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Abstract

We present constant-round concurrently secure (sound) resettable zero-knowledge (rZK-CS) argu-
ments in the bare public-key (BPK) model. Our constructions deal with general NP ZK-arguments
as well as with highly efficient ZK-arguments for number-theoretic languages, most relevant to iden-
tification scenarios. These are the first constant-round protocols of this type in the original real BPK
model, where nothing is assured about public-keys generated by malicious verifiers. As part of this
work, we develop a one-round trapdoor commitment scheme that is based on any one-way permuta-
tion, which is of independent interest and, in particular, can be used to reduce the round-complexity
of other cryptographic protocols involving trapdoor commitments.

1 Introduction

Zero-knowledge (ZK) protocols are remarkable since they allow a prover to validate theorems to a verifier
without giving away any other knowledge (computational advantage). This notion was suggested in
[25] and its generality was demonstrated in [24] and since its introduction ZK has found numerous
and extremely useful applications. ZK protocols can be executed in many environments (models), and
resettable zero-knowledge (rZK) is the most restrictive model of zero-knowledge to date. It was put forth
by Canetti, Goldreich, Goldwasser and Micali [7], motivated by implementing zero-knowledge provers
using smart-cards or other devices that may be (maliciously) reset to their initial conditions and/or
can not afford to generate fresh randomness for each new invocation. rZK also preserves the prover’s
security when the protocol is executed concurrently in an asynchronous network like the Internet; (in
fact, rZK is a generalization and strengthening of the notion of concurrent zero-knowledge introduced
by Dwork, Naor and Sahai [15].) In a nutshell, an rZK protocol remains secure even if the verifier
concurrently interacts with the prover polynomially many times, each time restarting an interaction
with the prover using the same configuration and random tape.

ZK protocols for general languages (i.e., NP) show important plausibility, since many important
statements are inNP . In addition, ZK has many direct efficient applications (mainly employing number
theoretic statements). A major direct application is identification (ID) schemes advocated in [20, 17].
While in many settings the paradigm transforms ZK protocols to ID schemes, these protocols fail to
secure whenever the prover is resettable.

A major measure of efficiency for interactive protocols is the round-complexity. Unfortunately,
there are no constant-round rZK protocols in the standard model, at least for the black-box case, as
implied from the work of Canetti, Killian, Petrank and Rosen [8, 9]. To get constant-round resettable
zero-knowledge protocols [7] introduced a simple model with very appealing trust requirement, the bare
public-key (BPK) model. A protocol in BPK model simply assumes that all verifiers (whether honest
or dishonest) have deposited a public key in a public file before any interaction takes place among the
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users∗. Note that an adversary may deposit many (possibly invalid or fake) public keys without any
guarantee on the properties of the registered public-keys. In particular, for public-keys registered by an
adversary it is not guaranteed that one can efficiently verify whether the adversary knows corresponding
secret keys or whether such exist altogether. What is essentially guaranteed by the BPK model is a
limitation of the number of different identities that a potential adversary may assume (note that the
adversary may try to impersonate any registered user in the public-file, but it cannot act on behalf of
a non-registered user), further, there are no other assurances.

The BPK model is thus very simple, and it is in fact a weaker version of the frequently used public-key
infrastructure (PKI) model, which underlies any public-key cryptosystem or digital signature scheme.
In the PKI case, a secure association between a key and its owner is crucial, while in the BPK case no
such association is required. The BPK model is also a weaker version of the frequently used certified
public-key model, where the validity of any public-keys (even malicious chosen) can be efficiently verified.

Despite its power in achieving round-efficient rZK protocols, the soundness notion in the BPK model
turns out to be much more subtle and complex than that in the standard model, as noted by Micali
and Reyzin [29]. In public-key models, a verifier V has a secret key SK, corresponding to its public-key
PK. A malicious prover P ∗ could potentially gain some knowledge about SK from an interaction with
the verifier. This gained knowledge might help it convincing the verifier of a false theorem in another
interaction. Micali and Reyzin showed that under standard intractability assumptions there are four
distinct meaningful notions of soundness, i.e. from weaker to stronger: one-time, sequential, concurrent
and resettable soundness. In this paper we focus on concurrent soundness which roughly means, for
zero-knowledge protocols, that a malicious prover P ∗ cannot convince the honest verifier V of a false
statement even when P ∗ is allowed multiple interleaving interactions with V . Micali and Reyzin also
showed that any (black-box) rZK protocols with concurrent soundness in the BPK model (for non-trivial
languages outside BPP) must run at least four rounds [29].

It has been a major open problem to achieve constant-round concurrently sound rZK (rZK-CS)
arguments for NP , especially with optimal round-complexity, in the BPK model. Due to its hardness,
a recent result by [14], introduced a solution in the stronger public key model (namely, the certified
public-key model). The security proof of [14] critically depends on the requirement that the validity of
public-keys registered by even malicious verifiers can be efficiently verified (this is despite the title of
that work). rZK-CS arguments for NP with optimal round-complexity in other stronger versions of the
BPK model were also achieved in [30, 35]. But, achieving constant-round rZK-CS arguments for NP ,
especially with optimal round-complexity, in the real BPK model is still open. We explore this basic
open problem in this work.

We further note that in spite of its significance to practice, especially to smart-card based identifi-
cation and other potential validations, all previous rZK proof systems concentrated on plausibility. The
inefficiency in previous rZK systems is in part due to their basic techniques. Namely, (multiple) general
NP-reductions, NIZK, non-black-box technique, etc. As a result, there is a gap between plausibility of
rZK and solutions for specific useful number theoretic languages. Therefore, it is an important open
question to develop new techniques (bypassing the general NP-reductions) that can be implemented
with small constant number of (say) exponentiations under widely used hardness assumptions. We
explore this central issue in this work as well.

1.1 Our contributions

We achieve the first constant-round concurrently-secure rZK (rZK-CS) arguments in the BPK model
(without extra requirements on public keys). More specifically:

∗The BPK model does allow dynamic key registrations and readers are referred to [7] for the details of dealing with
dynamic key registrations.
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• For any NP-language, we achieve 5-round rZK-CS arguments for NP under any preimage-
verifiable one-way function (OWF), and 4-round (i.e., optimal) rZK-CS arguments for NP under
any one-way permutation OWP and any preimage-verifiable OWF. To this end, we develop a
one-round trapdoor commitment scheme (that is based on any OWP). This construction is of in-
dependent interest and can be employed elsewhere. (We note that a OWF f is preimage-verifiable
if given a string y one can efficiently verify whether or not there exists an x such that y = f(x).
Note that preimage-verifiable OWF is a generic and actually quite weak hardness assumption that
includes, in particular, any certified one-way permutation.)

• Beyond plausibility, we present a generic practical transformation achieving 5-round rZK-CS ar-
guments in the real BPK model. By “generic” we mean applicability to any language that ad-
mits Σ-protocols. By “practical”, we mean that our construction does not go through general
NP-reductions, and if the starting Σ-protocol and the underlying PRF are practical then the
transformed rZK-CS protocol is also practical. (For example, when instantiated with DL or RSA
functions, together with the Naor-Reingold practical PRFs, the transformed rZK-CS protocol (for
the languages of DL or RSA respectively) employs a very small constant number of exponenti-
ations). This directly implies practical DLP or RSA based identification scheme secure against
resetting attacks.

1.2 Comparisons with the recent work of [14]

The rZK-CS protocol of [14] employs a stronger version of the BPK model (specifically, the certified
public-key model); and in itself, achieving the result in the stronger model is justified and interesting
due to the failure so far to achieve it in the weaker model. In the protocol of [14], the verifier’s
public-key (registered in the public-file) serves as the public-key of the underlying public-key encryption
scheme used by the verifier. But, the proof of rZK in [14] critically depends on the following additional
requirements on public-keys generated by even malicious verifiers.

1. The validity of public-keys generated by malicious verifiers can be efficiently verified.

2. Any ciphertext generated with a valid public-key corresponds to at most one plaintext.

The underlying PKE is actually used by the verifier as a perfectly-binding commitment scheme
in a coin-tossing subprotocol with its output, in turn, serving as the common random string for the
underlying NIZK from the prover to the verifier. If the above additional requirements on public-keys
generated by malicious verifiers do not hold (and the scheme is used in the bare public-key model),
then a malicious verifier will have the potential ability to set the output of the coin-tossing protocol, by
which it can extract the prover’s private NP-witness in case that the underlying NIZK is NIZKPOK.

The second point of difference between the works, is that the hardness assumptions used in [14] are
not generic and are stronger than those used in our protocols for NP. The protocol of [14] assumes any
certified OWP and a special form of PKE with known implementation based on DLP. (The paper does
not explicitly assume more than “any OWP,” but one can observe that a certified OWP is necessary
for provable security there. This is detailed below.

