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Abstract

We present constant-round concurrently knowledge-extractable black-box resettable zero-knowledge
(rZK-CKE) arguments forNP in the bare public-key (BPK) model. We give minimal (sub-exponential)
hardness assumption based protocols as well as round-optimal protocols (still under general hardness
assumptions). To our knowledge, our protocols are the first ZK protocols that provably provide both
resettable/concurrent prover security and concurrent verifier security in public-key models. Here,
the notion of concurrent knowledge-extractability roughly means that no malicious polynomial-time
prover can convince an honest verifier of any (whether false or true) statement without “knowing” a
corresponding NP-witness even by concurrently interleaving interactions in public-key models when
verifiers register public-keys. We show that concurrent knowledge-extractability is strictly stronger
than “concurrent soundness” (under any sub-exponentially strong one-way permutation) for con-
currently proving NP statements to honest verifiers with public-keys. In particular, we show that
previous concurrent zero-knowledge protocols in the BPK model that achieved concurrent sound-
ness security and are also traditional arguments of knowledge actually fail to satisfy this stronger
security notion (this is demonstrated by concrete attacks). Our work deepens the understanding of
the subtleties of concurrent verifier security in public-key settings, and may serve as building blocks
in designing other round-efficient concurrently secure protocols in public-key models that use, in
particular, argument of knowledge (AOK) protocols as building blocks.

∗RSA Laboratories and Department of Computer Science, Columbia University, New York, NY, USA.
moti@cs.columbia.edu

†Software School, School of Information Science and Engineering, Fudan University, Shanghai 200433, China.
ylzhao@fudan.edu.cn

0

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 48 (2005)

ISSN 1433-8092




1 Introduction

Resettable zero-knowledge (rZK). rZK is the strongest version of the remarkable notion of zero-
knowledge (ZK) [35] to date. It was put forth by Canetti, Goldreich, Goldwasser and Micali [11],
motivated by implementing zero-knowledge provers using smart-cards or other devices that may be
(maliciously) reset to their initial conditions and/or cannot afford to generate fresh randomness for each
new invocation. rZK also preserves the prover’s security when the protocol is executed concurrently
in an asynchronous network like the Internet (in fact, rZK is a generalization and strengthening of the
notion of concurrent zero-knowledge (cZK) introduced by Dwork, Naor and Sahai [22]).

The bare public-key model. To get constant-round rZK protocols, [11] introduced a simple
model with very appealing trust requirement, the bare public-key (BPK) model. A protocol in BPK
model simply assumes that all verifiers have deposited a public key in a public file before any interaction
takes place among the users. (The model does allow dynamic key registrations and readers are referred
to [11] for the details of dealing with dynamic key registrations.) In particular, an adversary may deposit
polynomially many (possibly invalid or fake) public keys without any guarantee on the properties of
the registered public-keys. The BPK model is thus very simple, and it is in fact a weaker version of the
frequently used public-key infrastructure (PKI) model, which underlies any public-key cryptosystem or
any digital signature scheme. More discussions on the BPK model are presented in Appendix A.

Verifier security in public-key models. Verifier security in public-key models when verifiers
register public-keys turns out to be more complicated and subtle than otherwise. Micali and Reyzin
showed that under standard intractability assumptions there are four distinct meaningful notions of
soundness, i.e., from weaker to stronger: one-time, sequential, concurrent and resettable soundness
[44]. In this work, we focus on concurrent soundness, which roughly means that a malicious prover P ∗

cannot convince the honest verifier V of a false statement even when P ∗ is allowed multiple interleaving
interactions with V . Micali and Reyzin also showed that any (resettable or not) black-box ZK protocols
with concurrent soundness in the BPK model (for non-trivial languages outside BPP) must run at least
four rounds [44]. It is also shown in [3, 44] that (whether resettable or not) black-box ZK arguments
with resettable soundness only exist for trivial (i.e, BPP) languages (whether in the BPK model or
not). Thus, it is commonly suggested that concurrent soundness might be the best one can achieve for
(concurrent) verifier security of black-box (resettable) ZK arguments in the BPK model [18].

1.1 Our contributions

• Result: We show that both concurrent soundness and traditional argument of knowledge do
not guarantee concurrent verifier security in public-key models, by presenting concrete attacks to
natural existing concurrent zero-knowledge protocols in the BPK model that achieved concurrent
soundness and are also normal arguments of knowledge. This motivates us to introduce a stronger
security notion for concurrently proving NP statements to honest verifiers with registered public-
keys, named “(same public-key sub-exponential-time) concurrent knowledge-extractability”, along
with motivations and justifications. Here, concurrent knowledge-extractability roughly means
that no malicious polynomial-time prover can convince an honest verifier of any (whether false or
true) statement without “knowing” a corresponding NP-witness even by concurrent interleaving
interactions with the honest verifier in public-key models when verifiers register public-keys. We
show that contrary to the above mentioned belief, concurrent knowledge-extractability is strictly
stronger than concurrent soundness (under any sub-exponentially strong OWP) for concurrent
verifier security in public-key models. Actually, as we shall see, no previous rZK or cZK protocols
in the BPK model could be provably secure under this stronger concurrent verifier security. That
is, ZK protocols that provably provide both concurrent/resettable prover security and concurrent
verifier security in public-key models are unknown previously. (We also show in Section 3 why it is
so hard to achieve concurrent knowledge-extractability for ZK protocols in the BPK model.) This
deepens our understandings of the subtleties of concurrent verifier security in public-key models.

In comparison with the notions of “non-black-box argument of knowledge” of [3] and “concurrent
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argument of knowledge” of Di Crescenzo and Visconti [20], the knowledge-extraction in our notion is
done in super-polynomial-time with black-box accessing the concurrent malicious prover and using the
same verifier’s public-key. We remark that super-polynomial-time black-box knowledge-extraction is
intrinsic in the resettable setting, as resettable (ZK or WI) protocols with black-box polynomial-time
knowledge-extraction are possible only for trivial languages [11, 3]. Also, as we shall see, same public-key
knowledge-extraction with complexity leveraging (allowed by the sub-exponential assumptions) appears
to be the only way at present to bypass the obstacle of concurrent general composition [43, 37] for
achieving concurrently knowledge-extractable ZK protocols in the BPK model. We also note that, to
our knowledge, it is unknown whether traditional proof/argument of knowledge is strictly stronger than
traditional soundness (in the plain model or in public-key models). There are many (zero-knowledge)
protocols (e.g., the protocols of [34, 32]) that are sound but may not provably be argument/proof of
knowledge. But, for those protocols we do not know how a malicious prover can indeed convince a true
statement without knowing any witness.

Then, we show how to achieve constant-round concurrently knowledge-extractably secure rZK (rZK-
CKE) arguments for NP in the BPK model, which leads us to new tools (that might be possibly
independent interest) and to answering some basic open questions (since rZK-CKE implies concurrently
sound rZK and since there, questions like reduced complexity assumptions were open). More specifically
we have the following results:

• (Main) Result: We achieve constant-round rZK-CKE arguments for NP in the BPK model
under the minimal (sub-exponential) hardness assumptions. Specifically, we present 7-round (resp.
6-round) rZK-CKE arguments for NP in the BPK model under any (sub-exponentially strong)
one-way function OWF (resp. one-way permutation OWP). To this end, we present constant-
round resettable witness indistinguishability (rWI) arguments forNP in the standard model under
minimal (sub-exponential) hardness assumptions, which might be possibly of independent interest.

• Result: We achieve round-optimal (i.e., 4-round) rZK-CKE arguments for NP in the BPK model
under any (sub-exponentially strong) OWP and any (standard polynomially secure) preimage-
verifiable OWF. Note that preimage-verifiable OWF is a generic and actually quite weak hardness
assumption that includes, in particular, any certified one-way permutation and any 1-1 length-
preserving one-way function. This implies that round-optimal rZK-CKE arguments for NP in
the BPK model can be based on any certified one-way permutation. To this end, we develop a
one-round trapdoor commitment scheme (that is based on any OWP), which might be possibly
of independent interest.

• Result: We also present round-optimal rZK-CKE arguments for NP in the BPK model under
any (sub-exponentially strong) OWP and the existence of (standard polynomially secure) zaps.
Note that the existence of (single-theorem) NIZK proofs for NP implies the existence of zaps [23].

Since zero-knowledge plays a central role in cryptographic protocol design and rZK is a generalization
of the notion of cZK, and also since the BPK model is a very fundamental cryptographic model,
we suggest that our work could be potentially relevant to public-key cryptography in a potentially
large scope. In particular, our protocols could be potentially employed as building blocks to achieve
other round-efficient concurrently secure schemes in public-key models that use, in particular, AOK
protocols as building blocks. Note also that (zero-knowledge) argument of knowledge is itself a very
basic cryptographic primitive.

Details of related works and comparisons are presented in Appendix B, due to space limitation.

2 Preliminaries

Definitions of concurrent soundness, rZK and rWI in the BPK model. We assume the readers
are familiar with these definitions, presented in detail in Appendix C.
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Major cryptographic tools used. We also assume that readers are familiar with the following
cryptographic tools whose detailed descriptions are in Appendix D.

(1) Preimage-verifiable one-way functions: A OWF f is called preimage-verifiable if there exists a
polynomial-time computable predicate Df : {0, 1}∗ −→ {0, 1} such that for any string y, Df (y) = 1 if
and only if there exists an x such that y = f(x). Preimage-verifiable OWF is a generic and actually quite
weak hardness assumption that includes, in particular, any certified OWP and any 1-1 length-preserving
OWF. Detailed discussions on the relationship among normal OWF, preimage-verifiable OWF and 1-1
OWF are presented in Appendix D.

(2) Perfectly-binding commitment schemes: We employ both the OWP based one-round perfectly-
binding commitment scheme [7, 34], and Naor’s OWF-based 2-round scheme [46]. Note that the first-
round message of Naor’s commitment scheme can be fixed once and for all and, in particular, can be
posted as part of a public-key in the public-key setting. We remark that if the underlying OWP or
OWF are secure against 2nc

-time adversaries for some constant c, 0 < c < 1, on a security parameter
n, then the hiding property of the corresponding perfectly-binding commitment schemes above also holds
against 2nc

-time adversaries.
(3) Public-coin witness indistinguishability (WI) proof of knowledge (POK) systems for NP: One

is Blum’s protocol for directed Hamiltonian cycle DHC [8], and another is the Lapidot-Shamir protocol
for DHC [41]. The salient feature of the Lapidot-Shamir protocol is that the prover sends the first-
round message without knowing the statement to be proved other than its size. We remark that the
WI property of Blum’s protocol or the Lapidot-Shamir protocol for HC relies on the hiding property of
the underlying perfectly-binding commitment scheme (used in its first-round). If the hiding property
of the underlying perfectly-binding commitment scheme is secure against 2nc

-time adversaries for some
constant c, 0 < c < 1, on a security parameter n, then the WI property also holds against 2nc

-time
adversaries.

(4) Trapdoor commitment schemes: Normal trapdoor commitment schemes run in two rounds,
in which the (honest) commitment receiver generates and sends the trapdoor commitment public key
(TCPK) in the first-round (while keeping the trapdoor secret key (TCSK) private). For the Feige-
Shamir trapdoor commitment scheme (FSTC), TCPK consists of (y = f(x), G) (for OWF-based solu-
tion, the TCPK also includes a random string R serving as the first-round message of Naor’s OWF-
based perfectly-binding commitment scheme), where f is a OWF and G is a graph that is reduced
from y by the Cook-Levin NP-reduction. The corresponding trapdoor is x (or equivalently, a Hamil-
tonian cycle in G). Note that the first-round message, i.e., TCPK, can be fixed once and for all.
The commitment sender forms the second-round message by using (either OWP-based one-round or
Naor’s OWF-based two-round) perfectly-binding commitment scheme. Again, if the hiding property of
the underlying perfectly-binding commitment scheme is secure against sub-exponential-time adversaries,
then both the hiding property and the trapdoorness property of the FSTC scheme hold also against
sub-exponential-time adversaries.

3 Concurrent Knowledge-Extractability in Public-Key Models: Mo-
tivations and Discussions

In this section we show that concurrent verifier security in public-key models is more complicated
and subtle than currently known. In particular, we show that concurrent soundness is not sufficient for
concurrent verifier security in public-key models. The underlying reason is that indeed a malicious prover
cannot convince the honest verifier (with registered public-key) of a false statement in its concurrent
interleaving interactions (just as guaranteed by concurrent soundness), nevertheless it may be able
to convince the honest verifier of a true statement (in particular, verifier’s public-key related one)
without knowing any corresponding NP-witness via concurrent interleaving interactions. For example,
all known black-box rZK protocols in the BPK model run a sub-protocol in which the verifier proves
to the prover the knowledge of the secret-key corresponding to its public-key. Thus, a malicious prover
could potentially malleate the sub-protocol interactions of one session into successful interactions of
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another session on a true (in particular, verifier’s public-key related) statement but without knowing
any corresponding NP-witness. This potential vulnerability turns out to be a real security threat
for cryptographic protocols running concurrently in public-key models (when verifiers register public-
keys), in particular for rZK protocols in the BPK model when they are used as (smart-card based)
identification schemes running over the Internet (which is just the original motivation of rZK). In
particular, we present concrete attacks to natural existing ZK protocols in the BPK model that achieved
concurrent soundness and are also normal arguments of knowledge. Note also that the traditional
notion of proof/argument of knowledge is also originally motivated and introduced to formalize the
verifier security of ZK protocols when they are used as identification schemes (as advocated in [28, 27]),
showing that the traditional soundness notion is not sufficient in such cases [5].

This motivates us to introduce a stronger concurrent verifier security notion in public-key mod-
els, called (same public-key sub-exponential-time black-box) concurrent knowledge-extractability, which
roughly means that a malicious prover can convince the honest verifier with its registered public-key of
a statement in the concurrent interactions only if it knows a corresponding NP-witness.

Definition 3.1 (distribution of sub-exponentially hard instances) Let L ∈ NP, and let RL be

a witness relation for L. Let XL
def
= {Xn}n∈N be a probability ensemble such that Xn ranges over

L∩{0, 1}n. We say XL is sub-exponentially hard for RL if for some constant cL, 0 < cL < 1, for every
sufficiently large n, and every circuit C of size at most 2ncL , Pr[C(Xn, 1n) ∈ RL(Xn)] < 2−ncL . We set
cL be 1 if XL is not sub-exponentially hard.

For example, if f is a (sub-exponentially strong) one-way function, then the probability ensemble
{f(Un)}n∈N is (sub-exponentially) hard for the witness relation {(f(x), x) : x ∈ {0, 1}∗}, where Un

is uniform over {0, 1}n.

Definition 3.2 ((same public-key sub-exponential-time) concurrent knowledge-extractability)
We say that a protocol 〈P, V 〉 for a language L is (black-box) concurrently knowledge-extractable in the
BPK model, if there exists a sub-exponential-time (black-box) knowledge-extractor E such that for any
honest verifier V with its registered public-key PK, for any sufficiently large n and any (whether false or
true) sufficiently-long x of length poly(n), for all positive polynomials s and all s-concurrent malicious
prover P ∗ (as defined in Appendix C), if P ∗ can convince the honest verifier (with its registered public-
key PK) of the statement “x ∈ L” with non-negligible probabilities in the concurrent interactions, then
the knowledge-extractor, on the same verifier’s public-key PK with oracle accessing to P ∗, will output
a witness for x ∈ L also with non-negligible probabilities in time 2nc

for some constant c, 0 < c < cL,
where cL is the constant defined in Definition 3.1.

Below, we highlight several subtle points about this definition.
The first point is that in the above definition the (black-box) knowledge extractor works in sub-

exponential-time (rather than polynomial-time as in the traditional definition of argument of knowl-
edge). The reason is that for rZK protocols we cannot count on the (black-box ) knowledge-extractor
working in polynomial-time, as rZK (black-box) arguments of knowledge exist only for BPP languages
[3]. Therefore, we relax the definition in resettable settings by requiring the black-box knowledge-
extractor to work in sub-exponential-time. This relaxation is justified by the fact that all known black-
box rZK protocols in the BPK model are under sub-exponential hardness assumptions. In particular,
we can assume that x is a 2ncL -hard instance for L (as defined in Definition 3.1). Now, suppose a
polynomial-time concurrent malicious prover can convince the honest verifier of “x ∈ L” with non-
negligible probabilities (by concurrent interleaving interactions), then the existence of the 2nc

-time,
0 < c < cL, knowledge-extractor contradicts the underlying sub-exponential hardness assumption (or
just the fact that x 6∈ L in case x 6∈ L), which implies that a polynomial-time concurrent malicious
prover can convince the honest verifier (with its public-key) of “x ∈ L” in the concurrent interactions
only if it “knows” a corresponding NP-witness. This shows, in particular, that concurrent knowledge-
extractability implies (i.e., is stronger than) concurrent soundness for concurrent verifier security in
public-key models.
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The second point is that in our definition of concurrent knowledge-extractability, we require the
knowledge-extractor to use the same verifier’s public-key in its knowledge-extraction (i.e., without know-
ing the corresponding secret-key). We remark that, as we shall see in the security analyses of Section
4, same public-key knowledge-extraction with complexity leveraging (allowed by the sub-exponential
assumptions) appears to be the only way at present to get around the obstacle of concurrent general
composition for achieving concurrently knowledge-extractable ZK protocols in the BPK model. The
underlying reason is that if the knowledge-extractor is allowed to generate simulated public-key (i.e.,
it would know the corresponding secret-key of the simulated public-key), and we aim for ZK protocols
with black-box polynomial-time concurrent knowledge-extraction in the BPK model, then for provable
security we might in general need to require the sub-protocol (from verifier to prover) to remain secure
under concurrent general composition. The reason is that the sub-protocol (from verifier to prover) is
concurrently composed with a different sub-protocol (from prover to verifier), and also the prover (who
plays the role of verifier in the sub-protocol from verifier to prover) has no registered public-keys. The
notion of concurrent general composition is introduced by Lindell [43], which considers the security of a
protocol when it is run concurrently with other different protocols (this is in contrast to the notion of
concurrent self composition introduced in [42] that considers the case that a single protocol is concur-
rently run many times). Concurrent general composition is a very strong security notion, which implies,
in particular, concurrent non-malleability. It is shown in [43] that concurrent general composition is
equivalent to a natural relaxed variant of the robust security notion of universal composability [10], and
that there are large classes of two-party functionalities for which it is impossible to obtain protocols that
remain secure under concurrent general (and even much weaker, parallel) composition in the standard
model and even in the timing model without specified delays [37].

Thirdly, in comparison with the traditional definition of arguments of knowledge, in our definition we
do not explicitly introduce the threshold (i.e., the error probability κ in Definition D.6) for knowledge-
extractability. Rather, we only simply require that for any x if P ∗ can convince the statement “x ∈ L”
with non-negligible probabilities (in its concurrent interactions with V ), then knowledge-extractability
will also be done with non-negligible probability. This simplified treatment suffices our purpose for
showing that concurrent knowledge-extractability implies concurrent soundness.

Concurrent knowledge-extractability is strictly stronger than concurrent soundness in
public-key models. To show that it is strictly stronger, we show that both the protocol of [53] (that
is sequentially-sound cZK argument of knowledge in the BPK model) and the protocol of [19] (that
is concurrently-sound cZK argument of knowledge) are not concurrently knowledge-extractable in the
BPK model under any sub-exponentially strong OWP, by identifying concrete concurrent interleaving
and malleating attacks that are possibly of independent interest. Actually, as clarified, no existing rZK
or cZK protocols in the BPK model could be provably secure under this stronger concurrent verifier
security. The concurrent interleaving and malleating attacks are presented in detail in Appendix E.

4 Constant-Round rZK-CKE Arguments for NP in the BPK model
under Minimal Hardness Assumption

The high-level overview of the protocol. We first convey basic ideas and a high-level overview
of the protocol. Let fV be any (sub-exponentially strong) OWF, each (honest) verifier V randomly
selects an element xV from the domain of fV , and publishes yV = fV (xV ) as its public-key with xV

as its secret-key. Let L be an NP-language and x ∈ L be the common input, the main-body of the
protocol goes as follows: The honest prover P first generates and sends a hard-instance using a standard
polynomially-secure OWF fP . The hard-instance is then fixed once and for all. Then, P proves to V
the existence of the preimage of the hard-instance, by executing a OWF-based resettable witness-hiding
(rWH) protocol. After that, V proves to P that it knows either the preimage of yV (i.e., its secret-key
xV ) or the preimage of the hard-instance generated by P , by executing a OWF-based constant-round
WIPOK protocol for NP. Finally, P proves to V that it knows either a witness for x ∈ L or the
preimage of yV (i.e., V ’s secret-key), by executing another OWF-based constant-round rWI argument
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for NP . The detailed protocol description is depicted in Figure 1 (page 7).
The underlying complexity-leveraging. For this protocol to be provably secure, we employ the

complexity-leveraging technique (that is originally introduced in [11] and used in all previous black-box
rZK systems in the BPK model). Specifically, the verifier V uses a security parameter N (in generating
messages from it) that is also the system security parameter. But, the prover P uses a relatively smaller
security parameter n (that is still polynomially related to N). The justification and discussions of
the complexity-leveraging technique are given in [11]. Here, we additionally remark that, pragmatically
speaking, letting the verifier and the prover use different security parameters is quite reasonable in the
resettable setting, in which the prover is implemented by smart-cards or clients that have relatively
limited computational resources and power and the verifier is normally implemented by servers that
have much more computational resources and power.

Specifically, the security parameters are set as follows. On the system parameter N , suppose fV is
secure against 2NcV -time adversaries for some constant cV , 0 < cV < 1. And for any x ∈ L∩{0, 1}poly(N),
let cL, 0 < cL 6 1, be the constant defined in Definition 3.1. Let c be any constant such that 0 < c <
min{cV , cL} (in other words, min{cV , cL} = c + c′ for another constant c′, 0 < c′ < 1). The prover uses
a relatively smaller security parameter n and uses a standard polynomially-secure OWF fP that can be
broken (brute-force wise) in time 2ncP for some constant cP , cP > 1. Let ε be any constant such that
ε > cP

c
, then we set N = nε. Note that N and n are polynomially related. That is, any quantity that is a

polynomial of N is also (another) polynomial of n. This complexity leveraging guarantees that although
any poly(n) · 2ncP -time adversary can break fP on a security parameter n, it is still infeasible to break
the one-wayness of fV (because poly(n) ·2ncP � 2NcV ). Also note that any poly(n) ·2ncP -time algorithm
cannot output a witness for x ∈ L with non-negligible probabilities, in case x is a sub-exponentially hard
instance or just x 6∈ L (because poly(n) ·2ncP � 2NcL ). However, we show that for any (whether true or
not) common input x ∈ {0, 1}poly(N), if a PPT concurrent malicious P ∗ can convince V of the statement
“x ∈ L” with non-negligible probabilities in its concurrent interactions, then there exists a black-box
knowledge-extractor that, on input yV (i.e., V ’s public-key), works in poly(n) · 2ncP -time and outputs a
witness for x ∈ L also with non-negligible probabilities. Thus, under reasonable (i.e., sub-exponential)
hardness assumptions on the language L, no PPT concurrent malicious prover can convince V of any
(sufficiently long) statement without “knowing” a witness.

