1 in the randomized test selects a variable x ∈ X
for which b0(x) 6= a(x). Conditioned on that, consider the probability that step 2 selects a
z ∈ [x] such that b1(z) 6= a(x). Since b0(x) is, by definition, a most popular value among
values assigned by b1 to the copies of x; and since by conditioning, a(x) 6= b0(x), this
probability is at least 1/2. Conditioned on both previous events occurring, step 3 selects
a vertex w for which b(w)z 6= a(x), with probability at least 1/2 (for similar reasoning).
Altogether, with probability at least δ

2 · 1
2 · 1

2 = δ/8 the test rejects. This means that at least
δ/16 of the total number of tests reject, i.e., UNSATa∪b(H

′) ≥ δ/16.

We have proven that for δ = dist(a, SAT(Φ)), and for every assignment b, the rejection probabil-
ity UNSATa∪b(H

′) is either at least δ · 1
16 or at least δ · (β1β2

√
t/2 · ε).

This completes the proof.

Theorem 8.1 also gives an immediate combinatorial construction of assignment-testers or PCPPs in
the same way that the main theorem (Theorem 4.1) was used to derive the PCP Theorem (Corollary 4.2).

Corollary 8.3 There is an assignment-tester, with constant alphabet, constant rejection probability, and
polynomial output length.

The proof follows by observing that the identity reduction is an assignment-tester with rejection proba-
bility 1/n, and that O(logn) iterations of Theorem 8.1 bring it down to a constant, while causing only a
polynomial increase in the output size.
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9 Amplification and Parallel-Repetition

The celebrated parallel repetition theorem of Raz [Raz98] gives different method of amplification. The
theorem asserts that given a system of constraints C with UNSAT(C) = α, the t-parallel-repetition system,
Ct

q , will have UNSAT(Ct
q) ≥ 1 − (1 − α)Θ(t).

For small values of α this equals Θ(t) · α and is comparable with our construction (our amplification
lemma only asserts UNSAT(Ct) > Θ(

√
t) · α, but there is a modification7 of our construction, due to

Jaikumar Radhakrishnan [Rad05], that replaces
√
t by t).

For larger (say, constant) values of α, the parallel repetition brings the unsat-value closer and closer
to 1, a feature that is very useful in inapproximability reductions. On the other hand, our amplification
stops to make any progress for constant α > 0, as is demonstrated in an example of Bogdanov [Bog05].

In terms of the size of the system, our construction incurs a linear blowup, while in the parallel repe-
tition case the system size grows exponentially in t. The linear-blowup feature is crucial for our iterative
proof of the PCP theorem.

One may view our amplification as a derandomization of the parallel-repetition theorem. By deran-
domization, it is meant that some carefully chosen subset of the original system is being considered. We
recall that Feige and Kilian proved that no generic derandomization of the parallel-repetition theorem is
possible [FK95]. Their result focuses on a range of parameters that does not apply to our setting. This
raises questions about the limits of such constructions in a wider range of parameters.
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A A Lemma about similar binomial distributions

For n ∈ N and p ∈ [0, 1] let Bn,p denote a binomially distributed random variable, i.e., Pr[Bn,p = k] =
(

n
k

)

pk(1 − p)n−k. The following lemma asserts that if n,m are close, then the distributions of Bn,p and
Bm,p are close.
Lemma 5.3 For every p ∈ [0, 1] and c > 0 there exists some 0 < τ < 1 such that if n− √

n ≤ m < n,
then

∀k ∈ N, |k − pn| ≤ c
√
n, τ ≤ Pr[Bn,p = k]

Pr[Bm,p = k]
≤ 1

τ
.

