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Abstract

We study computational complexity of counting the fixed point configurations (FPs) in certain discrete
dynamical systems. We prove that counting FPs in Sequential and Synchronous Dynamical Systems
(SDSs and SyDSs, respectively) is computationally intractable, even when each node is required to
update according to a symmetric Boolean function. We also show that counting the garden of Eden
configurations (GEs), as well as all transient configurations, is just as hard in this setting. Moreover,
the hardness of enumerating FPs holds even in some severely restricted cases, such as when the nodes
of an SDS or SyDS use only two different symmetric Boolean update rules, and when each node has a
neighborhood size bounded by a small constant.

Keywords: Cellular and graph automata, sequential and synchronous dynamical systems, configuration
space properties, computational complexity of enumeration problems, #P-completeness

1 Introduction and Motivation

We study in this work certain classes of graph automata that can be used as an abstract idealization of the
classical networked distributed systems, as well as of various multi-agent systems and ad hoc networks,
and as a theoretical model for the computer simulation of a broad variety of computational, physical, social,
and socio-technical distributed infrastructures. In this and several related papers (see, e.g., [2, 3, 4, 5, 6, 7, 8,
9, 33, 46, 47]), the general approach has been to study mathematical and computational configuration space
properties of such graph automata: what are the possible global behavior patterns of the entire system,
given the simple local behaviors of its components, and the interaction pattern among these components.

We specifically focus on determining how many fixed point configurations such graph automata have,
and how hard is the computational problem of counting (or enumerating) these configurations. In a nutshell,
the contributions of this paper are as follows. We prove that both exact and approximate counting of the
number of fixed point configurations in Sequential and Synchronous Dynamical Systems is computationally
intractable, even when each node is required to update according to a symmetric Boolean function. We
also show that the exact counting of the “Garden of Eden” configurations, as well as of all transient
configurations, is just as hard in this setting.

The rest of the paper is organized as follows. Section 2 is devoted to the necessary preliminaries about
the models studied in this paper, namely, the sequential and synchronous dynamical systems. Section 3
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summarizes our technical results, and reviews some recent research that is closely related to our work. The
original results are presented in Section 4. Finally, we conclude and outline some possible extensions in
Section 5.

2 Preliminaries

In this section, we define and briefly discuss the discrete dynamical system models studied in this paper,
and their configuration space properties. Sequential Dynamical Systems (henceforth referred to as SDSs)
are proposed in [8, 9, 10] as an abstract model for computer simulations. This model has been successfully
applied in the development of large-scale socio-economic simulation systems such as the TRANSIMS project
at the Los Alamos National Laboratory [11].

A Sequential Dynamical System (SDS) S is a triple (G, F, Π), whose components are as follows:

1. G(V, E) is a connected undirected graph without multi-edges or self-loops. G is referred to as the
underlying graph of S . We often use n to denote |V | and m to denote |E|. The nodes of G are
enumerated 1, 2, . . ., n.

2. Each node is characterized by its state. The state of node i, denoted by si, takes on a value from
some finite domain, D. In this paper, we shall restrict D to {0, 1}. We use di to denote the degree of
node i. Each node i is associated with a node update rule fi : Ddi+1 → D, for 1 ≤ i ≤ n. We also
refer to fi as the local transition function. The inputs to fi are the state of the node i itself and the
states of the neighbors of i. We use F to denote the global map of S , obtained by appropriately
composing together all the local update rules fi, i = 1, ..., n.

3. Finally, Π is a permutation of V = {1, 2, . . . , n} specifying the order in which the nodes update
their states using their local transition functions. Alternatively, Π can be envisioned as a total ordering
on the set of nodes. In particular, F = (fΠ−1(1), fΠ−1(2), . . . , fΠ−1(n)).

The nodes are processed in the sequential order specified by the permutation Π. The processing associated
with a node consists of computing the new value of its state according to the node’s update function, and
changing its state to this new value.

