
Finding a Maximum Independent Set in a Sparse Random Graph

Uriel Feige Eran Ofek

June 2, 2005

Abstract

We consider the problem of finding a maximum independent set in a random graph. The random graph G is
modelled as follows. Every edge is included independently with probability d

n
, where d is some sufficiently large

constant. Thereafter, for some constant α, a subset I of αn vertices is chosen at random, and all edges within
this subset are removed. In this model, the planted independent set I is a good approximation for the maximum
independent set Imax, but both I \ Imax and Imax \ I are likely to be nonempty. We present a polynomial time
algorithms that with high probability (over the random choice of random graph G, and without being given the
planted independent set I) finds the maximum independent set in G when α ≥

√
c0
d

, where c0 is some sufficiently
large constant independent of d.

1 Introduction

Let G = (V, E) be a graph. An independent set I is a subset of vertices which contains no edges. The problem of
finding a maximum size independent set in a graph is a fundamental problem in Computer Science and it was among
the first problems shown to be NP-hard [16]. Moreover, Hastad shows [13] that for any ε > 0 there is no n1−ε

approximation algorithm for the maximum independent set problem unless NP=ZPP. The best approximation ratio
currently known for maximum independent set [6] is O(n(log log n)2/(log n)3).

In light of the above mentioned negative results, we may try to design a heuristic which performs well on typical
instances. Karp [15] proposed trying to find a maximum independent set in a random graph. However, even this
problem appears to be beyond the capabilities of current algorithms. For example let Gn,1/2 denote the random graph
on n vertices obtained by choosing randomly and independently each possible edge with probability 1/2. A random
Gn,1/2 graph has almost surely maximum independent set of size 2(1 + o(1)) log2 n. A simple greedy algorithm
almost surely finds an independent set of size log2 n [12]. However, there is no known polynomial time algorithm
which almost surely finds an independent set of size (1 + ε) log2 n (for any ε > 0).

To further simplify the problem, Jerrum [14] and Kucera [17] proposed a planted model Gn,1/2,k in which a
random graph Gn,1/2 is chosen and then a clique of size k is randomly placed in the graph. (A clique in a graph G is
an independent set in the edge complement of G, and hence all algorithmic results that apply to one of the problems
apply to the other.) Alon Krivelevich and Sudakov [2] gave an algorithm based on spectral techniques that almost
surely finds the the planted clique for k = Ω(

√
n). More generally, one may extend the range of parameters of the

above model by planting an independent set in Gn,p, where p need not be equal to 1/2, and may also depend on n.
The Gn,p,α model is as follows: n vertices are partitioned at random into two sets of vertices, I of size αn and C of
size (1−α)n. No edges are placed within the set I , thus making it an independent set. Every other possible edge (with
at least one endpoint not in I) is added independently at random with probability p. The goal of the algorithm, given
the input G (but without being given the partition into I and C) is to find a maximum independent set. Intuitively, as
α becomes smaller the size of the planted independent is closer to the probable size of the maximum independent set
in Gn,p and the problem becomes harder.

We consider values of p as small as d/n where d is a large enough constant. A difficulty which arises in this sparse
regime (e.g. when d is constant) is that the planted independent set I is not likely to be a maximum independent
set. Moreover, with high probability I is not contained in a maximum independent set of G. For example, there are
expected to be e−dn vertices in C of degree one. It is very likely that two (or more) such vertices v, w ∈ C will

1

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 50 (2005)

ISSN 1433-8092

have the same neighbor, and that it will be some vertex u ∈ I . This implies that every maximum independent set will
contain v, w and not u, and thus I contains vertices that are not contained in the maximum independent set.

C

u
w
v

I

Figure 1: The vertex u ∈ I is not contained in any maximum independent set because no other edges touch v, w.

A similar argument shows that there are expected to be e−Ω(d)n isolated edges. This implies that there will be an
exponential number of maximum independent sets.

1.1 Our result

We give a polynomial time algorithm that searches for a maximum independent set of G. Given a random instance of
Gn, d

n
,α, the algorithm almost surely succeeds, when d > d0 and α ≥

√

c0/d (d0, c0 are some universal constants).
The parameter d can be also an arbitrary increasing function of n.

1.2 Related work

For p = 1/2, α = Ω(1/
√

n), Alon Krivelevich and Sudakov [2] gave an efficient spectral algorithm which almost
surely finds the planted independent set. For the above mentioned parameters the planted independent set is likely to
be the unique maximum independent set.

A few papers deal with semi-random models which extend the planted model by enabling a mixture of random
and adversarial decisions. Feige and Kilian [7] considered the following model: a random Gn,p,α graph is chosen,
then an adversary may add arbitrarily many edges between I and C, and make arbitrary changes (adding or removing
edges) inside C. For any constant α > 0 they give a heuristic that almost surely outputs a list of independent sets
containing the planted independent set, whenever p > (1 + ε) lnn/αn (for any ε > 0). The planted independent set
may not be the only independent set of size αn since the adversary has full control on the edges inside C. Possibly,
this makes the task of finding the planted independent set harder. In [8] Feige and Krauthgamer considered a less
adversarial semi-random model in which an adversary is allowed to add edges to a random Gn, 1

2 , 1√
n

graph. Their

algorithm almost surely extracts the planted independent set and certifies its optimality. Heuristics for optimization
problems different than max independent set will be discussed in the following section.

1.2.1 Technique and outline of the algorithm

Our algorithm builds on ideas from the algorithm of Alon and Kahale [1], which was used for recovering a planted
3-coloring in a random graph. The algorithm we propose has the following 4 phases:

1. Get a coarse approximation I ′, C ′ of I, C with |C M C ′| + |I M I ′| < 0.041|I |.

2. Improve the approximation by performing some ”error correction”. The error term |C M C ′| + |I M I ′| is
reduced to at most n/dc (c is some big enough constant).

2

3. Remove vertices of I ′, C ′ which have non typical degrees to a new set OUT .

Stop when I ′, C ′ become promising: I ′ is an independent set, every vertex of C ′ has at least 4 edges to I ′ and
no vertex of I ′ has edges to OUT . Using the fact that sparse random graphs (almost surely) have no small dense
sets, it can be shown that I ′ ⊆ Imax.

4. Extend the independent set I ′ optimally using the vertices of OUT . This is done by finding a maximum inde-
pendent set among the vertices of OUT and adding it to I ′. The structure of OUT will be easy enough so that a
maximum independent set can be efficiently found (OUT is a random graph of size n/poly(d) with each edge
chosen with probability d/n). Notice however, that the set OUT depends on the graph itself thus we can not
argue that it is a random G n

poly(d)
, d

n
graph.

The technique of [1] was implemented successfully on various problems in the planted model: planted hypergraph
coloring, planted 3-SAT, planted 4-NAE, min-bisection (by Chen and Frieze [4] , Flaxman [10] , Goerdt and Lanka
[11], Coja-Oghlan [5] respectively).

Perhaps the work closest in nature to the work in the current paper is that of Amin Coja-Oghlan [5] on finding
a bisection in a sparse random graph. Both in our work and in that of [5], one is dealing with an optimization
problem, and the density of the input graph is such that the planted solution is not an optimal solution. The algorithm
for bisection in [5] is based on spectral techniques, and has the advantage that it provides a certificate showing that
the solution that it finds is indeed optimal. We do not address the issue of certification in this paper. In [5] the
random instance is generated as follows. The vertices of the graph are partitioned into two classes of equal size
randomly. Then the edges are inserted: edges inside the two classes with probability p′ and edges crossing the
partition with probability p independently. Intuitively, as p′−p becomes smaller, the problem becomes harder. Denote
by d1 = np′/2, d2 = np/2 the expected degree of a vertex into its own class and into the other class respectively. The
algorithm in [5] is proven to succeed (almost surely) whenever d1 − d2 ≥ √

c0d1 log d1. In our independent set model
the problem becomes harder as αd becomes smaller. If we denote by d̃1 = d, d̃2 = (1 − α)d the expected degrees of

a vertex in C, I respectively then our algorithm (almost surely) succeeds whenever d̃1 − d̃2 = αd̃1 ≥
√

c0d̃1.
An important difference between planted models for independent set and those for other problems such as 3-