The third point of difference, is that the earlier work only considered general plausibility for NP
languages (going through multiple NP-reductions and using general NIZK).

The need for certification in the DPV protocol. The protocol of [14] is based on the existences
of any one-way permutation OWP and a special form of public-key encryption scheme with known
implementation based on DLP. The OWP hardness assumption is due to the underlying NIZK and the
“puzzle” sent from the prover to the verifier. Specifically, the puzzle is y = f(x) for a OWP f . But,
assuming that f is a OWP is not enough for provable security.
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In proving concurrent soundness of the protocol in [14], for the “puzzle” y of length n sent from a
malicious prover P ∗, the knowledge extractor E (that runs P ∗ as its subroutine by playing the role of
the honest verifier V ) first extracts the preimage x of y under f by brute-force searching in 2n time, and
then uses the extracted x (if such exists) as its witness to finish its simulation. For proving concurrent
soundness, it is required that the simulation of E is indistinguishable from the interactions between P ∗

and the real honest verifier V .
The subtle observation here is that by assuming only that f is a OWF, it is not guaranteed that given

any y there exists an x such that f(x) = y. For example, consider the SQUARE one-way permutation
(over the quadratic residues): f(x) = x2 mod N , where N = p · q and p = q = 3 mod 4. If the
underlying OWP used in [14] is the above SQUARE OWP, then the malicious prover P ∗ may form the
puzzle y which is a non-square such that there exists no x satisfying y = x2 mod N . Note that the
real honest verifier (which is a PPT algorithm) cannot verify whether y is a square or not, and thus
always finishes its interactions with P ∗. But, in the simulation of E, E cannot extracts the preimage of
y and thus cannot finish the simulation, which is clearly distinguishable from the finished interactions
between P ∗ and the real honest verifier. From the above clarifications, for provable security of [14] we
need to require that for any puzzle y sent by P ∗ it is easy to verify whether or not the corresponding
preimage exists. This can be achieved by additionally requiring that the OWP used by the prover in
forming the puzzle to be a “certified” one. A permutation family is certified if it is easy to verify (in
polynomial time) that a given function belongs to the family.

Comments: The subtleties and complexities of certifying cryptographic primitives (e.g. trapdoor
one-way permutations, et al), when they are used as “tools” in the constructions of complex crypto-
graphic protocols, are originally addressed by Bellare and Yung [3] in the setting of non-interactive
zero-knowledge. Typically, the problem is that one cannot trust a party to correctly create the “tool”
in question. In particular, Bellare and Yung showed that the underlying trapdoor OWP, on which the
elegant Feige-Lapidot-Shamir NIZK protocol [18] is assumed based, should actually be a certified one
for provable security there.

1.3 Organizations

We present preliminary definitions in Section 2. In Section 3, we then present the generic practical
transformation (without NP-reductions) transforming Σ-protocols to rZK-CS protocols in the BPK
model. In Section 4, we first present a 5-round rZK-CS arguments for NP in the BPK model under
any preimage-verifiable OWF, and then show how the round-complexity can be further reduced to four
(that is optimal) by developing a one-round OWP-based trapdoor commitment scheme.

2 Preliminaries

In this section, we quickly recall the definitions and the major cryptographic tools used in this work.
We use standard notations and conventions below for writing probabilistic algorithms and exper-

iments. If A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the result of running A on inputs
x1, x2, · · · and coins r. We let y ← A(x1, x2, · · · ) denote the experiment of picking r at random and
letting y be A(x1, x2, · · · ; r). If S is a finite set then x ← S is the operation of picking an element
uniformly from S. If α is neither an algorithm nor a set then x← α is a simple assignment statement.

Definition 2.1 (preimage-verifiable one-way function) A function f : {0, 1}∗ −→ {0, 1}∗ is called
a preimage-verifiable one-way function (OWF) if the following conditions hold:

1. Easy to compute: There exists a (deterministic) polynomial-time algorithm A such that on input
x algorithm A outputs f(x) (i.e. A(x) = f(x)).

4



2. Hard to invert: For every probabilistic polynomial-time algorithm A′, every positive polynomial
p(·), and all sufficiently large n’s, it holds Pr[A′(f(Un), 1n) ∈ f−1(f(Un))] < 1

p(n) , where Un de-

notes a random variable uniformly distributed over {0, 1}n. A OWF f is called sub-exponentially
strong if for some constant c, 0 < c < 1, for every sufficiently large n, and every circuit C of size
at most 2nc

, Pr[C(f(Un), 1n) ∈ f−1(f(Un))] < 2−nc

.

3. Easy to verify the preimage existence: There exists a polynomial-time computable predicate Df :
{0, 1}∗ −→ {0, 1} such that for any string y, Df (y) = 1 if and only if there exists an x such that
y = f(x).

We remark preimage-verifiable OWF is a generic and actually quite weak hardness assumption that
includes, in particular, any certified one-way permutation. A permutation family is certified if it is easy
to verify (in polynomial time) that a given function belongs to the family. For the formal definition of
certified one-way permutations, readers are referred to [3]

Definition 2.2 (interactive argument system) A pair of probabilistic polynomial-time interactive
machines, 〈P, V 〉, is called an interactive argument system for a language L if the following conditions
hold:

• Completeness. For every x ∈ L, there exists a string w such that for every string z,
Pr[〈P (w), V (z)〉(x) = 1] = 1.

• Soundness. For every polynomial-time interactive machine P ∗, and for all sufficiently large n’s
and every x /∈ L of length n and every w and z, Pr[〈P ∗(w), V (z)〉(x) = 1] is negligible in n.

Definition 2.3 (pseudorandom functions PRF) On a security parameter n, let d(·) and r(·) be
two positive polynomials in n. We say that

{fs : {0, 1}d(n) −→ {0, 1}r(n)}s∈{0,1}n

is a pseudorandom function ensemble if the following two conditions hold:

1. Efficient evaluation: There exists a polynomial-time algorithm that on input s and x ∈ {0, 1}d(|s|)

returns fs(x).

2. Pseudorandomness: For every probabilistic polynomial-time oracle machine A, every polynomial
p(·), and all sufficiently large n’s, it holds:

|Pr[AFn(1n) = 1]− Pr[AHn(1n) = 1]| <
1

p(n)

where Fn is a random variable uniformly distributed over the multi-set {fs}s∈{0,1}n , and Hn is
uniformly distributed among all functions mapping d(n)-bit-long strings to r(n)-bit-long strings.

PRFs can be constructed under any one-way function [23, 22]. The current most practical PRFs are
the Naor-Reingold implementations under the factoring (Blum integers) or the decisional Diffie-Hellman
hardness assumptions [32]. The computational complexity of computing the value of the Naor-Reingold
functions at a given point is about two modular exponentiations and can be further reduced to only two
multiple products modulo a prime (without any exponentiations!) with natural preprocessing, which is
great for practices involving PRFs.

Definition 2.4 (perfectly-binding bit commitment scheme) A pair of PPT interactive machines,
〈P, V 〉, is called a perfectly-binding bit commitment scheme, if it satisfies the following:
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Completeness. On a security parameter n, denote by view
P (σ,s)
V (r) (1n) the view of the commitment

receiver V in an interaction with the committer P who is committing to a bit σ ∈ {0, 1} by
using local coins s, which consists of the random coins used by V (i.e. r) and the sequence of
messages received from P (denoted by m̄). Then for any n, any s, r ∈ {0, 1}∗, and any σ ∈ {0, 1},

Pr[V (1n, view
P (σ,s)
V (r) (1n), σ, s) = 1] = 1. Here, view

P (σ,s)
V (r) (1n) stands for the commitment to σ, and

s is the corresponding decommitment information to σ.

Computationally-hiding. For all sufficiently large n’s, the distributions of view
P (0)
V ∗ (1n) and view

P (1)
V ∗ (1n)

(for any arbitrary PPT V ∗) are computationally indistinguishable. Namely, for all sufficiently
large n’s, for any positive polynomial q(·), and every distinguishing circuit D of size q(n), it holds

that |Pr[D(1n, view
P (0)
V ∗ (1n)) = 1]− Pr[D(1n, view

P (1)
V ∗ (1n)) = 1]| < 1

q(n) . We say the hiding prop-
erty is sub-exponentially strong if the hiding property holds also with respect to subexponential-size
circuits (i.e. replace the polynomial q(·) above by a function f of the form f(n) = 2nc

, for some
constant c, 0 < c < 1).

Perfectly-binding. On a security parameter n, we say that a receiver’s view, (r, m̄), is a possible

σ-commitment if there exists a string s such that (r, m̄) = view
P (σ,s)
V (r) (1n). Then, for all but a

negligible fraction of the random coins of V , r ∈ {0, 1}poly(n), there is no m̄ such that (r, m̄) is
both a possible 0-commitment and a possible 1-commitment.