Most of the early work on sequential dynamical systems has focused primarily on the SDSs with sym-
metric Boolean functions as the node update rules [2, 3, 4, 5, 7, 8, 9]. By “symmetric” is meant that the
future state of a node does not depend on the order in which the input values of this node’s neighbors are
specified. Instead, the future state depends only on Σj∈N(i) xj (where N(i) stands for the extended neigh-
borhood of a given node, i, that includes the node i itself), i.e., on how many of the node’s neighbors are
currently in the state 1. Thus symmetric Boolean SDSs correspond to totalistic (Boolean) cellular automata
of Wolfram [53, 54].

The assumption about symmetric Boolean functions can be easily relaxed to yield more general SDSs.
We give special attention to the symmetry condition for two reasons. First, our computational complexity
theoretic lower bounds for such SDSs imply stronger lower bounds for determining the corresponding con-
figuration space properties1 of the more general classes of graph automata and communicating finite state
machines (CFSMs). Second, symmetry provides one possible way to model the “mean field effects” used in
statistical physics and studies of other large-scale systems. A similar assumption is made in [12].

1Configuration spaces of sequential and synchronous dynamical systems will be defined in subsection 2.1.
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A Synchronous Dynamical System (SyDS) is an SDS without the node permutation. In an SyDS, at
each discrete time step, all the nodes perfectly synchronously in parallel compute and update their state
values. Thus, SyDSs are similar to the finite classical cellular automata (CA), except that in an SyDS the
nodes may be interconnected in an arbitrary fashion, whereas in a classical cellular automaton the nodes
are interconnected in a regular fashion (such as, e.g., a line, a rectangular grid, or a hypercube). Another
difference is that, while in the classical CA all the nodes update according to the same rule, in an SyDS
different nodes, in general, use different local update rules.

2.1 SDS and SyDS Configuration Space Properties

A configuration of an SDS or SyDS S = (G, F, Π) is a vector (b1, b2, . . . , bn) ∈ Dn. A configuration C
can also be thought of as a function C : V → D.

The function computed by SDS S , denoted by FS , specifies for each configuration C the next config-
uration C ′ reached by S after carrying out the updates of the node states in the order given by Π. Thus,
the function FS : Dn → Dn is a total function on the set of global configurations. This function therefore
defines the dynamics of the SDS S . We say that S moves from a configuration C to a configuration FS(C)
in a single transition step. Alternatively, we say that SDS S moves from a configuration C at time t to a
configuration FS(C) = C′ at time t + 1. Assuming that each node update function fi is computable in
time polynomial in the size of the description of S , clearly each transition step will also take polynomial
time in the size of the SDS’s description. The initial configuration of an SDS S will be often denoted by C0

in the sequel. Given an SDS S with the initial configuration C0, the configuration of S after t time steps
is denoted by C(S, t), or, more succinctly, Ct; hence, in particular, C(S, 0) = C0.

The configuration space (also called phase space) PS of an SDS or SyDS S is a directed graph
defined as follows. There is a vertex in PS for each global configuration of S . There is a directed edge
from a vertex representing configuration C to that representing configuration C ′ if FS(C) = C′. Since any
SDS or SyDS is a deterministic dynamical system, each vertex in its configuration space has the out-degree
of 1. Since the domain D of state values is assumed finite, and the number of nodes in the SDS is finite, the
number of configurations in the phase space is also finite. If the size of the domain (that is, the number of
possible states of each node) is |D|, then the number of global configurations in PS is |D|n.

Definition 2.1 Given two configurations C and C′ of an SDS or SyDS S , configuration C is a prede-
cessor of C ′ if FS(C) = C′, that is, if S moves from C to C ′ in one global transition step.

Definition 2.2 Given two configurations C and C′ of an S(y)DS S , C is an ancestor of C ′ if there is a
positive integer t such that FS

t(C) = C′, that is, if S evolves from C to C ′ in one or more transitions.

In particular, a predecessor of a given configuration C ′ is trivially also its ancestor.