coloring and min-bisection is that in our case the planted classes I, C are not symmetric. The lack of symmetry
between I and C makes some of the ideas used for the more symmetric problems insufficient. In the approach of [1],
a vertex is removed from its current color class and placed in OUT if its degree into some other current color class
is very different than what one would typically expect to see between the two color classes. This procedure is shown
to ”clean” every color class C from all vertices that should have been from a different color class, but were wrongly
assigned to class C in phase 2 of the algorithm. (The argument proving this goes as follows. Every vertex remaining
in the wrong color class by the end of phase 3 must have many neighbors that are wrongly assigned themselves. Thus
the set of wrongly assigned vertices induces a small subgraph with large edge density. But G itself does not have any
such subgraphs, and hence by the end of phase 3 it must be the case that all wrongly assigned vertices were moved
into OUT .) It turns out that this approach works well when classes are of similar nature (such as color classes, or two
sides of a bisection), but does not seem to suffice in our case where I′ is supposed to be an independent set whereas C ′

is not. Specifically, the set I′ might still contain wrongly assigned vertices, and might not be a subset of a maximum
independent set in the graph. Under these circumstances, phase 4 will not result in a maximum independent set. Our
solution to this problem involves the following aspects, not present in previous work. In phase 3 we remove from I ′

every vertex that has even one edge connecting it to OUT . This adds more vertices to OUT and may possibly create
large connected components in OUT . Indeed, we do not show that OUT has no large connected components, which
is a key ingredient in previous approaches. Instead, we analyze the 2-core of OUT and show that the 2-core has no
large components. Then, in phase 4, we use dynamic programming to find a maximum independent set in OUT , and
use the special structure of OUT to show that the algorithm runs in polynomial time.

1.3 Notation

Let G = (V, E) and let U ⊂ V . The subgraph of G induced by the vertices of U is denoted by G[U]. When the set
of edges used is clear from the context, we will use deg(v)U to denote the degree of a vertex v into a set U ⊂ V . To
specify exactly the set of edges used, we use degE(v)U which is the degree of a vertex v into a set U induced by the

3

set of edges E. We use Γ(U) to denote the vertex neighborhood of U ⊂ V (excluding U). We use the graph vertices to
index the eigenvectors v1, .., vn of the adjacency matrix of G. For example we will use v1(i) to denote the coordinate
i that corresponds to vertex i. The parameter d (specifying the expected degree in the random graph G) is assumed to
be sufficiently large, and some of the inequalities that we shall derive implicitly use this assumption, without stating
it explicitly. The term with high probability (w.h.p.) is used to denote a sequence of probabilities that tends to 1 as n
tends to infinity.

2 The Algorithm

Algorithm FindIS(V, E)

1. Let A′ be the adjacency matrix of the graph induced by removing from G all vertices of degree > 5d.
Compute the eigenvector of the most negative eigenvalue of A′ denoted by vn′ . Set I1 to contain the αn
vertices with largest absolute value in vn′ . Set C1 = V \ I1.

2. Set C0
2 = C1, I

0
2 = I1. Iterate j = 1, 2, .., logn:

for every vertex v: if deg(v)Ij−1
2

< αd/2 then v ∈ Ij
2 , otherwise v ∈ Cj

2 .

3. (a) Set I3 = I log n
2 , C3 = C log n

2 , OUT3 = ∅.

(b) For every edge (u, v) such that both u, v are in I3, move u, v to OUT3.

(c) A vertex v ∈ C3 is removable if deg(v)I3 < 4.
Iteratively: find a removable vertex v and move it from C3 to OUT3. If v has neighbors in I3, move
these neighbors from I3 to OUT3.

4. Find a maximum independent set in G[OUT3] (this will be shown to be doable in polynomial time, see
Corollary 3.4). Output the union of this independent set and I3.

Figure 2 depicts the situation after step 3 of the algorithm. At that point, I3 is an independent set, there are no
edges between I3 and OUT3, and every vertex v ∈ C3 has at least four neighbors in I3.

No edges

I 3
C3

3 <

OUT3

Figure 2: FindIS Step 3 outcome

4

3 Correctness

Let Imax be a maximum independent set of G. We establish two theorems. Theorem 3.1 guarantees the correctness
of the algorithm and Theorem 3.3 guarantees its efficient running time. Here we present these two theorems, and their
proofs are deferred to later sections.

Theorem 3.1. With high probability there exists Imax such that I3 ⊆ Imax, C3 ∩ Imax = ∅.

Definition 3.2. The 2-core of a graph G is the maximal subgraph in which the minimal degree is 2.

It is easy to see that the 2-core is unique and can be found by iteratively removing vertices whose degree < 2.

Theorem 3.3. With high probability the largest connected component in the 2-core of G[OUT3] has cardinality of at
most 2 logn.

Let G be any graph. Those vertices of G that do not belong to the 2-core form trees. Each such tree is either
disconnected from the 2-core or it is connected by exactly one edge to the 2-core. To find a maximum independent set
of G[OUT3] we need to find a maximum independent set in each connected component of G[OUT3] separately. For
each connected component Di of G[OUT3] we find the maximum independent set as follows: let Ci be the intersection
of Di with the 2-core of G. We enumerate all possible independent sets in Ci (there are at most 2|Ci| possibilities), each
one of them can be optimally extended to an independent set of Di by solving (separately) a maximum independent
set problem on each of the trees connected to Ci. For some trees we may have to exclude the tree vertex which is
connected to Di if it is connected to a vertex of the independent set that we try to extend. On each tree the problem
can be solved by dynamic programming.

Corollary 3.4. A maximum independent set in OUT3 can be found in polynomial time.

3.1 Dense Sets and Degree Deviations

In proving the correctness of the algorithm, we will use structural properties of the random graph G. In particular, such
a random graph most likely has no small dense sets (small sets of vertices that induce many edges). This fact will be
used on several occasions to derive a proof by contradiction. Namely, certain undesirable outcomes of the algorithm
cannot occur, as otherwise they will lead to a discovery of a small dense set in G. The following lemmas are standard.
We state them here and give their proof in Section A for completeness.

Lemma 3.5. Let G be a random Gn,p,α (p = d
n , d < n1/40) random graph.

1. W.h.p. for every set U ⊂ V of cardinality smaller than 2n/d5 the number of edges inside U is bounded by 4
3 |U |.

2. Let c ≥ 3. With probability > 1 − n−0.9(c−1) for every set of vertices U of size smaller than n/d5 the number
of edges inside U is less than c|U |.

3. With probability > 1 − n−
√

d there is no U ⊂ V of size < 0.041αn containing αd/12 edges.

4. W.h.p. there is no C ′ ⊆ C such that n/2d5 ≤ |C ′| ≤ 2n log d
d and |Γ(C ′) ∩ I | ≤ |C ′|.

Given two small enough disjoint sets of vertices A, B, if every vertex of B has at least 2 edges going to A then
|A| cannot be too small relative to |B|. This is true as otherwise |A ∪ B| would contain too many internal edges with
contradiction to part 1 of Lemma 3.5.

Corollary 3.6. Let G be a graph which has the property from Lemma 3.5 part 1. Let A, B be any two disjoint sets of
vertices each of size smaller than n/d5. If every vertex of B has at least 2 edges going into A, then |A| ≥ |B|/2.

The following lemma bounds the number of vertices whose degree largely deviates from its expectation.

Lemma 3.7. Let d < n1/40. With probability > 1 − e−n0.1

:

1. The number of vertices from C whose degree into I is < 0.9αd is at most n/d21.

2. The number of edges that contain a vertex with degree at least 3d is at most 3e−ddn.

5

3.2 Proof of Theorem 3.1

We will use the assumption that d < n1/40 which is needed for some concentration results. When d > n1/40 the
planted independent set is almost surely the maximum unique independent set and it can be found using only (a
variant of) the first step of the algorithm (details are omitted). For convenience, when analyzing the first step we will
further assume that α <

√

100 logd/d (when α >
√

100 log d/d the eigenvector computation performed in step 1
can be avoided: a coarse approximation of I, C can be derived using only the vertices degrees, by putting in I1 all the
vertices of degrees < (1 − α/2)d and the rest in C1). We first show that steps 1, 2, 3 give a very good approximation
of I, C.

Lemma 3.8. Let
√

c0

d ≤ α ≤
√

100 log d
d . Almost surely |I1 M I | < 0.041|I |.

The proof of Lemma 3.8 is deferred to Section B. The approximation I1, C1 serves as a bootstrap for the ”error
correction” done in step 2. In the following lemma we show that step 2 significantly reduces the error term i.e.
|I2 M I | < n/d20 < |I |/d19.