Definition 2.5 (witness indistinguishability WI) Let 〈P, V 〉 be an interactive system for a lan-
guage L ∈ NP, and let RL be the fixed NP witness relation for L. That is, x ∈ L if there exists a

w such that (x, w) ∈ RL. We denote by view
P (w)
V ∗(z)(x) a random variable describing the transcript of

all messages exchanged between a (possibly malicious) PPT verifier V ∗ and the honest prover P in an
execution of the protocol on common input x, when P has auxiliary input w and V ∗ has auxiliary input
z. We say that 〈P, V 〉 is witness indistinguishable for RL if for every PPT interactive machine V ∗, and
every two sequences W 1 = {w1

x}x∈L and W 2 = {w2
x}x∈L for sufficiently long x, so that (x, w1

x) ∈ RL

and (x, w2
x) ∈ RL, the following two probability distributions are computationally indistinguishable

by any non-uniform PPT algorithm: {x, view
P (w1

x)
V ∗(z) (x)}x∈L, z∈{0, 1}∗ and {x, view

P (w2
x)

V ∗(z) (x)}x∈L, z∈{0, 1}∗ .

Namely, for every PPT non-uniform distinguishing algorithm D, every polynomial p(·), all sufficiently
long x ∈ L, and all z ∈ {0, 1}∗, it holds that

|Pr[D(x, z, view
P (w1

x)
V ∗(z) (x) = 1]− Pr[D(x, z, view

P (w2
x)

V ∗(z) (x) = 1]| <
1

p(|x|)

We say that 〈P, V 〉 is sub-exponentially strong witness indistinguishable for RL, if for some c,
0 < c < 1, for every sufficiently long x ∈ L of length n, for every distinguishing circuit D of size at
most 2nc

, and every z ∈ {0, 1}∗, it holds that

|Pr[D(x, z, view
P (w1

x)
V ∗(z) (x) = 1]− Pr[D(x, z, view

P (w2
x)

V ∗(z) (x) = 1]| < 2−nc

Definition 2.6 (system for proof of knowledge [22]) Let R be a binary relation and κ : N →
[0, 1]. We say that a probabilistic polynomial-time (PPT) interactive machine V is a knowledge verifier
for the relation R with knowledge error κ if the following two conditions hold:

• Non-triviality: There exists an interactive machine P such that for every (x,w) ∈ R all possible
interactions of V with P on common input x and auxiliary input w are accepting.

• Validity (with error κ): There exists a polynomial q(·) and a probabilistic oracle machine K such
that for every interactive machine P ∗, every x ∈ LR, and every w, r ∈ {0, 1}∗, machine K satisfies
the following condition:
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Denote by p(x,w, r) the probability that the interactive machine V accepts, on input x, when
interacting with the prover specified by P ∗

x,w,r (where P ∗
x,w,r denotes the strategy of P ∗ on common

input x, auxiliary input w and random-tape r). If p(x,w, r) > κ(|x|), then, on input x and with
oracle access to P ∗

x,w,r, machine K outputs a solution w′ ∈ R(x) within an expected number of
steps bounded by

q(|x|)

p(x,w, r) − κ(|x|)

The oracle machine K is called a knowledge extractor.

An interactive proof system 〈P, V 〉 such that V is a knowledge verifier for a relation R and P is a
machine satisfying the non-triviality condition (with respect to V and R) is called a system for proof of
knowledge for the relation R.

2.1 Σ-protocols and ΣOR-protocols

The idea of Σ-protocols as an abstract concept is introduced by Cramer in [10]. Informally, a Σ-protocol
is itself a 3-round public-coin special honest verifier zero-knowledge (SHVZK) protocol with special
soundness in the knowledge-extraction sense. Σ-protocols have been proved to be a very powerful
cryptographic tool and are widely used in numerous important cryptographic applications including
digital signatures, identification schemes, efficient electronic payment and voting systems. We remark
that a very large number of Σ-protocols have been developed in the literature (mainly in applied
cryptography), and Σ-protocol examples for DLP and RSA are given in below. For a good survey of
Σ-protocols and their applications, readers are referred to [13, 11].

Definition 2.7 A 3-round public-coin protocol 〈P, V 〉 is said to be a Σ-protocol for a relation R if the
following hold:

• Completeness. If P , V follow the protocol, the verifier always accepts.

• Special soundness. From any common input x of length n and any pair of accepting conversations
on input x, (a, e, z) and (a, e′, z′) where e 6= e′, one can efficiently compute w such that (x,w) ∈ R.
Here a, e, z stand for the first, the second and the third message respectively and e is assumed to
be a string of length t (that is polynomially related to n) selected uniformly at random in {0, 1}t.

• Special honest verifier zero-knowledge (SHVZK). There exists a probabilistic polynomial-time (PPT)
simulator S, which on input x and a random challenge string e, outputs an accepting conversation
of the form (a, e, z), with the same probability distribution as the real conversation between the
honest P , V on input x.

Σ-protocol for DLP: The following is a Σ-protocol 〈P, V 〉 proposed by Schnorr [34] for proving the
knowledge of discrete logarithm, w, for a common input of the form (p, q, g, h) such that h = gw mod p,
where on a security parameter n, p is a uniformly selected n-bit prime such that q = (p− 1)/2 is also a
prime, g is an element in Z

∗
p of order q. It is also actually the first efficient Σ-protocol proposed in the

literature.

• P chooses r at random in Zq and sends a = gr mod p to V .

• V chooses a challenge e at random in Z2t and sends it to P . Here, t is fixed such that 2t < q.

• P sends z = r + ew mod q to V , who checks that gz = ahe mod p, that p, q are primes and that
g, h have order q, and accepts iff this is the case.
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Σ-protocol for RSA: Let n be an RSA modulus and q be a prime. Assume we are given some
element y ∈ Z∗

n, and P knows an element w such that wq = y mod n. The following protocol is a
Σ-protocol (proposed in [26]) for proving the knowledge of q-th roots modulo n .

• P chooses r at random in Z∗
n and sends a = rq mod n to V .

• V chooses a challenge e at random in Z2t and sends it to P . Here, t is fixed such that 2t < q.

• P sends z = rwe mod n to V , who checks that zq = aye mod n, that q is a prime, that gcd(a, n) =
gcd(y, n) = 1, and accepts iff this is the case.

The OR-proof of Σ-protocols [12].
One basic construction with Σ-protocols allows a prover to show that given two inputs x0, x1, it

knows a w such that either (x0, w) ∈ R0 or (x1, w) ∈ R1, but without revealing which is the case.
Specifically, given two Σ-protocols 〈Pb, Vb〉 for Rb, b ∈ {0, 1}, with random challenges of, without loss of
generality, the same length t, consider the following protocol 〈P, V 〉, which we call ΣOR. The common
input of 〈P, V 〉 is (x0, x1) and P has a private input w such that (xb, w) ∈ Rb.

• P computes the first message ab in 〈Pb, Vb〉, using xb, w as private inputs. P chooses e1−b at
random, runs the SHVZK simulator of 〈P1−b, V1−b〉 on input (x1−b, e1−b), and let (a1−b, e1−b, z1−b)
be the output. P finally sends a0, a1 to V .

• V chooses a random t-bit string e and sends it to P .

• P sets eb = e ⊕ e1−b and computes the answer zb to challenge eb using (xb, ab, eb, w) as input. It
sends (e0, z0, e1, z1) to V .

• V checks that e = e0⊕e1 and that conversations (a0, e0, zo), (a1, e1, z1) are accepting conversations
with respect to inputs x0, x1, respectively.

Theorem 2.1 [12] The protocol ΣOR above is a Σ-protocol for ROR, where ROR = {((x0, x1), w)|(x0, w) ∈
R0 or (x1, w) ∈ R1}. Moreover, for any malicious verifier V ∗, the probability distribution of conversa-
tions between P and V ∗, where w is such that (xb, w) ∈ Rb, is independent of b. That is, ΣOR is perfectly
witness indistinguishable proof of knowledge for ROR (the POK property is due to that ΣOR-protocol is
itself Σ-protocol).

2.2 Trapdoor commitment TC schemes with additional properties

We recall some perfectly-hiding trapdoor commitment schemes and clarify some additional properties
about them which are critical for our purpose (in particular, for the generic but practical transformation
from Σ-protocols to rZK-CS arguments in the BPK model).

Definition 2.8 (trapdoor commitment scheme TC) A (normal) trapdoor commitment scheme (TC)
is a quintuple of probabilistic polynomial-time (PPT) algorithms TCGen, TCCom, TCVer, TCKeyVer
and TCFake, such that

• Completeness. ∀n, ∀v, Pr[(TCPK, TCSK)
R
← TCGen(1n); (c, d)

R
← TCCom(TCPK, v) :

TCKeyVer(TCPK, 1n) = TCVer(TCPK, c, v, d) = 1] = 1.