Definition 2.3 A configuration C of an S(y)DS S is a Garden of Eden (GE) configuration if C has no
predecessor.

Definition 2.4 A configuration C of an S(y)DS S is a fixed point (FP) configuration if FS(C) = C,
that is, if the transition out of C is to C itself.

Note that a fixed point is a configuration that is its own predecessor.
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Definition 2.5 A configuration C of an S(y)DS is a cycle configuration (CC) if there exists an integer
t ≥ 2 such that

(i) FS
t(C) = C; and

(ii) FS
q(C) 6= C, for any integer q, 0 < q < t.

Integer t above is called the period or length of the temporal cycle.

In other words, C is a cycle configuration if it is reachable from itself in two or more transitions, but
not in a single transition.

Definition 2.6 A configuration C of an S(y)DS is a transient configuration (TC) if C is neither a fixed
point nor a cycle configuration.

As their name suggests, transient configurations, unlike fixed points or cycle configurations, are never
revisited. We note that a GE configuration is a special case of a transient configuration; a GE configuration
is not reachable from any configuration including itself [7]. We also remark that a node in the phase space
may have multiple predecessors. This means that the time evolution map F of an SDS or SyDS is in
general not invertible but is contractive. The existence of configurations with multiple predecessors also
implies that certain configurations have no predecessors. A configuration with no predecessors is called a
garden of Eden configuration (see Definition 2.3). Such configurations can occur only as the initial states
and can never be generated during the time evolution of an SDS or SyDS.

3 Summary of Results and Related Work

Given an SDS or SyDS S , let |S| denote the size of the representation of S . In general, this includes
the number of nodes, the number of edges, and the description of the local transition functions. When
D = {0, 1} and the local transition functions are given as the truth tables, |S| = O(m + |T |n), where
|T | denotes the maximum size of a table, n is the number of nodes and m is the number of edges in the
underlying graph. By the size of a truth table we shall throughout the paper mean, for simplicity, just
the number of rows in this table. Thus, for a node vi of degree di, the size of a truth table specifying
an arbitrary Boolean function is O(2di), and actually, for any (sufficiently big) positive integer di, most
Boolean functions on di +1 inputs cannot be encoded substantially more succinctly than via a truth table of
size Θ(2di). In contrast, the size of an optimally succinct truth table fully specifying an arbitrary symmetric
Boolean function is only O(di).

Another, more common way of specifying the local transition functions is via Boolean formulae. We
shall assume that fi of non-symmetric SDSs and SyDSs considered in the sequel are indeed given as
(reasonably succinct2) Boolean formulae of appropriately restricted kinds. It follows from the discussion
above that, for symmetric Boolean update rules, the exact way these update rules are encoded in an S(y)DS
is inconsequential, as long as this encoding is reasonably succinct (see the footnote). We shall also assume
that evaluating any local transition function fi, given its input values, can be done in polynomial time.

We study herewith the problem of counting the fixed point (FP) configurations of Boolean SDSs and
SyDSs. In particular, we prove the following results:

• counting FPs in the general Boolean (and, consequently, also in any other finite domain) SDSs and
SyDSs is #P-complete;

2By reasonably succinct Boolean formulae we mean, the formulae whose sizes are not artificially blown up by, e.g., repeating
the same clause(s) over and over again.
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• this hardness result still holds when the node update rules of these S(y)DSs are restricted to symmetric
Boolean functions;

• moreover, the result remains valid even when only two different symmetric update rules are used, and
when the maximum degree of each node in the underlying graph is a small constant.