The OWF-based protocol depicted in Figure 1 (page 7) runs in 7 rounds after some round combi-
nations. In particular, the first two rounds of Phase-4 can be combined into previous phases. Actually,
as we shall see in Section 5, the round-complexity can be further reduced to six but under any (sub-
exponentially strong) OWP. Now, for the protocol depicted in Figure-1, we have the following theorem:

Theorem 4.1 Assuming the OWF fP (used by the prover) is secure against standard polynomial-time
adversaries, and the OWF fV (used by the verifier) is secure against sub-exponential-time adversaries,
the protocol depicted in Figure-1 is a constant-round concurrently knowledge-extractably secure rZK
(rZK-CKE) argument for NP in the BPK model.

Proof (sketch). We present a brief sketch of the proof of Theorem 4.1; a detailed proof is given in
Appendix F.

Black-box resettable zero-knowledge.
For any s-resetting adversary V ∗ (as defined in Appendix C) who receives s(N) distinct strings x̄ =

{x1, · · · , xs(N)}, xi ∈ L ∩ {0, 1}poly(N) for each i (1 6 i 6 s(N)), and outputs an arbitrary public-file F
containing s(N) entries PK1, · · · , PKs(N) in its first stage, we say a public-key PKj in F , 1 ≤ j ≤ s(N),
is “covered” if the rZK simulator S has already learnt (extracted) the corresponding secret-key SKj (if
such exists). In its second stage, V ∗ is given oracle access to (s(N))3 prover instances P (xi, PKj , γk),

1 6 i, j, k 6 s(N). We denote by Dt = (xi, F, (j, PKj), (y
(0)
P , y

(1)
P , GP , RP )k, (c

(0)
V ∗ , c

(1)
V ∗ , aV ∗)t) the “de-

termining” message of the t-th session with respect to common input xi and public-key PKj and the
honest prover instance P (·, ·, γk), 1 ≤ i, j, k ≤ s(N) and 1 6 t 6 (s(N))3. As discussed in Appendix C
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Key generation. Let fV be any OWF that is secure against 2NcV

-time adversaries. On a security parameter N ,
each honest verifier V randomly selects an element xV of length N , computes yV = fV (xV ), publishes yV as its
public-key PK while keeping xV as its secret-key SK. (If P uses Naor’s OWF-based perfectly-binding commitment
scheme in Phase-2 or Phase-4 (that is run on security parameter n), V also deposits a random string RV of length
3n as a part of its public-key serving as the first-round message of Naor’s commitment scheme used by P .)

Common input. An element x ∈ L∩{0, 1}poly(N) (let cL, 0 < cL 6 1, be the constant defined in Definition 3.1.),

the public-file F and an index j that specifies the j-th entry of F , i.e., PKj = (y
(j)
V , R

(j)
V ). Note that the

system security parameter is N .

P private input. An NP-witness w for x ∈ L, a pair of random strings (γ1, γ2), where γ1 is a poly(n)-bit string
and γ2 is an n-bit string serving as the randomness seed of a PRF.

V private input. SKj . For simplicity of presentation, except explicitly clarified we denote PKj = fV (SKj).

Complexity-leverage used. Let cV , 0 < cV < 1, be the constant that the one-wayness of the OWF fV , and thus
the hiding property of the underlying perfectly-binding commitment scheme used by the verifier all hold against any
circuit of size 2NcV

(which in turn guarantees that the WI property of the underlying WI protocol for NP executed
in Stage-2 of Phase-1 and Phase-3, the hiding and trapdoorness properties of the underlying trapdoor commitment
scheme all hold against any circuit of size 2NcV

). The prover uses a relatively smaller security parameter n.

Let cP , cP > 1, be the constant that: for all sufficiently large n’s, the size of GP (reduced from (y
(0)
P , y

(1)
P )) is

bounded by ncP , which in turn implies that the perfectly-binding commitment scheme used by the prover (that is
run on the security parameter n) can be brute-force decommitted in time 2ncP

. Let c be any constant such that
0 < c < min{cV , cL} and ε be any constant such that ε > cP

c
, then we set N = nε.

Phase-1. Phase-1 consists of two stages:

Stage-1. Let fP be any (polynomially-secure) OWF. On security parameter n, P randomly selects two

elements x
(0)
P and x

(1)
P of length n each in the domain of fP , computes y

(b)
P = fP (x

(b)
P ) for b ∈ {0, 1}, re-

duces (y
(0)
P , y

(1)
P ) to a directed graph GP by Cook-Levin NP-reduction such that finding a Hamiltonian

cycle in GP is equivalent to finding the preimage of either y
(0)
P or y

(1)
P . For OWF-based solution, P also

randomly selects a string RP of length 3N serving as the first-round message of Naor’s OWF-based
perfectly-binding commitment scheme. Finally, P sends (y

(0)
P , y

(1)
P , GP , RP ) to V . The randomness

used by P in this process is γ1, which means that the (y
(0)
P , y

(1)
P , GP , RP ) is fixed once and for all.

Stage-2. V first checks whether or not GP is reduced from (y
(0)
P , y

(1)
P ) and RP is of length 3N . If the

checking is successful, V randomly chooses two random strings e
(0)
V and e

(1)
V from {0, 1}n, computes

c
(0)
V = Com(1N , RP , e

(0)
V ) by using the underlying perfectly-binding commitment scheme Com, and

c
(1)
V = TCCom(1N , (GP , RP ), e

(1)
V ) by using the underlying trapdoor commitment scheme. Then, on

common input ((y
(0)
P , y

(1)
P , GP , RP ), PKj) V computes the first-round message, denoted aV , of (n-

parallel repetitions of) Blum’s WIPOK for NP for showing the knowledge of either SKj or a Hamil-

tonian cycle in GP (equivalently, the preimage of either y
(0)
P or y

(1)
P ). Finally, V sends (c

(0)
V , c

(1)
V , aV ) to

P . From then on, all randomness used by P in the remaining computation is got by applying PRF (γ2, ·)

on the “determining” message D = (x, F, (j, PKj), (y
(0)
P , y

(1)
P , GP , RP ), (c

(0)
V , c

(1)
V , aV )).

Phase-2. P proves to V the existence of a Hamiltonian cycle in GP (equivalently, the existence of the preimage of

either y
(0)
P or y

(1)
P ) by executing the (n-parallel repetitions of) Blum’s WI protocol for NP on common input

(y
(0)
P , y

(1)
P , GP , R

(j)
V ), in which V sends the assumed random challenge by just revealing e

(0)
V committed to

c
(0)
V . Note that the first-round message of Phase-2 (from P to V ) consists of n committed adjacency matrices

committed by running the underlying perfectly-binding commitment scheme on security parameter n. If P
successfully finishes this phase and V accepts, then goto Phase-3. Otherwise, V aborts.

Phase-3. V and P continue the WIPOK protocol for NP suspended at Stage-2 of Phase-1. If V successfully
convinces P of the knowledge of either SKj or a Hamiltonian cycle in GP , then goto Phase-4. Otherwise, P
aborts. We denote by eV , zV , the first-round message and the second-round message of Phase-3 respectively.

Phase-4. P proves to V that it “knows” either the witness w for x ∈ L or the secret-key SKj , by executing the
(n-parallel repetitions of) Blum’s WI protocol for NP on common input (x, PKj), in which V sends the

assumed random challenge by just revealing e
(1)
V committed to c

(1)
V .

Figure 1. Constant-round rZK-CKE arguments for NP under the minimal hardness assumption

and F, wlog, we assume V ∗ works in the sequential version in its second stage and the honest prover P
utilizes a truly random function rather than a pseudorandom function.

The rZK simulation procedure is similar to, but more complicated than that of [11]. Specifically, the
rZK simulator S runs V ∗ as a subroutine, and works in at most s(N)+1 phases such that in each phase
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it either successfully finishes its simulation or “covers” a new public-key in F . In each phase, S makes a
simulation attempt from scratch with a new truly random function that is to be defined adaptively, and
works session by session sequentially in at most (s(N))3 sessions. The difficulties lie in that for such
rZK simulation to be successful, the rZK simulator S needs to have the ability to cover new uncovered
public-keys within time inversely proportional to the probability that it encounters a success of Phase-3
relative to a yet uncovered public-key in its simulation, as pending on S’s such ability the rZK property
is from the rWI property of Phase-4 combined with Phase-1.

Specifically, we want to argue that the underlying Blum’s WIPOK protocol on ((y
(0)
P , y

(1)
P , GP , RP )k,

PKj) (executed in Stage-2 of Phase-1 together with Phase-3) is actually an argument of knowledge of the
preimage of PKj (i.e., the secret-key SKj). But, the subtle and complicated situation here is that before

V ∗ finishes Phase-3, S has already proved the knowledge of the Hamiltonian cycle of (y
(0)
P , y

(1)
P , GP , RP )k

in Phase-2. Note that the (y
(0)
P , y

(1)
P , GP , RP )k is fixed once and for all (which can be viewed as the public-

key of the honest prover instance P (·, ·, γk)), and furthermore V ∗ is resettingly (more than concurrently)
interacting with the honest prover instances. As demonstrated in Section 3 and Appendix E, normal
argument of knowledge and even concurrent soundness do not guarantee knowledge-extractability in
such a setting. In particular, one may argue that, by rewinding the honest prover instances arbitrarily,

V ∗ may potentially forge the interactions on (y
(0)
P , y

(1)
P , GP , RP )k provided by the honest prover in

Phase-2 of one session into successful but “false” interactions on ((y
(0)
P , y

(1)
P , GP , RP )k, PKj) in Stage-2

of Phase-1 and Phase-3 of another session with respect to public-key PKj , in the sense that although
the interactions are valid but V ∗ actually does not know the corresponding secret-key SKj. This means

that, in such a case the interactions on ((y
(0)
P , y

(1)
P , GP , RP )k, PKj) executed in Phase-3 together with

Stage-2 of Phase-1 are not any longer an argument of knowledge of the preimage of PKj , although it

is always a system for proof of knowledge of either SKj or a Hamiltonian cycle of (y
(0)
P , y

(1)
P , GP , RP )k.

What save us here is the (concurrent) WI property of the Blum’s protocol for HC.
Below, we construct an algorithm Ŝ that emulates the real rZK simulator while concurrently (not

resettingly) running the Blum’s protocol for HC. That is, on common inputs {(y
(0)
P , y

(1)
P , GP , RP )1,

· · · , (y
(0)
P , y

(1)
P , GP , RP )s(N)} Ŝ concurrently interacts with s(N) instances of the knowledge prover,

denoted P̂ , of Blum’s protocol for HC by playing the role of knowledge verifier. We denote each of the

s(N) instances of P̂ by P̂ ((y
(0)
P , y

(1)
P , GP , RP )k), 1 6 k 6 s(N); At the same time, Ŝ runs the s-resetting

malicious V ∗ as a subroutine by playing the role of the honest prover, and sends (y
(0)
P , y

(1)
P , GP , RP )k

as the Stage-1 message of Phase-1 whenever V ∗ initiates a session with the honest prover instance
P (·, ·, γk). Ŝ emulates the rZK simulator S but with the following modification: whenever Ŝ needs

to send a “fresh” first-round message of Blum’s protocol for HC on (y
(0)
P , y

(1)
P , GP , RP )k in Phase-2

with respect to a “determining” message, it initiates a new session with P̂ ((y
(0)
P , y

(1)
P , GP , RP )k), and

forwards the first-round message received from P̂ ((y
(0)
P , y

(1)
P , GP , RP )k) to V ∗. This “fresh” message

happens due to either V ∗ sends a distinct “determining” message in one session or Ŝ needs to rewind
V ∗ and to redefine the underlying random function f to extract knowledge used by V ∗ in a successful
execution of Stage-2 of Phase-1 and Phase-3 with respect to an uncovered public-key. Then, Ŝ runs V ∗

further, and in case V ∗ successfully reveals the assumed challenge (that is perfectly-bindingly committed
to the underlying “determining” message in question) then Ŝ returns back the revealed challenge to
P̂ as its own challenge in the corresponding simultaneous session of Blum’s protocol for HC, and

returns back the third-round message received from P̂ ((y
(0)
P , y

(1)
P , GP , RP )k) to V ∗. For a session with

a “determining” message that is identical to that of some previous sessions, Ŝ just copies what was
sent in the previous sessions. Note that in this case, Ŝ may still possibly need to interact with P̂ in
some existing concurrent session to get some third-round message (in case V ∗ did not reveal or invalidly
revealed the random challenge perfectly-bindingly committed to the underlying “determining” message
in all previous sessions, but correctly reveals it in the current session). However, the key point here is
that in this case S does not need to initiate a new concurrent session with P̂ .

Note that from the viewpoint of V ∗, the behavior of Ŝ is identical to the behavior of the real rZK
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simulator, where the real rZK simulator S generates (y
(0)
P , y

(1)
P , GP , RP )k’s and provides the correspond-

ing Phase-2 messages by itself (rather than get it by interacting with the knowledge prover instances

P̂ ((y
(0)
P , y

(1)
P , GP , RP )k)’s of the Blum’s protocol for HC). The key observation here is that although V ∗

is actually resettingly interacting with Ŝ, Ŝ only concurrently interacts with the instances of P̂ and
never rewinds P̂ . The underlying reason is just that in any session, Phase-2 interactions take place only
after V ∗ sent the “determining” message at Stage-2 of Phase-1 that determines the subsequent behaviors
of V ∗ in that session. Note that in this case, the (concurrent) WI property of the Blum’s protocol for

HC on common input (y
(0)
P , y

(1)
P , GP , RP )k actually implies witness hiding (WH), which means that no

PPT algorithm can output a Hamiltonian cycle in (y
(0)
P , y

(1)
P , GP , RP )k even by concurrently interacting

with P̂ ((y
(0)
P , y

(1)
P , GP , RP )k). Also note that on common input ((y

(0)
P , y

(1)
P , GP , RP )k, PKj), Phase-3 to-

gether with Stage-2 of Phase-1 is always a system for proof of knowledge of either a Hamiltonian cycle in

(y
(0)
P , y

(1)
P , GP , RP )k or the preimage of PKj (i.e., SKj), which means that with overwhelming probabili-

ties Ŝ (or the real rZK simulator S) can always extract either a Hamiltonian cycle in (y
(0)
P , y

(1)
P , GP , RP )k

or the corresponding secret-key SKj within time inversely proportional to the probability that V ∗ suc-
cessfully finishes Phase-3 (by rewinding V ∗ and redefining the underlying random function). But, the
WH property of Blum’s protocol for HC shows that with overwhelming probabilities, Ŝ (or the real

rZK simulator S) never outputs a Hamiltonian cycle in (y
(0)
P , y

(1)
P , GP , RP )k in its simulation that is

done in expected polynomial-time. Here, a subtle point needs to be further addressed. Specifically, the
normal WH property is defined with respect to probabilistic (strict) polynomial-time algorithms, but
here Ŝ works in expected polynomial-time. But, by Markov inequality, it is easy to see that if the WH
property of a protocol holds with respect to any strict polynomial-time algorithms, then it also holds
with respect to any expected polynomial-time algorithms. Details are given in Appendix F.

Comments: Note that in the proof of rZK, we require nothing about the public-keys registered
by V ∗ in F . What we need in the simulation is the POK property of Blum’s protocol executed in
Stage-2 of Phase-1 and Phase-3, which does hold with respect to any common input (in particular,
any public-key registered by V ∗, whether valid or not). That is, our protocol is not limited to the
structure of the keys. Also note that for the OWF fP used by the prover, it suffices that it is secure
against standard polynomial-time adversaries, since the one-wayness of fP is only used to guarantee the
computationally-binding property of the underlying FSTC scheme against malicious polynomial-time
verifiers (in proving black-box resettable zero-knowledge). Similarly, the pseudorandoness of the PRF
and the hiding property of the perfectly-binding commitment scheme used by the prover (that are based
on fP ) can be similarly secure against polynomial-time adversaries.

Black-box concurrent knowledge-extractability.
We show that for any (whether true or not) common input x ∈ {0, 1}poly(N), if a PPT s-concurrent

malicious P ∗ can convince an honest verifier V (with public-key PK and secret-key SK) of the statement
“x ∈ L” with non-negligible probability px in one of the s(N) concurrent interactions, then there exists
a black-box knowledge-extractor E that, on input PK with oracle accessing P ∗, works in poly(n) ·2ncP -
time and outputs a witness for x ∈ L also with non-negligible probabilities. Note that according to the
underlying complexity leveraging on the security parameters N and n, no poly(n) · 2ncP -time algorithm
can break the one-wayness of fV used by V in forming its public-key on security parameter N (because
poly(n) · 2ncP � 2NcV ). Also note that any poly(n) · 2ncP -time algorithm cannot output a witness for
x ∈ L with non-negligible probabilities, in case x is a sub-exponentially hard instance or just x 6∈ L
(because poly(n) · 2ncP � 2NcL ).

Taking PK as its input, E randomly chooses j from {1, · · · , s(N)} and runs P ∗ as a subroutine by
playing the role of the honest verifier with public-key PK. Note that E does not know the corresponding
secret-key SK. In each session t, 1 6 t 6 s(N), after receiving the Stage-1 message of Phase-1, denoted

((y
(0)
P ∗ , y

(1)
P ∗)t, Gt

P ∗ , Rt
P ∗), E first checks whether or not Gt

P ∗ is NP-reduced from (y
(0)
P ∗ , y

(1)
P ∗)t and Rt

P ∗ is of
length 3N . If the checking is successful, then E tries to find a Hamiltonian cycle in Gt

P ∗ by brute-force
searching in 2ncP -time.

• If E finds a Hamiltonian cycle in Gt
P ∗ , then E sets the Stage-2 message of Phase-1 of the t-th
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session, denoted ((c
(0)
V )t, (c

(1)
V )t, at

V ), as follows: it randomly chooses one random string (e
(0)
V )t

from {0, 1}n, computes (c
(0)
V )t = Com(1N , Rt

P ∗ , (e
(0)
V )t) by using the underlying Naor’s perfectly-

binding commitment scheme Com, and computes (c
(1)
V )t = TCCom(1N , (Gt

P ∗ , Rt
P ∗), 0n) by us-

ing the underlying Feige-Shamir trapdoor commitment scheme (note that, (c
(1)
V )t commits to

0n rather than a random string in {0, 1}n as the honest verifier does). Then, on common input

(((y
(0)
P , y

(1)
P )t, Gt

P ∗ , Rt
P ∗), PK) V computes the first-round message, denoted at

V , of (n-parallel rep-
etitions of) Blum’s WIPOK for NP for showing the knowledge of either SK or a Hamiltonian
cycle in Gt

P ∗ . Note that the first-round message of Blum’s WIPOK for NP is computed without
using any witness knowledge (i.e., either SK or a Hamiltonian cycle in Gt

P ∗); In case P ∗ success-
fully finishes Phase-2 of the t-th session, E moves into Phase-3. After receiving the first-round
message of Phase-3 of the t-th session, denoted et

V , E computes the second-round message of
Phase-3, denoted zt

V (i.e., the third-round message of Blum’s WIPOK for showing the knowledge
of either SK or a Hamiltonian cycle in Gt

P ∗), by using the extracted Hamiltonian cycle in Gt
P ∗ as

its witness; Finally, in Phase-4 of the t-th session, E decommits (c
(1)
V )t to a random string (e

(1)
V )t

of length n, by using the extracted Hamiltonian cycle in Gt
P ∗ as the trapdoor.

• If there exists no Hamiltonian cycle in Gt
P ∗ , then E sets and sends the Stage-2 message of Phase-1

of the t-th session, i.e., ((c
(0)
V )t, (c

(1)
V )t, at

V ), just as above. But, whenever P ∗ successfully finishes
Phase-2 of the t-th session and sends to E the first-round message of Phase-3 of the t-th session
(i.e., et

V ), E aborts with an error message (as it has no witness for generating the next message).

In the j-th session with respect to a common input xj selected by P ∗ on the fly, we denote by

((y
(0)
P ∗ , y

(1)
P ∗)j , G

j
P ∗ , R

j
P ∗) the Stage-1 message of Phase-1 of this session, and by ((c

(0)
V )j , (c

(1)
V )j , aj

V ) the

Stage-2 message of Phase-1 of this session that is set as specified above (where (c
(1)
V )j = TCCom(1N ,

(Gj
P ∗ , R

j
P ∗), 0n)). In case P successfully finishes this session (i.e., Phase-4 of the j-th session), we denote

by aj
P ∗ the first-round message of Phase-4 of the j-th session, by (e

(1)
V )j the random challenge (of length

n) sent by E in the second-round of Phase-4 (by decommitting (c
(1)
V )j with the extracted Hamiltonian

cycle in Gj
P ∗ as the trapdoor), and by zj

P ∗ the third-round message of Phase-4 of the j-th session, where

(aj
P ∗ , (e

(1)
V )j , zj

P ∗) constitutes a successful conversation of (n-parallel repetitions of) Blum’s WIPOK for
showing the knowledge either a witness for xj ∈ L or the corresponding secret-key SK. Then, after

receiving the last-round message (i.e., zj
P ∗), E rewinds P ∗ to the state that it just sent aj

P ∗ , decommits

(c
(1)
V )j to a different random string (e

(1)
V )j′ (that is taken uniformly from {0, 1}n/{(e

(1)
V )j})) by using the

extracted Hamiltonian cycle in Gj
P ∗ as the trapdoor, and runs P ∗ further, expecting to receive another

valid third-round message, denoted zj′
P ∗ , of Phase-4 of the j-th session.

For any x, denote by qx the probability that P ∗ successfully convinces E(PK) of the statement
“x ∈ L” in one of the s(N) concurrent sessions (without rewinding in the j-th session). Then, with

probability about (qx)2

s(N) E will output either a witness w for x ∈ L or the corresponding secret-key SK

such that PK = fV (SK) in poly(n) · 2ncP -time, by rewinding the j-th session for a randomly chosen
j from {1, · · · , s(N)}. As poly(n) · 2ncP � 2NcV and fV is secure against any circuit of size 2NcV , we

know with probability negligibly close to (qx)2

s(N) E will output a witness w for x ∈ L. Now, to establish

the concurrent knowledge-extractability property, all that is left is to show that |px − qx| is negligible
for any x, where px is the probability that P ∗ successfully convinces the honest verifier with public-key
PK of the statement “x ∈ L” in one of the s(N) concurrent sessions. This is done by establishing a
series of hybrid experiments.

We first consider a mental experiment in which P ∗ concurrently interacts with an imaginary verifier
V̂ with the same public-key PK and secret-key SK. V̂ mimics the real honest verifier V with public-key
PK and secret-key SK but with the following modifications: For any session t, 1 6 t 6 s(N), in case
P ∗ successfully finishes Phase-2 and sends to V̂ the first-round message of Phase-3, V̂ enumerates all

possible Hamiltonian cycles of Gt
P ∗ by brute-force searching in 2ncP -time, where ((y

(0)
P ∗ , y

(1)
P ∗ )t, Gt

P ∗ , Rt
P ∗)
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is the Stage-1 message of Phase-1 of the t-th session. If there exists no Hamiltonian cycle in Gt
P ∗ , then

V̂ aborts with an error message (although it can continue the execution with SK as its witness).
For any x, denote by p̂x the probability that P ∗ successfully convinces the imaginary verifier V̂ with

public-key PK of the statement “x ∈ L” in one of the s(N) concurrent sessions. We want to show that
for any x |px − p̂x| is negligible in n. Note that the only difference between the interactions between
P ∗ and V̂ and the interactions between P ∗ and the real honest verifier V is that: for any session t,
1 6 t 6 s(N), the real honest verifier always continues the execution of Phase-3 by using SK as its
witness in forming the second-round message of Phase-3, in case P ∗ successfully finished Phase-2 and
sent the first-round message of Phase-3 ; but V̂ may abort in this case if it finds that Gt

P ∗ is “false”
(i.e. there exists no Hamiltonian cycle in Gt

P ∗) by brute-force searching in 2ncP -time. Thus, the fact
that for any x |px − p̂x| is negligible is derived from the following lemma.