Lemma 3.9. With probability > 1 − 2n−
√

d, it holds that |I2 M I | < n/d20.

Proof. The idea of the proof is as follows. There exists a set V2 of size > (1 − 1/d20)n with the following property:
every iteration of step 3 of FindIS reduces the number of errors (with respect to I, C) in V2 by a factor of 2. It then
follows that after step 3 is done, all the vertices of V2 are assigned correctly. Define the set V2 as follows.

Initialization: V2 = I ∪ {v ∈ C | deg(v)I ≥ 0.9αd}.
Iteratively: (i) if there is v ∈ C ∩ V2 with deg(v)I∩V2 < 0.8αd, remove v from V2.

(ii) if there is v ∈ I ∩ V2 with deg(v)V \V2
> αd/4 remove v from V2.

When the process ends, every vertex of C ∩ V2 has at least 0.8αd edges to I ∩ V2 and every vertex of I ∩ V2 has at
most αd/4 edges to V \ V2.

We will first show that that each iteration of step 2 of FindIS reduces the number of errors in V2 by a factor of
at least 2. Let Ei be the set of wrongly assigned vertices of V2 in iteration i of step 2 (Ei = V2 ∩ (I i

2 M I)). We will
show that every vertex of Ei has at least αd/4 edges to Ei−1, thus if |Ei| > |Ei−1|/2 the set |Ei ∪ Ei−1| is dense (its
average degree above αd/6). This event has probability of at most 1 − n−

√
d by Lemma 3.5 part 3 (we can use the

lemma since |Ei| is decreasing and |E0| < 0.041|I |).
case 1: v ∈ Ei−1 ∩ Ei (either v ∈ I ∩ Ci−1

2 or v ∈ C ∩ I i−1
2):

If v ∈ I ∩Ci−1
2 (and v ∈ Ei) then in round i−1 it has at least αd/2 neighbors in I i−1

2 , these neighbors are in C∩I i−1
2

since v ∈ I . At least αd/4 of these neighbors are in V2 since v has at most αd/4 edges to V \V2 (because v ∈ I ∩V2).
Thus v has > αd/4 neighbors in Ei−1. If v ∈ C ∩I i−1

2 (and v ∈ Ei) then in round i−1 it has at most αd/2 neighbors
in I i−1

2 . Since v ∈ V2 ∩ C it has 0.8αd neighbors in I ∩ V2, thus at least 0.3αd of them are in I ∩ C i−1
2 ⊆ Ei−1.

case 2: v ∈ Ei \ Ei−1:
If v ∈ Ei \Ei−1 ∩ I then v was moved from I i−1

2 to Ci
2, therefore it has at least αd/2 neighbors in I i−1

2 ∩C. Among
them at least αd/4 belong to V2 because v has at most αd/4 edges to V \V2. If v ∈ Ei \Ei−1 ∩C then v was moved
from Ci−1

2 to I i
2, therefore it has at most αd/2 neighbors in I i−1

2 . Since v ∈ V2 ∩ C it has at least 0.8αd neighbors in
I ∩ V2, among which at least 0.3αd are in I ∩ C i−1

2 ⊆ Ei−1.
We will now prove that |V \ V2| < n/d20. After setting V2 = I ∪ {v ∈ C | deg(v)I ≥ 0.9αd} (and before the

iteration process) it holds that |V \V2| < n/d21 with probability 1−e−n0.1

(see see Lemma 3.7 part 1). In the iteration
process, every vertex that we remove from V2 contributes at least 0.1αd edges to V \ V2. If the iteration steps are
repeated too many times, V \V2 will become dense. Assume by contradiction that at some point the set V \V2 doubled
its size (when we compare it to the size before the first iteration). At this point it contains at least 1

2 |V \V2|0.1αd edges

and its size is at most 2n/d21. By Lemma 3 part 2 this happens with probability < n−0.9(0.1αd/2−1) < n−
√

d.

So far we have shown that at most n/d20 vertices of I2, C2 are wrongly assigned (with respect to I, C). The
goal of step 3 is to ”clean” I2, C2 yielding I3, C3 that can be extended into an optimal solution. Before showing that
I3 ⊆ Imax (for some maximum independent set Imax) we show that the process of ”cleaning” in step 3 does not move
too many vertices are moved to OUT3. This will be used later for proving that I3 ⊆ Imax.

6

Lemma 3.10. With probability > 1 − 3n−
√

d, it holds that |OUT3| ≤ n/d18.

Proof. The idea of the proof is the following: there exists a set V3 ⊆ V2 (the set V2 is defined in Lemma 3.9) of size
> (1 − 1/d18)n such that V3 ∩ OUT3 = ∅. Define V3 as follows.

Initialization: V3 = V2,
remove from V3 all the vertices of V3 ∩ I that have edges to V \ V3.

Iteratively: find a vertex v ∈ V3 ∩ C with deg(v)V3∩I < 4, remove v and its neighbors in I from V3.

We now prove that V3 ⊆ I3 ∪ C3 (after step 3a this is certainly true, we will show it is kept during steps 3b, 3c).
Initially V3 = V2. Removing from V3 all the vertices of V3 ∩ I that have edges to V \ V3 ensures that there are no
edges between vertices of V3 ∩ I and vertices which were assigned incorrectly. Thus, step 3b of the algorithm does
not touch any vertex of V3 as it removes only edges that contain at least one wrongly assigned endpoint. Finally, the
iteration process in the definition of V3 ensures that every vertex of V3 ∩ C has at least 4 edges to vertices in I . Since
V3 is a subset of I3 ∪ C3 at the beginning of step 3c and there are no wrongly assigned vertices in V3, during step 3c
there will never be a vertex of V3 ∩C that has fewer than 4 edges to vertices of V3 ∩ I . We conclude that V3 ⊆ I3 ∪C3

at the end of step 3.
It remains to bound from above the size of V \V3. Initially V3 = V2, at this point |V \V3| ≤ n/d20 with probability

1 − 2−
√

n (see Lemma 3.9). We then remove from V3 all the vertices of I that have edges to V \ V3. Doing so, we
loose at most 3dn/d20 + 3de−dn vertices (Lemma 3.7 part 2) with probability 1− en0.1

. At this point (just before the
iteration steps) |V \ V3| ≤ 4n/d19. We now begin the iteration process. In every iteration we move at most 4 vertices
to V \ V3; these vertices contribute at least 0.8αd edges to the set V \ V3. If the iteration step is repeated too many
times the set V \ V3 will become too dense. Assume by contradiction that at some point (for the first time during the
iterations) |V \ V3| doubled its size when compared to the size of V3 \ V before the first iteration. At this point the
number of edges inside V \ V3 is at least 1

2 |V \ V3| · 1
4 · 0.8αd. The size of V \ V3 is at most 8n/d19 + 3 < n/d5. By

Lemma 3 part 2 the probability for this event is at most n−0.9(0.8αd/8−1) < n−
√

c0d/12 < n−
√

d. We conclude that
|V \ V3| < n/d18.

As |I3 M I | < |I2 M I | + |OUT3|, using Lemmas 3.9, 3.10 we deduce:

Corollary 3.11. |I3 M I | < 2n/d18.

It turns out that I3, C3 is also a good approximation of Imax, Cmax (some fixed maximum independent set and its
corresponding cover). This is stated in the following lemma whose proof is deferred to Appendix A

Lemma 3.12. Almost surely |I3 M Imax| < n/d5.

At this point we know that I3, C3 have the following two properties:
(i) the error term |(I3 ∩ Cmax) ∪ (Imax ∩ C3)| < |Imax M I3| < n/d5.
(ii) I3 is an independent set and every vertex of C3 has at least 4 neighbors in I3.

The above two properties and the fact that G does not contain dense sets imply that I3 ⊆ Imax. This is proven in
the following Lemma.

Lemma 3.13 (Extention Lemma). Let I be any independent set of G and let C
M

= V \ I . Let I ′, C ′, OUT ′ be an
arbitrary partition of V for which I ′ is an independent set. If the following hold:

1. |(I ′ ∩ C) ∪ (I ∩ C ′)| < n/d5.

2. Every vertex of C ′ has 4 neighbors in I ′. None of the vertices of I ′ have edges to OUT ′.

3. The graph G has no small dense subsets as described in Lemma 3.5 part 1.

then there exists an independent set Inew (and Cnew
M

= V \ Inew) such that I ′ ⊆ Inew , C ′ ⊆ Cnew and |Inew | ≥ |I |.