3.1 Related work

Various computational aspects of cellular automata (CA) have been studied by a number of researchers;
see for example [13, 14, 22, 24, 32, 42, 51, 53, 54]. Much of this work addresses decidability of various
properties for infinite CA. Insofar as the computational complexity of fundamental problems about finite CA
are concerned, we single out the following. The first NP-complete problems for CA are shown by Green
in [22]; these problems are of a general reachability flavor, i.e., they address the properties of the forward
dynamics of CA. Sutner addresses the backward dynamics problems, such as the problem of an arbitrary
configuration’s predecessor existence, and their computational complexity in [42]. In the same paper,
Sutner establishes the efficient solvability of the predecessor existence problem for any CA with a fixed
neighborhood radius. In [15], Durand solves the injectivity problem for arbitrary 2-D CA but restricted to
the finite configurations only; that paper contains one of the first results on coNP-completeness of a natural
and important problem about CA. Furthermore, Durand addresses the reversibility problem in the same,
two-dimensional CA setting in [16].

SDSs and SyDSs investigated in this paper are closely related to the graph automata (GA) models
studied in [30, 35] and the one-way cellular automata studied by Roka in [38]. In fact, the general finite-
domain SyDSs exactly correspond to the graph automata of Nichitiu and Remila as defined in [35].

Barrett, Mortveit and Reidys [8, 9, 33, 37] and Laubenbacher and Pareigis [29] investigate the mathe-
matical properties of sequential dynamical systems. Barrett et al. study the computational complexity of
several phase space problems for SDSs. These include REACHABILITY, PREDECESSOR EXISTENCE and
PERMUTATION EXISTENCE [5, 6]. Problems related to the existence of garden of Eden and fixed point
configurations are studied in [7]. In particular, the basic NP-completeness results for the problems of FP,
GE and non-unique predecessor existence in various restricted classes of Boolean S(y)DSs are proven in
that paper. Algorithms for efficiently finding an FP in certain other restricted classes of S(y)DSs can be also
found in [7]. Our results in Section 4 of this paper can be viewed as a natural partial extension of the work
in [7]: instead of the appropriate decision problems about the fixed points and gardens of Eden in SDSs and
SyDSs, we focus herein on studying the related counting problems.

Among various restricted classes of Boolean SDSs and SyDSs, those with the local update rules re-
stricted to symmetric functions have received particular attention (e.g., [9, 29, 33]). Computational complex-
ity of the reachability-related problems in the context of, among other restricted types, symmetric Boolean
SDSs is investigated in [6]. We show in this paper that, in contrast to the computational feasibility of the
problem of their reachability [6], the problem of counting stable configurations (FPs) in symmetric SDSs
and SyDSs, under the usual assumptions in computational complexity theory, is intractable.

4 Counting Fixed Points in Boolean SDSs and SyDSs

The results in this section constitute an extension of the work presented in [6] and [7]. In particular, compu-
tational complexity of decision problems related to the fixed point and the garden of Eden configurations in
SDSs and SyDSs is studied in [7]. Once NP-completeness of these decision problems has been established
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[7], a natural further course of inquiry about the fundamental S(y)DS phase space properties is to determine
how hard it is to count how many FPs, GEs, or other configurations of interest an SDS or SyDS of a given
type may have.

Intuitively, one would expect, for example, that counting the FPs of an arbitrary Boolean SDS or SyDS
is no easier than counting the satisfying truth assignments of an arbitrary instance of the SATISFIABILITY

problem [17, 36]. The intuitive notion of computational hardness of counting problems is formalized via
the definition of the class #P (read: “sharp-P” or “number-P”). A counting problem Ψ belongs to the
class #P if there exists a nondeterministic algorithm such that, for each instance I of Ψ, the number of
nondeterministic “guesses” this algorithm makes that lead to acceptance equals the number of solutions of
I(Ψ), and, in addition, it is required that the longest of the nondeterministic computations of this algorithm
on any input be polynomially bounded in the size of the description of I. For an alternative but equivalent
definition of class #P in terms of polynomially balanced relations, we refer the reader to [36].

The hardest problems in class #P are the #P-complete problems. A counting problem Ψ is #P-complete
if and only if (i) it is in class #P, and (ii) every other problem in #P is efficiently reducible to Ψ. Thus, if we
could solve any particular #P-complete problem in (deterministic) polynomial time, then all the problems in
class #P would be solvable in (deterministic) polynomial time, and the entire class #P would collapse to the
class P. For more on class #P, we refer the interested reader to Chapter 18 of [36], and references therein.