Lemma 4.1 For all positive polynomials s(·) and all s-concurrent malicious P ∗, the probability that
there exists a t, 1 6 t 6 s(N), such that P ∗ can successfully finish Phase-2 with respect to a false Gt

P ∗

(i.e., Gt
P ∗ contains no Hamiltonian cycle) in the t-th session of the s(N) concurrent sessions (against

the real honest verifier V with public-key PK) is negligible in n. Note that any quantity that is negligible
in n is also negligible in N .

Proof (of Lemma 4.1). We show that if a PPT s-concurrent adversary P ∗ can convince V
(with public-key PK) of a false Gt

P ∗ with non-negligible probability p′(n) in Phase-2 of one of the
s(N) concurrent sessions, then this will violate the hiding property of the underlying perfectly-binding
commitment scheme, denoted Com, used by V in Phase-1 that is run on security parameter N . Note
that according to the hiding property of the underlying perfectly-binding commitment scheme Com,
given two strings ê0 and ê1 that are taken uniformly at random from {0, 1}n and C = Com(1N , Rt

P ∗ , êb)
for a randomly chosen bit b ∈ {0, 1}, no 2NcV -time (non-uniform) algorithm can distinguish whether C
commits to ê0 or to ê1 (i.e., guess the bit b correctly) with non-negligible advantage over 1/2, even with
ê0, ê1 and the secret-key of V (i.e., SK) as its non-uniform inputs.

We construct a (non-uniform) algorithm A that takes (1n, (ê0, ê1, SK), C) as input and attempts
to guess b with a non-negligible advantage over 1/2, where ê0 and ê1 are taken uniformly at random
from {0, 1}n and C = Com(1N , RP ∗ , êb) for a randomly chosen bit b ∈ {0, 1}. E randomly selects j
from {1, · · · , s(N)}, runs P ∗ as a subroutine by playing the role of the honest verifier V with secret-key
SK in any session other than the j-th session. In the j-th session, after receiving Gj

P ∗ from P ∗ at

Stage-1 of Phase-1, E first checks whether there exists a Hamiltonian cycle in Gj
P ∗ or not by brute-force

searching in time 2ncP . If E finds a Hamiltonian cycle in Gj
P ∗ , then E randomly guesses the bit b and

stops. Otherwise (i.e., there exists no Hamiltonian cycle in Gj
P ∗), E runs P ∗ further and continues the

interactions of the j-th session as follows: E gives C to P ∗ as the assumed commitment to (e
(0)
V )j at

Stage-2 of Phase-1. After receiving the first-round message of Phase-2 (i.e., the first-round of Blum’s
protocol for proving the existence of a Hamiltonian cycle in Gj

P ∗) that contains n committed adjacency
matrices, E first opens all the committed adjacency matrices by brute-force in poly(n) · 2ncP -time (note
that E can do this since the underlying perfectly-binding commitment scheme used by the prover in
forming these n committed adjacency matrices is run on security parameter n). For each revealed graph
Gj

k (1 ≤ k ≤ n) (described by the corresponding opened adjacency matrix entries) we say that Gj
k is

a 0-valid graph if it is isomorphic to Gj
P ∗ , or a 1-valid graph if it contains a Hamiltonian cycle of the

same size of Gj
P ∗ . We say that the set of revealed graphs {Gj

1, · · · , G
j
n} is êb-valid (b ∈ {0, 1}) if for all

k, 1 ≤ k ≤ n, Gj
k is a ê

(k)
b -valid graph, where ê

(k)
b denotes the k-th bit of êb. Note that for the set of

revealed graphs {Gj
1, · · · , G

j
n}, E can determine whether it is ê0-valid or ê1-valid in time poly(n) · 2ncP .

Then, E outputs 0 if the set {Gj
1, · · · , G

j
n} is ê0-valid but not ê1-valid. Similarly, E outputs 1 if the set

{Gj
1, · · · , G

j
n} is ê1-valid but not ê0-valid. In other cases, E just randomly guesses the bit b.

The key observation here is that if Gj
P ∗ is false (i.e., containing no Hamiltonian cycle), then for each

revealed graph it cannot be both a 0-valid graph and a 1-valid graph. Similarly, for false Gj
P ∗ , the set of

revealed graphs {Gj
1, · · · , G

j
n} cannot be both ê0-valid and ê1-valid for different ê0 6= ê1. Furthermore,
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suppose C commits to êb (b ∈ {0, 1}), then for false Gj
P ∗ with probability 1 − 2−n the set of revealed

graphs {Gj
1, · · · , G

j
n} is not ê1−b-valid (since ê1−b is taken uniformly at random from {0, 1}n). Since the

value j is randomly chosen from {1, · · · , s(N)}, we conclude that E can successfully guess the bit b with

probability at least (1−2−n) · p
′(n)

s(N) + 1
2(1− p′(n)

s(N) ) = 1
2 + 1

2 ·
p′(n)
s(N) −2−n · p

′(n)
s(N) in time poly(n) ·2ncP . That is,

E successfully guesses the bit b with non-negligible advantage over 1/2 in time poly(n) · 2ncP � 2NcV ,
which violates the hiding property of the underlying perfectly-binding commitment scheme Com used
by V that is run on the security parameter N . �

After establishing that for any x |px− p̂x| is negligible, to show that for any x |px− qx| is negligible,
we can show that for any x |p̂x−qx| is negligible. This is done by conducting another hybrid experiment.

Specifically, we consider another hybrid experiment, in which a PPT algorithm Ê takes (PK,SK)
as its input (that is, Ê takes both the verifier’s public-key and the corresponding secret-key as its input),
and runs P ∗ as a subroutine by mimicking the knowledge-extractor E (which only takes PK as input)
but with the following modification: For any session t, 1 6 t 6 s(N), in case P ∗ successfully finishes
Phase-2 and sends to Ê the first-round message of Phase-3, Ê enumerates all possible Hamiltonian cycles

of Gt
P ∗ by brute-force searching in 2ncP -time, where ((y

(0)
P ∗ , y

(1)
P ∗ )t, Gt

P ∗ , Rt
P ∗) is the Stage-1 message of

Phase-1 of the t-th session. If there exists a Hamiltonian cycle in Gt
P ∗ , then Ê continues the execution

by forming the second-round message of Phase-3 of the t-th session (for showing the knowledge of
either SK or a Hamiltonian cycle of Gt

P ∗) but using SK as its witness just as the real honest verifier
does (note that in this case E continues the execution with the extracted Hamiltonian cycle of Gt

P ∗

as the corresponding witness). If there exists no Hamiltonian cycle in Gt
P ∗ , then Ê aborts with an

error message just as E (or V̂ ) does (although in this case Ê can continue the execution with SK as its
witness).

Note that the difference between the interactions between P ∗ and the imaginary verifier V̂ in the
first hybrid experiment and the interactions between P ∗ and Ê is that: in any session t, 1 6 t 6 s(N), of
the interactions between P ∗ and V̂ , V̂ always commits (and accordingly decommits to) a random string

of length n (i.e., (e
(1)
V )t) by using the underlying FSTC scheme (just as the honest verifier V does), but

in the interactions between P ∗ and Ê, Ê always commits 0n and then decommits to a random string of
length n by using the brute-force extracted Hamiltonian cycle of Gt

P ∗ as the trapdoor (just as E does).

The difference between the interactions between P ∗ and Ê and the interactions between P ∗ and E is
that: E always uses the brute-force extracted Hamiltonian cycle of Gt

P ∗ as its witness in Phase-3 of any

session t, 1 6 t 6 s(N), but Ê always uses the verifier’s secret-key SK as its witness (just as the honest
verifier does).

For any x, denote by q̂x the probability that P ∗ can convince Ê of the statement “x ∈ L” in one of
the s(N) sessions. Then if there exists an x such that |p̂x− q̂x| is non-negligible, we can break the hiding
and trapdoorness properties of the underlying FSTC scheme in the following way: We construct a (non-
uniform) algorithm Â that takes (x, PK,SK) as the (non-uniform) input and runs P ∗ as a subroutine
by emulating either V̂ or Ê (Note that either V̂ or Ê can be emulated in poly(n) ·2ncP -time). Whenever
Â finds that P ∗ successfully convinces of the statement “x ∈ L” Â outputs 1, otherwise Â outputs
0. Clearly, by standard hybrid technique, if |p̂x − q̂x| is non-negligible we can break the hiding and
trapdoorness properties of the underlying FSTC scheme in time poly(n) · 2ncP � 2NcV . Similarly, we
can also prove that for any x |q̂x−qx| is negligible, as otherwise we can break the WI property of Blum’s
protocol for NP in time poly(n) · 2ncP � 2NcV . Thus, we get that for any x |p̂x − qx| is negligible, and
so is |px − qx| for any x because we have shown that for any x |px − p̂x| is negligible. This finishes the
proof for concurrent knowledge-extractability of the protocol depicted in Figure-1 in the BPK model.
�

Constant-round rWI arguments for NP under minimal hardness assumptions in the
standard model. The proof of Theorem 4.1 implies that the protocol depicted in Figure-1 contains a
sub-protocol, specifically the combination of Phase-1 and Phase-2, that is constant-round rWI argument
for NP in the standard model under minimal hardness assumptions, a result unknown previously that is
of independent interest. We remark that the construction of the rWI argument is actually conceptually
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simple, but as we have seen, the security analyses are however complicated and subtle. Details of the
following result are given in Appendix G.

Corollary 4.1 Under any (sub-exponentially strong) OWF (resp. OWP), any language in NP has a
5-round (resp. 4-round) rWI argument in the standard model.

5 Simplified and Round-Optimal Implementations

We briefly discuss simplified and round-optimal implementations of rZK-CKE arguments for NP in the
BPK model, the details are given in Appendix H (or see [51] where we give more details but in the
context of concurrent soundness, though the proofs presented in [51] actually work in the concurrent
knowledge extractability setting; we plan to modify and expand [51] to be an extended version of the
current submission).

Zap-based simplified implementation. A natural way to simplify the implementation of the
protocol depicted in Figure-1, while maintaining almost the same protocol structure, is to replace Blum’s

WI protocol (with commitment of the random challenge, i.e., e
(0)
V , on the top) executed in Phase-1 and

Phase-2 by zap developed in [23]. Zap is itself a 2-round public-coin WI proof for NP . It can be easily
modified into a 2-round rWI proof for NP, by applying a PRF on the first-round message, denoted ξ,
and the common input to get the randomness for generating the second-round message, denoted Π [23].
Furthermore, the first-round message of a zap can be fixed once and for all, and thus can be posted as
a part of the underlying public-key. The zap-based implementation is depicted in Appendix H (page
43). Note that in the zap-based implementation, Phase-2 becomes non-interactive in the BPK model,
and thus the round-complexity can be reduced to five.

Next we give another way to further simplify the implementation.
Preimage-verifiable OWF based simplified implementation. We further investigate the

interactions combining Phase-1 and Phase-2 of the OWF-based rZK-CKE protocol (depicted in Figure-

1) when the messages c
(1)
V and aV are removed from Stage-2 of Phase-1 (i.e., V only sends c

(0)
V at Stage-2

of Phase-1). The key observation here is that if the OWF fP used by the prover is preimage-verifiable
(as defined in Definition D.1), then such interactions can be replaced solely by letting P send a unique
message yP = fP (xP ) at the start, thereby obtaining a much more simplified 5-round implementation.
In this case the proof of Theorem 4.1 remains essentially unchanged (other than being simplified).
Details can be found in Appendix H (page 45).

Round-optimal rZK-CKE arguments for NP in the BPK model
For the above 5-round zap-based or preimage-verifiable OWF based simplified implementations, to

further reduce the round-complexity, we want to fold the prover’s initialization message (i.e., the first-
round message that is fixed once and for all) into the third-round of the 5-round protocols (that is from
the prover to the verifier). This will give 4-round (that is optimal) rZK-CKE arguments for NP in the
BPK model. To this end, we let the verifier use OWP-based one-round perfectly-binding commitment
scheme at Stage-2 of Phase-1 and replace the Blum’s WIPOK protocol executed in Stage-2 of Phase-1
and Phase-3 by the Lapidot-Shamir WIPOK protocol (as in this case the verifier sends the first-round
message without knowing the statement to be proved). But, the challenge here is that, for our purpose,
we need a one-round OWP-based trapdoor commitment scheme to replace the two-round FSTC scheme.
Specifically, we need the following cryptographic tool: A one-round OWP-based trapdoor commitment
scheme based on DHC, in which the committer sends the one-round commitments without knowing the
graph GP (serving as TCPK) other than the lower and upper bounds of its size (guaranteed by the

underlying NP-reduction from (y
(0)
P , y

(1)
P ) or yP to GP ), and GP is only sent in the decommitment stage

after the commitment stage is finished. However, a trapdoor commitment scheme of the above described
type is unknown (to the best of our knowledge). We therefore develop a trapdoor commitment of this
type in this work, which is described below:

One-round commitment stage. To commit a bit 0, the committer sends a q-by-q adjacency matrix
of commitments with each entry of the adjacency matrix committing to 0. To commit a bit 1,
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the committer sends a q-by-q adjacency matrix of commitments such that the entries committing
to 1 constitute a randomly-labelled cycle C. We remark that the underlying commitment scheme
used in this stage is the one-round OWP-based perfectly-binding commitment scheme.

Two-round decommitment stage. The commitment receiver sends a Hamiltonian graph G = (V,E)
with size q = |V | to the committer. Then, to decommit to 0, the committer sends a random
permutation π, and for each non-edge of G (i, j) 6∈ E, the committer reveals the value (that is 0)
that is committed to the (π(i), π(j)) entry of the adjacency matrix sent in the commitment stage
(and the receiver checks all revealed values are 0 and the unrevealed positions in the adjacency
matrix constitute a graph that is isomorphic to G via the permutation π). To decommit to 1, the
committer only reveals the committed cycle (and the receiver checks that all revealed values are
1 and the revealed entries constitute a q-cycle).

The computationally-binding property of the above scheme is from the fact that the ability to
decommit the same commitment-stage message both to 0 and to 1 implies extracting a Hamiltonian
cycle of G (which in applications is derived from a witness to a one way function). The trapdoorness
property is from the following observation: After sending a commitment to 1, one can decommit to 1
in the normal way. However, it is also possible to decommit it to 0 if one knows the Hamiltonian cycle
of G. Finally, note that in the above description we have assumed the committer knows the size of the
graph G sent by the commitment receiver in the decommitment stage. But it can be easily extended to
the case that the committer only knows the lower-bound l(n) and the upper-bound u(n) of the size of
G. We remark that, although the above one-round trapdoor commitment scheme is developed here to
reduce round-complexity for rZK, it might be of independent value and, in particular, can be used to
reduce round-complexity of other cryptographic protocols involving trapdoor commitments.

Note that in the round-optimal rZK-CKE protocols obtained thereby, we only require that the
verifier uses the OWP-based one-round perfectly-binding commitment scheme. The prover, however,
can still use Naor’s OWF-based two-round commitment scheme. Also, note that as discussed in the
proof of Theorem 4.1, the OWF and/or zap used by the prover can be only secure against standard
polynomial adversaries. By simplified versions of the proof of Theorem 4.1, we get:

Corollary 5.1 Under the existence of OWF and zap (used by the prover) that are secure against stan-
dard polynomial-time adversaries, and any OWF and OWP (used by the verifier in the key-generation
phase and the protocol main-body respectively) that are secure against sub-exponential-time adversaries,
any language in NP has a 4-round (that is optimal) rZK-CKE argument in the BPK model. (Note that
the existence of (single-theorem) NIZK proofs for NP implies the existence of zaps.)

Corollary 5.2 Under the existence of any preimage-verifiable OWF (used by the prover) that is secure
against standard polynomial-time adversaries, and any OWF and OWP (used by the verifier in the key-
generation phase and the protocol main-body respectively) that are secure against sub-exponential-time
adversaries, any language in NP has a 4-round (that is optimal) rZK-CKE argument in the BPK model.
In particular, this implies that round-optimal rZK-CKE arguments for NP in the BPK model can be
implemented with any certified one-way permutation (as any certified OWP is itself a preimage-verifiable
OWF).
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A Discussions on the BPK Model

A major measure of efficiency for interactive protocols is the round-complexity. Unfortunately, there are
no constant-round rZK protocols in the standard model, at least for the black-box case, as implied from
the works of Canetti, Killian, Petrank and Rosen [12]. To get constant-round resettable zero-knowledge
protocols, the work in [11] introduced a simple model with very appealing trust requirement, the bare
public-key (BPK) model. A protocol in BPK model simply assumes that all verifiers (whether honest
or dishonest) have deposited a public key in a public file before any interaction takes place among the
users. (The BPK model does allow dynamic key registrations and readers are referred to [11] for the
details of dealing with dynamic key registrations.) The sole assumption is that entries in the public
file were deposited before any interaction among the users takes place. But, no assumption is made
on whether the public-keys deposited are unique, valid or “nonsensical” and “bad” (e.g., for which no
corresponding secret-keys exist or are known) public-keys [11]. Note that an adversary may deposit
many (possibly invalid or fake) public keys without any guarantee on the properties of the registered
public-keys. In particular, for public-keys registered by an adversary it is not guaranteed that one can
efficiently verify whether the adversary knows corresponding secret keys or whether such exist altogether.
What is essentially guaranteed by the BPK model is a limitation of the number of different identities
that a potential adversary may assume (note that the adversary may try to impersonate any registered
user in the public-file, but it cannot act on behalf of a non-registered user), and, in fact, there are no
other assurances.

The BPK model is thus very simple, and it is in fact a weaker version of the frequently used public-
key infrastructure (PKI) model, which underlies any public-key cryptosystem or any digital signature
scheme. Despite its apparent simplicity, the BPK model is quite powerful in achieving round-efficient
cZK and rZK protocols. While cZK and rZK protocols exist both in the standard and in the BPK
models [11], only in the latter case they can be constant-round, at least in the black box sense.

For cryptographic protocols in the BPK model, what kind of keys are allowed is an important
system parameter. Thus, the complexity assumption underlying the honest users’ keys is an important
parameter of the protocol in the BPK model. We say a protocol is with bare but self-certified public-keys
if it enforces public-keys to be self-certified (i.e., efficiently and publicly verifiable) for their validity and
the prover interacts with (even malicious) verifiers only with respect to valid public-keys (this essentially
might restrict the ability of malicious verifiers in extracting “valuable” knowledge from interactions with
the honest prover). Note that the validity of a key implies more than the existence of corresponding
secret-key. In particular, a valid public-key may assure some special properties (other than only an
arbitrary string). Formally, the validity requirement implies that a complexity assumption supporting
the validity self-certified property of the keys is needed. Recall that the initial work on BPK [11]
assumed that the public key merely serves as an identity rather than a valid public-key, thus it is
desired to develop protocols and protocol techniques with this property, which we informally call “real
bare public keys” that formally implies potentially a weaker complexity assumption for the protocol to
be secure. This is crucial for us since we attempt, among other things, to get protocols based on the
weakest possible assumption.

Despite its power in achieving round-efficient cZK and rZK protocols, the soundness notion for
honest verifiers with public-keys turns out to be much more complex and subtler than that of the
standard model, as noted by Micali and Reyzin [44]. In public-key models, a verifier V has a secret key
SK, corresponding to its public-key PK. A malicious prover P ∗ could potentially gain some knowledge
about SK from an interaction with the verifier. This extra gained knowledge may help this prover
convincing the verifier of a false theorem in another interaction. Micali and Reyzin showed that under
standard intractability assumptions there are four distinct meaningful notions of soundness, i.e., from
weaker to stronger: one-time, sequential, concurrent and resettable soundness. In this paper we focus
on concurrent soundness which roughly means, for zero-knowledge protocols, that a malicious prover P ∗

cannot convince the honest verifier V of a false statement even when P ∗ is allowed multiple interleaving
interactions with V . Micali and Reyzin also showed that any (resettable or not) black-box ZK protocols
with concurrent soundness in the BPK model (for non-trivial languages outside BPP) must run at least
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four rounds [44]. It is also shown in [3, 44] that (whether resettable or not) black-box ZK arguments
with resettable soundness only exist for trivial (i.e, BPP) languages (whether in the BPK model or in
standard model). Thus, it is commonly suggested that concurrent soundness might be the best one can
achieve for (concurrent) verifier security of black-box (resettable) ZK arguments in the BPK model.

B Related Works and Comparisons

Constant-round (actually, round-optimal) concurrently-sound rZK arguments forNP in the BPK model
but with self-certified public-keys were recently achieved in [18], based on a special form of PKE
(with known implementation based on the decisional Diffie-Hellman DDH assumption) and length-
preserving 1-1 OWF. Constant-round concurrently-sound rZK arguments for NP were also achieved in
some stronger versions of the BPK model [45, 54].

The rZK protocol of [18] is with bare but self-certified public-keys, thus it is limited to certain
implementations (e.g., it can be based on ElGamal but not on any RSA scheme). Thus, their technique
is not suitable for further reduction of the underlying complexity assumptions. The protocol of [18] is
also probably not knowledge-extractable even for sequential malicious provers, since the verifier uses
perfectly-binding commitment scheme in setting the outputs of its coin-tossing sub-protocol. Indeed,
the proof of concurrent soundness in [18] critically depends on the fact x 6∈ L to reach a contradiction
to the underlying hardness assumptions, and thus seemingly cannot be extended to the case x ∈ L and
deal with the issue of known witness vs. unknown one.

Constant-round sequentially-sound concurrent ZK (that is much weaker than rZK) arguments of
knowledge in the BPK model under standard polynomial hardness assumptions were presented in a
unpublished manuscript of the second author [53]. [53] presents both general OWF-based and practical
DLP-based cZK arguments of knowledge in the BPK model. In particular, the DLP-based practical
implementation needs only a very small constant number of exponentiations for any language that
admits Σ-protocols. Actually, it is claimed in [53] that the cZK arguments of knowledge are also
concurrently sound, but the proofs presented there are conceptually flawed (though, no effective attack
is known). This was observed, among others, by Di Crescenzo and Visconti in a parallel work [19]
(also by the authors in [52]). With the protocol structure of [53] (specifically, the protocol depicted in
Figure 3, page 15 of [53]), [19] nicely fixed the flaw by running in parallel a special form of equivocal bit
commitments (each bit equivocal commitment consisting of two perfectly-binding string commitments).
This gives the concurrent soundness but at the cost of performance reduction to at least linear rather
than constant number of exponentiations. In this work we show that both the protocol of [53] (that
is sequentially-sound cZK argument of knowledge in the BPK model) and the protocol of [19] (that
is concurrently-sound cZK argument of knowledge), actually all protocols having the same protocol
structure of [53, 19], are not concurrently knowledge-extractable in the BPK model, by identifying
some concurrent interleaving and malleating attacks that might be possibly of independent interest.