7

Proof. If we could show that on average a vertex of U = (I ′ ∩C)∪ (I ∩C ′) contributes at least 4/3 internal edges to
U , then U would form a small dense set that contradicts Lemma 3.5. This would imply that U = (I ′ ∩ C) ∪ (I ∩ C ′)
is the empty set, and we could take Inew = I in the proof of Lemma 3.13. The proof below extends this approach to
cases where we cannot take Inew = I .

Every vertex v ∈ C ′ has at least 4 edges into vertices of I ′. Since I is an independent set it follows that every
vertex of I ∩ C ′ has at least 4 edges into I ′ ∩ C. To complete the argument we would like to show that every vertex
of I ′ ∩ C has at least 2 edges into I ∩ C ′. However, some vertices v ∈ I ′ ∩ C might have less than two neighbors in
I ∩ C ′. In this case, we will modify I to get an independent set Inew (and Cnew

M

= V \ Inew) at least as large as I ,
for which every vertex of I ′ ∩ Cnew has 2 neighbors in Inew ∩ C ′. This is done iteratively; after each iteration we set
I = Inew, C = Cnew . Consider a vertex v ∈ (I ′ ∩ C) with deg(v)I∩C′ < 2:

OUT’

I’

CI’
IC’

I OUT’

I’

No edges

C’

I
C’ C

v
w

Figure 3: A vertex v ∈ (I ′ ∩ C) which has strictly less than 2 edges into I ∩ C ′

• If v has no neighbors in I ∩ C ′, then define Inew = I ∪ {v}. Inew is an independent set because v (being in I ′)
has no neighbors in I ′ nor in OUT ′.

• If v has only one edge into w ∈ (I ∩ C ′) then define Inew = (I \ {w}) ∪ {v}. Inew is an independent set
because v (being in I ′) has no neighbors in I ′ nor in OUT ′. The only neighbor of v in I ∩ C ′ is w.

The three properties are maintained also with respect to Inew , Cnew (replacing I, C): properties 2, 3 are independent
on the sets I, C and property 1 is maintained since after each iteration it holds that |(I ′ ∩ Cnew) ∪ (Inew ∩ C ′)| <
|(I ′ ∩ C) ∪ (I ∩ C ′)|.

When the process ends, let U denote (I ′ ∩ C) ∪ (I ∩ C ′). Each vertex of I ′ ∩ C has at least 2 edges into I ∩ C ′,
thus |I ∩ C ′| ≥ 1

2 |I ′ ∩ C| (see Corollary 3.6). Each vertex of I ∩ C ′ has 4 edges into I ′ ∩ C so the number of edges
in U is at least 4|I ∩ C ′| ≥ 4|U |/3 and also |U | < n/d5, which implies that U is empty (by Lemma 3.5 part 1).

It follows that I3 is an independent set which is contained in some maximum independent set Imax. It remains to
show that the 2-core of OUT3 has no large connected components.

3.3 Proof of Theorem 3.3

Having established that OUT3 is small (Lemma 3.10), we would now like to establish that its structure is simple
enough to allow one to find a maximum independent set of G[OUT3] in polynomial time. Establishing such a structure
would have been easy if the vertices of OUT3 were chosen independently at random, because a small random subgraph
of a random graph G is likely to decompose into connected components no larger than O(log n). However, OUT3

is extracted from G using some deterministic algorithm, and hence might have more complicated structure. For this
reason, we shall now consider the 2-core of G[OUT3], and bound the size of its connected components.

Let A denote the 2-core of G[OUT3]. In order to show that A has no large component, it is enough to show that
A has no large tree. We were unable to show such a result for a general tree. Instead, we prove that A has no large

8

balanced trees, that is trees in which at least 1/3 fraction of the vertices belong to C. Fortunately, this turns out to
be enough. Any set of vertices U ⊂ V is called balanced if it contains at least |U |/3 vertices from C. We use the
following reasoning: any maximal connected component of A is balanced - see Proposition 3.14 below. Furthermore,
any balanced connected component of size at least 2 logn (in vertices) must contain a balanced tree of size is in
[log n, 2 logn − 1] – see Lemma 3.15. We then complete the argument by showing that OUT3 does not contain a
balanced tree with size in [log n, 2 logn].

Proposition 3.14. W.h.p. every maximal connected component of the 2-core of OUT3 is balanced.

Proof. Let Ai be such a maximal connected component. Every vertex of Ai has degree of at least 2 in Ai because Ai

is a maximal connected component of a 2-core. |Ai| ≤ |OUT3| < n
d5 . If |Ai∩I|

|Ai| is more than 2
3 , then the number of

internal edges in Ai is > 2 · 2
3 |Ai| > 4

3 |Ai| which contradicts Lemma 3.5 part 1.

Lemma 3.15. Let G be a connected graph whose vertices are partitioned into two sets: C and I . Let 1
k be a lower

bound on the fraction of C vertices, where k is an integer. For any 1 ≤ t ≤ |V (G)|/2 there exists a tree whose size is
in [t, 2t − 1] and at least 1

k fraction of its vertices belong to C.

Proof. We use the following well know fact: any tree T contains a center vertex v such that each subtree hanged on v
contains strictly less than half of the vertices of T .

Let T be an arbitrary spanning tree of G, with center v. We proceed by induction on the size of T . Consider
the subtrees T1, ..., Tk hanged on v. If there exists a subtree Tj with at least t vertices then also T \ Tj has at least
t vertices. In at least one of Tj , T \ Tj the fraction of C vertices is at least 1

k and the lemma follows by induction
on it. Consider now the case in which all the trees have less than t vertices. If in some subtree Tj the fraction of C
vertices is at most 1

k , then we remove it and apply induction to T \ Tj . The remaining case is that in all the subtrees
the fraction of C vertices is strictly more than 1

k . In this case we start adding subtrees to the root v until for the first
time the number of vertices is at least t. At this point we have a tree with at most 2t− 1 vertices and the fraction of C
vertices is at least 1

k . To see that the fraction of C vertices is at least 1
k , we only need to prove that the tree formed by

v and the first subtree has 1
k fraction of C vertices. Let r be the number of C vertices in the first subtree and let b be

the number of vertices in it. Since k is integer we have: r
b > 1

k =⇒ r
b+1 ≥ 1

k .

We shall now prove that OUT3 contains no balanced tree of size in [log n, 2 log n]. Fix t to be some value in
[log n, 2 logn]. It is enough to show that for this fixed t there are no balanced trees of size t with probability of
o(1/ logn) (so we can use union bound on all possible values of t ∈ [log n, 2 logn]). The probability that OUT3

contains a balanced tree of size t is at most:
∑

T is balanced,
|T |=t

Pr[T ⊆ E] · Pr[V (T) ⊆ OUT3 | T ⊆ E] ≤ (1)

t · max
t1+t2=t,
t2≥t/3

(
αn

t1

)(
(1 − α)n

t2

)

tt−2

(
d

n

)t−1

· max
T is balanced,

|T |=t

{Pr[V (T) ⊆ OUT3 | T ⊆ E]} ≤ (2)

t · max
t1+t2=t,
t2≥t/3

(
eαn

t1

)t1 (e(1 − α)n

t2

)t2

tt−2

(
d

n

)t−1

· max
T is balanced,

|T |=t

{Pr[V (T) ⊆ OUT3 | T ⊆ E] ≤ (3)

nt
(

(2ed(1 − α)1/3)
)t

max
T is balanced,

|T |=t

{Pr[V (T) ⊆ OUT3 | T ⊆ E]} ≤ (4)

(1 − α)t/3 elog(nt)+t(log d+2) max
T is balanced,

|T |=t

{Pr[V (T) ⊆ OUT3 | T ⊆ E]} (5)

To upper bound the above expression by o(1/ logn), it is enough to prove that for any fixed balanced tree of size t:

Pr
E

[V (T) ⊆ OUT3 | T ⊆ E] ≤ e−3 log n log d/(1 − α)t/3

9

(using log(nt) + t(log d + 3) ≤ log n(2 + 2 log d + 3) < 3 logn log d, which is true for large enough d). For any
set of edges E we use OUT3(E) to denote the outcome of OUT3 when FindIS is invoked on E. We will use the
following equality:

Pr
E

[V (T) ⊆ OUT3(E) | T ⊆ E] = Pr
E

[V (T) ⊆ OUT3(E ∪ T)] (6)

which is true because the distribution of E given that T ⊆ E is exactly the distribution of E∪T . We have to show that
for any balanced tree T of size t, Pr[V (T) ⊆ OUT3(E ∪ T)] = e−3 log n log d/(1 − α)t/3. The difficulty in bounding
the above probability is that OUT3(E ∪ T) is not a uniformly chosen random set.