As one would expect, the counting versions of the “standard” decision NP-complete problems, such
as SATISFIABILITY or HAMILTON CIRCUIT, are #P-complete [36]. What is curious, however, is that the
counting versions of some tractable decision problems, such as BIPARTITE MATCHING or MONOTONE

2CNF SATISFIABILITY, are also #P-complete [50, 49].
If we could reduce the problem of counting the satisfying truth assignments of an instance of, say,

Boolean 3CNF-SAT or PE3SAT formulae [17] to counting the fixed points of a corresponding SDS, this
would establish the #P-completeness of the latter. However, the reduction from ODD-PE3SAT to FPE that
is used in [7] to establish the NP-completeness of the Fixed Point Existence problem for SDSs would not
suffice, since it does not map the satisfying assignments of an instance of ODD-PE3SAT to the fixed points
of the corresponding SDS in a one-to-one fashion. That is, in order to prove the intractability of counting
FPs of Boolean SDSs and SyDSs, not any polynomial time reduction from a known #P-complete problem
suffices. What is required is a kind of an efficient reduction that preserves the number of solutions. That
is, we need a construction whereby each satisfying truth assignment of an instance of a known #P-complete
problem such as, e.g., 3CNF-SAT or PE3SAT, translates into a distinct fixed point of the corresponding
SDS or SyDS. We define this special kind of efficient reductions next:

Definition 4.1 Given two decision problems Π and Π
′

, a PARSIMONIOUS REDUCTION from Π to Π
′

is a polynomial-time transformation g that preserves the number of solutions; that is, if an instance I of
Π has nI solutions, then the corresponding instance g(I) of Π

′

also has ng(I) = nI solutions.

In practice, one often resorts to reductions that are “almost parsimonious”, in a sense that, while they do
not exactly preserve the number of solutions, nI in the previous definition can be efficiently recovered from
ng(I) .

Definition 4.2 Given two decision problems Π and Π
′

, a WEAKLY PARSIMONIOUS REDUCTION from Π
to Π

′

is a polynomial-time transformation g such that, if an instance I of Π has nI solutions, and
the corresponding instance g(I) of Π

′

has ng(I) solutions, then nI can be computed from ng(I) in
polynomial time.
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Our fundamental result on the hardness of counting the fixed point configurations of an arbitrary Boolean
S(y)DS, as well as similar hardness results about symmetric Boolean SDSs and SyDSs in the next two
subsections, will follow from

Proposition 4.1 (e.g., [36]) Given two decision problems Π and Π
′

, if the corresponding counting problem
#Π is #P-hard and if there exists a (weakly) parsimonious reduction from Π to Π

′

, then the counting
problem #Π

′

is #P-hard, as well.

4.1 Counting Fixed Points of General Boolean SDSs and SyDSs

We shall use reductions from the known #P-complete problems, such as the counting version of POSITIVE-
EXACTLY-1-IN-3SAT (PE3SAT), to the problems of counting FPs in certain classes of the SDS and SyDS
automata. These reductions will formally establish the #P-completeness of those counting problems about
SDSs and SyDSs. We now define the variants of Satisfiability [17, 36] that we shall use in the sequel:

Definition 4.3 Exactly-one-in-three-satisfiability (or E3SAT for short), is a version of 3CNF-SAT [17]
such that, first, each clause in a given 3CNF formula contains exactly three literals, and, second, where
a truth assignment is considered to satisfy the given 3CNF formula if and only if exactly one of the three
literals is true in each clause. Positive-exactly-one-in-three-satisfiability (PE3SAT) is further restricted:
no clause in the 3CNF formula is allowed to contain a negated literal.

Consider the following reduction from PE3SAT to #FP-SDS, where #FP-SDS denotes the problem of
counting the fixed point configurations of an arbitrary Boolean SDS.