• Computational Binding. For all sufficiently large n’s and for any PPT adversary A, the following

probability is negligible in n: Pr[(TCPK, TCSK)
R
← TCGen(1n); (c, v1, v2, d1, d2)

R
← A(1n, TCPK) :

TCVer(TCPK, c, v1, d1) = TCVer(TCPK, c, v2, d2) = 1 and v1 6= v2].
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• Perfect (or Computational) Hiding. ∀ TCPK such that TCKeyVer(TCPK, 1n) = 1 and ∀ v1, v2

of equal length, the following two probability distributions are identical (or computationally indis-

tinguishable): [(c1, d1)
R
← TCCom(TCPK, v1) : c1] and [(c2, d2)

R
← TCCom(TCPK, v2) : c2].

• Perfect (or Computational) Trapdoorness. ∀ (TCPK, TCSK) ∈ {TCGen(1n)}, ∃v1, ∀v2 such
that v1 and v2 are of equal length, the following two probability distributions are identical (or
computationally indistinguishable):

[(c1, d1)
R
← TCCom(TCPK, v1); d

′
2

R
← TCFake(TCPK, TCSK, c1, v1, d1, v2) : (c1, d

′
2)] and

[(c2, d2)
R
← TCCom(TCPK, v2) : (c2, d2)].

As shown in the above definition, known trapdoor commitment schemes work in two rounds as
follows: In the first round, the commitment receiver generates and sends the TCPK to the commitment
sender. In the second round, on TCPK and the value v to be committed to, the sender computes (c, d)←
TCCom(TCPK, v) and sends c as the commitment, while keeping the value v and the decommitment
information d in private. The trapdoor is the corresponding TCSK with which one can equivocate the
commitment at its wish. But, for our purpose, we need TC schemes that satisfy the following additional
requirements:

1. Public-key verifiability. The validity of TCPK (even generated by a malicious commitment re-
ceiver) can be efficiently verified. In particular, given any TCPK, one can efficiently verify whether
or not TCSK exists.

2. Public-key Σ-provability. On common input TCPK and private input TCSK, one can prove, by
Σ-protocols, the knowledge of TCSK.

We call a trapdoor commitment scheme satisfying the above two additional properties a verifiable
and Σ-provable trapdoor commitment (VPTC, in short) scheme. The first round of a VPTC scheme
is denoted by V PTCPK and the corresponding trapdoor is denoted by V PTCSK. We note both
the DLP-based [6] and the RSA-based [33] perfectly-hiding trapdoor commitment schemes are VPTC
schemes with perfect hiding and trapdoorness properties.

Consider the DLP-based perfectly-hiding trapdoor commitment scheme [6]: On a security parameter
n, the receiver selects uniformly an n-bit prime p so that q = (p − 1)/2 is a prime, an element g of
order q in Z

∗
p. Then the receiver uniformly selects w in Zq and sets h = gw mod p. The receiver sets

TCPK = (p, q, g, h) and keeps w as TCSK in secret. To commit to a value v in Zq, the sender first
checks that: p, q are primes, p = 2q + 1 and g, h are elements of order q in Z

∗
p. This guarantees the

public-key verifiability property above, and in particular, guarantees that there exists a w such that
h = gw mod p as there is a unique subgroup of order q in Z

∗
p. If the above checking is failed, then the

sender halts announcing that the receiver is cheating. Otherwise (i.e. the above testing is successful),
then the sender uniformly selects d ∈ Zq (the decommitment information), and sends c = gdhv mod p
as its commitment. The public-key Σ-provability is direct from the above Σ-protocol for DLP.

Now, consider the RSA-based perfectly-hiding trapdoor commitment scheme [33]: Let n be a com-
posite number and q > n be a prime number, the receiver randomly chooses w from Z ∗

n and computes
y = wq mod n. The TCPK is set to be (n, q, y) and TCSK = w. To commit to a value v ∈ Zq, the
sender firstly checks that: n is a composite number, q > n is a prime number and y is in Z ∗

n (this in
particular guarantees the existence of w). If the above checking is successful, then the sender randomly
chooses d ∈ Z∗

n and computes c = yvdq as its commitment. The public-key Σ-provability is direct from
the above Σ-protocol for RSA.
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3 The Generic but Practical Transformation from any Σ-Protocol

In this section, we first give the formal definitions of resettable zero-knowledge and concurrent soundness
in the BPK model, and then present the generic practical transformation (without NP-reductions)
transforming Σ-protocols to rZK-CS protocols in the BPK model.

3.1 Definitions of rZK and concurrent soundness in the BPK model.

Honest players in the BPK model.

The BPK model consists of the following:

• F be a public-key file that is a polynomial-size collection of records (id, PKid), where id is a string
identifying a verifier and PKid is its (alleged) public-key.

• P (1n, x, w, F, id, γ) be an honest prover that is a polynomial-time interactive machine, where 1n

is a security parameter, x is an n-bit string in L, w is an auxiliary input, F is a public-file, id is
a verifier identity, and γ is its random-tape.

• V be an honest verifier that is an polynomial-time interactive machine working in two stages.

1. Key generation stage. V , on a security parameter 1n and a random-tape r, outputs a public-
key PK and remembers the corresponding secret key SK.

2. Verification stage. V , on inputs SK, x ∈ {0, 1}n and a random tape ρ, performs an interactive
protocol with a prover and outputs “accept x” or “reject x”.

The malicious resetting verifier and resettable zero-knowledge.

A malicious s-resetting malicious verifier V ∗, where s is a positive polynomial, is a PPT Turing
machine working in two stages so that, on input 1n,

Stage 1 V ∗ receives s(n) distinct strings x1, · · · , xs(n) of length n each, and outputs an arbitrary
public-file F and a list of (without loss of generality) s(n) identities id1, · · · , ids(n).

Stage 2 Starting from the final configuration of Stage 1, s(n) random tapes, γ1, · · · , γs(n), are randomly
selected and then fixed for P , resulting in s(n)3 deterministic prover strategies P (xi, idj , γk),
1 ≤ i, j, k ≤ s(n). V ∗ is then given oracle access to these s(n)3 provers, and finally outputs its
“view” of the interactions (i.e. its random tapes and messages received from all its oracles).

Definition 3.1 (black-box resettable zero-knowledge) A protocol 〈P, V 〉 is black-box resettable
zero-knowledge for a language L ∈ NP if there exists a PPT black-box simulator S such that for
every s-resetting verifier V ∗, the following two probability distributions are indistinguishable. Let each
distribution be indexed by a sequence of distinct common inputs x̄ = x1, · · · , xs(n) ∈ L ∩ {0, 1}n and
their corresponding NP -witnesses aux(x̄) = w1, · · · , ws(n):

Distribution 1. The output of V ∗ obtained from the experiment of choosing γ1, · · · , γs(n) uniformly at
random, running the first stage of V ∗ to obtain F , and then letting V ∗ interact in its second stage
with the following s(n)3 instances of P : P (xi, wi, F, idj , γk) for 1 ≤ i, j, k ≤ s(n). Note that V ∗

can oracle access to these s(n)3 instances of P .

Distribution 2. The output of S(x1, · · · , xs(n)).
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Remark. In Distribution 1 above, since V ∗ oracle accesses to s(n)3 instances of P : P (xi, wi, F, idj , γk),
1 ≤ i, j, k ≤ s(n), it means that V ∗ may invoke and interact with the same P (xi, wi, F, idj , γk) multiple
times, where each such interaction is called a session. We remark that there are two versions for V ∗ to
work in Distribution 1.

1. Sequential version. In this version, a session must be terminated (either completed or aborted)
before V ∗ initiating a new session. That is, V ∗ is required to terminate its current interaction with
the current oracle P (xi, wi, F, idj , γk) before starting an interaction with any P (xi′ , wi′ , F, idj′ , γk′),
regardless of (i, j, k) = (i′, j′, k′) or not. Thus, the activity of V ∗ proceeds in rounds. In each
round it selects one of its oracles and conducts a complete interaction with it.

2. Interleaving version. In this version the above restriction is removed and so V ∗ may initiate
and interact, controlling the schedule of messages being exchanged, with P (xi, wi, F, idj , γk)’s
concurrently in many sessions.

However, these two versions are equivalent as shown in [7]. In other words, interleaving interactions
do not help the malicious verifier get more advantages on learning knowledge from its oracles than it
can do by sequential interactions. Without loss of generality, in the rest of this paper we assume the
resetting malicious verifier V ∗ works in the sequential version.

Definition 3.2 (resettable witness indistinguishability rWI) A protocol 〈P, V 〉 is said to be re-
settable witness indistinguishable for an L ∈ NP if for every positive polynomial s, for every s-
resetting malicious verifier V ∗, two distribution ensembles of Distribution 1 (defined in Definition
3.1), which are indexed by the same x̄ but possibly different sequences of prover’s NP-witnesses:

aux(1)(x̄) = w
(1)
1 , · · · , w

(1)
s(n) and aux(2)(x̄) = w

(2)
1 , · · · , w

(2)
s(n), are computationally indistinguishable.