We will use a technique introduced at [1]. We give a review of this technique and its implementation in our setting.
Using this technique in our setting involves some complications which do not exist in [1]. The new complications
in our case are due to the fact that I, C are not symmetric as opposed to the coloring classes in [1]. The main idea
is as follows: given a fixed tree T of size t, we define a set R(T) ⊂ V (T) and a new algorithm ˜Step3. When

˜Step3 is invoked on E, I, C, R(T) it outputs a set ˜OUT3 containing OUT3(E ∪ T). Given E, I, C, R(T), the set
L(T) = V (T) \R(T) (which is chosen to be contained in C) looks as any other subset of C \ R(T) of the same size
and thus it is equally likely to be in ˜OUT3. We will use the following properties:

1. For every fixed configuration of edges E it holds that OUT3(E ∪ T) ⊆ ˜OUT3(E, I, C, R(T)).

2. The set L(T) = V (T) \ R(T) is contained in C and its size is ≥ |V (T)|/6.

3. The size of ˜OUT3(E, I, C, R(T)) is bounded by e−18 log dn, with probability > 1 − 0.5e−3 log d log n.

To ease the notation we will use ˜OUT 3(E) instead of ˜OUT 3(E, I, C, R(T)) . These three properties and t ∈
[log n, 2 logn] imply that (to be explained):

Pr
E

[L(T) ⊆ OUT3(E ∪ T)] ≤ Pr
E

[L(T) ⊆ ˜OUT3(E)] < e−3 log n log d/(1 − α)t/3.

The first inequality follows from property 1. The second inequality follows from properties 2, 3 using the following
reasoning:

Pr[L(T) ⊆ ˜OUT3(E)] ≤
Pr[L(T) ⊆ ˜OUT3(E) | #(˜OUT3(E) ∩ C) < e−9 log dn] + Pr[# ˜OUT3(E) ≥ e−9 log dn].

The second term is at most 0.5e−3 log d log n by property 3. It remains to upper bound the first term. Given that the
intersection of ˜OUT 3(E) with C \ R(T) is of size m, its distribution is uniform over all subsets of C \ R(T) of
size m. It then follows that Pr[L(T) ⊆ ˜OUT3(E)] is bounded by the probability that a binary random variable
X ∼ Bin(m, p = |L(T)|

|C\R(T)|−m) has |L(T)| successes. Since m ≤ e−18 log dn, |L(T)| ≥ t/6 this probability is
bounded by:

(
m

t/6

)

pt/6 ≤
(

mep

t/6

)t/6

=

(
me

t/6
· t/6

|C \ R(T)| − m

)t/6

≤
(

e−18 log dn

(1 − α)n/2

)t/6

≤ 0.5e−3t log d/(1− α)t/3

In the second inequality we used |C \R(T)|−m ≥ (1−α)n− 2 logn−n/d18 ≥ (1−α)/2. To justify it we assume
1 − α >> 1/d18 as otherwise almost surely a random Gn, d

n
,α graph has no connected components of size more than

log n (exploring the graph from a fixed vertex is similar to a subcritical branching process, details omitted).
We will now describe R(T) and the procedure ˜Step3. We then show that the above mentioned three properties

hold. Let T be a balanced tree. We partition the vertices of T into:
R(T) = V (T) ∩ (I ∪ {v ∈ C : degT (v) > 11}),
L(T) = V (T) \ R(T).

10

Algorithm ˜Step3(E, I, C, R(T))

(a) Define the setṼ2 using the following process.

Initialization: Ṽ2 = V \ (R(T)),
set Ṽ2 = Ṽ2 \ {v ∈ C ∩ Ṽ2 | deg(v)I∩Ṽ2

< 0.9αd}.
Iteratively: (i) if there is v ∈ C ∩ Ṽ2 with deg(v)I∩V2 < 0.8αd, remove v from Ṽ2.

(ii) if there is v ∈ I ∩ Ṽ2 with deg(v)V \Ṽ2
> αd/4 − 11 remove v from Ṽ2.

(b) Initialization: Ṽ3 = Ṽ2,
Remove from Ṽ3 all the vertices of Ṽ3 ∩ I that have edges to V \ Ṽ3.

Iteratively: if there is a vertex v ∈ Ṽ3 ∩ C such that deg(v)Ṽ3∩I < 4,
remove v and its neighbors in I from Ṽ3.

(c) Set ˜OUT 3 = V \ Ṽ3.

After the initialization of step (a) (of ˜Step3) there are no T edges which touch I ∩ Ṽ3. After the initialization of
step (b) there are no E edges between I ∩ Ṽ3 and V \ Ṽ3. The above two facts imply that during the iteration process
of step (b) there are no E ∪ T edges between I ∩ Ṽ3 and V \ Ṽ3. This will be used in the proof of Lemma 3.16.

No edges

V
~

I
3V

~
C

V
~

3V \

3

Figure 4: During the iterations of step (b) there are no E ∪ T edges between I ∩ Ṽ3 and V \ Ṽ3.

The following lemma shows property 1.

Lemma 3.16. OUT3(E ∪ T) ⊆ ˜OUT 3(E, I, C, R(T)).

Proof. The set V2 defined at Lemma 3.9 is a function of I, C and a set of edges. Denote by V2(E ∪ T) the set V2

derived using E ∪ T as the set of edges. Similarly, the set V3 defined on Lemma 3.10 is a function of I, C and a set
of edges. Denote by V3(E ∪ T) the set V3 derived when using E ∪ T as the set of edges. The idea is to show that
Ṽ2 ⊆ V2(E ∪ T) and Ṽ3 ⊆ V3(E ∪ T). This is enough as OUT3(E ∪ T) ⊆ V \ V3(E ∪ T) (this containment is
explained in Lemma 3.10).

To ease the notation we will use V2 instead of V2(E∪T) and V3 instead of V3(E∪T). We first show thatṼ2 ⊆ V2.
Both Ṽ2, V2 are built using an initialization step followed by an iterative step. It is easy to see that after the initialization
it holds that I ∩ Ṽ2 ⊆ I ∩ V2 and C ∩ Ṽ2 ⊆ C ∩ V2 (and thus Ṽ2 ⊆ V2). The initialization step is then followed by
an (identical) iterative step. Consider the execution of the iterative process on V2. We show a parallel execution of the
iterative process on Ṽ2, for which the invariant I ∩ Ṽ2 ⊆ I ∩ V2 and C ∩ Ṽ2 ⊆ C ∩ V2 is kept. Assume the vertex v is
removed in the process of V2:
case 1: v ∈ C ∩ V2. If v is removed then degE∪T (v)I∩V2 < 0.9αd. Since I ∩ Ṽ2 ⊆ I ∩ V2 it follows that

11

degE(v)I∩Ṽ2
< 0.9αd and we can remove v from C ∩ Ṽ2.

case 2: v ∈ I ∩ V2. If v is removed then, degE∪T (v)V \V2
> αd/2. If v ∈ T then v is already in V \ Ṽ2 (by the

initialization), otherwise no edges of T touch v and thus degE(v)V \Ṽ2
> αd/2 (as V \ V2 ⊆ V \ Ṽ2). This concludes

the proof that I ∩ Ṽ2 ⊆ I ∩ V2 and C ∩ Ṽ2 ⊆ C ∩ V2.
We will now show that Ṽ3 ⊆ V3 by showing that I ∩ Ṽ3 ⊆ I ∩ V3 and C ∩ Ṽ3 ⊆ C ∩ V3. Both Ṽ3, V3 are built

using an initialization step followed by an iterative step. The initialization first step sets: V3 = V2, Ṽ3 = Ṽ2. In the
second initialization step the vertices of I ∩V3 that have edges to V \V3 are removed. Similarly, the vertices of I ∩ Ṽ2

that have edges to V \ Ṽ3 are removed. Since before the second initialization step it holds:
(i) there are no T edges touching I ∩ Ṽ3 (since Ṽ3 = Ṽ2),
(ii) V \ V3 ⊆ V \ Ṽ3,
we get that I∩Ṽ3 ⊆ I∩V3 also after the second initialization step. Consider the execution of the iterative process on V3.
We show a parallel execution of the iterative process on Ṽ3, for which the invariant I∩Ṽ3 ⊆ I∩V3 and C∩Ṽ3 ⊆ C∩V3

is kept. Assume that a vertex v ∈ C ∩ V3 is removed, thus degE∪T (v)I∩V3 < 4. Since I ∩ Ṽ3 ⊆ I ∩ V3 we deduce
that degE(v)I∩Ṽ3

< 4 and we remove v from Ṽ3 as well (if it hasn’t been removed already). The neighbors of v from

I that are removed from V3 together with v can not stay in Ṽ3 since once v is removed from Ṽ3 it has no neighbors in
I ∩ Ṽ3. This concludes the proof.