Proof: Write n = m+ r for some 0 ≤ r ≤ √
n. We will use the identity

(

m+1
k

)

= m+1
m+1−k

(

m
k

)

,

Pr[Bn,p = k] =

(

m+ r

k

)

pk(1 − p)m+r−k

=
m+ 1

m+ 1 − k
· m+ 2

m+ 2 − k
· · · m+ r

m+ r − k

(

m

k

)

· pk(1 − p)m−k(1 − p)r

= X · pk(1 − p)m−k

(

m

k

)

= X · Pr[Bm,p = k]

where X = (1 − p)r m+1
m+1−k · m+2

m+2−k · · · m+r
m+r−k is bounded as follows. For all a ≤ r ≤ √

n,

m+ a

m+ a− k
≥ m

(1 − p)m+ (c+ 1)
√
n
≥ 1

1 − p

(

1 − c+ 1

(1 − p)
√
n

)

where the first inequality holds since m− k ≤ m− pn+ c
√
n ≤ (1 − p)m+ c

√
n. Also,

m+ a

m+ a− k
≤ m+

√
n

(1 − p)m− c
√
n
≤ 1

1 − p

(

1 +
4c

(1 − p)
√
n

)

The product of r such terms cancels the (1 − p)r and leaves a factor at least τ = e−
4c+1
1−p , and at most

1/τ .

B The Long Code Test

We prove Theorem 6.1. This is basically reworking a test of Håstad [Hås01], into our easier setting:

Standard Definitions. We identify L = {f : [n] → {−1, 1}} with the Boolean hypercube {1,−1}n,
and use letters f, g for points in the hypercube. We use letters A,B or χ to denote functions whose
domain is the hypercube8. For α ⊂ [n], define

χα : {−1, 1}n → {−1, 1}, χα(f)
4
=

∏

i∈α

f(i) .

8We consider here functions whose domain is an arbitrary set of size n, and wlog we take the set [n]. In the application this
set is usually some {0, 1}s but we can safely ignore this structure, and forget that n = 2s.
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The characters {χα}α⊆[n] form an orthonormal basis for the space of functions {A : {−1, 1}n → R},
where inner product is defined by 〈A,B〉 = Ef [A(f)B(f)] = 2−n

∑

f A(f)B(f). It follows that any

function A : {−1, 1}n → {−1, 1} can be written as A =
∑

α Âαχα, where Âα = 〈A,χα〉. We also
have Parseval’s identity,

∑

α |Âα|2 = 〈A,A〉 = 1.

The Test. Let ψ : [n] → {−1, 1} be some predicate, and fix τ = 1
100 . Let A : {−1, 1}n → {−1, 1}.

A function A : {1,−1}n → {1,−1} is the legal encoding of the value a ∈ [n] iff A(f) = f(a) for all
f ∈ L. The following procedure tests whether A is close to a legal encoding of some value a ∈ [n] that
satisfies ψ.

1. Select f, g ∈ L at random

2. Set h = gµ where µ ∈ L is selected by doing the following independently for every y ∈ [n]. If
f(y) = 1 set µ(y) = −1. If f(y) = −1 set

µ(y) =







1 w. prob. 1 − τ

−1 w. prob. τ
.

3. Accept unless A(g) = A(f) = A(h) = 1.

Folding. As usual, we fold A over true and over ψ, as done in [BGS98]. This means that whenever
the test needs to read A[f ], it reads A[f ∧ ψ] instead. In addition, we fold over true which means for
every pair f,−f we let A specify only one, and access the other through the identity A[f ] = −A[−f ].
In other words, we assume wlog that A(f) = A(f ∧ ψ) and A(f) = −A(−f) for all f .

It is well-known that Âα = 0 whenever (i) |α| is even, or (ii) ∃i ∈ α for which ψ(i) = 1 (recall that
1 corresponds to false). The reason is that we can partition {1,−1}n into pairs f, f ′ such that

Âα = 2−n
∑

f

A(f)χα(f) = 2−n · 1

2

∑

f

(A(f)χα(f) +A(f ′)χα(f ′)) = 2−n−1
∑

f

0 = 0 .

In (i) let f ′ = −f , so χα(f) = χα(f ′) but A(f) = −A(f ′). In (ii) let f ′ = f + ei where i is an index
for which ψ(i) = 1; so χα(f) = −χα(f ′) but A(f) = A(f ′).