Concurrent soundness in the BPK model

For an honest verifier V with public-key PK and secret-key SK, an s-concurrent malicious prover
P ∗ in the BPK model, for a positive polynomial s, is a probabilistic polynomial-time Turing machine
that, on a security parameter 1n and PK, performs concurrently at most s(n) interactive protocols
(sessions) with V as follows.

If P ∗ is already running i − 1 (1 ≤ i − 1 ≤ s(n)) sessions, it can select on the fly a common input
xi ∈ {0, 1}

n (which may be equal to xj for 1 ≤ j < i) and initiate a new session with the verification
stage of V (SK, xi, ρi). We stress that in different sessions V uses independent random-tapes in its
verification stage (that is, ρ1, · · · , ρs(n) are independent random strings).

We then say a protocol satisfies concurrent soundness in the BPK model if for any honest verifier
V , for all positive polynomials s, for all s-concurrent malicious prover P ∗, the probability that there
exists an i (1 ≤ i ≤ s(n)) such that V (SK, xi, ρi) outputs “accept xi” while xi 6∈ L is negligible in n.

3.2 The generic but practical transformation

Let L be any language that admits Σ-protocols (e.g., the language of 2n residues or the language of a
generated subgroup), fV be any OWF that admits Σ-protocols, and VPTC be a verifiable Σ-provable
trapdoor commitment scheme with V PTCPK as its first round and V PTCSK as the corresponding
trapdoor. Each (honest) verifier randomly selects xV from the domain of fV and publishes yV =
fV (xV ) as its public-key. On a common input x ∈ L, the following is the high-level overview of the
transformation that works in two phases: In the first phase, the prover P first sends V PTCPK to
the verifier V , and (if V PTCPK is valid) then V proves to P that it knows either V PTCSK or the
preimage of yV , by executing ΣOR on (V PTCPK, yV ). In the second phase, if P accepts the above
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Key Generation. The verifier uses a security parameter N (which is also the system security parameter), on
which each honest verifier V randomly selects an element xV of length N , computes yV = fV (xV ), publishes yV as
its public-key PK while keeping xV as its secret-key SK.

Common input. The public-file F , an element x ∈ L∩{0, 1}n and index i that specifies the i-th entry of F , PKi.

P private input. An NP-witness wit for x ∈ L, a pair of random strings (γ1, γ2) of length n each, where γ1 is
used to generate V PTCPK and γ2 is the randomness seed of a PRF. Note that the security parameter used
by P is n.

V private input. Private key SKi such that PKi = fV (SKi).

Complexity-leverage used. Let c1, 0 < c1 < 1, be the constant that the one-wayness of the OWF fV (used by
V ) holds against any circuit of size 2N

c1

. Let c2 be the constant that: for all sufficiently large n’s, both the length
of the witness wit for x ∈ L∩ {0, 1}n and the length of V PTCSK are bounded by nc2 . Then we set ε > c2/c1 and
N = nε. This ensures that one can enumerate all potential witnesses wit, or all potential V PTCSKs in time 2n

c2

,
which is still lesser than the time it would take to break the one-wayness of fV (because 2n

c2

< 2N
c1

).

Phase-1. Phase-1 consists of two stages:

Stage-1. P generates V PTCPK on security parameter n by using the randomness γ1, and sends V PTCPK
to V .

Stage-2. V first checks the validity of V PTCPK received and aborts if it is not valid (this is guaranteed
by the public-key verifiability of the underlying VPTC scheme). Otherwise (i.e. V PTCPK is valid),
V randomly chooses a random string eV of length t and computes cV = V PTCCom(V PTCPK, eV )
(that is, V commits to eV using the underlying VPTC scheme). V sends cV to P , and proves to P
that it knows either the preimage of PKi (i.e. SKi) or V PTCSK, by executing the ΣOR-protocol on
(PKi, V PTCPK) in which V plays the role of knowledge prover and P plays the role of knowledge
verifier. Denote by aV the first-round message of this ΣOR-protocol, then all randomness used by P
(from then on after receiving (cV , aV )) in the remaining computation is got by applying PRF (γ2, ·) on
(x, F, cV , aV , PKi, i). If V successfully finishes the ΣOR-protocol and P accepts, then goto Phase-2.
Otherwise, P aborts.

Phase-2. P proves to V that it knows either the witness wit for x ∈ L or the preimage of PKi, by executing the
ΣOR-protocol on (x, PKi) in which V sends the second-round message (i.e. the assumed random challenge
from V ) by just revealing eV committed in cV . We also denote by aP , zP the first-round message and the
third-round message of this ΣOR-protocol, respectively.

Figure 1. Generic but practical rZK-CS arguments for any language that admits Σ-protocols

ΣOR-proof (from V to P ), then P proves to V that it knows either the witness of x ∈ L or the preimage
of yV , by executing ΣOR on (x, yV ) in which the second round (i.e. the random challenge from V to P )
is denoted by eV . Finally, to make the transformed protocol resettable we require that: V first commits
to eV on the top of the above transformation using the underlying VPTC scheme, P and V use different
security parameters such that breaking V PTCPK does not compromise the security of yV , and the
randomness of P is generated by applying a PRF on some partial transcript. The details are given in
Figure 1 (page 12).

The protocol depicted in Figure-1 runs in 7 rounds, but it can be easily combined into a 5-round
protocol in which P sends V PTCPK in the first-round, V sends (cV , aV ) in the second-round and then
the remaining interactions are combined into the other three rounds. Note that the transformation
does not go through general NP-reductions, and if the underlying VPTC, PRF and the starting Σ-
protocol for L are practical, then the transformed protocol is also a practical protocol for L. When
instantiated with the DL function for the underlying VPTC and the starting Σ-protocol, together with
the Naor-Reingold practical PRF, the transformed protocol (for the language DL) goes through about
12 exponentiations at the rZK prover side and 9 exponentiations at the verifier side.
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Theorem 3.1 Assuming the existence of PRF, VPTC with perfect hiding and trapdoorness properties,
and OWF that admits Σ-protocols and is secure against subexponentially-strong adversaries, the protocol
depicted in Figure-1 is a 5-round rZK-CS argument without NP-reductions in the BPK model for any
language that admits Σ-protocols.

Proof (sketch).
Black-box resettable zero-knowledge.
For any s-resetting adversary V ∗ (as defined in Section 3.1), first of all, without loss of generality we

make the following two simplifying assumptions. Firstly, we assume V ∗ works in the sequential version
(which is equivalent to the interleaving version as discussed in Section 3.1). Secondly, we assume the
real prover uses a truly random function (rather than a PRF), as the proof can be easily extended, by
standard hybrid technique, to the case when the real prover uses a PRF.

For any s-resetting adversary V ∗ who receives s(n) distinct strings x1, · · · , xs(n) of length n each,
and outputs an arbitrary public-file F containing s(n) entries PK1, · · · , PKs(n) in its first stage, we say
a public-key PKi in F , 1 ≤ i ≤ s(n), is “covered” if the rZK simulator S has already learnt (extracted)
the corresponding secret-key SKi (if such exists). The rZK simulator S works in s(n) + 1 phases such
that in each phase it either successfully finishes its simulation or “covers” a new public-key in F . In
each phase, S runs V ∗ as a subroutine and works session by session sequentially.

In each session j with a distinct “determining” message (xk, F, c
(j)
V , a

(j)
V , PKi, i), 1 ≤ i, j, k ≤ s(n),

and with respect to a “covered” public-key PKi, then S uses independent random coins in its remaining
computation after that (note that the V PTCPK in the first-round can be fixed once and for all), and
uses the (assumed known) secret-key SKi as its witness in the ΣOR-protocol of Phase-2. For any session
with a “determining” message that is identical to that of some previous session, then S just copies what
sent in that previous session.