Constant-round non-black-box rZK protocols for NP in the BPK model under standard polynomial
hardness assumptions were firstly achieved in [3] assuming collision-free hash functions, by using the
non-black-box techniques developed in [1, 2]. Furthermore, they are arguments of knowledge in the
BPK model in the relaxed non-black-box sense. Unfortunately, the (non-black-box) rZK (non-black-
box) arguments of knowledge of [3] are probably not concurrently knowledge-extractable or concurrently
sound in the BPK model, due to the current state of the art of the underlying non-black-box techniques
used that only preserve bounded concurrent security.

The complication and subtleties of the notion of “argument of knowledge” in public-key models were
firstly observed by Di Crescenzo and Visconti in [20]. In particular, Di Crescenzo and Visconti presented
the notion of “concurrent argument of knowledge” that is a natural extension of the traditional argument
of knowledge into the concurrent and public-key settings. Specifically, in the definition of “concurrent
argument of knowledge” presented in [20], the knowledge-extractor is required to work in polynomial-
time and is allowed to generate simulated verifier’s public-key (that is, the knowledge-extractor would
know the corresponding secret-key of the simulated verifier’s public-key generated by itself, and may
utilize the corresponding secret-key for facilitating witness extraction from concurrent malicious prover).
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Di Crescenzo and Visconti also showed that concurrent argument of knowledge is strictly stronger than
traditional argument of knowledge in public-key models under standard hardness assumptions. But,
the construction of concurrently knowledge-extractable zero-knowledge protocols in public-key models
was left over there as an open problem.

In comparison, our notion of “concurrent knowledge-extractability” is different from the notion of
“concurrent argument of knowledge” of [20] in the following two ways: on one hand, the knowledge-
extractor in our notion is allowed to work in super-polynomial-time (actually, sub-exponential-time).
Note that black-box super-polynomial-time knowledge extraction is intrinsic in the resettable setting,
as resettable (ZK or WI) protocols with black-box polynomial-time knowledge extraction are impossible
for non-trivial languages outside BPP [11, 3]; On the other hand, the knowledge-extractor in our notion
is required to use the same verifier’s public-key (without knowing the corresponding secret-key) in its
knowledge-extraction process. Note that, as clarified in Section 3, same public-key super-polynomial-
time knowledge-extraction with complexity leveraging appears to be the only way at present to bypass
the obstacle of concurrent general composition [43, 37] for achieving concurrently knowledge-extractable
ZK protocols in the BPK model. Our notion of concurrent knowledge-extractability does not imply
traditional argument of knowledge in public-key models, rather, we try to formalize it to be strictly
stronger than concurrent soundness in public-key models under sub-exponential hardness assumptions
(motivated by the concrete attacks to natural existing concurrent ZK protocols in the BPK model).

To our knowledge, the complication and subtleties of concurrent composition of proof of knowledge
(POK) was first noted by Dolev, Dwork and Naor in the general context of non-malleability [21]. In [29]
Garay and MacKenze noted that when POK protocols are used as building block in a larger protocol
in the standard model, concurrently nested rewinding and interleaving may cause exponential blow-up
of simulation time for proving the security of the larger protocol in the concurrent setting (the same
problem encountered in concurrent ZK [22]). This problem was got around in [29] by working in the
conditional simultaneous input model and sequentially running non-constant number of the underlying
POK protocols. Concurrent straight-line knowledge-extraction was also investigated in the timing model
[38, 39, 37], and in the random oracle model [49].

C Definitions: Concurrent Soundness, rZK and rWI in the BPK
Model

In this section, we recall the definitions of concurrent soundness and resettable zero-knowledge in the
BPK model (given in [11, 44, 19]). We also recall the CGGM general paradigm of [11] for achieving
rWI protocols in the standard model.

Honest players in the BPK model

The BPK model consists of the following:

• F be a public-key file that is a polynomial-size collection of records (id, PKid), where id is a string
identifying a verifier and PKid is its (alleged) public-key.

• P (1n, x, w, F, id, γ) be a honest prover that is a polynomial-time interactive machine, where 1n is
a security parameter, x is an poly(n)-bit string in L, w is an auxiliary input, F is a public-file, id
is a verifier identity, and γ is its random-tape.

• V be a honest verifier that is a polynomial-time interactive machine working in two stages.

1. Key generation stage. V , on a security parameter 1n and a random-tape r, outputs a key
pair (PK,SK). V then registers PK in F as its public-key while keeping the corresponding
secret key SK in secret.

2. Verification stage. V , on inputs SK, x ∈ {0, 1}poly(n) and a random tape ρ, performs an
interactive protocol with a prover and outputs “accept x” or “reject x”.
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The malicious concurrent prover and concurrent soundness in the BPK model

For a honest verifier V with public-key PK and secret-key SK, where (PK,SK) is the output
of the key generation stage of V on a security parameter n and a random string r, an s-concurrent
malicious prover P ∗ in the BPK model, for a positive polynomial s, is a probabilistic polynomial-time
Turing machine that, on a security parameter 1n and PK, performs an s-concurrent attack against V
as follows:

P ∗ can perform concurrently at most s(n) interactive protocols (sessions) with (the verification stage
of) V ; If P ∗ is already running i − 1 (1 ≤ i − 1 ≤ s(n)) sessions, it can select on the fly a common
input xi ∈ {0, 1}

poly(n) (which may be equal to xj for 1 ≤ j < i) and initiate a new session with
the verification stage of V (SK, xi, ρi); P ∗ can output a message for any running protocol, and always
receive immediately the response from V (that is, P ∗ controls at its wish the schedule of the messages
being exchanged in all the concurrent sessions). We stress that in different sessions V uses independent
random-tapes in its verification stage (that is, ρ1, · · · , ρs(n) are independent random strings).

We then say a protocol 〈P, V 〉 is concurrently sound in the BPK model, if for any honest verifier
V , for any sufficiently large n and any sufficiently-long x 6∈ L (of length poly(n)) , for all positive
polynomials s and all s-concurrent malicious prover P ∗, the probability that V outputs “accept x” in
the s-concurrent attack (i.e., in one of the s(n) sessions) is negligible in n.

The malicious resetting verifier and resettable zero-knowledge in the BPK model

A malicious s-resetting malicious verifier V ∗, where s is a positive polynomial, is a PPT Turing
machine working in two stages so that, on input 1n,

Stage-1. V ∗ receives s(n) distinct strings x̄ = {x1, · · · , xs(n)} of equal length poly(n) each, and outputs
an arbitrary public-file F and a list of (without loss of generality) s(n) identities id1, · · · , ids(n).

Stage-2. Starting from the final configuration of Stage-1, s(n) random tapes, γ1, · · · , γs(n), are ran-
domly selected and then fixed for P , resulting in s(n)3 deterministic prover strategies P (xi, idj , γk),
1 ≤ i, j, k ≤ s(n). V ∗ is then given oracle access to these s(n)3 provers, and finally outputs its
“view” of the interactions (i.e., its random tapes and messages received from all its oracles).

Definition C.1 (black-box resettable zero-knowledge) A protocol 〈P, V 〉 is black-box resettable
zero-knowledge for a language L ∈ NP if there exists a PPT black-box simulator S such that for every
s-resetting verifier V ∗, the following two probability distributions are indistinguishable. Let each distri-
bution be indexed by a sequence of distinct common inputs x̄ = {x1, · · · , xs(n)}, xi ∈ L ∩ {0, 1}poly(n)

for 1 6 i 6 s(n), and their corresponding NP -witnesses aux(x̄) = {w1, · · · , ws(n)}:

Distribution 1. The output of V ∗ obtained from the experiment of choosing γ1, · · · , γs(n) uniformly at
random, running the first stage of V ∗ to obtain F , and then letting V ∗ interact in its second stage
with the following s(n)3 instances of P : P (xi, wi, F, idj , γk) for 1 ≤ i, j, k ≤ s(n). Note that V ∗

can oracle access to these s(n)3 instances of P .

Distribution 2. The output of S(x̄).

Remark. In Distribution 1 above, since V ∗ oracle accesses to s(n)3 instances of P : P (xi, wi, F, idj , γk),
1 ≤ i, j, k ≤ s(n), it means that V ∗ may invoke and interact with the same P (xi, wi, F, idj , γk) multiple
times, where each such interaction is called a session. We remark that there are two versions for V ∗ to
work in Distribution 1.

1. Sequential version. In this version, a session must be terminated (either completed or aborted)
before V ∗ initiating a new session. That is, V ∗ is required to terminate its current session with
the current oracle P (xi, wi, F, idj , γk) before starting a session with any P (xi′ , wi′ , F, idj′ , γk′),
regardless of (i, j, k) = (i′, j′, k′) or not. Thus, the activity of V ∗ proceeds in rounds. In each
round it selects one of its oracles and conducts a terminated session with it.
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2. Interleaving version. In this version the above restriction is removed and so V ∗ may initiate
and interact, controlling the schedule of messages being exchanged, with P (xi, wi, F, idj , γk)’s
concurrently in many sessions.

However, these two versions are equivalent as shown in [11]. In other words, interleaving interactions
do not help the malicious resetting verifier get more advantages on learning “knowledge” from its oracles
than it can do by sequential interactions. Without loss of generality, in the rest of this paper we assume
the resetting malicious verifier V ∗ works in the sequential version.

Definition C.2 (resettable witness indistinguishability rWI) A protocol 〈P, V 〉 is said to be re-
settable witness indistinguishable for an L ∈ NP if for every positive polynomial s, for every s-
resetting malicious verifier V ∗, two distribution ensembles of Distribution 1 (defined in Definition
C.1), which are indexed by the same x̄ but possibly different sequences of prover’s NP-witnesses:

aux(1)(x̄) = {w
(1)
1 , · · · , w

(1)
s(n)} and aux(2)(x̄) = {w

(2)
1 , · · · , w

(2)
s(n)}, are computationally indistinguishable.

C.1 The CGGM general paradigm for achieving rWI in the standard model

In [11] Canetti et al. presented a general paradigm for achieving rWI protocols in the standard model
from any admissible hybrid WI protocols. A protocol is called admissible if the first verifier-message,
called “determining message”, “essentially determines” all its subsequent messages. That is, the only
freedom retained by the verifier (after sending its first message) is either to abort (or act so that the
prover aborts) or to send a practically predetermined message. A typical case of admissible protocols
is that the first verifier-message is a sequence of commitments that are revealed (i.e., decommitted) in
subsequent verifier steps. In such a case, the verifier’s freedom in subsequent steps is confined to either
send an illegal decommitment (which is viewed as aborting) or properly decommit to the predetermined
value. An admissible protocol is further called hybrid if the prover initialization message (in case the
prover sends the first-round message of the protocol) can be fixed once and for all. Then, given an
admissible hybrid protocol, i.e., in which the prover initialization message can be fixed once and for
all and the first verifier message is the “determining message”, the CGGM transformation transforms
such a protocol into a protocol in the resettable setting by letting the prover apply a pseudorandom
function on the prover initialization message, the verifier “determining message” and the common input
(and verifier’s public-key, in case the protocol is in the BPK model) to get the randomness to be used
in the remaining computation after receiving the verifier “determining message”. Furthermore, if the
starting admissible hybrid protocol is WI then the transformed protocol is rWI in the standard model
(or in the BPK model). For the soundness of the transformed protocol, [11] showed that if the verifier
“determining message” in the starting admissible protocol is a sequence of perfectly-hiding commitments,
then the transformed protocol constitutes a proof system.

The CGGM transformation directly renders us constant-round rWI proofs for NP in the standard
model under the existence of two-round perfectly-hiding commitment schemes in which the first-round
message can be fixed once and for all (e.g. the DLP or RSA based 2-round perfectly-hiding trapdoor
commitment schemes presented in Section 2.1). Specifically, given any 3-round public-coin WI proof
system 〈P, V 〉, we transform it into an admissible hybrid WI protocol as follows: rather than sending
the random-challenge after receiving the first-round message of 〈P, V 〉 from the prover, the verifier
first commits its random challenge on the top by running the underlying 2-round perfectly-hiding
commitment scheme and later reveals the committed value as its random challenge after receiving
the first-round message of 〈P, V 〉 from the prover. Finally, to make the protocol resettable, we let
all randomness used by the prover (other than that for generating the prover initialization message,
i.e., the first-round message of the underlying 2-round perfectly-hiding commitment scheme, which
however can be fixed once and for all ) is got by applying a pseudorandom function on the prover
initialization message, the first verifier-message (i.e., the “determining message”) and the common
input. The transformed rWI protocol is a proof system due to the perfectly-hiding property of the
underlying perfectly-hiding commitment scheme used. But, when we replace the underlying perfectly-
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hiding commitment scheme by a computationally-hiding commitment scheme, we do not know how to
prove the soundness of the transformed protocol although the rWI property remains intact.

That is, from a starting 3-round public-coin WI proof system, if the CGGM transformation goes
with a computationally-hiding (rather than perfectly-hiding) commitment scheme, then the transformed
protocol is still rWI but we do not know how to prove its soundness. As a part of this work, we
show that such transformed (rWI) protocol with computationally-hiding commitment scheme is still
computationally-sound (i.e., it is argument rather than proof) but under sub-exponential hardness
assumptions. In particular, we achieve constant-round rWI arguments for NP in the standard model
under minimal hardness assumptions, a result unknown previously to the best of our knowledge. Specif-
ically, we achieve 5-round (resp. 4-round) rWI arguments for NP in the standard model under any
(sub-exponentially strong) OWF (resp. OWP).

D Major Cryptographic Tools Used

We quickly recall major cryptographic tools used in this work.
We use standard notations and conventions below for writing probabilistic algorithms, experiments

and interactive protocols. If A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the result of running
A on inputs x1, x2, · · · and coins r. We let y ← A(x1, x2, · · · ) denote the experiment of picking r at
random and letting y be A(x1, x2, · · · ; r). If S is a finite set then x← S is the operation of picking an
element uniformly from S. If α is neither an algorithm nor a set then x ← α is a simple assignment
statement. By [R1; · · · ;Rn : v] we denote the set of values of v that a random variable can assume, due to
the distribution determined by the sequence of random processes R1, R2, · · · , Rn. By Pr[R1; · · · ;Rn : E]
we denote the probability of event E, after the ordered execution of random processes R1, · · · , Rn.

Let 〈P, V 〉 be a probabilistic interactive protocol, then the notation (y1, y2) ← 〈P (x1), V (x2)〉(x)
denotes the random process of running interactive protocol 〈P, V 〉 on common input x, where P has
private input x1, V has private input x2, y1 is P ’s output and y2 is V ’s output. We assume wlog that the
output of both parties P and V at the end of an execution of the protocol 〈P, V 〉 contains a transcript
of the communication exchanged between P and V during such execution.

The security of cryptographic primitives and tools presented in this section is defined with re-
spect to uniform polynomial-time or sub-exponential-time algorithms (equivalently, polynomial-size
or sub-exponential-size circuits). When it comes to non-uniform security, we refer to non-uniform
polynomial-time or sub-exponential-time algorithms (equivalently, families of circuits of polynomial or
sub-exponential size).

Definition D.1 (preimage-verifiable one-way function) A function f : {0, 1}∗ −→ {0, 1}∗ is called
a preimage-verifiable one-way function (OWF) if the following conditions hold:

1. Easy to compute: There exists a (deterministic) polynomial-time algorithm A such that on input
x algorithm A outputs f(x) (i.e., A(x) = f(x)).

2. Hard to invert: For every probabilistic polynomial-time PPT algorithm A′, every positive polyno-
mial p(·), and all sufficiently large n’s, it holds Pr[A′(f(Un), 1n) ∈ f−1(f(Un))] < 1

p(n) , where

Un denotes a random variable uniformly distributed over {0, 1}n. A OWF f is called sub-
exponentially strong if for some constant c, 0 < c < 1, for every sufficiently large n, and every
circuit C of size at most 2nc

, Pr[C(f(Un), 1n) ∈ f−1(f(Un))] < 2−nc
.

3. Easy to verify the preimage existence: There exists a polynomial-time computable predicate Df :
{0, 1}∗ −→ {0, 1} such that for any string y, Df (y) = 1 if and only if there exists an x such that
y = f(x).

We remark preimage-verifiable OWF is a generic and actually quite weak hardness assumption that
includes, in particular, any certified one-way permutation and any 1-1 length-preserving one-way func-
tion. A permutation family is certified if it is easy to verify (in polynomial time) that a given function
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belongs to the family. For the formal definition of certified one-way permutations, readers are referred
to [6].

Below, with RSA as an example, we give more clarifications about the relationship among normal
OWF, preimage-verifiable OWF and 1-1 OWF. (More detailed clarifications can be found in [33].) The
difference between normal OWF and length-preserving 1-1 OWF lies in the domain of the function.
Given a normal OWF from domain D to Range R, the 1-1 property of the function is defined however
with respect to {0, 1}∗ −→ {0, 1}∗. In other words, length-preserving 1-1 OWF is a single object,
while a normal OWF could be a member of a function family. This in particular implies that any
length-preserving 1-1 OWF is trivially a preimage-verifiable OWF.

For example, given a function description (N, e) where N = pq for two distinct primes p and q and
gcd(e, φ(N)) = 1, define this generic RSA-based function (denoted by fGRSA) to be fGRSA(x) = xe

mod N . Then, this function fGRSA (specified by (N, e)) is a normal OWF (actually OWP) from Z∗
N to

Z∗
N . But, this function is NOT a preimage-verifiable OWF, because given a specific (N, e), one cannot

efficiently verify whether gcd(e, φ(N)) = 1 or not.
Now, consider the following restricted RSA-based function fRRSA (specified by (N, e) such that N

is a composite number and e > N is a prime number). In this case, this function fRRSA is a preimage-
verifiable OWF from Z∗

N to Z∗
N , as the additional requirement e > N ensures that gcd(e, φ(N)) = 1.

But, this function is clearly NOT a 1-1 function from {0, 1}∗ −→ {0, 1}∗.

Definition D.2 (interactive argument system) A pair of probabilistic polynomial-time interactive
machines, 〈P, V 〉, is called an interactive argument system for a language L if the following conditions
hold:

• Completeness. For every x ∈ L, there exists a string w such that for every string z,
Pr[〈P (w), V (z)〉(x) = 1] = 1.

• Soundness. For every polynomial-time interactive machine P ∗, and for all sufficiently large n’s
and every x /∈ L of length n and every w and z, Pr[〈P ∗(w), V (z)〉(x) = 1] is negligible in n.

An interactive protocol is called a proof for L, if the soundness condition holds against any (even power-
unbounded) P ∗ (rather than only PPT P ∗). An interactive system is called a public-coin system if at
each round the prescribed verifier can only toss coins and send their outcome to the prover.

Definition D.3 (pseudorandom functions PRF) On a security parameter n, let d(·) and r(·) be
two positive polynomials in n. We say that

{fs : {0, 1}d(n) −→ {0, 1}r(n)}s∈{0,1}n

is a pseudorandom function ensemble if the following two conditions hold:

1. Efficient evaluation: There exists a polynomial-time algorithm that on input s and x ∈ {0, 1}d(|s|)

returns fs(x).

2. Pseudorandomness: For every probabilistic polynomial-time oracle machine A, every polynomial
p(·), and all sufficiently large n’s, it holds:

|Pr[AFn(1n) = 1]− Pr[AHn(1n) = 1]| <
1

p(n)

where Fn is a random variable uniformly distributed over the multi-set {fs}s∈{0,1}n , and Hn is
uniformly distributed among all functions mapping d(n)-bit-long strings to r(n)-bit-long strings.

PRFs can be constructed under any one-way function [31, 30]. The current most practical PRFs are
the Naor-Reingold implementations under the factoring (Blum integers) or the decisional Diffie-Hellman
hardness assumptions [47]. The computational complexity of computing the value of the Naor-Reingold
functions at a given point is about two modular exponentiations and can be further reduced to only two
multiple products modulo a prime (without any exponentiations!) with natural preprocessing, which is
great for practices involving PRFs.
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Definition D.4 (perfectly-binding string commitment scheme) A pair of PPT interactive ma-
chines, 〈P, V 〉, is called a perfectly-binding string commitment scheme, if it satisfies the following:

Completeness. For any security parameter n, any k (such that k = k(n) for some polynomial k(·)) and
any string s ∈ {0, 1}k, it holds that Pr[(α, β)← 〈P (s), V 〉(1n, 1k); (t, (t, v)) ← 〈P (α), V (β)〉(1n, 1k) :
v = s].

Computational hiding. For all sufficiently large n’s, any PPT adversary V ∗ and any s, s′ of equal
length k (where k = k(n) for some polynomial k(·)), the following two probability distribu-
tions are computationally indistinguishable: [(α, β) ← 〈P (s), V ∗〉(1n, 1k) : β] and [(α′, β′) ←
〈P (s′), V ∗〉(1n, 1k) : β′]. Namely, for all sufficiently large n’s, for any positive polynomial q(·), and
every distinguishing circuit D of size q(n), it holds that |Pr[D(1n, 1k, β) = 1]−Pr[D(1n, 1k, β′) =
1]| < 1

q(n) . We say the hiding property is sub-exponentially strong if the hiding property holds also

with respect to sub-exponential-size circuits (i.e., replace the polynomial q(·) above by a function
f of the form f(n) = 2nc

, for some constant c, 0 < c < 1).

Perfect Binding. For all sufficiently large n’s, and any adversary P ∗, the following probability is
negligible in n: Pr[(α, β)← 〈P ∗, V 〉(1n, 1k); (t, (t, v)) ← 〈P ∗(α), V (β)〉(1n, 1k);
(t′, (t′, v′))← 〈P ∗(α), V (β)〉(1n, 1k) : |v| = |v′| = k

∧
v 6= v′].

That is, no (even computational power unbounded) adversary P ∗ can decommit the same transcript
of the commitment stage to two different values with non-negligible probabilities.

Below, we recall some classic perfectly-binding commitment schemes. The descriptions are referred
to bit commitment scheme, but the extension to perfectly-binding string commitments is direct.

One-round perfectly-binding (computationally-hiding) commitments can be constructed based on
any one-way permutation OWP [7, 34]. Loosely speaking, given a OWP f with a hard-core predict b
(cf, [30]), on a security parameter n one commits a bit σ by uniformly selecting x ∈ {0, 1}n and sending
(f(x), b(x) ⊕ σ) as a commitment, while keeping x as the decommitment information.

Perfectly-binding commitments can also be constructed based on any one-way function but run
in two rounds [46]. On a security parameter n, let PRG : {0, 1}n −→ {0, 1}3n be a pseudorandom
generator, the Naor’s OWF-based two-round public-coin perfectly-binding commitment scheme works
as follows: In the first round, the commitment receiver sends a random string R ∈ {0, 1}3n to the
committer. In the second round, the committer uniformly selects a string s ∈ {0, 1}n at first; then to
commit a bit 0 the committer sends PRG(s) as the commitment; to commit a bit 1 the committer sends
PRG(s)⊕R as the commitment. Note that the first-round message of Naor’s commitment scheme can
be fixed once and for all and, in particular, can be posted as a part of public-key in the public-key
setting.

For the above perfectly-binding commitment schemes, we remark that if the underlying OWP or
OWF are secure against 2nc1 -time adversaries for some constant c1, 0 < c1 < 1 on a security parameter
n, then the hiding property of corresponding perfectly-binding commitment schemes above also holds
against 2nc1 -time adversaries. Also note that the extension to perfectly-binding string commitments is
direct.