Let an arbitrary instance I of PE3SAT be given. We construct the corresponding instance of an SDS
S = S(I) as follows. We remark that S in this subsection will be “nearly symmetric”; we will modify our
construction to a fully symmetric Boolean SDS (or SyDS) in the next subsection.

Assume that I has n variables and m clauses. The underlying graph of S has a distinct node for each
variable xi, 1 ≤ i ≤ n, and for each clause Cj , 1 ≤ j ≤ m. The node labeled xi is connected to the node
labeled Cj if and only if, in the Boolean formula I, variable xi appears in clause Cj . In addition, our graph
has one additional node, labeled y, that is adjacent to the nodes Cj for all indices j = 1, ..., m. Hence,
each Cj has exactly four neighbors, and node y has m neighbors.

The node update functions of our SDS S are as follows:

- Each node Cj evaluates the logical AND of the current value of node y, the value evaluated by the
PE3SAT function of the three variables {xj1 , xj2 , xj3} that appear in the corresponding clause Cj of I,
and the current value of itself; that is, the node update function Cj evaluates to 1 if and only if:

(i) exactly one out of the three neighboring nodes xj1 , xj2 , xj3 currently holds the value 1; and
(ii) the node y currently holds the value 1; and
(iii) the current value of Cj itself is 1.

- The “special” node y evaluates the AND of its own current value and the entire set of current values
held in the clause nodes Cj , 1 ≤ j ≤ m. This will enable us to argue that the node y, in effect, evaluates
the Boolean formula for the specified truth assignment {x1, ..., xn}, provided that the initial value stored in
node y is yt=0 = 1, and, likewise, that C t=0

j = 1, for all j, 1 ≤ j ≤ m.
- Each node xi evaluates the logical AND of itself and the current values stored in the clause nodes

Cj(i) such that, in the original formula I , variable xi appears in clause Cj(i).
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The order of the node updates is (C1, ..., Cm, y, x1, ..., xn).
Since S has n + m + 1 nodes, the corresponding phase space will have 2n+m+1 configurations.
We now claim that the reduction from #PE3SAT to #FP-SDS based on the above SDS construction

from an instance I of PE3SAT is weakly parsimonious; it will then immediately follow that

Theorem 4.1 The problem of counting the fixed points of an arbitrary Boolean SDS (and therefore also of
any more general finite domain SDS) is #P-complete.

Remark: Similarly, by a straight-forward modification of the given SDS construction, the #FP-SyDS
problem for the general Boolean (and therefore any finite domain) SyDSs is #P-complete, as well.

Proof: That #FP-SDS is a member of the class #P is immediate from the definition of SDS and the
assumptions stated in Section 3. The #P-hardness will follow from the #P-hardness of the corresponding
counting version of PE3SAT, once we establish that the reduction from #PE3SAT to #FP-SDS is, indeed,
(weakly) parsimonious.

First, assume we pick an initial configuration C0 such that its sub-configuration (x0
1, ..., x

0
n) is an

unsatisfying truth assignments for the variables (x1, ..., xn) in the corresponding instance of PE3SAT.
Then, at the first step, at least one of the clause nodes will evaluate to 0, and hence the node y will
subsequently evaluate to 0. Once the node y holds the value 0, at the next step all clause nodes Cj will
evaluate to 0, and subsequently they will force all the variable nodes xi to evaluate to 0, as well3. Thus, it
follows that, if initially the sub-configuration (x0

1, ..., x
0
n) corresponds to a falsifying truth assignment for

I , then the fixed point configuration 0n+m+1 is reached in (at most) two global transition steps.
Let us assume now that the initial configuration Ct=0 of S has a sub-configuration (x0