The difficulty occurs in simulating the Phase-2 of a session j with “determining” message

(xk, F, c
(j)
V , a

(j)
V , PKi, i), 1 ≤ i, j, k ≤ s(n), but with respect to an uncovered public-key PKi, as S

has not yet learned the secret-key SKi and also S has no the NP-witness of the common input xk

(possessed by the real prover). The approach for S is to extract the corresponding secret-key SK i

in polynomial time (if such exists) and then go to the next phase where it simulates the simulation
from scratch again but with one more covered public-key. Recall that although the ΣOR in Stage-2 of
Phase-1 is with respect to the common input (V PTCPK,PKi), but the whole interactions of Phase-1
constitute an argument of knowledge of the secret-key SKi (as V PTCPK is sent by the honest prover).
By the proof of knowledge property (i.e. special soundness) of ΣOR, to extract the corresponding SKi,
S needs to send a new random challenge (i.e. the second-round message of the ΣOR of Phase-1). But
the problem here is that such random challenge may have been fixed (determined) by a (possibly) past

partial transcript (in which the determining message (xk, F, c
(j)
V , a

(j)
V , PKi, i) appeared at the first time)

due to the underlying random function used. This problem is bypassed precisely as in [7, 1]. That is,

S rewinds V ∗ to the point that V ∗ just sent (xk, F, c
(j)
V , a

(j)
V , PKi, i) at the first time, and sends back a

new random challenge by using a new random function.
The same analysis in [7, 1] shows that with overwhelming probabilities the rZK simulator S will finish

its simulation and output a simulated transcript in expected polynomial-time. The indistinguishability
between the simulated transcript and the real interaction transcript is from the (perfect) WI property
of the ΣOR of Phase-2. Actually, if we remove the ΣOR-protocol of Phase-1, then the remained interac-
tions constitute a constant-round rWI arguments on common input (x, PKi), as shown by the general
paradigm of [7] for achieving rWI from admissible systems. (Readers are referred to [7, 1] for more
details of the general paradigm.)

Comments: Note that in the proof of rZK, we require nothing about the public-keys registered
by V ∗ in F . What we need in the simulation is the special soundness of the ΣOR-protocol of Phase-1
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that holds with respect to any common input (in particular, any public-key registered by V ∗, whether
valid or not). That is, our protocol works in the real BPK model.

Concurrent soundness.
Suppose the transformed protocol depicted in Figure-1 does not satisfy concurrent soundness in the

BPK model, then according to the definition of concurrent soundness in the BPK model (described in
Section 3.1), there exists an s-concurrent malicious prover P ∗ such that in a concurrent attack issued
by P ∗ against an honest verifier V with public-key yV , with non-negligible probability q(n) there exists
a j, 1 6 j 6 s(n), such that V outputs “accept xj” in session j while xj 6∈ L. Then we will construct an
algorithm E that takes the public-key yV as input and outputs the corresponding secret-key xV with

non-negligible probability (q(n))2

s(n) in time poly(n) · 2nc2 < 2Nc1 , which breaks the hardness assumption
on the OWF fV used by V .

E randomly chooses j from {1, · · · , s(n)} and runs P ∗ as a subroutine by playing the role of the
honest verifier with public-key yV . In each session, after receiving a V PTCPK, E checks its validity
and then extracts the corresponding V PTCSK by brute-force searching in time 2nc2 (in case the
V PTCPK is valid), then sends a VPTC commitment to 0t (rather than to a random string of length
t as the honest verifier does), uses V PTCSK as the witness in the ΣOR-protocol of Phase-1 of that
session, and decommits the VPTC commitment to a random string of length t by using the trapdoor
V PTCSK in Phase-2 of that session. In the j-th session with respect to the common input xj selected

by P ∗ on the fly, denote by c
(j)
V the VPTC commitment (that commits to 0t) sent by E in the second

round, then in the Phase-2 of the j-th session after receiving a
(j)
P ∗ (the first-round message of Phase-2

of the j-th session), E decommits c
(j)
V to a random string e

(j)
V of length t. Whenever E receives a valid

z
(j)
P ∗ such that (a

(j)
P ∗ , e

(j)
V , z

(j)
P ∗) is an accepting conversation of the ΣOR of Phase-2 on (xj , yV ), E rewinds

P ∗ to the point that it just sent a
(j)
P ∗ , decommits c

(j)
V to a new random string e

(j)′
V 6= e

(j)
V (by using the

trapdoor V PTCSK), and runs P ∗ further. Whenever E receives again a valid z
(j)′
P ∗ and (a

(j)
P ∗ , e

(j)′
V , z

(j)′
P ∗ )

is an accepting conversation on (xj , yV ), then E stops.
Due to the public-key verifiability, the perfect hiding and trapdoorness properties of the underlying

VPTC scheme, and the perfect WI property of the ΣOR of Phase-1, with the same probability q(n) there
exists a j, 1 ≤ j ≤ s(n), such that P ∗ can convince E of a false xj 6∈ L in the j-th session, even E sends
VPTC commitments to 0t (rather than to random strings of length t) and uses the extracted V PTCSK
(rather than xV as used by the honest verifier) as its witness in the ΣOR of Phase-1. Conditioned on
E correctly guessed the value j, then with probability (q(n))2 E will extract either the witness wit for
xj ∈ L or the secret-key xV such that yV = fV (xV ), which is guaranteed by the special soundness of
the ΣOR of Phase-2. As we assume xj 6∈ L and E randomly guesses j from {1, · · · , s(n)}, we conclude

E outputs xV with probability (q(n))2

s(n) . Note that E works in poly(n) · 2nc2 < 2Nc1 time, which violates
the hardness assumption on the OWF fV used by V .

Comments: The public-key verifiability property of the underlying VPTC scheme is necessary for
the above concurrent soundness proof, as otherwise, as discussed in Section 1.2, the simulation of E
will be distinguishable from the real interactions between P ∗ and the honest verifier. We remark that
the complexity leveraging technique plays a critical role in the above proof of concurrent soundness.
Note that when E rewinds the concurrent malicious P ∗ in the above proof, E itself is also rewound
as P ∗ is concurrently interacting with it, from which the witness (i.e. V PTCSK) used by E in the
ΣOR of Phase-1 may be exposed. This is just the place the underlying complexity leveraging plays its
role, which says that breaking (or exposing) V PTCPK does not compromise the security of the OWF
fV used by the verifier. Actually, we do not know how to prove concurrent soundness under standard
polynomial hardness assumptions without complexity leveraging. �
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4 The Theoretical Constructions for NP

In this section, we show how to achieve rZK-CS arguments for any language in NP in the BPK model,
with NP-reductions but with weaker hardness assumptions and reduced (optimal) round-complexity.

4.1 5-Round rZK-CS arguments for NP in the BPK model under any preimage-
verifiable one-way function

First note that preimage-verifiable OWF is a generic and much weaker hardness assumption. In particu-
lar, any certified one-way permutation is a preimage-verifiable OWF. Before describing the construction,
we first recall some generic tools used.

4.1.1 Generic tools used

Perfectly-binding commitments. One-round perfectly-binding (computationally-hiding) commit-
ments can be constructed based on any one-way permutation OWP [4, 24]. Loosely speaking, given
a OWP f with a hard-core predict b (cf, [22]), on a security parameter N one commits to a bit σ by
uniformly selecting x ∈ {0, 1}N and sending (f(x), b(x) ⊕ σ) as a commitment, while keeping x as the
decommitment information.

Perfectly-binding commitments can also be constructed based on any one-way function but run in
two rounds [31]. On a security parameter N , let PRG : {0, 1}N −→ {0, 1}3N be a pseudorandom
generator, the Naor’s OWF-based two-round public-coin perfectly-binding commitment scheme works
as follows: In the first round, the commitment receiver sends a random string R ∈ {0, 1}3N to the
committer. In the second round, the committer uniformly selects a string s ∈ {0, 1}N at first; then to
commit to a bit 0 the committer sends PRG(s) as the commitment; to commit to a bit 1 the committer
sends PRG(s)⊕R as the commitment.

For the above perfectly-binding commitment schemes, we remark that if the underlying OWP or
OWF are secure against 2Nc1 -time adversaries for some constant c1, 0 < c1 < 1 on a security parameter
N , then the hiding property of corresponding perfectly-binding commitment schemes above also holds
against 2Nc1 -time adversaries.

Blum’s protocol for HC [5]. The n-parallel repetitions of Blum’s basic protocol for proving the
knowledge of Hamiltonian cycle on a given directed graph G [5] is just a 3-round public-coin WIPOK
for NP (with knowledge error 2−n) under any one-way permutation (as the first round of it involves
one-round perfectly-binding commitments of a random permutation of G). But it can be easily modified
into a 4-round public-coin WIPOK for NP under any OWF by employing Naor’s two-round (public-
coin) perfectly-binding commitment scheme [31]. The description of Blum’s protocol for HC is given in
Appendix A.

We remark that the WI property of Blum’s protocol for HC relies on the hiding property of the
underlying perfectly-binding commitment scheme (used in its first-round). If the hiding property of
the underlying perfectly-binding commitment scheme is secure against 2Nc1 -time adversaries for some
constant c1, 0 < c1 < 1 on a security parameter N , then the WI property of Blum’s protocol also holds
against 2Nc1 -time adversaries.