Definition D.5 (witness indistinguishability WI) Let 〈P, V 〉 be an interactive system for a lan-
guage L ∈ NP, and let RL be the fixed NP witness relation for L. That is, x ∈ L if there exists a

w such that (x, w) ∈ RL. We denote by view
P (w)
V ∗(z)(x) a random variable describing the transcript of

all messages exchanged between a (possibly malicious) PPT verifier V ∗ and the honest prover P in an
execution of the protocol on common input x, when P has auxiliary input w and V ∗ has auxiliary input
z. We say that 〈P, V 〉 is witness indistinguishable for RL if for every PPT interactive machine V ∗, and
every two sequences W 1 = {w1

x}x∈L and W 2 = {w2
x}x∈L for sufficiently long x, so that (x, w1

x) ∈ RL

and (x, w2
x) ∈ RL, the following two probability distributions are computationally indistinguishable

by any non-uniform PPT algorithm: {x, view
P (w1

x)
V ∗(z) (x)}x∈L, z∈{0, 1}∗ and {x, view

P (w2
x)

V ∗(z) (x)}x∈L, z∈{0, 1}∗ .
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Namely, for every PPT non-uniform distinguishing algorithm D, every polynomial p(·), all sufficiently
long x ∈ L, and all z ∈ {0, 1}∗, it holds that

|Pr[D(x, z, view
P (w1

x)
V ∗(z) (x) = 1]− Pr[D(x, z, view

P (w2
x)

V ∗(z) (x) = 1]| <
1

p(|x|)

We say that 〈P, V 〉 is sub-exponentially strong witness indistinguishable for RL, if for some c,
0 < c < 1, for every sufficiently long x ∈ L of length n, for every distinguishing circuit D of size at
most 2nc

, and every z ∈ {0, 1}∗, it holds that

|Pr[D(x, z, view
P (w1

x)
V ∗(z) (x) = 1]− Pr[D(x, z, view

P (w2
x)

V ∗(z) (x) = 1]| < 2−nc

Definition D.6 (system for proof of knowledge [5, 30]) Let R be a binary relation and κ : N →
[0, 1]. We say that a probabilistic polynomial-time (PPT) interactive machine V is a knowledge verifier
for the relation R with knowledge error κ if the following two conditions hold:

• Non-triviality: There exists an interactive machine P such that for every (x,w) ∈ R all possible
interactions of V with P on common input x and auxiliary input w are accepting.

• Validity (with error κ): There exists a polynomial q(·) and a probabilistic oracle machine K such
that for every interactive machine P ∗, every x ∈ LR, and every w, r ∈ {0, 1}∗, machine K satisfies
the following condition:

Denote by p(x,w, r) the probability that the interactive machine V accepts, on input x, when
interacting with the prover specified by P ∗

x,w,r (where P ∗
x,w,r denotes the strategy of P ∗ on common

input x, auxiliary input w and random-tape r). If p(x,w, r) > κ(|x|), then, on input x and with
oracle access to P ∗

x,w,r, machine K outputs a solution w′ ∈ R(x) within an expected number of
steps bounded by

q(|x|)

p(x,w, r) − κ(|x|)

The oracle machine K is called a knowledge extractor.

An interactive proof system 〈P, V 〉 such that V is a knowledge verifier for a relation R and P is a
machine satisfying the non-triviality condition (with respect to V and R) is called a system for proof of
knowledge for the relation R.

We recall two protocols of 3-round public-coin WIPOK for NP. One is the Blum’s protocol for
directed Hamiltonian Cycle DHC [8] and one is the Lapidot-Shamir protocol for DHC [41].

Blum’s protocol for DHC [8]. The n-parallel repetitions of Blum’s basic protocol for proving the
knowledge of Hamiltonian cycle on a given directed graph G [8] is just a 3-round public-coin WIPOK for
NP (with knowledge error 2−n) under any one-way permutation (as the first round of it involves one-
round perfectly-binding commitments of a random permutation of G). But it can be easily modified into
a 4-round public-coin WIPOK for NP under any OWF by employing Naor’s two-round (public-coin)
perfectly-binding commitment scheme [46]. The following is the description of Blum’s basic protocol
for DHC:

Common input. A directed graph G = (V,E) with q = |V | nodes.

Prover’s private input. A directed Hamiltonian cycle CG in G.

Round-1. The prover selects a random permutation, π, of the vertices V , and commits (using a
perfectly-binding commitment scheme) the entries of the adjacency matrix of the resulting per-
mutated graph. That is, it sends a q-by-q matrix of commitments so that the (π(i), π(j))th entry
is a commitment to 1 if (i, j) ∈ E, and is a commitment to 0 otherwise.

Round-2. The verifier uniformly selects a bit b ∈ {0, 1} and sends it to the prover.
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Round-3. If b = 0 then the prover sends π to the verifier along with the revealing of all commitments
(and the verifier checks that the revealed graph is indeed isomorphic to G via π); If b = 1, the
prover reveals to the verifier only the commitments to entries (π(i), π(j)) with (i, j) ∈ CG (and the
verifier checks that all revealed values are 1 and the corresponding entries form a simple q-cycle).

We remark that the WI property of Blum’s protocol for HC relies on the hiding property of the
underlying perfectly-binding commitment scheme (used in its first-round). If the hiding property of
the underlying perfectly-binding commitment scheme is secure against 2nc1 -time adversaries for some
constant c1, 0 < c1 < 1 on a security parameter n, then the WI property of Blum’s protocol also holds
against 2nc1 -time adversaries.

The Lapidot-Shamir protocol for DHC [41]. The n-parallel repetitions of the Lapidot-Shamir
basic protocol for proving the knowledge of Hamiltonian cycle on a given directed graph G [41] is another
3-round public-coin WIPOK for NP (with knowledge error 2−n) under any one-way permutation (as
the first round of it involves one-round perfectly-binding commitments of a random permutation of
G). Again, it can be easily modified into a 4-round public-coin WIPOK for NP under any OWF by
employing Naor’s two-round (public-coin) perfectly-binding commitment scheme [46]. The following is
the description of the Lapidot-Shamir basic protocol for DHC (that is also described in [24]):

Round-1. The prover P commits a adjacency matrix for a randomly-labelled cycle C of size q (without
knowing the Hamiltonian graph to be proved). The commitment is done bit-by-bit using the one-
round OWP-based perfectly-binding commitment scheme.

Round-2. The verifier V responds with a randomly chosen bit b

Round-3. Now, P is given the Hamiltonian graph G = (V,E) with size q = |V | to be proved and a
Hamiltonian cycle CG in G as its private input. If b = 0, then P opens all commitments (and V
checks the revealed graph is indeed a q-cycle). If b = 1, then P sends a random permutation π
mapping CG (i.e., its private witness) to C (committed to its first-round message), and for each
non-edge of G (i, j) 6∈ E (1 ≤ i, j ≤ q), P opens the value (that should be 0) committed to
the (π(i), π(j)) entry of the adjacency matrix sent in the first-round message (and V checks all
revealed values are 0 and the unrevealed entries in the committed adjacency matrix constitute a
graph that is isomorphic to G via the permutation π).

The critical difference between Blum’s protocol and the Lapidot-Shamir protocol is that, in the
Lapidot-Shamir protocol the prover sends the first-round message with only the knowledge of the size of
the Hamiltonian graph to be proved. Furthermore, it can be easily extended to the case that the prover
knows only the lower-bound l(n) and the upper-bound u(n) of the size of the graph to be proved. In
this case, in the first-round P commits (u(n)− l(n) + 1) many adjacency matrices for (u(n)− l(n) + 1)
many cycles with sizes ranging from l(n) to u(n). In the third-round, after the size of G is clear, P only
decommits with respect to the unique cycle of according size.

Again, the WI property of Blum’s protocol for HC relies on the hiding property of the underlying
perfectly-binding commitment scheme (used in its first-round). If the hiding property of the underlying
perfectly-binding commitment scheme is secure against 2nc1 -time adversaries for some constant c1, 0 <
c1 < 1 on a security parameter n, then the WI property of the Lapidot-Shamir protocol also holds
against 2nc1 -time adversaries.

Definition D.7 (trapdoor (string) commitment scheme TC) A (normal) trapdoor commitment
scheme (TC) is a quintuple of probabilistic polynomial-time (PPT) algorithms TCGen, TCCom, TCVer,
TCKeyVer and TCFake, such that

• Completeness. ∀n, ∀v of length k (where k = k(n) for some polynomial k(·)),

Pr[(TCPK,TCSK)
R
← TCGen(1n); (c, d)

R
← TCCom(1n, 1k, TCPK, v) :

TCKeyVer(1n, TCPK) = TCVer(1n, 1k, TCPK, c, v, d) = 1] = 1.
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• Computational Binding. For all sufficiently large n’s and for any PPT adversary A, the following
probability is negligible in n (where k = k(n) for some polynomial k(·)):

Pr[(TCPK,TCSK)
R
← TCGen(1n); (c, v1, v2, d1, d2)

R
← A(1n, 1k, TCPK) :

TCVer(1n, 1k, TCPK, c, v1, d1) = TCVer(1n, 1k, TCPK, c, v2, d2) = 1
∧
|v1| = |v2| = k

∧
v1 6= v2].

• Perfect (or Computational) Hiding. ∀ TCPK such that TCKeyVer(TCPK, 1n) = 1 and ∀ v1, v2

of equal length k, the following two probability distributions are identical (or computationally
indistinguishable):

[(c1, d1)
R
← TCCom(1n, 1k, TCPK, v1) : c1] and [(c2, d2)

R
← TCCom(1n, 1k, TCPK, v2) : c2].

• Perfect (or Computational) Trapdoorness. ∀ (TCPK,TCSK) ∈ {TCGen(1n)}, ∃v1, ∀v2 such
that v1 and v2 are of equal length k, the following two probability distributions are identical (or
computationally indistinguishable):

[(c1, d1)
R
← TCCom(1n, 1k, TCPK, v1); d

′
2

R
← TCFake(1n, 1k, TCPK,TCSK, c1, v1, d1, v2) : (c1, d

′
2)]

and [(c2, d2)
R
← TCCom(1n, 1k, TCPK, v2) : (c2, d2)].

Normal trapdoor commitment schemes run in two rounds, in which the commitment receiver gen-
erates and sends TCPK in the first-round.

Feige-Shamir two-round trapdoor commitments [26]. Based on Blum’s protocol for DHC,
Feige and Shamir developed a generic two-round (computationally-hiding and computationally-binding)
trapdoor commitment scheme [26], under either any one-way permutation or any OWF (depending
on the underlying perfectly-binding commitment scheme used). The TCPK of the FSTC scheme
(i.e., its first-round message) is (y = f(x), G) (for OWF-based solution, the first-round also includes a
random string R serving as the first-round message of Naor’s OWF-based perfectly-binding commitment
scheme), where f is a OWF and G is a graph that is reduced from y by the Cook-Levin NP-reduction.
The corresponding trapdoor is x (or equivalently, a Hamiltonian cycle in G). The following is the
description of the Feige-Shamir trapdoor bit commitment (FSTC) scheme, in which, for our purpose,
we have assumed the commitment receiver and the committer use different security parameters n and
N , respectively. The extension to trapdoor string commitments is direct.

Round-1. Let f be a OWF, the commitment receiver randomly selects an element x of length n in
the domain of f , computes y = f(x), reduces y (by Cook-Levin NP-reduction) to an instance
of DHC, a graph G = (V,E) with q = |V | nodes, such that finding a Hamiltonian cycle in G is
equivalent to finding the preimage of y. Finally, it sends (y,G) to the committer. We remark that
to get OWF-based trapdoor commitments, the commitment receiver also sends a random string
R of length 3N , where N is the security parameter used by the committer.

Round-2. The committer first checks the NP-reduction from y to G and aborts if G is not reduced
from y. Otherwise, to commit 0, the committer selects a random permutation, π, of the vertices V ,
and commits (using the underlying perfectly-binding commitment scheme on security parameter
N) the entries of the adjacency matrix of the resulting permutated graph. That is, it sends an
q-by-q matrix of commitments so that the (π(i), π(j))th entry is a commitment to 1 if (i, j) ∈ E,
and is a commitment to 0 otherwise; To commit 1, the committer commits an adjacency matrix
containing a randomly labelled q-cycle only.

Decommitment stage. To decommit to 0, the committer sends π to the commitment receiver along
with the revealing of all commitments, and the receiver checks that the revealed graph is indeed
isomorphic to G via π; To decommit to 1, the committer only opens the entries of the adjacency
matrix that are corresponding to the randomly labelled cycle, and the receiver checks that all
revealed values are 1 and the corresponding entries form a simple q-cycle.

The (computational) trapdoorness property of the FSTC scheme is: After sending a commitment
to 0 (which is indistinguishable from a commitment to 1), one can decommit to 0 in the normal way.
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However, it is also possible to decommit it to 1 if one knows a Hamiltonian cycle in G. Furthermore, the
distribution of a commitment to 0 together with the “trapdoor-assistant” decommitment information to
1 is indistinguishable from the distribution of a commitment to 1 together with the “real” decommitment
information to 1 (due to the hiding property of the underlying perfectly-binding commitment scheme).
This implies, by standard hybrid technique, that the distribution of commitments to 0n together with
“trapdoor-assistant” decommitment information to a random string êV of length n is indistinguishable
from the distribution of commitments to a random sting eV of length n together with the “real”
decommitment information to eV (we will use this property in the proof of concurrent knowledge-
extractability). Again, if the hiding property of the underlying perfectly-binding commitment scheme
is secure against sub-exponential-time adversaries, then both the hiding property and the trapdoorness
property of the FSTC scheme hold also against sub-exponential-time adversaries.

Witness hiding from witness indistinguishability. We recall the definition of witness hiding
WH and the construction of WH from WI.

Definition D.8 (distribution of hard instances) Let L ∈ NP, and let RL be a witness relation for

L. Let XL
def
= {Xn}n∈N be a probability ensemble such that Xn ranges over L∩{0, 1}n. We say that XL

is hard for RL if for every probabilistic polynomial-time (witness-finding) algorithm F , every polynomial
p(·), all sufficiently large n’s: Pr[F (Xn, 1n) ∈ RL(Xn)] < 1

p(n) . We say XL is sub-exponentially hard
for RL if for some constant cL, 0 < cL < 1, for every sufficiently large n, and every circuit C of size at
most 2ncL , Pr[C(Xn, 1n) ∈ RL(Xn)] < 2−ncL . We set cL be 1 if XL is not sub-exponentially hard.

For example, if f is a (sub-exponentially strong) one-way function, then the probability ensemble
{f(Un)}n∈N is (sub-exponentially) hard for the witness relation {(f(x), x) : x ∈ {0, 1}∗}, where Un is
uniform over {0, 1}n.

Definition D.9 (witness-hiding) Let L ∈ NP, and let RL be a witness relation for L. Let X =
{Xn}n∈N be a hard-instance ensemble for RL. We say that a protocol 〈P, V 〉 is witness-hiding for RL

under the instance ensemble X if for every PPT machine V ∗, every polynomial p(·), all sufficiently large
n’s, and all z ∈ 0, 1∗, it holds that Pr[〈P (Yn), V ∗(z)〉(Xn) ∈ RL(Xn)] < 1

p(n) , where Yn is arbitrarily

distributed over RL(Xn).

Let f be a (non-uniformly) one-way function, consider the probability ensemble {(f(Un), f(Un))}n∈N

that is hard for the witness relation ROR = {(y0, y1), x) : y0 = f(x) ∨ y1 = f(x)}, where Un is uniform
over {0, 1}n. Then any WI protocol for the relation ROR is also WH for ROR under the hard-instance
ensemble {(f(Un), f(Un))}n∈N [30].

E Concurrent Interleaving and Malleating Attacks against Zhao’s

Protocol and the Di Crescenzo-Visconti Protocol

We show that both the protocol of [53] (that is sequentially-sound cZK argument of knowledge in the
BPK model) and the protocol of [19] (that is concurrently-sound cZK argument of knowledge), actually
all protocols having the same protocol structure of [53, 19], are not concurrently knowledge-extractable
in the BPK model, by identifying some concurrent interleaving and malleating attacks that are possibly
of independent interest. This in particular shows that concurrent knowledge-extractability is strictly
stronger than concurrent soundness for concurrent verifier security in public-key models when verifiers
register public-keys (note that we have clarified in Section 3 that concurrent knowledge-extractability
implies concurrent soundness in public-key models).

E.1 Σ-protocols and ΣOR-protocols

The idea of Σ-protocols as an abstract concept is introduced by Cramer in [13]. Informally, a Σ-protocol
is itself a 3-round public-coin special honest verifier zero-knowledge (SHVZK) protocol with special
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soundness in the knowledge-extraction sense. Σ-protocols have been proved to be a very powerful
cryptographic tool and are widely used in numerous important cryptographic applications including
digital signatures, identification schemes, efficient electronic payment and voting systems, etc. We
remark that Blum’s 3-round public-coin WIPOK protocol is just a Σ-protocol for DHC. But, we note
that a very large number of practical Σ-protocols also have been developed in the literature (mainly in
applied cryptography). In particular, the practical Σ-protocol examples for DLP and RSA are given in
below. For a good survey of Σ-protocols and their applications, readers are referred to [17, 14].

Definition E.1 A 3-round public-coin protocol 〈P, V 〉 is said to be a Σ-protocol for a relation R if the
following hold:

• Completeness. If P , V follow the protocol, the verifier always accepts.

• Special soundness. From any common input x of length n and any pair of accepting conversations
on input x, (a, e, z) and (a, e′, z′) where e 6= e′, one can efficiently compute w such that (x,w) ∈ R.
Here a, e, z stand for the first, the second and the third message respectively and e is assumed to
be a string of length t (that is polynomially related to n) selected uniformly at random in {0, 1}t.

• Special honest verifier zero-knowledge (SHVZK). There exists a probabilistic polynomial-time (PPT)
simulator S, which on input x and a random challenge string e, outputs an accepting conversation
of the form (a, e, z), with the probability distribution that is indistinguishable from that of the real
conversation between the honest P , V on input x.

Σ-protocol for DLP: The following is a Σ-protocol 〈P, V 〉 proposed by Schnorr [50] for proving the
knowledge of discrete logarithm, w, for a common input of the form (p, q, g, h) such that h = gw mod p,
where on a security parameter n, p is a uniformly selected n-bit prime such that q = (p− 1)/2 is also a
prime, g is an element in Z

∗
p of order q. It is also actually the first efficient Σ-protocol proposed in the

literature.

• P chooses r at random in Zq and sends a = gr mod p to V .

• V chooses a challenge e at random in Z2t and sends it to P . Here, t is fixed such that 2t < q.

• P sends z = r + ew mod q to V , who checks that gz = ahe mod p, that p, q are primes and that
g, h have order q, and accepts iff this is the case.

Σ-protocol for RSA: Let n be an RSA modulus and q be a prime. Assume we are given some
element y ∈ Z∗

n, and P knows an element w such that wq = y mod n. The following protocol is a
Σ-protocol (proposed in [36]) for proving the knowledge of q-th roots modulo n .

• P chooses r at random in Z∗
n and sends a = rq mod n to V .

• V chooses a challenge e at random in Z2t and sends it to P . Here, t is fixed such that 2t < q.

• P sends z = rwe mod n to V , who checks that zq = aye mod n, that q is a prime, that gcd(a, n) =
gcd(y, n) = 1, and accepts iff this is the case.

The OR-proof of Σ-protocols [15]. One basic construction with Σ-protocols allows a prover
to show that given two inputs x0, x1, it knows a w such that either (x0, w) ∈ R0 or (x1, w) ∈ R1,
but without revealing which is the case. Specifically, given two Σ-protocols 〈Pb, Vb〉 for Rb, b ∈ {0, 1},
with random challenges of, without loss of generality, the same length t, consider the following protocol
〈P, V 〉, which we call ΣOR. The common input of 〈P, V 〉 is (x0, x1) and P has a private input w such
that (xb, w) ∈ Rb.

• P computes the first message ab in 〈Pb, Vb〉, using xb, w as private inputs. P chooses e1−b at
random, runs the SHVZK simulator of 〈P1−b, V1−b〉 on input (x1−b, e1−b), and let (a1−b, e1−b, z1−b)
be the output. P finally sends a0, a1 to V .

30



• V chooses a random t-bit string e and sends it to P .

• P sets eb = e ⊕ e1−b and computes the answer zb to challenge eb using (xb, ab, eb, w) as input. It
sends (e0, z0, e1, z1) to V .

• V checks that e = e0⊕e1 and that conversations (a0, e0, zo), (a1, e1, z1) are accepting conversations
with respect to inputs x0, x1, respectively.

Theorem E.1 [15] The protocol ΣOR above is a Σ-protocol for ROR, where ROR = {((x0, x1), w)|(x0, w) ∈
R0 or (x1, w) ∈ R1}. Moreover, ΣOR is witness indistinguishable proof of knowledge for ROR.

E.2 The protocol structure of [53, 19] and the difference between Zhao’s protocol
and the Di Crescenzo-Visconti protocol

The following is the brief protocol structure of Zhao’s protocol (the protocol presented in Figure-3, page
15 of [53]).

Key-generation. Let fV be a OWF that admits Σ-protocols. On a security parameter n, each verifier
V randomly selects two elements in the domain of fV , x0

V and x1
V of length n each, computes

y0
V = fV (x0

V ) and y1
V = fV (x1

V ). V publishes (y0
V , y1

V ) as its public-key while keeping xb
V as its

secret-key for a randomly chosen b from {0, 1}.

Common input. An element x ∈ L of length poly(n), where L is an NP-language that admits Σ-
protocols.

The main-body of the protocol. The main-body of the protocol consists of the following three
phases:

Phase-1. The verifier V proves to the prover P that it knows either the preimage of y0
V or the

preimage of y1
V , by executing the ΣOR-protocol on (y0

V , y1
V ) in which V plays the role of

knowledge prover and P plays the role of knowledge verifier. Denote by aV , eV , zV , the
first-round, the second-round and the third-round message of the ΣOR-protocol of this phase
respectively. Here eV is the random challenge sent by the prover to the verifier.

If V successfully finishes the ΣOR-protocol of this phase and P accepts, then goto Phase-2.
Otherwise, P aborts.

Phase-2. Let TC be a trapdoor commitment scheme with the verifier’s secret-key as the trapdoor.
The prover randomly selects a string ê, and sends c = TC(ê) to the verifier V .

Phase-3. Phase-3 runs essentially the underlying Σ-protocol for L but with the random challenge
is set by a coin-tossing mechanism. Specifically, the prover computes and sends the first-round
message of the underlying Σ-protocol, denoted aP , to the verifier V ; Then V responds with
a random challenge q; Finally, P reveals ê (committed in Phase-2), sets eP = ê ⊕ q, and
computes the third-round message of the underlying Σ-protocol for L, denoted zP , with eP

as the real random challenge.

Verifier’s decision. V accepts if and only if ê is decommitted correctly and eP = ê ⊕ q and
(aP , eP , zP ) is an accepting conversation for x ∈ L.