As we consider only balanced trees, the set L(T) contains at list 1/6 of the vertices in T .

Lemma 3.17. For a balanced tree T , the size of L(T) is at least |V (T)|/6.

Proof. The tree T contains at least |V (T)|/3 vertices from C. At least 1/2 of them are of degree at most 11 in T , as
otherwise the sum of degrees in T will be at least |T |(11

6 + 1
6) > 2(|T | − 1).

Lemma 3.18. The size of ˜OUT 3 is at most n/d18 with probability of at least 1− n−
√

d.

Proof. The proof is similar to the proofs of Lemmas 3.9, 3.10. The only difference is that in the initialization at step 1
(of ˜Step3) we remove more vertices than in the initialization of V2 (Lemma 3.9). Still, the number of vertices removed
to ˜OUT 3 in the initialization at step 1 is of order < n/d20 and this is enough for bounding also the number of vertices
removed in 2.

Acknowledgements

This work was supported in part by a grant from the G.I.F., the German-Israeli Foundation for Scientific Research
and Development. Part of this work was done while the authors were visiting Microsoft Research in Redmond,
Washington.

References

[1] N. Alon and N. Kahale. A spectral technique for coloring random 3-colorable graphs. SIAM Journal on Com-
puting, 26(6):1733–1748, 1997.

[2] N. Alon, M. Krivelevich, and B. Sudakov. Finding a large hidden clique in a random graph. Random Structures
and Algorithms, 13(3-4):457–466, 1988.

[3] N. Alon and J. Spencer. The Probabilistic Method. John Wiley and Sons, 2002.

[4] H. Chen and A. Frieze. Coloring bipartite hypergraphs. In Proceedings of the 5th International Conference on
Integer Programming and Combinatorial Optimization, pages 345–358, 1996.

[5] A. Coja-Oghlan. A spectral heuristic for bisecting random graphs. In To appear in Proceedings of the 16th
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2005.

12

[6] U. Feige. Approximating maximum clique by removing subgraphs. Siam J. on Discrete Math., 18(2):219–225,
2004.

[7] U. Feige and J. Kilian. Heuristics for semirandom graph problems. Journal of Computing and System Sciences,
63(4):639–671, 2001.

[8] U. Feige and R. Krauthgamer. Finding and certifying a large hidden clique in a semirandom graph. Random
Structures and Algorithms, 16(2):195–208, 2000.

[9] U. Feige and E. Ofek. Spectral techniques applied to sparse random graphs. Technical report, Weizmann Institute
of Science, 2003.

[10] A. Flaxman. A spectral technique for random satisfiable 3cnf formulas. In Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 357–363, 2003.

[11] A. Goerdt and A. Lanka. On the hardness and easiness of random 4-sat formulas. In Proceedings of the 15th
International Symposium on Algorithms and Computation (ISAAC), pages 470–483, 2004.

[12] G. Grimmet and C. McDiarmid. On colouring random graphs. Math. Proc. Cam. Phil. Soc., 77:313–324, 1975.

[13] J. Håstad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182(1):105–142, 1999.

[14] M. Jerrum. Large clique elude the metropolis process. Random Structures and Algorithms, 3(4):347–359, 1992.

[15] R. M. Karp. The probabilistic analysis of some combinatorial search algorithms. In J. F. Traub, editor, Algorithms
and Complexity: New Directions and Recent Results, pages 1–19. Academic Press, New York, 1976.

[16] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W.Thatcher, editors, Complexity
of Computer Computations, pages 85–104. Plenum Press, New York, 1972.

[17] L. Kučera. Expected complexity of graph partitioning problems. Discrete Appl. Math., 57(2-3):193–212, 1995.

A Proof of technical lemmas

Proof of lemma 3.5 part 1. Denote c = 4/3, k = n/d5. The statement of the lemma trivially holds for sets with at
most 2 vertices. The probability that the statement in the lemma is false is bounded by:

k∑

i=3

(
n

i

)






(i

2)∑

j=dice

((i
2

)

j

)(
d

n

)j






︸ ︷︷ ︸

≥ prob. for at least ic successes

≤
k∑

i=3

(
n

i

)

2

((i
2

)

dice

)(
d

n

)dice
≤ 2

k∑

i=3

(n

ei

)i
(

i2

2eic

)dice (
d

n

)dice
(7)

the first inequality holds because the inside summation is geometric with a factor of
((

i
2)

j+1
)

((
i
2)
j

)

d
n ≤ i2

2(j+1)
d
n ≤ i2

ic
d
n ≤

id
cn ≤ kd

cn < 1/2 (for k ≤ n/2d). The last term in (7) is bounded by:

≤ 2

k∑

i=3

ni

ii

(
dn

2eic

)dice (
i

n

)2dice
≤ 2

(4e)2

k∑

i=3

(
d

c

)dice (
i

n

)dice−i

≤ 1

32

k∑

i=3

(
d

c

)ic+1(
i

n

)ic−i

≤ d

32c

k∑

i=3

[(
d

c

)c(
i

n

)c−1
]i

≤ d

6c

((
d

c

)c(
3

n

)c−1
)3

≤ 1

2

(
d3c+1

n3c−3

)

≤ d5

n

(the inequality before the last one holds because the sum is geometrically decreasing with a factor of (d
c)c(i+1

n)c−1

which is smaller than 4/5 for i ≤ n/d5, c ≥ 4/3, d ≥ 2).

13

Proof of lemma 3.5 part 2. The proof is essentially the same as the proof of part 1. The only difference is in the last
inequality where we use:

d

6c

((
d

c

)c(
3

n

)c−1
)3

≤ e−(c−1) log n+(c+1) log d ≤ e−0.9(c−1) log n

Proof of lemma 3.5 part 3. The proof is essentially the same as the proof of part 2. Here k = 0.041αn, c = αd/12, it

holds that kd
cn < 1

2 . We also use the inequality (d
c)c(k+1

n)c−1 ≤ d
c

(
dαn
cn

)c−1 ≤ 12
α (1/2)αd/12−1 < 1

2 (for sufficiently
large d). It then follows that the sum is bounded by:

2d

6c

((
d

c

)c(
1

n

)c−1
)

≤
(

d

c

)2

e−(c−1)(log n−log(d/c)) ≤ e−3
√

d(log n−0.5 log d)+2 log(12/α)

≤ e−1.5
√

d log n+log d ≤ n−
√

d

In inequality 2 we used the fact that αd = c0

√
d >>

√
d.

Proof of lemma 3.5 part 4. We first show that w.h.p. there is no set U ⊂ V of size < 10n log d
d containing 50 log d|U |

edges. Modify the proof of Lemma 3.5 part 1 by setting the parameters: c = 50 log d and k = 10n log d
d (the set size

bound). In the proof of Lemma 3.5 we used the following inequalities:

(
d

2c

)c(
2

n

)c−1

<
4

5
;

kd

cn
<

1

2
; c < d

for showing that certain sums are geometric. These inequalities hold also for the current values of k, c and thus the
proof is essentially the same. We are now ready to give the main part of proof.

Let C ′ be a bad set: |Γ(C ′)∩ I | ≤ |C ′| and n/2d5 ≤ |C ′| ≤ 2n log d
d . By Lemma 3.7 part 1 at least |C ′|−n/d20 >

9
10 |C ′| vertices of C ′ have at least αd

2 edges to I . It follows that C ′ ∪ (Γ(C ′)∩ I) has at least αd
5 |C ′ ∪ (Γ(C ′)∩ I)| >√

d|C ′ ∪ (Γ(C ′) ∩ I)| internal edges and its cardinality is at most |C ′| + |I | < 2n log d
d + n

√
c0

d < 10n log d
d . By the

first part of the proof w.h.p. such dense set does not exist.

Proof of Corollary 3.6. By contradiction, assume that |A| = δ|B| for some 0 < δ < 1/2. The number of internal
edges of A ∪ B is at least 2|B|

(1+δ)|B| = 2
1+δ > 4/3. The last inequality contradicts Lemma 3.5.