Feige-Shamir two-round trapdoor commitments [19]. Based on Blum’s protocol for HC,
Feige and Shamir developed a generic two-round (computationally-hiding and computationally-binding)
trapdoor commitment scheme [19], under either any one-way permutation or any OWF (depending on
the underlying perfectly-binding commitment scheme used). The TCPK of the FSTC scheme (i.e. its
first-round message) is (y = f(x), G) (for OWF-based solution, the first-round also includes a random
string serving as the first-round message of Naor’s OWF-based perfectly-binding commitment scheme),
where f is a OWF and G is a graph that is reduced from y by the Cook-Levin NP-reduction. The
corresponding trapdoor is x (or equivalently, a Hamiltonian cycle in G). The following is the description
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of the Feige-Shamir trapdoor commitment (FSTC) scheme, in which, for our purpose, we have assumed
the commitment receiver and the committer use different security parameters n and N , respectively.

Round-1. Let f be a OWF, the commitment receiver randomly selects an element x of length n in the
domain of f , computes y = f(x), reduces y (by Cook-Levin NP-reduction) to an instance of HC,
a graph G = (V,E) with q = |V | nodes, such that finding a Hamiltonian cycle in G is equivalent
to finding the preimage of y. Finally, it sends (y,G) to the committer. We remark that to get
OWF-based trapdoor commitments, the commitment receiver also sends a random string R of
length 3N , where N is the security parameter used by the committer.

Round-2. The committer first checks the NP-reduction from y to G and aborts if G is not reduced
from y. Otherwise, to commit to 0, the committer selects a random permutation, π, of the vertices
V , and commits (using the underlying perfectly-binding commitment scheme) to the entries of
the adjacency matrix of the resulting permutated graph. That is, it sends an q-by-q matrix
of commitments so that the (π(i), π(j))th entry is a commitment to 1 if (i, j) ∈ E, and is a
commitment to 0 otherwise; To commit to 1, the committer commits to an adjacency matrix
containing a randomly labeled q-cycle only.

Decommitment Stage. To decommit to 0, the committer sends π to the commitment receiver along
with the revealing of all commitments, and the receiver checks that the revealed graph is indeed
isomorphic to G via π; To decommit to 1, the committer only opens the entries of the adjacency
matrix that are corresponding to the randomly labeled cycle, and the receiver checks that all
revealed values are 1 and the corresponding entries form a simple q-cycle.

The (computational) trapdoorness property of the FSTC scheme is: After sending a commitment
to 0 (which is indistinguishable from a commitment to 1), one can decommit to 0 in the normal way.
However, it is also possible to decommit it to 1 if one knows a Hamiltonian cycle in G. Furthermore, the
distribution of a commitment to 0 together with the “trapdoor-assistant” decommitment information to
1 is indistinguishable from the distribution of a commitment to 1 together with the “real” decommitment
information to 1 (due to the hiding property of the underlying perfectly-binding commitment scheme).
This implies, by standard hybrid technique, that the distribution of commitments to 0n together with
“trapdoor-assistant” decommitment information to a random string êV of length n is indistinguishable
from the distribution of commitments to a random sting eV of length n together with the “real”
decommitment information to eV (we will use this property in the proof of concurrent soundness below).
Again, if the hiding property of the underlying perfectly-binding commitment scheme is secure against
subexponential-time adversaries, then both the hiding property and the trapdoorness property of the
FSTC scheme hold also against subexponential-time adversaries.

4.1.2 The protocol

The idea is to replace the ΣOR-protocols used in the protocol depicted in Figure-1 by Blum’s 4-round
OWF-based public-coin WIPOK for NP , replace the practical Naor-Reingold PRF by a general OWF-
based PRF, and replace the underlying VPTC scheme by the Feige-Shamir OWF-based two-round
trapdoor commitment. Also, in the key-generation phase, the OWF fV used by the honest verifier V is
not required any longer to be one that admits Σ-protocols and V can use any OWF fV in forming its
public-key yV = fV (xV ). But, for provable security, we need some cares on the implementation details.
Specifically, for the underlying FSTC scheme we require the OWF f used in forming its first-round
message be a preimage-verifiable OWF (this is necessary for proving concurrent soundness as discussed
in Section 1.2). Actually, this is also the only place that the theoretical protocol is not based on the
minimal hardness assumption of any OWF. For complexity-leveraging, the prover and the verifier use
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security parameters n and N respectively that are the same as specified in Figure-1. But, here besides
that the fV used in the key-generation phase is required to be secure against 2Nc1 -time adversaries, we
also require both the WI property of Blum’s protocol for HC (used in Phase-1 ) and the trapdoorness and
hiding properties of the Feige-Shamir trapdoor commitment scheme hold against 2Nc1 -time adversaries.

In more details, in the first-round (i.e. Stage-1 of Phase-1), the prover P sends (yP = fP (xP ), G,R)
to the verifier V , where fP is a preimage-verifiable OWF, xP is a string of length n chosen randomly from
the domain of fP , G is a directed graph that is reduced from yP by the Cook-Levin NP-reduction, and
R is a random string of length 3N serving as the first-round message of Naor’s OWF-based commitment
scheme [31]. Then (i.e. in the Stage-2 of Phase-1), V firstly checks the validity of (yP , G) and aborts
if they are not valid. Otherwise (i.e (yP , G) are valid), V randomly chooses a string eV from {0, 1}n,
computes cV = FSTCCom((yP , G,R), eV ), sends cV to P and proves to P by WIPOK for NP that it
knows either the preimage of yP or the preimage of yV (i.e. its public-key). After that (i.e. in Phase-2),
P proves to V by WIPOK for NP that it knows either the witness of the common input or the preimage
of yV , in which V sends the random challenge by just revealing the committed eV . It’s easy to check
the above resultant theoretical protocol still runs in 5 rounds (after round combinations accordingly).

Theorem 4.1 Under any preimage-verifiable OWF (used by the prover ) that is secure against standard
polynomial-time adversaries and any OWFs (used by the verifier) that are secure against subexponential-
time adversaries, the above (theoretical) protocol is a 5-round concurrently-sound rZK argument for NP.

Proof (sketch).
Note that we only require that the verifier uses OWFs that are secure against 2Nc1 -time adversaries,

which in turn guarantees that the security of verifier’s public-key, the WI property of Blum’s protocol
for HC (used in Phase-1 ) and the trapdoorness and hiding properties of the FSTC scheme all hold
against 2Nc1 -time adversaries. For the preimage-verifiable OWF fP used by the prover (in forming the
first-round message of the underlying FSTC scheme), it can be only secure against standard polynomial-
time adversaries, as the one-wayness of the preimage-verifiable OWF is only used to guarantee the
computationally-binding property of the underlying FSTC scheme against malicious polynomial-time
verifiers (in proving black-box resettable zero-knowledge).

Black-box resettable zero-knowledge.
The proof of black-box rZK for the above theoretical protocol is almost the same as that for the

protocol of Figure-1. Again, we remark that the above theoretical protocol works in the real BPK model
as we require nothing about public-keys registered by malicious verifiers.

Concurrent Soundness.
The proof of concurrent soundness is a bit more complicated than that for the protocol of Figure-1.

Suppose in the concurrent attack issued by an s-concurrent malicious P ∗ against an honest verifier V
with public-key yV , with non-negligible probability q(n) there exists a j, 1 6 j 6 s(n), such that V
outputs “accept xj” in session j while xj 6∈ L. The knowledge-extractor E (that on common input yV

runs P ∗ as a subroutine to output the preimage of yV ) works in the same way as described in Theorem
3.1. Now, we want to argue that P ∗ will also convince E of a false statement in one of the s(n) sessions
with probability p(n) that is negligibly close to q(n). This is trivial in Theorem 3.1 due to the perfect
hiding and trapdoorness properties of the underlying VPTC scheme and the perfect WI property of
ΣOR. But, for the above theoretical protocol case, both the hiding and trapdoorness properties of the
underlying FSTC scheme and the WI property of the Blum’s WIPOK for NP are only computationally
secure (against 2Nc1 -time adversaries). This is overcome by standard hybrid technique with a critical
use of the underlying complexity-leveraging.

Specifically, we consider a hybrid experiment, in which an probabilistic polynomial-time (PPT)
algorithm Ê takes (yV , xV ) as input such that yV = fV (xV ) (that is, Ê takes both the verifier’s public-
key and the corresponding secret-key as its input) and works in the same way as the knowledge-extractor
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E does but with the following modification: Ê uses xV as its witness in Stage-2 of Phase-1 of any session
just as the honest verifier does. Note that the difference between the interactions between P ∗ and the
honest verifier V and the interactions between P ∗ and Ê is that: in the real interactions between P ∗

and V , V always commits to (and accordingly decommits to) a random string of length n using the
underlying FSTC scheme, but in the interactions between P ∗ and Ê, Ê always commits to 0n and then
decommits to a random string of length n by using the brute-force extracted trapdoor xP ∗ (just as E
does). The difference between the interactions between P ∗ and E and the interactions between P ∗ and
Ê is that: E always uses the brute-force extracted xP ∗ as its witness in Stage-2 of Phase-1 of each
session, but Ê always uses the verifier’s secret-key xV as its witness (just as the honest verifier does).