In general, Zhao’s protocol can be based on any OWP, by instantiating the underlying Σ-protocols
by OWP-based Blum’ WIPOK for NP and implementing the underlying trapdoor commitment scheme
by the OWP-based Feige-Shamir trapdoor commitment scheme. The concurrent ZK property of any
protocol of the above protocol structure in the BPK model is from the observation that the combination
of Phase-1 and Phase-2 actually constitutes an equivocal commitment scheme. It is also not hard to
check that any protocol of the above protocol structure is sequentially sound and argument of knowledge
in the BPK model. Actually, in [53] it is claimed that the above protocol is also concurrently sound,
but the proofs presented there are actually conceptually flawed.
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The difference between Zhao’s protocol and the Di Crescenzo-Visconti protocol. The
key difference between the protocol of [53] and the protocol of [19] is the underlying trapdoor commit-
ment scheme used in Phase-2. [19] uses a special trapdoor bit commitment scheme that is a variant
of the standard DLP-based trapdoor commitment with its decommitment information (to 0 or 1) is in
turn committed to one of two perfectly-binding commitments. The augmentation of perfectly-binding
commitments is crucial for fixing the proof flaw of [53] for concurrent soundness, but it also increases the
computational complexity significantly, i.e., from a very small constant number of exponentiation oper-
ations to the exponentiation number that is at least linear in n, as to get trapdoor string commitments
it is seemingly intrinsic to run the basic bit commitment scheme in parallel. In comparison, [53] uses
the Damgard Σ-protocol-based trapdoor commitment scheme[16] (which is also presented in [17]). The
Damgard Σ-protocol-based trapdoor commitment scheme goes as follows: The prover and the verifier
first generate a hard instance (for some language that admits Σ-protocols) such that the prover does
not know the corresponding witness (i.e., trapdoor); Then, to commit a value m, the prover runs the
SHVZK simulator of the underlying Σ-protocol (for the generated hard-instance) on the value m to get
a simulated transcript, denoted (â,m, ẑ). Then, â is the commitment of m and ẑ is the decommitment
information. In [53], the underlying hard instance is generated interactively (i.e. Phase-2 is interactive).
But the observation here is that the hard-instance generation interactions are actually redundant there
as the verifier’s public-key can just be served as the underlying hard-instance.

E.3 The concurrent interleaving and malleating attacks

The concurrent interleaving attack.

We first show a concurrent interleaving attack in which a polynomial-time malicious concurrent
prover P ∗ can convince an honest verifier V with its public-key PK = (y0

V , y1
V ) that it “knows” the

corresponding secret-key of PK with probability 1 by concurrently interacting with V in two sessions.
In other words, such a attack enables P ∗ to personate V ∗.

Specifically, on common input PK = (y0
V , y1

V ), P ∗ interacts with V concurrently in two sessions,
and schedules the messages being exchanged in the two sessions as follows.

1. P ∗ interacts with V in the first session and works just as the honest prover does in Phase-1 and
Phase-2. We denote by c = TC(ê) the Phase-2 message of the first session. When P ∗ moves into
Phase-3 of the first session and needs to send V the first-round message, denoted by aP , of the
underlying Σ-protocol of Phase-3 of this session, P ∗ suspends the first session.

2. P ∗ initiates a second session with V ; After receiving the first-round message, denoted by a′V , of
the ΣOR-protocol of Phase-1 of the second session on common input PK = (y0

V , y1
V ) (i.e. V ’s

public-key) , P ∗ sets aP = a′V and suspends the second session.

3. Now, P ∗ continues the execution of the first session, and sends aP = a′V to V as the first-round
message of the Σ-protocol of Phase-3 of the first session.

4. P ∗ runs V further in the first session. After receiving the second-round message of Phase-3 of the
first session, denoted by q (i.e. the random challenge from V ), P ∗ sets eP = ê ⊕ q and suspends
the first session again.

5. P ∗ continues the execution of the second session, and sends e′V = eP = ê⊕ q to V as its random
challenge in the second-round of the ΣOR-protocol of Phase-1 of the second session. After receiving
the third-round message of Phase-1 of the second session, denoted by z′V , P ∗ sets zP = z′V and
suspends the second session again.

6. P ∗ continues the execution of the first session again, reveals ê committed in Phase-2 and sends
zP = z′V to V as the last-round message of the first session.
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We define a language LfV
= {((y0, y1))|∃w s.t.y0 = fV (w) OR y1 = fV (w)}. Note that the statement

“PK ∈ LfV
” is always true for the honestly generated PK. The above concurrent interleaving attack

shows that the concurrent adversary P ∗ can, with probability 1, convince the honest verifier with
public-key PK of the statement “PK ∈ LfV

”, but P ∗ actually does not know the corresponding
witness (i.e., the secret-key). Now, suppose fV is secure against sub-exponential-time adversaries and
Zhao’s protocol or the Di Crescenzo-Visconti protocol are concurrently knowledge-extractable, then
the sub-exponential-time knowledge-extractor will violate the hardness assumption of fV , which means
that, under sub-exponentially strong OWP, Zhao’s protocol or the Di Crescenzo-Visconti protocol are
not concurrently knowledge-extractable.

The concurrent malleating attack.

We then show another concurrent attack that enables P ∗ to malleate the interactions of Phase-1
of one session into a successful conversation of another concurrent session for different (but verifier’s
public-key related) statements without knowing any corresponding NP-witnesses.

Let L′ be any NP-language admitting a Σ-protocol that is denoted by ΣL′ . For an honest verifier
V with its public-key PK = (y0

V , y1
V ), we define a new language L = {(x′, (y0

V , y1
V ))|∃w s.t. (x′, w) ∈

RL′ OR yb
V = fV (w) for b ∈ {0, 1}}. Note that for any string x′ (whether x′ ∈ L′ or not), the

statement “(x′, (y0
V , y1

V )) ∈ L” is always true as PK = (y0
V , y1

V ) is honestly generated. Also note that
L is a language that admits Σ-protocols (as ΣOR-protocol is itself a Σ-protocol). Now, we describe the
concurrent malleating attack, in which P ∗ successfully convinces the honest verifier of the statement
“(x′, (y0

V , y1
V )) ∈ L” for any arbitrary poly(n)-bit string x′ (even x′ 6∈ L′) by concurrently interacting

with V in two sessions as follows.

1. P ∗ interacts with V in the first session and works just as the honest prover does in Phase-1 and
Phase-2. We denote by c = TC(ê) the Phase-2 message of the first session. When P ∗ moves into
Phase-3 of the first session and needs to send V the first-round message, denoted by aP , of the
Σ-protocol of Phase-3 of this session on common input (x′, y0

V , y1
V ), P ∗ suspends the first session

and does the following:

• It first runs the SHVZK simulator of ΣL′ (i.e., the Σ-protocol for L′) on x′ to get a simulated
conversation, denoted by (ax′ , ex′ , zx′), for the (possibly false) statement “x′ ∈ L”.

• Then, P ∗ initiates a second session with V ; After receiving the first-round message, denoted
by a′V , of the ΣOR-protocol of Phase-1 of the second session on common input (y0

V , y1
V ) (i.e.

V ’s public-key) , P ∗ sets aP = (ax′ , a′V ) and suspends the second session.

2. Now, P ∗ continues the execution of the first session, and sends aP = (ax′ , a′V ) to V as the first-
round message of the Σ-protocol of Phase-3 of the first session.

3. P ∗ runs V further in the first session. After receiving the second-round message of Phase-3 of the
first session, denoted by q (i.e. the random challenge from V ), P ∗ sets eP = ê⊕q and e′V = eP ⊕ex′

and suspends the first session again.

4. P ∗ continues the execution of the second session, and sends e′V = eP ⊕ ex′ = ê ⊕ q ⊕ ex′ to V as
its random challenge in the second-round of the ΣOR-protocol of Phase-1 of the second session.
After receiving the third-round message of Phase-1 of the second session, denoted by z′V , P ∗ sets
zP = (zx′ , z′V ) and suspends the second session again.

5. P ∗ continues the execution of the first session again, reveals ê committed in Phase-2 and sends
zP = (zx′ , z′V ) to V as the last-round message of the first session.

Note that (ax′ , ex′ , zx′) is an accepting conversation for the (possibly false) statement “x′ ∈ L”,
(a′V , e′V , z′V ) is an accepting conversation for showing the knowledge of the preimage of either y0

V or y1
V ,

and furthermore ex′ ⊕ e′V = eP = ê ⊕ q. According to the description of ΣOR (presented in Section
2.1), this means that, from the viewpoint of V , (aP , eP , zP ) is an accepting conversation of Phase-3 of
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the first-session on common input (x′, y0
V , y1

V ). That is, P ∗ successfully convinced V of the statement
“(x′, (y0

V , y1
V )) ∈ L” (even x′ 6∈ L′) in the first session but without knowing any corresponding NP-

witness. We remark that such an attack is quite meaningful in certain settings. In general, the second
attack is also similar to the attack (developed in [52]) on the Feige-Shamir ZK protocols [26] in the
public-key model, but the protocol of [19] and the protocol of [26] have different protocol structures.

F Constant-Round rZK-CKE Arguments for NP in the BPK model
under Minimal Hardness Assumption

Appendix F is an extended version of Section 4. In this section, we present constant-round (specifically,
7-round) concurrently knowledge-extractably secure rZK (rZK-CKE) arguments for NP with (real)
bare public-keys under the minimal hardness assumption (i.e., any OWF). To this end, we also present
constant-round rWI arguments for NP in the standard model under the minimal hardness assumption,
a result unknown previously to our knowledge that is of independent value.

The high-level overview of the protocol. We first convey some ideas about the high-level
overview of the protocol. Let fV be any (sub-exponentially strong) OWF, each (honest) verifier V
randomly selects an element xV from the domain of fV , and publishes yV = fV (xV ) as its public-key
with xV as its secret-key. Let L be an NP-language and x ∈ L be the common input, the main-body
of the protocol goes as follows: The honest prover P first generates and sends a hard-instance using
a standard polynomially-secure OWF fP . The hard-instance is then fixed once and for all. Then, P
proves to V the existence of the preimage of the hard-instance, by executing a OWF-based resettable
witness-hiding rWH protocol. After that, V proves to P that it knows either the preimage of yV (i.e.,
its secret-key xV ) or the preimage of the hard-instance generated by P , by executing a OWF-based
constant-round WIPOK protocol for NP . Finally, P proves to V that it knows either a witness for
x ∈ L or the preimage of yV (i.e., V ’s secret-key), by executing another OWF-based constant-round
rWI argument for NP . The detailed protocol description is depicted in Figure 1 (page 7).

The underlying complexity-leveraging. For this protocol to be provably secure, we employ
the complexity-leveraging technique (that is originally introduced in [11] and also used in all previous
black-box rZK systems in the BPK model). Specifically, the verifier V uses a security parameter N
(in generating messages from it) that is also the system security parameter. But, the prover P uses
a relatively smaller security parameter n (that is still polynomially related to N). The justification
and discussions of the complexity-leveraging technique are given in [11]. Here, we additionally remark
that letting the verifier and the prover use different security parameters is quite reasonable in the
resettable setting, in which the prover is implemented by smart-cards or clients that have relatively
limited computational resources and power and the verifier is normally implemented by servers that
have much more computational resources and power.

Specifically, the security parameters are set as follows. On the system parameter N , suppose fV is
secure against 2NcV -time adversaries for some constant cV , 0 < cV < 1. And for any x ∈ L∩{0, 1}poly(N),
let cL, 0 < cL 6 1, be the constant defined in Definition 3.1. Let c be any constant such that 0 < c <
min{cV , cL} (in other words, min{cV , cL} = c + c′ for another constant c′, 0 < c′ < 1). The prover uses
a relatively smaller security parameter n and uses a standard polynomially-secure OWF fP that can be
broken (brute-force wise) in time 2ncP for some constant cP , cP > 1. Let ε be any constant such that
ε > cP

c
, then we set N = nε. Note that N and n are polynomially related. That is, any quantity that is a

polynomial of N is also (another) polynomial of n. This complexity leveraging guarantees that although
any poly(n) · 2ncP -time adversary can break fP on a security parameter n, it is still infeasible to break
the one-wayness of fV (because poly(n) ·2ncP � 2NcV ). Also note that any poly(n) ·2ncP -time algorithm
cannot output a witness for x ∈ L with non-negligible probabilities, in case x is a sub-exponentially hard
instance or just x 6∈ L (because poly(n) ·2ncP � 2NcL ). However, we show that for any (whether true or
not) common input x ∈ {0, 1}poly(N), if a PPT concurrent malicious P ∗ can convince V of the statement
“x ∈ L” with non-negligible probabilities in its concurrent interactions, then there exists a black-box
knowledge-extractor that, on input yV (i.e., V ’s public-key), works in poly(n) · 2ncP -time and outputs a
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witness for x ∈ L also with non-negligible probabilities. Thus, under reasonable (i.e., sub-exponential)
hardness assumptions on the language L, no PPT concurrent malicious prover can convince V of any
(sufficiently long) statement without “knowing” a witness.

The OWF-based protocol depicted in Figure 1 (page 7) runs in 7 rounds after round combinations
accordingly. In particular, the first two rounds of Phase-4 can be combined into previous phases. Now,
for the protocol depicted in Figure-1, we have the following theorem:

Theorem F.1 Under any (sub-exponentially strong) OWF, any language in NP has a constant-round
concurrently knowledge-extractably secure rZK (rZK-CKE) argument in the BPK model.

Proof (sketch).
The completeness of the protocol (depicted in Figure-1) is direct. Below we focus on the rZK and

concurrent knowledge-extractability properties in the BPK model.

Black-box resettable zero-knowledge.

For any s-resetting adversary V ∗ (as defined in Appendix C), without loss of generality, we make in
our analysis the following two simplifying assumptions. Firstly, we assume V ∗ works in the sequential
version (which is equivalent to the interleaving version as discussed in Appendix C). Secondly, our
analysis refers to a mental experiment in which the honest prover P utilizes a truly random function
rather than a pseudorandom one. As usual, the corresponding views of the malicious verifier V ∗ in the
two cases (i.e., random versus pseudorandom function) are computationally indistinguishable. From
this point on, we identify the random-tape of P with a truly random function.

For any s-resetting adversary V ∗ who receives s(N) distinct strings x̄ = {x1, · · · , xs(N)}, xi ∈

L∩{0, 1}poly(N) for each i (1 6 i 6 s(N)), and outputs an arbitrary public-file F containing s(N) entries

PK1, · · · , PKs(N) in its first stage, we denote by Dt = (xi, F, (j, PKj), (y
(0)
P , y

(1)
P , GP , RP )k, (c

(0)
V , c

(1)
V , aV )t)

the “determining” message of the t-th session in which V ∗ interacts with its oracle P (xi, PKj , γk),
1 6 i, j, k 6 s(N) and 1 6 t 6 (s(N))3. We say a public-key PKj in F , 1 ≤ j ≤ s(N), is “covered” if
the rZK simulator S has already learnt (extracted) the corresponding secret-key SKj (if such exists).

The rZK simulation procedure is similar to (but more complicated than) that of [11]. Specifically,
the rZK simulator S runs V ∗ as a subroutine by emulating the actions of the honest prover, and
works in at most s(N) + 1 phases such that in each phase it either successfully finishes its simula-
tion or “covers” a new public-key in F . In each phase, S makes a simulation attempt from scratch
with a new truly random function that is to be defined adaptively, and works session by session
sequentially in at most (s(N))3 sessions. The rZK simulator is depicted in Figure-2 (page 36), in
which, for simplicity of presentation, we have assumed that V ∗ sends the full “determining” message

Dt = (xi, F, (j, PKj), (y
(0)
P , y

(1)
P , GP , RP )k, (c

(0)
V ∗ , c

(1)
V ∗ , aV ∗)t) (rather than only (c

(0)
V ∗ , c

(1)
V ∗ , aV ∗)t as speci-

fied in Figure-1) at Stage-2 of Phase-1 in the t-th session with respect to common input xi and public-key
PKj and the honest prover instance P (·, ·, γk), 1 ≤ i, j, k ≤ s(N) and 1 6 t 6 (s(N))3.

The same analysis of [11] can be directly applied here to show that the simulator S works in expected
polynomial time, and the probability that S aborts with an error message due to all n · 2n attempts of
any inner repeat loop in its simulation have failed in extracting any knowledge (i.e., either a Hamiltonian

cycle of (y
(0)
P , y

(1)
P , GP , RP )k or the expected secret-key SKj , for any k, j, 1 6 k, j 6 s(N)) from V ∗

is negligible. Next, we show the probability that S aborts with an error message in any inner repeat

loops of its simulation due to extracting a Hamiltonian cycle of (y
(0)
P , y

(1)
P , GP , RP )k (rather than the

expected secret-key SKj) is also negligible, 1 6 k, j 6 s(N). The proof for this case, however, turns
out to be complicated and subtle.

Specifically, we want to argue that the underlying Blum’s WIPOK protocol on ((y
(0)
P , y

(1)
P , GP , RP )k, PKj)

(executed in Stage-2 of Phase-1 together with Phase-3) is actually an argument of the knowledge of the
preimage of PKj (i.e., the secret-key SKj). But, the subtle and complicated situation here is that before

V ∗ finishes Phase-3, S has already proved the knowledge of the Hamiltonian cycle of (y
(0)
P , y

(1)
P , GP , RP )k
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Initialization of the broken public-key set: U ← Ø
Outer Repeat Loop: Repeats up to s(N) + 1 times
• Random function initialization: A random function f that is totally undefined.

• Simulation from scratch: Runs V ∗ on x̄ (by emulating the honest prover P ) until V ∗ stops or S moves
into Phase-4 of a session t on a common input xi with respect to a “unbroken” public-key PKj 6∈ U . We

denote by Dt = (xi, F, (j, PKj), (y
(0)
P , y

(1)
P , GP , RP )k, (c

(0)
V ∗ , c

(1)
V ∗ , aV ∗)t) the “determining” message of the t-th

session, 1 ≤ i, j, k ≤ s(N) and 1 6 t 6 (s(N))3. Note that (y
(0)
P , y

(1)
P , GP , RP )k is generated by S itself,

emulating the actions of the honest prover in Stage-1 of Phase-1 of all sessions with respect to honest prover
instances P (·, ·, γk). Note also that Dt may be equal to Dt̂ for some t̂, 1 ≤ t̂ ≤ t.

During this process, in each session t′ with respect to a distinct “determining” message Dt′ =
(xi′ , F, (j′, PKj′), (y

(0)
P , y

(1)
P , GP , RP )k′

, (c
(0)
V ∗ , c

(1)
V ∗ , aV ∗)t′) and a “covered” public-key PKj′ , 1 ≤ i′, j′, k′ ≤

s(N) and 1 6 t′ 6 (s(N))3, then S uses independent random coins in its remaining computation after re-

ceiving the “determining” message by defining f on the new point Dt′ (note that the (y
(0)
P , y

(1)
P , GP , RP )k′

is fixed once and for all), and uses the (assumed known) secret-key SKj′ as its witness in Phase-4. For any
session with a “determining” message that is identical to that of some previous session, then S just copies
what sent in that previous session.

• If V ∗ stops then S also stops and outputs the transcript up to now.

• If S moves into Phase-4 of the session t with respect to the uncovered public-key PKj , then it implies
that V ∗ has successfully finished Phase-3. We denote by et

V ∗ , zt
V ∗ , the first-round message and the second-

round message of Phase-3 in the t-th session respectively. Note that ((c
(0)
V ∗ , c

(1)
V ∗ , aV ∗)t, et

V ∗ , zt
V ∗) constitute a

successful conversation of the Blum’s WI protocol on ((y
(0)
P , y

(1)
P , GP , RP )k, PKj). let T denote the partial

transcript that V ∗(T ) = Dt and for any prefix T ′ of T V ∗(T ′) 6= Dt. That is, T is the transcript on which
V ∗ will send the underlying “determining” message Dt at the first time. In other words, T determines the
smallest t̂, 1 ≤ t̂ ≤ t, such that Dt = Dt̂. Then S rewinds V ∗ to T and does the following:

• Inner Repeat Loop: Repeats up to n · 2n times

– Redefines (the output of) f on the point Dt̂(= Dt) to be a new independent random string (of according

length), which in particular includes a new random challenge, denoted êt̂
V ∗ , to be sent as the first-round

message of Phase-3 of any session (from T ) with respect to the same “determining” message Dt̂(= Dt).

– Runs V ∗ from T .

– Whenever S moves into Phase-4 of a session again with the same “determining” message Dt̂(= Dt),
and furthermore this is the first session from T that S moves into Phase-4 with respect to a uncovered
public-key, it means that S receives again a valid second-round message of Phase-3, denoted ẑt̂

V ∗ , with
respect to êt̂

V ∗ and the same (c
(0)
V ∗ , c

(1)
V ∗ , aV ∗)t(= (c

(0)
V ∗ , c

(1)
V ∗ , aV ∗)t̂) such that ((c

(0)
V ∗ , c

(1)
V ∗ , aV ∗)t, êt̂

V ∗ , ẑt̂
V ∗)

constitute another successful conversation of the Blum’s WI protocol on ((y
(0)
P , y

(1)
P , GP , RP )k, PKj),

from which S can efficiently extract either SKj or a Hamiltonian cycle in (y
(0)
P , y

(1)
P , GP , RP )k. If the

extracted knowledge is SKj , then S sets U ← U ∪ {j} and goes to Outer Repeat Loop. Otherwise

(i.e., the extracted knowledge is a Hamiltonian Cycle in (y
(0)
P , y

(1)
P , GP , RP )k), then S aborts with an

error message.

– In any other cases, S proceeds to the next iteration of Inner Repeat Loop.

• End [of inner repeat loop]

• In case all the above n · 2n attempts have failed, S aborts with an error message
End [of outer repeat loop]

Figure 2. The black-box rZK simulator

in Phase-2. Note that the (y
(0)
P , y

(1)
P , GP , RP )k is fixed once and for all (which can be viewed as the public-

key of the honest prover instance P (·, ·, γk)), and furthermore V ∗ is resettingly (more than concurrently)
interacting with the honest prover instances. As demonstrated in Section 3 and Appendix E, normal
argument of knowledge and even concurrent soundness do not guarantee knowledge-extractability in
such setting. In particular, one may argue that, by rewinding the honest prover instances arbitrar-

ily, V ∗ may potentially forge the interactions on (y
(0)
P , y

(1)
P , GP , RP )k provided by the honest prover in

Phase-2 of one session into successful but “false” interactions on ((y
(0)
P , y

(1)
P , GP , RP )k, PKj) in Stage-2

of Phase-1 and Phase-3 of another session with respect to public-key PKj , in the sense that although
the interactions are valid but V ∗ actually does not know the corresponding secret-key SKj. This means
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that, in such case the interactions on ((y
(0)
P , y

(1)
P , GP , RP )k, PKj) executed in Phase-3 together with

Stage-2 of Phase-1 are not any longer an argument of the knowledge of the preimage of PKj , although

it is always a system for proof of knowledge of either SKj or a Hamiltonian cycle of (y
(0)
P , y

(1)
P , GP , RP )k.