Correctness. It is easy to check completeness: We fix some a ∈ [n] and assign for all f ,A(f) = f(a).
Clearly if A(f) = f(a) = −1 then the test accepts. Also, if A(f) = f(a) = 1 then A(h) = h(a) =
−g(a) = −A(g) 6= A(g), and again the test accepts.

For soundness, arithmetize the acceptance probability as follows

Pr[Test accepts] = Ef,g,h

[

1 − (1 +A(f))(1 +A(g))(1 +A(h))

8

]

=

and note that since the pairs (f, g) and (f, h) are pairs of random independent functions, and since A is
folded, this equals,

=
7

8
− 1

8
Eg,h [A(g)A(h)] − 1

8
Ef,g,h [A(f)A(g)A(h)] .

The first expectation can be expanded as

Eg,h





∑

α,β⊆[n]

ÂαÂβχα(g)χβ(h)



 =
∑

α⊆[n]

Â2
α(−τ)|α|
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which is bounded by τ in absolute value, since Âφ = 0. Let us denote the acceptance probability by
1−ε. This implies that the second expectation (whose value let us nameW ) must be at most −1+τ+8ε.
We write it as

−1 + τ + 8ε ≥W = Eg,f,µ





∑

α,β,γ⊆[n]

ÂαÂβÂγχα(g)χβ(gµ)χγ(f)



 =

=
∑

α,γ⊆[n]

ÂγÂ
2
αEf,µ [χα(µ)χγ(f)]

=
∑

γ⊆α⊆[n]

ÂγÂ
2
α(−1 + τ)|γ|(−τ)|α\γ| .

We now bound the absolute value of this sum, following [Hås01]. First we claim that

∑

γ⊆α

((1 − τ)|γ|(τ)|α\γ|)2 ≤ (1 − τ)|α| .

The left hand side is the probability that tossing 2 |α| independent τ -biased coins results in a pattern
γγ where γ ∈ {0, 1}|α|. This probability is (τ 2 + (1 − τ)2)|α| ≤ (1 − τ)|α| since τ < 1 − τ . By
Cauchy-Schwartz,

∑

γ⊆α

|Âγ |(1 − τ)|γ|(τ)|α\γ| ≤
√

∑

γ⊆α

|Âγ |2 ·
√

∑

γ⊆α

((1 − τ)|γ|(τ)|α\γ|)2 ≤ (1 − τ)|α|/2

so, splitting the sum into |α| = 1 and |α| > 1,

|W | ≤
∑

|α|=1

|Â2
α|(1 − τ) +

∑

|α|>1

|Âα|2(1 − τ)|α|/2 .

Denoting by ρ =
∑

|α|>1 |Âα|2, we have |W | ≤ (1 − ρ)(1 − τ) + ρ(1 − τ)3/2, since Âα = 0 for |α|
even. Thus

1 − τ − 8ε ≤ |W | ≤ (1 − τ)((1 − ρ) + ρ
√

1 − τ) ⇒ ρ ≤ 8ε

(1 − τ)(1 −
√

1 − τ)
.

Since τ = 1
100 is fixed, we have ρ = O(ε).

At this point we use the following result,

Theorem B.1 ([FKN02]) Let ρ > 0 and let A : {1,−1}n → {1,−1} be a Boolean function for which
∑

α,|α|>1 |Âα|2 < ρ. Then either |Âφ|2 = 1 −O(ρ) or |Â{i}|2 = 1 −O(ρ) for some i ∈ [n].

Thus, by folding, there must be some i ∈ [n] for which ψ(i) = −1 and dist(A,χ{i}) ≤ O(ρ). (Note
that Theorem B.1 allows also for dist(A,−χ{i}) = O(ρ) but this would cause the test to have failed
with probability ≈ 1/4 which is certainly Ω(δ).)

We have proven that unless the table A is δ-close to some χ{i} for a value of i that satisfies ψ, at least
ε = Ω(δ) of the tests must reject.
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