1, ..., x
0
n) that

corresponds to a satisfying truth assignment to the corresponding Boolean variables in the instance I of
PE3SAT and, in addition, that yt=0 = 1 and Ct=0

j = 1. Then each Cj will evaluate to 1, thereby causing
the node y to remain evaluated to 1, as well. Since all Cj = 1, each node xi will keep its original value:
x1

i = x0
i . Since these values form a satisfying truth assignment, at the next step of the dynamic evolution

of S , again each Cj will evaluate to 1, causing y to re-evaluate to 1, and all of xi to remain the same;
in other words, a fixed point configuration has been reached. Hence, if the initial configuration C0 has
y0 = 1 and C0 = 1m, and it encodes a satisfying truth assignment (x0

1, ..., x
0
n) of I, then C = C0 already

is a fixed point, given by (C1, ..., Cm, y, x1, ..., xn) = (1, ..., 1, 1, x0
1, ..., x

0
n). Thus, it follows that each

satisfying truth assignment (x1, ..., xn) of I gets mapped into a distinct fixed point (1, ..., 1, 1, x1, ..., xn)
of the corresponding SDS S = S(I).

Finally, it is easy to see that, if y0 = 0, then S reaches the fixed point 0n+m+1 in a single step, and if
there exists at least one index j such that initially C0

j = 0, then the sink 0n+m+1 is reached in at most two
steps. Since each initial configuration that encodes a falsifying truth assignment (x1, ..., xn) to I yields the
fixed point configuration 0n+m+1 in at most two steps, we conclude that there cannot be any fixed points of
S except for 0n+m+1 and those fixed points that correspond to the satisfying assignments to I. Therefore,
if I has L satisfying assignments, where 0 ≤ L ≤ 2n, then the SDS S as constructed above will have
exactly L + 1 fixed points.

This reduction establishes that, in general, counting fixed points of an arbitrary Boolean SDS is no
easier than counting satisfying truth assignments of instances of PE3SAT formulae, and the #P-hardness of
#FP-SDS follows, thereby establishing the claim of the theorem.

3We shall assume in this and all other constructions in this paper that each Boolean variable in any given formula I appears in
at least one clause.
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4.2 Counting Fixed Points of Symmetric Boolean SDSs and SyDSs

The hardness results for symmetric Boolean SDSs and SyDSs will be based on an appropriate reduction from
the PE2-IN-3SAT problem. We define PE2-IN-3SAT similarly to how we defined PE3SAT, only this time we
require each clause to have exactly two true variables (rather than exactly one as was the case in PE3SAT).
We observe that, since PE3SAT is NP-complete, so is PE2-IN-3SAT, and moreover the #P-completeness
of the counting version of the former, let’s denote it #PE3SAT, also implies the #P-completeness of the
counting version of the latter, #PE2-IN-3SAT.

Let an instance I of PE2-IN-3SAT be given. Assume that there are n Boolean variables, denoted
x1, ..., xn, and m clauses, C1, ..., Cm, in I . We recall that each clause Cj contains exactly three unnegated
variables, xj1 , xj2 , xj3 . An instance I is a positive or satisfying instance of PE2-IN-3SAT if and only if
there exists a truth assignment to x1, ..., xn such that exactly two variables in each clause are true.

We now prove that counting FPs of a symmetric Boolean SyDS or SDS is #P-complete. We recall that
fixed points are invariant under the node update ordering; that is, regardless of whether the nodes update
synchronously in parallel, or sequentially according to an arbitrary ordering Π, the fixed points of the
underlying dynamical system as specified by its graph and the local node update functions remain the same
(see [33] for a proof).

Theorem 4.2 The problem of counting fixed points of a symmetric Boolean Synchronous Dynamical System,
abbreviated as #FP-SYM-SYDS, is #P-complete.