What save us here is the concurrent (not resettable) WI property of the Blum’s protocol for HC.
Below, we construct an algorithm Ŝ that emulates the real rZK simulator while concurrently (not

resettingly) running the Blum’s protocol for HC. That is, on common inputs {(y
(0)
P , y

(1)
P , GP , RP )1,

· · · , (y
(0)
P , y

(1)
P , GP , RP )s(N)} Ŝ concurrently interacts with s(N) instances of the knowledge prover,

denoted P̂ , of Blum’s protocol for HC by playing the role of knowledge verifier. We denote each of the

s(N) instances of P̂ by P̂ ((y
(0)
P , y

(1)
P , GP , RP )k), 1 6 k 6 s(N); At the same time, Ŝ runs the s-resetting

malicious V ∗ as a subroutine by playing the role of the honest prover, and sends (y
(0)
P , y

(1)
P , GP , RP )k

as the Stage-1 message of Phase-1 whenever V ∗ initiates a session with the honest prover instance
P (·, ·, γk). Ŝ emulates the rZK simulator S but with the following modification: whenever Ŝ needs

to send a “fresh” first-round message of Blum’s protocol for HC on (y
(0)
P , y

(1)
P , GP , RP )k in Phase-2

with respect to a “determining” message (this happens due to either V ∗ sends a distinct “determining”
message in one session or Ŝ needs rewinding V ∗ and redefining the underlying random function f to
extract knowledge used by V ∗ in a successful execution of Stage-2 of Phase-1 and Phase-3 with respect

to an uncovered public-key), it initiates a new session with P̂ ((y
(0)
P , y

(1)
P , GP , RP )k), and forwards the

first-round message received from P̂ ((y
(0)
P , y

(1)
P , GP , RP )k) to V ∗. Then, Ŝ runs V ∗ further, and in case

V ∗ successfully reveals the assumed challenge (that is perfectly-bindingly committed to the underlying
“determining” message in question) then Ŝ returns back the revealed challenge to P̂ as its own challenge
in the according simultaneous session of Blum’s protocol for HC, and returns back the third-round

message received from P̂ ((y
(0)
P , y

(1)
P , GP , RP )k) to V ∗. For a session with a “determining” message that

is identical to that of some previous sessions, Ŝ just copies what sent in the previous sessions. Note
that in this case, Ŝ may still possibly need to interact with P̂ in some existing concurrent session to
get some third-round message (in case V did not reveal or invalidly revealed the random challenge
perfectly-bindingly committed to the underlying “determining” message in all previous sessions but
correctly reveals it in the current session). But, the key point here is that in this case S does not need
to initiate a new concurrent session with P̂ .

Note that from the viewpoint of V ∗, the behavior of Ŝ is identical to the behavior of the real rZK

simulator, where the real rZK simulator S generates (y
(0)
P , y

(1)
P , GP , RP )k’s and provides the correspond-

ing Phase-2 messages by itself (rather than get by interacting with the knowledge prover instances

P̂ ((y
(0)
P , y

(1)
P , GP , RP )k)’s of the Blum’s protocol for HC). The key observation here is that although V ∗

is actually resettingly interacting with Ŝ, but Ŝ only concurrently interacts with the instances of P̂ and
never rewinds P̂ . The underlying reason is just that, in any session Phase-2 interactions take place only
after V ∗ sent the “determining” message at Stage-2 of Phase-1 that determines the subsequent behav-
iors of V ∗ in that session. Note that in this case, the (concurrent) WI property of the Blum’s protocol

for HC on common input (y
(0)
P , y

(1)
P , GP , RP )k actually implies witness hiding (WH), which means no

PPT algorithm can output a Hamiltonian cycle in (y
(0)
P , y

(1)
P , GP , RP )k even by concurrently interacting

with P̂ ((y
(0)
P , y

(1)
P , GP , RP )k). Also note that on common input ((y

(0)
P , y

(1)
P , GP , RP )k, PKj), Phase-3 to-

gether with Stage-2 of Phase-1 is always a system for proof of knowledge of either a Hamiltonian cycle in

(y
(0)
P , y

(1)
P , GP , RP )k or the preimage of PKj (i.e., SKj), which means that with overwhelming probabili-

ties Ŝ (or the real rZK simulator S) always can extract either a Hamiltonian cycle in (y
(0)
P , y

(1)
P , GP , RP )k

or the corresponding secret-key SKj within time inversely proportional to the probability that V ∗ suc-
cessfully finishes Phase-3 (by rewinding V ∗ and redefining the underlying random function). But, the
WH property of Blum’s protocol for HC shows that with overwhelming probabilities, Ŝ (or the real

rZK simulator S) never outputs a Hamiltonian cycle in (y
(0)
P , y

(1)
P , GP , RP )k in its simulation that is

done in expected polynomial-time. Here, a subtle point needs to be further addressed. Specifically, the
normal WH property is defined with respect to probabilistic (strict) polynomial-time algorithms, but
here Ŝ works in expected polynomial-time. But, by Markov’s inequality, it is easy to see that if the WH

37



property of a protocol holds with respect to any probabilistic (strict) polynomial-time algorithms, then
it also holds with respect to any expected polynomial-time algorithms. (Specifically, if an algorithm
A breaks the WH property of a protocol with non-negligible probability 1

q(n) in expected p(n)-time,

where q(·) and p(·) are positive polynomials, then we can construct another strict polynomial-time A′

that runs A p(n) · (2 · q(n)) steps. If A outputs nothing in the p(n) · (2 · q(n)) steps, then A′ aborts;
otherwise, A′ outputs whatever A outputs. By Markov’s inequality, it’s easy to see that A′ breaks the
WH property of the underlying protocol with probability at least 1

2·q(n) that is also non-negligible. So,

if a protocol is WH with respect to any probabilistic (strict) polynomial-time algorithms, then it is also
WH with respect to any expected polynomial-time algorithms.)

Finally, conditioned on the rZK simulator S does not abort with error messages, the indistinguisha-
bility between the simulated transcript (outputted by S) and the real interaction transcript (between
V ∗ and honest prover instances) is from the rWI property of Phase-4 combined with Phase-1. Ac-
tually, the combination of Phase-4 and Phase-1 constitutes a protocol for NP in the standard model
that holds the rWI property, as shown by the CGGM general paradigm for achieving rWI protocols in
the standard model from admissible hybrid WI protocols [11]. But, as discussed in Appendix C.1, the
soundness property of the protocol combining Phase-4 and Phase-1 is not direct, because the underlying
trapdoor commitment scheme used in Phase-1 is only computationally (rather than perfectly) hiding.
Actually, as we shall see, the proof for the soundness property in this case, and especially for concurrent
soundness and concurrent knowledge-extractability of the whole protocol in the BPK model, turns out
to be much more complicated and subtle, which is to be elaborated next.

Comments: Note that in the proof of rZK, we require nothing about the public-keys registered
by V ∗ in F . What we need in the simulation is the POK property of Blum’s protocol executed in
Stage-2 of Phase-1 and Phase-3, which does hold with respect to any common input (in particular, any
public-key registered by V ∗, whether valid or not). That is, our protocol is with what we informally
call real bare public-keys. Also note that for the OWF fP used by the prover, it can be only secure
against standard polynomial-time adversaries, as the one-wayness of fP is only used to guarantee the
computationally-binding property of the underlying FSTC scheme against malicious polynomial-time
verifiers (in proving black-box resettable zero-knowledge).

Black-box concurrent knowledge-extractability.

We show that for any (whether true or not) common input x ∈ {0, 1}poly(N), if a PPT s-concurrent
malicious P ∗ can convince an honest verifier V (with public-key PK and secret-key SK) of the statement
“x ∈ L” with non-negligible probability px in one of the s(N) concurrent interactions, then there exists
a black-box knowledge-extractor E that, on input PK with oracle accessing P ∗, works in poly(n) ·2ncP -
time and outputs a witness for x ∈ L also with non-negligible probabilities. Note that according to the
underlying complexity leveraging on the security parameters N and n, no poly(n) · 2ncP -time algorithm
can break the one-wayness of fV used by V in forming its public-key on security parameter N (because
poly(n) · 2ncP � 2NcV ). Also note that any poly(n) · 2ncP -time algorithm cannot output a witness for
x ∈ L with non-negligible probabilities, in case x is a sub-exponentially hard instance or just x 6∈ L
(because poly(n) · 2ncP � 2NcL ).

Taking PK as its input, E randomly chooses j from {1, · · · , s(N)} and runs P ∗ as a subroutine by
playing the role of the honest verifier with public-key PK. Note that E does not know the corresponding
secret-key SK. In each session t, 1 6 t 6 s(N), after receiving the Stage-1 message of Phase-1, denoted

((y
(0)
P ∗ , y

(1)
P ∗)t, Gt

P ∗ , Rt
P ∗), E first checks whether or not Gt

P ∗ is NP-reduced from (y
(0)
P ∗ , y

(1)
P ∗)t and Rt

P ∗ is of
length 3N . If the checking is successful, then E tries to find a Hamiltonian cycle in Gt

P ∗ by brute-force
searching in 2ncP -time.

• If E finds a Hamiltonian cycle in Gt
P ∗ , then E sets the Stage-2 message of Phase-1 of the t-th

session, denoted ((c
(0)
V )t, (c

(1)
V )t, at

V ), as follows: it randomly chooses one random string (e
(0)
V )t

from {0, 1}n, computes (c
(0)
V )t = Com(1N , Rt

P ∗ , (e
(0)
V )t) by using the underlying Naor’s perfectly-

binding commitment scheme Com, and computes (c
(1)
V )t = TCCom(1N , (Gt

P ∗ , Rt
P ∗), 0n) by us-

ing the underlying Feige-Shamir trapdoor commitment scheme (note that, (c
(1)
V )t commits to
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0n rather than a random string in {0, 1}n as the honest verifier does). Then, on common input

(((y
(0)
P , y

(1)
P )t, Gt

P ∗ , Rt
P ∗), PK) V computes the first-round message, denoted at

V , of (n-parallel rep-
etitions of) Blum’s WIPOK for NP for showing the knowledge of either SK or a Hamiltonian
cycle in Gt

P ∗ . Note that the first-round message of Blum’s WIPOK for NP is computed without
using any witness knowledge (i.e., either SK or a Hamiltonian cycle in Gt

P ∗); In case P ∗ success-
fully finishes Phase-2 of the t-th session, E moves into Phase-3. After receiving the first-round
message of Phase-3 of the t-th session, denoted et

V , E computes the second-round message of
Phase-3, denoted zt

V (i.e., the third-round message of Blum’s WIPOK for showing the knowledge
of either SK or a Hamiltonian cycle in Gt

P ∗), by using the extracted Hamiltonian cycle in Gt
P ∗ as

its witness; Finally, in Phase-4 of the t-th session, E decommits (c
(1)
V )t to a random string (e

(1)
V )t

of length n, by using the extracted Hamiltonian cycle in Gt
P ∗ as the trapdoor.

• If there exists no Hamiltonian cycle in Gt
P ∗ , then E sets and sends the Stage-2 message of Phase-1

of the t-th session, i.e., ((c
(0)
V )t, (c

(1)
V )t, at

V ), just as above. But, whenever P ∗ successfully finishes
Phase-2 of the t-th session and sends to E the first-round message of Phase-3 of the t-th session
(i.e., et

V ), E aborts with an error message (as it has no witness for generating the next message).

In the j-th session with respect to a common input xj selected by P ∗ on the fly, we denote by

((y
(0)
P ∗ , y

(1)
P ∗)j , G

j
P ∗ , R

j
P ∗) the Stage-1 message of Phase-1 of the j-th session, and by ((c

(0)
V )j , (c

(1)
V )j , aj

V )

the Stage-2 message of Phase-1 of the j-th session that is set as above specified (where (c
(1)
V )j =

TCCom(1N , (Gj
P ∗ , R

j
P ∗), 0n)). In case P successfully finishes the j-th session (i.e., Phase-4 of the j-th

session), we denote by aj
P ∗ the first-round message of Phase-4 of the j-th session, by (e

(1)
V )j the random

challenge (of length n) sent by E in the second-round of Phase-4 (by decommitting (c
(1)
V )j with the

extracted Hamiltonian cycle in Gj
P ∗ as the trapdoor), and by zj

P ∗ the third-round message of Phase-4 of

the j-th session, where (aj
P ∗ , (e

(1)
V )j , zj

P ∗) constitutes a successful conversation of (n-parallel repetitions
of) Blum’s WIPOK for showing the knowledge either a witness for xj ∈ L or the corresponding secret-

key SK. Then, after receiving the last-round message (i.e., zj
P ∗), E rewinds P ∗ to the state that

it just sent aj
P ∗ , decommits (c

(1)
V )j to a different random string (e

(1)
V )j′ (that is taken uniformly from

{0, 1}n/{(e
(1)
V )j})) by using the extracted Hamiltonian cycle in Gj

P ∗ as the trapdoor, and runs P ∗ further

expecting to receive another valid third-round message, denoted zj′
P ∗ , of Phase-4 of the j-th session.

For any x, denote by qx the probability that P ∗ successfully convinces E(PK) of the statement
“x ∈ L” in one of the s(N) concurrent sessions (without rewinding in the j-th session). Then, with

probability about (qx)2

s(N) E will output either a witness w for x ∈ L or the corresponding secret-key SK

such that PK = fV (SK) in poly(n) · 2ncP -time, by rewinding the j-th session for a randomly chosen
j from {1, · · · , s(N)}. As poly(n) · 2ncP � 2NcV and fV is secure against any circuit of size 2NcV , we

know with probability negligibly close to (qx)2

s(N) E will output a witness w for x ∈ L. Now, to establish

the concurrent knowledge-extractability property, all left is to show that |px − qx| is negligible for any
x, where px is the probability that P ∗ successfully convinces the honest verifier with public-key PK of
the statement “x ∈ L” in one of the s(N) concurrent sessions. This is done by establishing a series of
hybrid experiments.

We first consider a mental experiment in which P ∗ concurrently interacts with an imaginary verifier
V̂ with the same public-key PK and secret-key SK. V̂ mimics the real honest verifier V with public-key
PK and secret-key SK but with the following modifications: For any session t, 1 6 t 6 s(N), in case
P ∗ successfully finishes Phase-2 and sends to V̂ the first-round message of Phase-3, V̂ enumerates all

possible Hamiltonian cycles of Gt
P ∗ by brute-force searching in 2ncP -time, where ((y

(0)
P ∗ , y

(1)
P ∗ )t, Gt

P ∗ , Rt
P ∗)

is the Stage-1 message of Phase-1 of the t-th session. If there exists no Hamiltonian cycle in Gt
P ∗ , then

V̂ aborts with an error message (although it can continue the execution with SK as its witness).
For any x, denote by p̂x the probability that P ∗ successfully convinces the imaginary verifier V̂ with

public-key PK of the statement “x ∈ L” in one of the s(N) concurrent sessions. We want to show that
for any x |px − p̂x| is negligible in n. Note that the only difference between the interactions between
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P ∗ and V̂ and the interactions between P ∗ and the real honest verifier V is that: for any session t,
1 6 t 6 s(N), the real honest verifier always continues the execution of Phase-3 by using SK as its
witness in forming the second-round message of Phase-3, in case P ∗ successfully finished Phase-2 and
sent the first-round message of Phase-3 ; but V̂ may abort in this case if it finds the Gt

P ∗ is “false” (i.e.
there exists no Hamiltonian cycle in Gt

P ∗) by brute-force searching in 2ncP -time. Thus, the fact that for
any x |px − p̂x| is negligible is from the following lemma.

Lemma F.1 For all positive polynomials s(·) and all s-concurrent malicious P ∗, the probability that
there exists a t, 1 6 t 6 s(N), such that P ∗ can successfully finish Phase-2 with respect to a false Gt

P ∗

(i.e., Gt
P ∗ contains no Hamiltonian cycle) in the t-th session of the s(N) concurrent sessions (against

the real honest verifier V with public-key PK) is negligible in n. Note that any quantity that is negligible
in n is also negligible in N .

Proof (of Lemma F.1). We show that if a PPT s-concurrent adversary P ∗ can convince V
(with public-key PK) of a false Gt

P ∗ with non-negligible probability p′(n) in Phase-2 of one of the
s(N) concurrent sessions, then this will violate the hiding property of the underlying perfectly-binding
commitment scheme, denoted Com, used by V in Phase-1 that is run on security parameter N . Note
that according to the hiding property of the underlying perfectly-binding commitment scheme Com,
given two strings ê0 and ê1 that are taken uniformly at random from {0, 1}n and C = Com(1N , Rt

P ∗ , êb)
for a randomly chosen bit b ∈ {0, 1}, no 2NcV -time (non-uniform) algorithm can distinguish whether C
commits to ê0 or to ê1 (i.e., guess the bit b correctly) with non-negligible advantage over 1/2, even with
ê0, ê1 and the secret-key of V (i.e., SK) as its non-uniform inputs.

We construct a (non-uniform) algorithm A who takes (1n, (ê0, ê1, SK), C) as input and wants to
guess b with a non-negligible advantage over 1/2, where ê0 and ê1 are taken uniformly at random from
{0, 1}n and C = Com(1N , RP ∗ , êb) for a randomly chosen bit b ∈ {0, 1}. E randomly selects j from
{1, · · · , s(N)}, runs P ∗ as a subroutine by playing the role of the honest verifier V with secret-key
SK in any session other than the j-th session. In the j-th session, after receiving Gj

P ∗ from P ∗ at

Stage-1 of Phase-1, E first checks whether there exists a Hamiltonian cycle in Gj
P ∗ or not by brute-force

searching in time 2ncP . If E finds a Hamiltonian cycle in Gj
P ∗ , then E randomly guesses the bit b and

stops. Otherwise (i.e., there exists no Hamiltonian cycle in Gj
P ∗), E runs P ∗ further and continues the

interactions of the j-th session as follows: E gives C to P ∗ as the assumed commitment to (e
(0)
V )j at

Stage-2 of Phase-1. After receiving the first-round message of Phase-2 (i.e., the first-round of Blum’s
protocol for proving the existence of a Hamiltonian cycle in Gj

P ∗) that contains n committed adjacency
matrices, E first opens all the committed adjacency matrices by brute-force in poly(n) · 2ncP -time (note
that E can do this as the underlying perfectly-binding commitment scheme used by the prover in forming
these n committed adjacency matrices is run on security parameter n). For each revealed graph Gj

k

(1 ≤ k ≤ n) (described by the corresponding opened adjacency matrix entries) , we say Gj
k is a 0-valid

graph if it is isomorphic to Gj
P ∗ , or a 1-valid graph if it contains a Hamiltonian cycle of the same size

of Gj
P ∗ . We say the set of revealed graphs {Gj

1, · · · , G
j
n} is êb-valid (b ∈ {0, 1}) if for all k, 1 ≤ k ≤ n,

Gj
k is a ê

(k)
b -valid graph, where ê

(k)
b denotes the k-th bit of êb. Note that for the set of revealed graphs

{Gj
1, · · · , G

j
n}, E can determine whether it is ê0-valid or ê1-valid in time poly(n) ·2ncP . Then, E outputs

0 if the set {Gj
1, · · · , G

j
n} is ê0-valid but not ê1-valid. Similarly, E outputs 1 if the set {Gj

1, · · · , G
j
n} is

ê1-valid but not ê0-valid. In other cases, E just randomly guesses the bit b.
The key observation here is that if Gj

P ∗ is false (i.e., containing no Hamiltonian cycle), then for each

revealed graph it cannot be both a 0-valid graph and a 1-valid graph. Similarly, for false Gj
P ∗ , the set of

revealed graphs {Gj
1, · · · , G

j
n} cannot be both ê0-valid and ê1-valid for different ê0 6= ê1. Furthermore,

suppose C commits to êb (b ∈ {0, 1}), then for false Gj
P ∗ with probability 1 − 2−n the set of revealed

graphs {Gj
1, · · · , G

j
n} is not ê1−b-valid (as ê1−b is taken uniformly at random from {0, 1}n). As the

value j is randomly chosen from {1, · · · , s(N)}, we conclude that E can successfully guess the bit b with

probability at least (1−2−n) · p
′(n)

s(N) + 1
2(1− p′(n)

s(N) ) = 1
2 + 1

2 ·
p′(n)
s(N) −2−n · p

′(n)
s(N) in time poly(n) ·2ncP . That is,

E successfully guesses the bit b with non-negligible advantage over 1/2 in time poly(n) · 2ncP � 2NcV ,
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which violates the hiding property of the underlying perfectly-binding commitment scheme Com used
by V that is run on the security parameter N . �

Thus, we have established that for any x |px − p̂x| is negligible. To show that for any x |px − qx|
is negligible, we can show that for any x |p̂x − qx| is negligible. This is done by establishing another
hybrid experiment.

Specifically, we consider another hybrid experiment, in which a PPT algorithm Ê takes (PK,SK)
as its input (that is, Ê takes both the verifier’s public-key and the corresponding secret-key as its input),
and runs P ∗ as a subroutine by mimicking the knowledge-extractor E (who only takes PK as input) but
with the following modification: For any session t, 1 6 t 6 s(N), in case P ∗ successfully finishes Phase-2
and sends to Ê the first-round message of Phase-3, Ê enumerates all possible Hamiltonian cycles of Gt

P ∗

by brute-force searching in 2ncP -time, where ((y
(0)
P ∗ , y

(1)
P ∗ )t, Gt

P ∗ , Rt
P ∗) is the Stage-1 message of Phase-1 of

the t-th session. If there exists a Hamiltonian cycle in Gt
P ∗ , then Ê continues the execution by forming

the second-round message of Phase-3 of the t-th session (for showing the knowledge of either SK or a
Hamiltonian cycle of Gt

P ∗) but using SK as its witness just as the real honest verifier does (note that in
this case E continues the execution with the extracted Hamiltonian cycle of Gt

P ∗ as the corresponding

witness). If there exists no Hamiltonian cycle in Gt
P ∗ , then Ê aborts with an error message just as E

(or V̂ ) does (although in this case Ê can continue the execution with SK as its witness).
Note that the difference between the interactions between P ∗ and the imaginary verifier V̂ in the

first hybrid experiment and the interactions between P ∗ and Ê is that: in any session t, 1 6 t 6 s(N), of
the interactions between P ∗ and V̂ , V̂ always commits (and accordingly decommits to) a random string

of length n (i.e., (e
(1)
V )t) by using the underlying FSTC scheme (just as the honest verifier V does), but

in the interactions between P ∗ and Ê, Ê always commits 0n and then decommits to a random string of
length n by using the brute-force extracted Hamiltonian cycle of Gt

P ∗ as the trapdoor (just as E does).

The difference between the interactions between P ∗ and Ê and the interactions between P ∗ and E is
that: E always uses the brute-force extracted Hamiltonian cycle of Gt

P ∗ as its witness in Phase-3 of any

session t, 1 6 t 6 s(N), but Ê always uses the verifier’s secret-key SK as its witness (just as the honest
verifier does).

For any x, denote by q̂x the probability that P ∗ can convince Ê of the statement “x ∈ L” in one of
the s(N) sessions. Then if there exists an x such that |p̂x− q̂x| is non-negligible, we can break the hiding
and trapdoorness properties of the underlying FSTC scheme in the following way: We construct a (non-
uniform) algorithm Â that takes (x, PK,SK) as the (non-uniform) input and runs P ∗ as a subroutine
by emulating either V̂ or Ê (Note that either V̂ or Ê can be emulated in poly(n) ·2ncP -time). Whenever
Â finds P ∗ successfully convinces the statement “x ∈ L” Â outputs 1, otherwise Â outputs 0. Clearly,
by standard hybrid technique, if |p̂x − q̂x| is non-negligible we can break the hiding and trapdoorness
properties of the underlying FSTC scheme in time poly(n) · 2ncP � 2NcV . Similarly, we can also prove
that for any x |q̂x − qx| is negligible, as otherwise we can break the WI property of Blum’s protocol for
NP in time poly(n) · 2ncP � 2NcV . Thus, we get that for any x |p̂x− qx| is negligible, and so is |px− qx|
for any x because we have shown for any x |px− p̂x| is negligible. This finishes the proof for concurrent
knowledge-extractability of the protocol depicted in Figure-1 in the BPK model. �

G Constant-Round rWI Arguments for NP under Minimal Hardness
Assumptions in the Standard Model

The proof of Theorem 4.1 implies that the protocol depicted in Figure-1 contains a sub-protocol, specif-
ically the combination of Phase-1 and Phase-2, that is constant-round rWI argument for NP in the
standard model under minimal hardness assumptions, a result unknown previously that might be pos-
sibly of independent interest. (We remark that the construction of the rWI argument is actually
conceptually simple, but as we have seen, the security analyses are however complicated and subtle.)
The OWF-based rWI argument is reproduced in Figure 3 (page 42).
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Common input. A directed graph G = (V, E) with |V | = n.