Proof of Lemma 3.7

Proof of part 1. The degrees into I are independent random variables. Set δ = 1/d21. For a fixed set of size δn the
expected sum of degrees in µ = δnαd. A bad set has only 0.9δnαd edges to I . The probability for a bad set of size
δn is bounded by:

(
n

δn

)

e−
1
2 (0.1)2µ ≤ e−δn(αd/200−log(e/δ)) ≤ e−δn(

√
c0d/200−10 log d−1) ≤ e−δn < e−n/d21

< e−n0.4

.

In the last inequality we used d < n1/40.

Proof of part 2. The proof of this lemma is very similar to the proof of Lemma B.4, detailed are omitted.

Proof of Lemma 3.12.
|Imax M I3| ≤ |Imax M I | + |I M I3|

By Corollary 3.11 |I3 M I | < n/d18. It remains to bound |Imax M I |:

14

|Imax M I | = |Imax \ I | + |I \ Imax| ≤ 2|Imax \ I | = 2|Imax ∩ C|
Imax = (Imax ∩ I)∪ (Imax ∩C). One can always replace Imax ∩C with Γ(Imax ∩C)∩ I to get an independent set
(Imax ∩ I) ∪ (Γ(Imax ∩C) ∩ I). The size of a maximum independent set of C is w.h.p. < 2n log d

d (this can be easily
proved using a first moment argument), this upper bounds |Imax ∩ C|. From Corollary 4 if |Imax ∩ C| > n/(2d5)
then |Γ(Imax ∩ C) ∩ I | > |Imax ∩ C| which contradicts the maximality of Imax.

B Spectral Approximation

Let V ′ be the set of vertices of G with degree < 5d. We will use n′ to denote |V ′|. Notice that n′ is also the dimension
of A′ – the adjacency matrix of G[V ′]. Let I ′ = V ′ ∩ I, C ′ = V ′ ∩ C. We will use α′ to denote |I ′|/|V ′|. With high
probability it holds that α′ = α(1 + O(e−Ω(d))); similarly n′ ≥ n(1− e−Ω(d)). Denote by Ā′ the n′ ×n′ matrix such
that Ā′

i,j = 0 for any {i, j} ⊂ I ′ and Ā′
i,j = p = d/n for the other entries. We will use the fact that Ā′ (which is the

”expectation” of A′ if we ignore the diagonal) is almost surely a good spectral approximation A′ (i.e. the spectral norm
of A′ − Ā′ is small). The rank of Ā′ is 2 and it has two non zero eigenvalues. Each of the two non-zero eigenvectors
which we denote by v̄1, v̄n′ is constant on I ′ and constant on C ′ (this follows from symmetry). Given that each one of
v̄1, v̄n′ has only two values, we need to find β, λ which satisfy:

I ′
︷ ︸︸ ︷

0 . . 0 p . p p
. .
. .

0 . . 0
p p
. .

p p
p p
















1
.

.

1
β
.

.

β
















=















(1 − α′)n′pβ
.

.

.

α′n′p + β(1 − α′)n′p
.

.

.















= λ
















1
.

.

1
β
.

.

β
















equivalently:

(1 − α′)n′βp = λ

α′n′p + β(1 − α)n′p = λβ

a simple calculation gives a quadratic equation in β whose solutions are:

β1,2 =
1

2

(

1 ±
√

1 +
4α′

1 − α′

)

=
1

2
±
(

1

2
+

α′

1 − α′ + O

(

(
α′

1 − α′)
2

))

.

Set γ = α
1−α . Using α′ = α(1 + O(e−Ω(d))), n′ = n(1 + O(e−Ω(d))),

√

c0/d ≤ α ≤ 1/2 we get:
β1,2 = 1

2 ± 1
2 ± γ + O(α2),

λ̄1 = (1 − α′)n′β1p = (1 + O(α2))d ≈ d for small α,
λ̄n′ = (1 − α′)n′β2p = (−α + O(α2))d ≈ −

√
c0d for small α,

v̄1 = (1, 1, .., 1
︸ ︷︷ ︸

α′n′

, 1 + γ, 1 + γ, .., 1 + γ
︸ ︷︷ ︸

(1−α′)n′

) + O(α2)~1,

v̄n′ = (1, 1, .., 1
︸ ︷︷ ︸

α′n′

,−γ,−γ,−γ, ..,−γ
︸ ︷︷ ︸

(1−α′)n′

) + O(α2)~1.

Remark: for every vector x which is perpendicular to v̄1, v̄n′ it holds that Ā′x = 0 and thus
∑

i∈C′ xi = 0,
∑

i∈I′ xi =
0.

Additional notation: we will use v1, v2, .., vn′ to denote the eigenvectors of A′ corresponding to the eigenvalues
λ1 ≥ λ2, .., λn′ . The vector of all ones is denoted by ~1.

15

Proof of Lemma 3.8. The vector v̄n′ equals: (1, 1, .., 1
︸ ︷︷ ︸

α′n′

,−γ,−γ, ..,−γ
︸ ︷︷ ︸

(1−α′)n′

) + O(α2)~1 (where γ = α
1−α). We claim that

the vector v̄n′ is a fairly good approximation of vn′ : after scaling vn′ with a proper constant it holds that ‖v̄n′ −vn′‖ ≤
0.01‖v̄n′‖ (see Lemma B.1 for the proof details). Without loss of generality we assume that vn′ is already scaled (the
scaling does not affect step 1 of the algorithm, thus the algorithm need not do it. We use this scaling merely for this
proof).

The α′n′ indexes with the largest absolute value belong to vertices of I ′. Let Ĩ be the set of vertices corresponding
to the α′n′ largest absolute values in vn′ . Let k = Ĩ \ I (the error term). There are exactly k vertices in I \ Ĩ . Match
the k vertices of I \ Ĩ with the k vertices of Ĩ \ I in an arbitrary way so as to get k pairs. Let i ∈ I, j ∈ C be
such a pair. Since j ∈ Ĩ , i /∈ Ĩ it holds that |vn′(j)| ≥ |vn′(i)|. Using v̄n′(i) = 1, v̄n′(j) = −γ we conclude that
|v̄n′(i) − vn′(i)| + |v̄n′(j) − vn′(j)| ≥ 1 − γ. It follows that each such pair contributes at least 1/4 to ‖v̄n′ − vn′‖2

(using α << 1−α). Since ‖v̄n′−vn′‖ ≤ 0.01‖v̄n′‖ we conclude that k/4 ≤ 0.01‖v̄n′‖2 ≤ 0.01(α′n′+
(

α
1−α

)2

(1−
α′)n′) ≤ 0.01αn, i.e. k < 0.04|I |. The algorithm takes the αn (rather than α′n′) vertices with the largest absolute
value, but since α′ ≥ (1 − e−Ω(d))α, the additional error term can be made arbitrarily small.

Lemma B.1. Let vn′ be the eigenvector corresponding to the most negative eigenvalue of A′ and let v̄n′ be the last
eigenvector of Ā′. Almost surely there exists a vector δ such that:
(i) v̄n′ − δ is a multiple of vn′ ,
(ii) ‖δ‖ ≤ 0.01‖v̄n′‖ .

Proof of Lemma B.1. The vector v̄n′ can be written in the basis of v1, .., vn′ as v̄n′ =
∑n′

i=1 civi. It is enough to
show that c2

n′ can be made arbitrary close to ‖v̄n′‖2. We will use the following two properties: ‖(A′ − λ̄n′I)v̄n′‖ ≤√
2d‖v̄n′‖ , all the eigenvalues of A′ except λ1, λn′ are bounded by c

√
d in absolute value.

2d‖v̄n′‖2 ≥ ‖(A′ − λ̄n′I)v̄n′‖2 = ‖(A′ − λ̄n′I)(
∑

i∈I′∪C′

civi)‖2 =

n′
∑

i=1

(ci)
2(λi − λ̄n′)2 >

n′−1∑

i=1

(ci)
2(λi − λ̄n′)2 ≥ (−c

√
d +

√

cod)2
n′−1∑

i=1

(ci)
2.

The first inequality is due to Lemma B.2 part (ii). The last inequality holds because for i 6= n′ : λi ≥ −c
√

d (see

Lemma B.2 part (iii)) and λ̄n′ = (−α + O(α2))d . We will use
∑n′−1

i=1 civi as δ. For sufficiently large c0 it holds that

‖δ‖2 =
∑n′−1

i=1 (ci)
2 ≤ 3

c0
‖v̄n′‖2.