Denote by q̂(n) the probability that P ∗ can convince Ê of a false statement in one of the s(n)
sessions, then if |q(n) − q̂(n)| is non-negligible, we can break the hiding and trapdoorness properties
of the underlying FSTC scheme in the following way: We run P ∗ as a subroutine and interact with
a player (who is either the honest verifier V or Ê), and for each common statement selected by P ∗

we verify its verity by just working in 2nc2 time. Whenever we find P ∗ successfully convinces a false
statement we output 1, otherwise we output 0. Clearly, by standard hybrid technique, if |q(n)− q̂(n)| is
non-negligible we can break the hiding and trapdoorness properties of the underlying FSTC scheme in
time poly(n) · 2nc2 < 2Nc1 . Similarly, we can also prove |q̂(n)− p(n)| is negligible, as otherwise we can
break the WI property of Blum’s protocol for NP in time poly(n) · 2nc2 < 2Nc1 . Finally, conditioned
on |q(n)− p(n)| is negligible, the rest of the proof is the same as described in Theorem 3.1. �

4.2 rZK-CS arguments for NP with optimal round-complexity in the (real) BPK
model

For the 5-round theoretical protocol developed in Section 4.1, if the verifier V uses a OWP-based
one-round perfectly-binding commitment scheme then the prover only needs to send (yP , G) in the
first-round. To further reduce the round-complexity, we want to combine (yP , G) into the third-round
of the 5-round protocol (that is from the prover to the verifier), thereby obtaining 4-round (that is
optimal) rZK-CS arguments for NP . Recall that (yP , G) is used by V in two ways: On one hand, it
forms the NP-statement (to be precise, a directed graph reduced from (yP , yV ) by NP-reduction) to
be proved by V by Blum’s WIPOK for HC in Stage-2 of Phase-1; On the other hand, it serves TCPK
of the underlying FSTC scheme with xP (or equivalently, a Hamiltonian cycle of G) as the trapdoor
TCSK. To combine (yP , G) into the third-round while remaining the same protocol structure, we need
the following cryptographic tools.

1. A 3-round OWP-based WIPOK for HC, in which the prover sends the first-round message without
knowing the NP-statement (i.e. a directed graph) to be proved, other than the lower and upper
bounds of the size of the graph (guaranteed by the underlying NP-reduction).

2. A one-round OWP-based trapdoor commitment scheme based on HC, in which the committer
sends the one-round commitments without knowing the HC graph G other than the lower and
upper bounds of its size (guaranteed by the underlying NP-reduction from yP to G), and G is
only sent in the decommitment stage after the commitment stage is finished.

For the first cryptographic tool of above, we note that the Lapidot-Shamir OWP-based 3-round
WIPOK for HC [28] (also described in [21]) is just the protocol of the type we need. In the Lapidot-
Shamir protocol, the prover sends the first-round message with only the knowledge of the size of the
Hamiltonian graph to be proved. But, it can be easily extended to the case that the prover knows only
the lower and upper bounds of the size of the graph to be proved. Below, we recall the details of the
Lapidot-Shamir WIPOK for HC, which is the n-parallel repetitions of the following basic protocol.
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Round-1. The prover P commits to a adjacency matrix for a randomly-labeled cycle C of size q
(without knowing the Hamiltonian graph to be proved). The commitment is done bit-by-bit using
the one-round OWP-based perfectly-binding commitment scheme.

Round-2. The verifier V responds with a randomly chosen bit b

Round-3. Now, P is given the Hamiltonian graph G = (V,E) with size q = |V | to be proved and a
Hamiltonian cycle CG in G as its private input. If b = 0, then P opens all commitments (and V
checks the revealed graph is indeed a q-cycle). If b = 1, then P sends a random permutation π
mapping CG (i.e. its private witness) to C (committed in its first-round message), and for each
non-edge of G (i, j) 6∈ E (1 ≤ i, j ≤ q), P opens the value (that should be 0) committed at
the (π(i), π(j)) entry of the adjacency matrix sent in the first-round message (and V checks all
revealed values are 0 and the unrevealed entries in the committed adjacency matrix constitute a
graph that is isomorphic to G via the permutation π).

In the above description, we have assumed P knows the size of the graph G to be proved. But, it
can be easily extended to the case that P only knows the lower-bound l(n) and the upper-bound u(n)
of the size of G. In this case, in the first-round P commits to (u(n)− l(n)+1) many adjacency matrices
for (u(n)− l(n)+ 1) many cycles with sizes ranging from l(n) to u(n). In the third-round, after the size
of G is clear, P only decommits with respect to the unique cycle of according size.

Thus, the big challenge here is to develop a one-round trapdoor commitment scheme of the above
described type, which however, to our knowledge, is unknown in the literature previously. To our
purpose, we develop the trapdoor commitment of such type in this work, which is described below:

One-Round Commitment Stage. To commit to a bit 0, the committer sends a q-by-q adjacency
matrix of commitments with each entry of the adjacency matrix committing to 0. To commit to a
bit 1, the committer sends a q-by-q adjacency matrix of commitments such that the entries com-
mitting to 1 constitute a randomly-labeled cycle C. We remark that the underlying commitment
scheme used in this stage is the one-round OWP-based perfectly-binding commitment scheme.

Two-Round Decommitment Stage. The commitment receiver sends a Hamiltonian graph G =
(V,E) with size q = |V | to the committer. Then, to decommit to 0, the committer sends a
random permutation π, and for each non-edge of G (i, j) 6∈ E, the committer reveals the value
(that is 0) that is committed at the (π(i), π(j)) position of the adjacency matrix sent in the
commitment stage (and the receiver checks all revealed values are 0 and the unrevealed positions
in the adjacency matrix constitute a graph that is isomorphic to G via the permutation π). To
decommit to 1, the committer only reveals the committed cycle (and the receiver checks that all
revealed values are 1 and the revealed entries constitute a q-cycle).

The computationally-hiding property of the above scheme is directly from that of the underlying
perfectly-binding commitment scheme. The computationally-binding property of the above scheme is
from the fact that the ability to decommit to both 0 and 1 for the same commitment-stage message
implies extracting a Hamiltonian cycle of G. The trapdoorness property is from the following observa-
tion: After sending a commitment to 1, one can decommit to 1 in the normal way. However, it is also
possible to decommit it to 0 if one knows the Hamiltonian cycle of G. Finally, note that in the above
description we have assumed the committer knows the size of the graph G sent by the commitment
receiver in the decommitment stage. But it can be easily extended to the case that the committer only
knows the lower-bound l(n) and the upper-bound u(n) of the size of G. In this case, in commitment
stage P sends (u(n) − l(n) + 1) many adjacency matrices with vertex-sizes ranging from l(n) to u(n).
In the decommitment stage, after the size of G is clear, P only decommits with respect to the unique
adjacency matrix of according size.
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Comments: Although the above one-round trapdoor commitment scheme is developed here to
reduce round-complexity for rZK, but we remark that it is of independent value and, in particular, can
be used to reduce round-complexity of other cryptographic protocols involving trapdoor commitments.

Finally, using almost the same proof procedure of Theorem 4.1, we can prove the following theorem:

Theorem 4.2 Under any preimage-verifiable OWF (used by the prover ) that is secure against standard
polynomial-time adversaries and any OWF and OWP (used by the verifier in the key-generation phase
and the protocol main-body respectively) that are secure against subexponential-time adversaries, any
language in NP has a 4-round (that is optimal) rZK-CS argument. In particular, this implies 4-round
rZK-CS arguments for NP can be implemented with any certified one-way permutation.
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Appendix A. Blum’s Protocol for HC [5]

In the main text, we use the n-parallel repetitions of the following basic proof system for the directed
Hamiltonian Cycle (HC) problem which is NP-Complete.

Common input. A directed graph G = (V,E) with q = |V | nodes.

Prover’s private input. A directed Hamiltonian cycle CG in G.

Round-1. The prover selects a random permutation, π, of the vertices V , and commits (using a
perfectly-binding commitment scheme) to the entries of the adjacency matrix of the resulting
permutated graph. That is, it sends a q-by-q matrix of commitments so that the (π(i), π(j))th

entry is a commitment to 1 if (i, j) ∈ E, and is a commitment to 0 otherwise.

Round-2. The verifier uniformly selects a bit b ∈ {0, 1} and sends it to the prover.

Round-3. If b = 0 then the prover sends π to the verifier along with the revealing of all commitments
(and the verifier checks that the revealed graph is indeed isomorphic to G via π); If b = 1, the
prover reveals to the verifier only the commitments to entries (π(i), π(j)) with (i, j) ∈ CG (and the
verifier checks that all revealed values are 1 and the corresponding entries form a simple q-cycle).
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