P private input. A Hamiltonian cycle CG in G, a random string RP of length 3N that serves as the first-round
message of Naor’s OWF-based perfectly-binding commitment scheme Com used by V , and a random string
γ that is an n-bit string serving as the randomness seed of a PRF.

Complexity-leverage used. Let cV , 0 < cV < 1, be the constant that the hiding property of the underlying
perfectly-binding commitment scheme Com used by the verifier holds against any circuit of size 2NcV

. The prover
also uses the Naor’s OWF-based perfectly-binding commitment scheme that is, however, run on the security para-
meter n and thus can be brute-force decommitted in 2cP -time for a constant cP , cP > 1. Then we set ε > cP /cV

and N = nε. This ensures that one can open the committed adjacency matrices (sent by prover in the first-round of
the underlying Blum’s protocol for HC), or enumerate all potential Hamiltonian cycles of G in time poly(n) · 2ncP

,
which is still lesser than the time it would take to break the hiding property of the underlying perfectly-binding
commitment scheme used by the verifier that is run on security parameter N (because 2n < 2Nc1

).

Phase-1. Phase-1 contains of two stages:

Stage-1. P sends the random string RP of length 3N to V (that serves as the first-round message of Naor’s
OWF-based perfectly-binding commitment scheme Com used by V ). Note that RP is fixed once and
for all.

Stage-2. V randomly chooses a string eV from {0, 1}n, computes cV = Com(1N , RP , eV ) by using the
underlying Naor’s perfectly-binding commitment scheme Com that is run on the security parameter
N . V also randomly selects a string RV of length 3n that serves as the first-round message of Naor’s
perfectly-binding commitment scheme used by P (that is run on the security parameter n). Finally,
V sends (cV , RV ) to P . From then on, all randomness used by P in the remaining computation is got
by applying PRF (γ, ·) on the “determining” message (G, cV , RV ).

Phase-2. P proves to V the existence of a Hamiltonian cycle in G by executing the (n-parallel repetitions of)
Blum’s protocol for HC, in which V sends the second-round message (i.e., the assumed random challenge)
by just revealing eV committed to cV . Note the first-round message of Phase-2 (from P to V ) consists of n
committed adjacency matrices computed by running the underlying perfectly-binding commitment scheme
on security parameter n.

Figure 3. Constant-round rWI arguments for NP in the standard model under minimal hardness assumptions

The OWF-based protocol depicted in Figure-3 runs in 5 rounds, but the round-complexity can be
trivially reduced to four by employing OWP-based one-round perfectly-binding commitment scheme.
The computational soundness of the protocol is direct from the proof of Lemma 4.1, and the rWI
property is direct from the general CGGM paradigm for achieving rWI protocols in the standard model
from admissible hybrid WI systems (as described in Appendix C.1). Thus, we have the following
corollary:

Corollary G.1 Under any (sub-exponentially strong) OWF (resp. OWP), any language in NP has a
5-round (resp. 4-round) rWI argument in the standard model.

H Simplified and Round-Optimal Implementations

Appendix H is an extended version of Section 5. In this section, we investigate various simplified
implementations of rZK-CKE arguments in the BPK model with reduced round-complexity but un-
der stronger (still quite general) hardness assumptions. We also show how to achieve round-optimal
rZK-CKE arguments for NP in the BPK model under still quite general hardness assumptions. The
simplified and round-optimal implementations involve novel uses of a number of cryptographic tools, to-
gether with introducing a new tool, specifically, a OWP-based one-round trapdoor commitment scheme.
(Actually, the results presented in this section are what originally appear in [51], but with result pre-
sentation order is reversed. Readers can refer to [51] for more details.)

Zap-based simplified implementation. A natural way to simplify the implementation of the
protocol depicted in Figure-1, while remaining almost the same protocol structure, is to replace Blum’s

WI protocol (with commitment of the random challenge, i.e., e
(0)
V , on the top) executed in Phase-1 and

Phase-2 by zap developed in [23]. Zap is itself a 2-round public-coin WI proof for NP . It can be easily
modified into a 2-round rWI proof for NP, by applying a PRF on the first-round message, denoted ξ,
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Key generation. Let fV be any OWF that is secure against 2NcV

-time adversaries. On a security parameter
N , each honest verifier V randomly selects an element xV of length N , computes yV = fV (xV ); V also randomly
selects a string, denoted ξ, of length l(n) that serves as the first-round message of the underlying zap, where l(·) is
a polynomial. Then, V posts (yV , ξ) as its public-key PK while keeping xV as its secret-key SK. (If P uses Naor’s
OWF-based perfectly-binding commitment scheme (that is run on security parameter n), V also deposits a random
string RV of length 3n as a part of its public-key serving as the first-round message of Naor’s commitment scheme
used by P .)

Common input. An element x ∈ L∩{0, 1}poly(N) (let cL, 0 < cL 6 1, be the constant defined in Definition 3.1.),

the public-file F and an index j that specifies the j-th entry of F , i.e., PKj = (y
(j)
V , ξ(j), R

(j)
V ). Note that

the system security parameter is N .

P private input. An NP-witness w for x ∈ L, a pair of random strings (γ1, γ2), where γ1 is a poly(n)-bit string
and γ2 is an n-bit string serving as the randomness seed of a PRF.

V private input. Private key SKj . For simplicity of presentation, except explicitly clarified we denote PKj =
fV (SKj).

Complexity-leverage used. Let cV , 0 < cV < 1, be the constant that the one-wayness of the OWF fV , and thus
the hiding property of the underlying perfectly-binding commitment scheme used by the verifier all hold against any
circuit of size 2NcV

(which in turn guarantees that the WI property of the underlying WI protocol for NP executed
in Stage-2 of Phase-1 and Phase-3, the hiding and trapdoorness properties of the underlying trapdoor commitment
scheme all hold against any circuit of size 2NcV

). The prover uses a relatively smaller security parameter n. Let

cP , cP > 1, be the constant that: for all sufficiently large n’s, the size of GP (reduced from (y
(0)
P , y

(1)
P )) is bounded

by ncP . Let c be any constant such that 0 < c < min{cV , cL} and ε be any constant such that ε > cP

c
, then we set

N = nε.
Phase-1. Phase-1 consists of two stages:

Stage-1. Let fP be any (polynomially-secure) OWF. On security parameter n, P randomly selects two

elements x
(0)
P and x

(1)
P of length n each in the domain of fP , computes y

(b)
P = fP (x

(b)
P ) for b ∈ {0, 1}, re-

duces (y
(0)
P , y

(1)
P ) to a directed graph GP by Cook-Levin NP-reduction such that finding a Hamiltonian

cycle in GP is equivalent to finding the preimage of either y
(0)
P or y

(1)
P . If V uses Naor’s OWF-based

perfectly-binding commitment scheme (that is run on security parameter N), P also randomly selects
a string RP of length 3N serving as the first-round message of Naor’s OWF-based perfectly-binding
commitment scheme used by V . Finally, P sends (y

(0)
P , y

(1)
P , GP , RP ) to V . The randomness used by

P in this process is γ1, which means that the (y
(0)
P , y

(1)
P , GP , RP ) is fixed once and for all.

Stage-2. V first checks whether or not GP is reduced from (y
(0)
P , y

(1)
P ) and RP is of length 3N .

If the checking is successful, V randomly chooses one string eV from {0, 1}n, computes cV =
TCCom(1N , (GP , RP ), eV ) by using the underlying trapdoor commitment scheme. Then, on com-

mon input ((y
(0)
P , y

(1)
P , GP , RP ), PKj) V computes the first-round message, denoted aV , of (n-parallel

repetitions of) Blum’s WIPOK for NP for showing the knowledge of either SKj or a Hamiltonian

cycle in GP (equivalently, the preimage of either y
(0)
P or y

(1)
P ). Finally, V sends (cV , aV ) to P . From

then on, all randomness used by P in the remaining computation is got by applying PRF (γ2, ·) on the

“determining” message D = (x, F, (j, PKj), (y
(0)
P , y

(1)
P , GP , RP ), (cV , aV )).

Phase-2. On common input GP and with ξ(j) as the first-round message of the underlying zap, P computes and
sends the second-round message, denoted Π, of the underlying zap for showing the existence of a Hamiltonian
cycle in GP (equivalently, the preimage of either y

(0)
P or y

(1)
P ).

Phase-3. V and P continue the WIPOK protocol for NP suspended at Stage-2 of Phase-1. If V successfully
convinces P of the knowledge of either SKj or a Hamiltonian cycle in GP , then goto Phase-4. Otherwise, P
aborts. We denote by eV , zV , the first-round message and the second-round message of Phase-3 respectively.

Phase-4. P proves to V that it “knows” either the witness w for x ∈ L or the secret-key SKj , by executing the
(n-parallel repetitions of) Blum’s protocol for NP on common input (x,PKj), in which V sends the assumed
random challenge by just revealing eV committed to cV .

Figure 4. Constant-round rZK-CKE arguments for NP with zaps

and the common input to get the randomness for generating the second-round message, denoted Π [23].
Furthermore, the first-round message of a zap can be fixed once and for all, and thus can be posted as
a part of the underlying public-key. The zap-based implementation is depicted in Figure-4 (page 43).

Note that in the zap-based implementation, Phase-2 becomes non-interactive in the BPK model,
and thus the round-complexity can be reduced to five. Specifically, Phase-2, Phase-3 and Phase-4 can
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be combined into three rounds (in other words, Phase-2 and Phase-3 can be combined into Phase-4).
We remark that the fact that zap is a proof (rather than argument) system much eases the proof of
concurrent knowledge-extractability, as the “proof” property trivially guarantees the truth of Lemma
4.1. Also note that, as discussed in the proof of Theorem 4.1, the OWF fP and the underlying zap used
by the prover can be only secure against standard polynomial-time adversaries. By a simplified version
of the proof of Theorem 4.1, we get:

Corollary H.1 Under the existence of OWF and zap (used by the prover) that are secure against
standard polynomial-time adversaries, and any OWF used by the verifier that is secure against sub-
exponential-size circuits, any language in NP has a 5-round concurrently knowledge-extractably secure
rZK (rZK-CKE) argument in the BPK model. Note that the existence of (single-theorem) NIZK proofs
for NP implies the existence of zaps.

Preimage-verifiable OWF based implementation and its practical instantiations. We
further reinvestigate the combination of Phase-1 and Phase-2 of the OWF-based rZK-CKE protocol

(depicted in Figure-1) when the messages c
(1)
V and aV are removed from Stage-2 of Phase-1 (i.e., V only

sends c
(0)
V at Stage-2 of Phase-1). Such interactions play (and only play) the following dual roles in the

proof of Theorem 4.1:

One-wayness in the proof of rZK. That is, such interactions do not render non-negligible advan-
tages to any s-resetting malicious verifier V ∗ in extracting a Hamiltonian cycle in GP (equivalently,

the preimage of either y
(0)
P or y

(0)
P ) sent at Stage-1 of Phase-1 that is fixed once and for all. The

one-wayness property plays a critical role in the proof of rZK to ensure the rZK simulator can
extract the corresponding secret-key within time inversely proportional to the probability that V ∗

successfully finishes the execution of Phase-3 of a session with respect to a “uncovered” public-key.

Preimage verifiability in the proof of concurrent knowledge-extractability. That is, for any
s-concurrent malicious prover P ∗, if such interactions are successfully finished in the t-th session,
1 6 t 6 s(N), then with overwhelming probabilities there exists a Hamiltonian cycle in Gt

P

(equivalently, a preimage of (y
(0)
P , y

(1)
P )t). We remark that the preimage-verifiability property

plays a critical role in the proof of concurrent knowledge-extractability, as otherwise the malicious
P ∗ can distinguish whether it is interacting with honest verifier instances or with the knowledge
extractor.

The key observation here is that if the OWF fP used by the prover (in forming the Stage-1 message
of Phase-1) is preimage-verifiable (as defined in Definition D.1), then such interactions of above in the
OWF-based protocol can be replaced by only letting P send a unique message yP = fP (xP ) on the
top, with the proof of Theorem 4.1 remains essentially unchanged (other than much more simplified).
This brings us (much more) simplified 5-round preimage-verifiable OWF based rZK-CKE arguments for
NP in the BPK model, which is reproduced in Figure-5 (page 45). Again, as discussed in the proof of
Theorem 4.1, the preimage-verifiable OWF fP used by the prover can be only secure against standard
polynomial-time adversaries. By a simplified version of the proof of Theorem 4.1, we get:

Corollary H.2 Under any preimage-verifiable OWF (used by the prover ) that is secure against stan-
dard polynomial-time adversaries and any OWF (used by the verifier) that is secure against sub-
exponential-time adversaries, any language in NP has a 5-round concurrently knowledge-extractably
secure rZK (rZK-CKE) argument in the BPK model. Note that preimage-verifiable OWF is a quite
general hardness assumption, which includes, in particular, any certified OWP and any 1-1 length-
preserving OWF.
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Key generation. Let fV be any OWF that is secure against 2NcV

-time adversaries. On a security parameter N ,
each honest verifier V randomly selects an element xV of length N , computes yV = fV (xV ), publishes yV as its
public-key PK while keeping xV as its secret-key SK. (If P uses Naor’s OWF-based perfectly-binding commitment
scheme in Phase-2, V also deposits a random string RV of length 3n as a part of its public-key serving as the
first-round message of Naor’s commitment scheme.)

Common input. An element x ∈ L∩{0, 1}poly(N) (let cL, 0 < cL 6 1, be the constant defined in Definition 3.1.),

the public-file F and an index j that specifies the j-th entry of F , i.e., PKj = (y
(j)
V , R

(j)
V ). Note that the

system security parameter is N .

P private input. An NP-witness w for x ∈ L, a pair of random strings (γ1, γ2), where γ1 is a poly(n)-bit string
and γ2 is an n-bit string serving as the randomness seed of a PRF.

V private input. Private key SKj . For simplicity of presentation, except explicitly clarified we denote PKj =
fV (SKj).

Complexity-leverage used. Let cV , 0 < cV < 1, be the constant that the one-wayness of the OWF fV , and thus
the hiding property of the underlying perfectly-binding commitment scheme used by the verifier all hold against any
circuit of size 2NcV

(which in turn guarantees that the WI property of the underlying WI protocol for NP executed
in Stage-2 of Phase-1 and Phase-3, the hiding and trapdoorness properties of the underlying trapdoor commitment
scheme all hold against any circuit of size 2NcV

). The prover uses a relatively smaller security parameter n. Let
cP , cP > 1, be the constant that: for all sufficiently large n’s, the size of GP (reduced from yP ) is bounded by ncP .
Let c be any constant such that 0 < c < min{cV , cL} and ε be any constant such that ε > cP

c
, then we set N = nε.

Phase-1. Phase-1 consists of two stages:

Stage-1. Let fP be any preimage-verifiable OWF. On security parameter n, P randomly selects an element
xP of length n in the domain of fP , computes yP = fP (xP ), reduces yP to a directed graph GP by Cook-
Levin NP-reduction such that finding a Hamiltonian cycle in GP is equivalent to finding a preimage
of yP . If V uses Naor’s OWF-based perfectly-binding commitment scheme (that is run on security
parameter N), P also randomly selects a string RP of length 3N serving as the first-round message of
Naor’s OWF-based perfectly-binding commitment scheme used by V . Finally, P sends (yP , GP , RP )
to V . The randomness used by P in this process is γ1, which means that the (yP , GP , RP ) is fixed once
and for all.

Stage-2. V first checks the validity of (yP , GP ) (i.e., whether or not GP is reduced from yP and the preimage
of yP exists) and aborts if it is not valid. If it is valid, V randomly chooses a string eV from {0, 1}n

and computes cV = FSTCCom(1N , (GP , RP ), eV ) (that is, V commits eV using the underlying Feige-
Shamir trapdoor commitment FSTC scheme). V sends cV to P , and proves to P that it knows either the
preimage of PKj (i.e., SKj) or a Hamiltonian cycle in GP (equivalently, a preimage of yP ), by executing
the (n-parallel repetitions of) Blum’s WIPOK for NP on common input ((GP , RP ), PKj) in which V
plays the role of knowledge prover and P plays the role of knowledge verifier. Denote by aV the first-
round message (that is from knowledge prover V to knowledge verifier P ) of the n-parallel repetitions
of Blum’s WIPOK protocol, then all randomness used by P (from then on after receiving (cV , aV )) is
got by applying PRF (γ2, ·) on the “determining” message D = (x, F, (j, PKj), (yP , GP , RP ), (cV , aV )).
If V successfully finishes the Blum’s WIPOK protocol in this stage and P accepts, then goto Phase-2.
Otherwise, P aborts.

Phase-2. P proves to V that it knows either the witness w for x ∈ L or the secret-key SKj , by executing the
(n-parallel repetitions of) Blum’s protocol for NP on common input (x,PKj), in which V sends the assumed
random challenge by just revealing eV committed to cV .

Figure 5. Constant-round rZK-CKE arguments for NP with preimage-verifiable OWF

H.1 Round-optimal rZK-CKE arguments for NP in the BPK model

For the 5-round zap-based or preimage-verifiable OWF based rZK-CKE protocols described above, if the
verifier V uses the OWP-based one-round perfectly-binding commitment scheme then the prover only

needs to send (y
(0)
P , y

(1)
P , GP ) or (yP , GP ) in the first-round. To further reduce the round-complexity,

we want to combine (y
(0)
P , y

(1)
P , GP ) (or (yP , GP )) into the third-round of the 5-round protocol (that

is from the prover to the verifier), thereby obtaining 4-round (that is optimal) rZK-CKE arguments

for NP . Recall that (y
(0)
P , y

(1)
P , GP ) (or (yP , GP )) is used by V in two ways: On one hand, it forms

the NP-statement (to be precise, a directed graph reduced from (GP , PKj) by NP-reduction) to be
proved by V by Blum’s WIPOK for HC at Stage-2 of Phase-1; On the other hand, it serves TCPK
of the underlying FSTC scheme with a Hamiltonian cycle of GP as the trapdoor TCSK. To combine
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(y
(0)
P , y

(1)
P , GP ) (or (yP , GP )) into the third-round while remaining the same protocol structure, we need

the following cryptographic tools.

1. A 3-round OWP-based WIPOK for HC, in which the prover sends the first-round message without
knowing the NP-statement (i.e., a directed graph) to be proved, other than the lower and upper
bounds of the size of the graph (guaranteed by the underlying NP-reduction).

2. A one-round OWP-based trapdoor commitment scheme based on HC, in which the committer
sends the one-round commitments without knowing the graph GP (serving as TCPK) other
than the lower and upper bounds of its size (guaranteed by the underlying NP-reduction from

(y
(0)
P , y

(1)
P ) or yP to GP ), and GP is only sent in the decommitment stage after the commitment

stage is finished.

For the first needed cryptographic tool of above, we note that the Lapidot-Shamir OWP-based
3-round WIPOK for HC [41] (described in Appendix D) is just the protocol of the type we need.

Thus, the challenge here is to develop a one-round trapdoor commitment scheme of the above
described type, which however, to our knowledge, is unknown in the literature previously. To our
purpose, we develop the trapdoor commitment of such type in this work, which is described below:

One-round commitment stage. To commit a bit 0, the committer sends a q-by-q adjacency matrix
of commitments with each entry of the adjacency matrix committing to 0. To commit a bit 1,
the committer sends a q-by-q adjacency matrix of commitments such that the entries committing
to 1 constitute a randomly-labelled cycle C. We remark that the underlying commitment scheme
used in this stage is the one-round OWP-based perfectly-binding commitment scheme.

Two-round decommitment stage. The commitment receiver sends a Hamiltonian graph G = (V,E)
with size q = |V | to the committer. Then, to decommit to 0, the committer sends a random
permutation π, and for each non-edge of G (i, j) 6∈ E, the committer reveals the value (that is 0)
that is committed to the (π(i), π(j)) entry of the adjacency matrix sent in the commitment stage
(and the receiver checks all revealed values are 0 and the unrevealed positions in the adjacency
matrix constitute a graph that is isomorphic to G via the permutation π). To decommit to 1, the
committer only reveals the committed cycle (and the receiver checks that all revealed values are
1 and the revealed entries constitute a q-cycle).

The computationally-hiding property of the above scheme is directly from that of the underlying
perfectly-binding commitment scheme. The computationally-binding property of the above scheme
is from the fact that the ability to decommit the same commitment-stage message both to 0 and
to 1 implies extracting a Hamiltonian cycle of G. The trapdoorness property is from the following
observation: After sending a commitment to 1, one can decommit to 1 in the normal way. However,
it is also possible to decommit it to 0 if one knows the Hamiltonian cycle of G. Finally, note that
in the above description we have assumed the committer knows the size of the graph G sent by the
commitment receiver in the decommitment stage. But it can be easily extended to the case that the
committer only knows the lower-bound l(n) and the upper-bound u(n) of the size of G. In this case, in
commitment stage P sends (u(n) − l(n) + 1) many adjacency matrices with vertex-sizes ranging from
l(n) to u(n). In the decommitment stage, after the size of G is clear, P only decommits with respect
to the unique adjacency matrix of according size. We remark that, although the above one-round
trapdoor commitment scheme is developed here to reduce round-complexity for rZK, it might be of
independent value and, in particular, can be used to reduce round-complexity of other cryptographic
protocols involving trapdoor commitments.

After showing the existence of the cryptographic tools needed for obtaining round-optimal rZK-CKE
arguments for NP with real bare public-keys, we remark that in the round-optimal rZK-CKE protocols
obtained thereby we only require the verifier use the OWP-based one-round perfectly-binding commit-
ment scheme. The prover, however, can still use Naor’s OWF-based two-round commitment scheme.
Also note that the existence of zaps should actually be a different assumption than the assumption of
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preimage-verifiable OWFs, and it might be hard to say one is weaker than another. Thus, we have the
following corollaries:

Corollary H.3 Under the existence of OWF and zap (used by the prover) that are secure against stan-
dard polynomial-time adversaries, and any OWF and OWP (used by the verifier in the key-generation
phase and the protocol main-body respectively) that are secure against sub-exponential-time adversaries,
any language in NP has a 4-round (that is optimal) rZK-CKE argument with real bare public-keys in
the BPK model.

Corollary H.4 Under the existence of any preimage-verifiable OWF (used by the prover) that is secure
against standard polynomial-time adversaries, and any OWF and OWP (used by the verifier in the key-
generation phase and the protocol main-body respectively) that are secure against sub-exponential-time
adversaries, any language in NP has a 4-round (that is optimal) rZK-CKE argument. In particular, this
implies that round-optimal rZK-CKE arguments for NP with real bare public-keys can be implemented
with any certified one-way permutation (as any certified OWP is itself a preimage-verifiable OWF).
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