Lemma B.2. Let v̄1, v̄n′ be the first and last eigenvectors of the matrix Ā′ with corresponding eigenvalues λ̄1, λ̄n′ .
The following holds with high probability:
(i) ‖(A′ − λ̄1)v̄1‖ ≤

√
3d‖v̄1‖ ,

(ii) ‖(A′ − λ̄n′)v̄n′‖ ≤
√

3d‖v̄n′‖ ,
(iii) ∀x ⊥ v̄1, v̄n′ ‖A′x‖ ≤ c

√
d‖x‖ (c is a universal constant independent of d, α).

Proof of lemma B.2 parts (i),(ii). We will prove that ‖(A′ − λ̄n′I)v̄n′‖2 < 3d‖v̄n′‖2. We use the estimations: λ̄n′ =

(−α + O(α2))d and v̄n′ = (1, 1, .., 1
︸ ︷︷ ︸

α′n′

,−γ,−γ, ...
︸ ︷︷ ︸

(1−α′)n′

) + O(α2)~1 where γ = α
1−α .

(A′ − λ̄n′I)v̄n′ ≈ (A′ + αdI)











1
.
.

− α
1−α

.

.











=











− α
1−α degC(v) + αd

.

.
degI(v) − α

1−α degC(v) − α
1−ααd

.

.











≈











− α
1−α degC(v) + αd

.

.
degI(v) − α

1−α degC(v)

.

.











16

The symbol ≈ is used when we neglect vectors whose squared norm is bounded by 5c2
0n. We can neglect these

terms as their contribution to the squared norm is << d‖v̄n‖2 (d is sufficiently large so that c20 << d). The terms
O(α2) appearing in λ̄n′ and in v̄n′ contribute to the squared norm at most 5nc2

0. The same is true for the factor
− α

1−ααd that is omitted in the last ≈.
To bound the squared norm of the above vector we need to estimate the random variables:

∑

v∈I

(
α

1 − α
(degC(v) − (1 − α)d)

)2

,
∑

v∈C

(
1

1− α
((1 − α)degI(v) − αdegC(v))

)2

.

Since d‖v̄n′‖2 ≥ √
c0dn(1 − e−Ω(d)) it is enough to show that with high probability the above sums are bounded

by 1.2
√

c0dn. First let us compute E[(degC(v) − (1 − α)d)2] for a vertex v ∈ I . This is just the variance of degC(v)

which is (1 − α)d + O(d/n). Thus the expected value of the first sum is αn α2

1−αd + O(d) <<
√

c0dn. Bounding

E[((1 − α)degI(v) − αdegC(v))2] for v ∈ C is more tedious. Setting β = 1 − α, the above expectation is:

β2
E[degI(v)2] + α2

E[degC(v)2] − 2αβE[degI(v)]E[degC(v)],

using E[Y 2] = V AR(Y) + E[Y]2, which is true for any r.v. Y , the above becomes (up to an error of O(d/n)):

β2(αd + (αd)2) + α2(βd + (βd)2) − 2(αβd)2 = αβd = α(1 − α)d.

The expectation of the second sum is (1 − α)n (αd
1−α + O(d/n)) =

√
c0dn + O(d). To complete the argument we

need to show a concentration result for the above two expectations. This is done at Lemma B.4. The proof of part (i)
is similar, details omitted.

Proof of lemma B.2 part (iii). If x ⊥ v̄1, x ⊥ v̄n′ , then
∑

i∈I′ xi = 0,
∑

i∈C′ xi = 0. Thus the following holds:

I ′
︷ ︸︸ ︷

xtA′x = xt















A′ +

p . . p 0 . 0 0
. .
. .

p . . p

0 0
. .

0 0
0 0















x = xtB′x

The matrix B′ is derived from A by removing vertices of degree > 5d and adding the value p = d
n in entries of the

submatrix which corresponds to I ′ ⊂ I . This is very similar to what is done in [9]. The difference is that in [9] the
(all) matrix is random whereas in our case, a small (about αn × αn) portion of the matrix is deterministically fixed
to be p (the expectation). Intuitively, this should only reduce the deviations of the eigenvalues, when compared to a
fixed matrix where all entries are set to p. Indeed, a simple modification of the arguments in [9] (sections 2.2.3,2.2.4,
3.2,3.3) gives that xtB′x ≤ c

√
d where c is a universal constant independent of d and α.

Lemma B.3. Let λ1 ≥ λ2 ≥ ... ≥ λn′ be the eigenvalues of A′. With high probability for i = 2, 3, .., n′ − 1 it holds
that |λi| ≤ c

√
d.

Proof. We will show λn−1 ≥ −c
√

d. It is well known that:

λn′−1 = max
H subspace of

dimension n − 1

min
x6=0,
x∈H

xtA′x

xtx
.

17

Let us fix H to be the subspace perpendicular to v̄n′ . Consider any vector x ⊥ v̄n′ . The vector x can be written as
x = f + s where f is a multiple of v̄1 and s ⊥ v̄1, v̄n′ .

xtA′x = (f + s)tA′(f + s) = f tA′f + stA′s + 2stA′f ≥

λ̄1‖f‖2 − c
√

d‖s‖2
2
+ 2st(A′ − λ̄1)f ≥ −c

√
d‖s‖2 − 2c

√
d‖s‖‖f‖ ≥ −2c

√
d‖x‖ .

In the first equality we used the symmetry of A′, in the first inequality we used s ⊥ f and in the last inequality we
used 2‖s‖‖f‖ ≤ ‖s‖2 + ‖f‖2 = ‖x‖2. A similar argument gives λ2 ≤ c

√
d.

Lemma B.4. With probability > 1 − 1/n the following hold:

(i)
∑

v∈I

(
α

1−α (degC(v) − (1 − α)d)
)2

< 1.2
√

c0dn,

(ii)
∑

v∈C

(
1

1−α ((1 − α)degI(v) − αdegC(v))
)2

< 1.2
√

c0dn.

Proof. We will prove only (ii) whose proof is somewhat harder than the proof of (i). We use the following notation
S denotes the sum in (ii), µ denotes the expectation of S (which is

√
c0dn + O(d)– see the proof of Lemma B.2), ∆

denotes the maximum degree in G and D is a parameter (D > 100d). It holds that:

Pr[S > 1.1µ] ≤ Pr[∆ ≥ D] + Pr[S > 1.1µ | ∆ < D]. (8)

The first term Pr[∆ ≥ D] is bounded by ne−D/d using a combination of the union bound and a proper version of
the Chernoff bound (D > 100d). To bound the other term, we will use the vertex exposure martingale. The probability
space that we use is Gn,d/n,α conditioned on ∆ < D. Define

f(G) =
∑

v∈C

(
1

1 − α
((1 − α)degI(v) − αdegC(v))

)2

.

Let X0, X1, ..., Xn be the martingale sequence, where Xi is the expectation of f after exposing the edges of the graph
induced by the first i vertices. Notice that X0 is just E[f(G) | ∆ < D]. The value of Xn is the value of f(G), where

G is a random graph (from Gn,d/n,α) given that all vertices have degrees bounded by D. To use the Azuma inequality
we need to upper bound the martingale difference |Xi+1 − Xi| (for i = 0, .., n− 1). It is known that if f satisfies the
vertex Lipschitz condition with some constant Λ, then also the martingale difference is bounded by Λ (see [3]). We
will show that f satisfies a Lipschitz property with respect to the constant 3D2. Fix a vertex v and move from one
configuration of v’s edges into a different configuration of v’s edges by changing (add/remove) one edge at a time.
After all the changes are done the difference in the value of the summand of v is never more than D2. The difference
induced by the other summands is bounded in the following way: there are at most D changes, each change has an
influence bounded by 2D on some other summand (since all degrees are bounded by D). It follows that the total
difference is bounded by D2 + 2D2. By Azuma’s inequality the following holds:

Pr[Xn > X0 + λ] ≤ e−λ2/(2n3D2).

Setting λ = 0.1µ we derive:

Pr[Xn > 1.1µ] ≤ e−0.01µ2/(2n3D2) < e−c0dn2)/1000nD2

= e−c0dn/1000D2

.

Using D = 100d logn: the last term is at most e−
√

n, the first term (from equation (8)) is at most e−D/d+log n <
e−99 log n.

18

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