Proof: To show #P-hardness, we reduce the problem of counting the satisfying truth assignments of an
instance of PE2-IN-3SAT to counting the fixed points of a symmetric Boolean SyDS. We construct an SyDS,
S, from an instance of PE2-IN-3SAT as follows. We let the underlying graph of S have m+n+1 vertices:
one for each variable, one for each clause, and one additional vertex, denoted by y. Next, we define the
edges of the underlying SyDS graph. Each vertex node xi is adjacent to those and only those clause nodes
Cj(i) such that the corresponding variable xi appears in the corresponding clause Cj(i) of formula I . Each
clause node Cj is adjacent to all other clause nodes Ck (for all k, 1 ≤ k ≤ m, k 6= j), to the special node
y, and to the three nodes xj1 , xj2 , xj3 corresponding to the Boolean variables that appear in the clause Cj

in the formula. Finally, by symmetry, the node y is adjacent to all the clause nodes Cj , 1 ≤ j ≤ m.
We define the node update functions as follows:

xt+1
i = xt

i ∧ (∧j(i)C
t
j(i));

Ct+1
j = ALL-BUT-ONE {xt

j1
, xt

j2
, xt

j3
, Ct

1, ..., C
t
m, yt};

yt+1 = yt ∧ (∧m
j=1C

t
j),

where the Boolean function ALL-BUT-ONE {z1, ..., zq} = 1 if and only if exactly one of its inputs zl is
0, and all the rest are 1s.

We now claim that the constructed synchronous dynamical system has |T | + 2 fixed points if and only
if the corresponding instance of PE2-IN-3SAT has |T | satisfying truth assignments.

To prove the claim, we will carefully analyze all possible scenarios of the dynamic behavior of S , based
on its initial configuration. We shall adopt the notation that x and C without any subscripts denote Boolean
n- and m-vectors, respectively, the former being a shorthand for (x1, ..., xn) and the latter for (C1, ..., Cm).
Hence, using this abridged notation, we can now write arbitrary configurations of S as ordered triples
(x, C, y).

We start with a simple observation that, since the node update functions at the variable nodes xi, as well
as the special node y, are conjunctions of inputs that include the old value of the node in question itself,
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once any xi or the node y evaluates to 0, it remains 0 thereafter. We split the analysis of the dynamic
behavior of S into two parts.

Case 1: yt=0 = 0. First consider the case when, initially, xt=0
i = 1 for all i, 1 ≤ i ≤ n, and also

Ct=0
j = 1, for all j, 1 ≤ j ≤ m. At time t = 1, all the variable nodes xi will remain in the state 1. Also,

since each clause node update function Cj at time t = 1 will have all inputs equal to 1 except for a single
one (namely, the input y0 = 0), C1

j = 1. On the other hand, clearly yt = 0 for t = 1, 2, ..., irrespective of

the remaining inputs Ct−1
j . Hence, we conclude that the configuration (x, C, y) = (1n, 1m, 0) is a fixed

point of S . Notice, however, that this configuration does not correspond to a satisfying truth assignment
of the corresponding instance I of PE2-IN-3SAT, since, if all xi = 1, then no clause Cj of I will be
satisfied, as each clause requires exactly two inputs equal to 1 and one input equal to 0.

Now consider a starting configuration where there exists an index j? such that C0
j?

= 0. Then, at time
t = 1, all the clause nodes Cj will have at least two 0 inputs (namely, y0 and C0

j?
), and, since they evaluate

the ALL-BUT-ONE function of their inputs, they will all evaluate to 0: C1
j = 0, for all j, 1 ≤ j ≤ m.

Hence, at the next step, x2
i = x1

i ∧ (∧j(i)C
1
j(i)) = 0 for all i, 1 ≤ i ≤ n, and it is easy to see that, for

t ≥ 2, (xt, Ct, 0) = 0n+m+1, i.e. the fixed point 0n+m+1 is swiftly reached - in at most two transition
steps. Similar analysis, and the same conclusion, hold if we assume that there is at time t = 0 at least
one index i? such that x0

i?
= 0. We observe that, just like the fixed point (1n, 1m, 0), the fixed point

(0n, 0m, 0) = 0n+m+1 does not correspond to a satisfying truth assignment (x1, ..., xn) of formula I . This
completes the analysis of all possible scenarios when y0 = 0.

Case 2: yt=0 = 1. There are two sub-cases to consider. The first sub-case is when there exists an index
j? such that Ct=0

j?
= 0. The second sub-case is when, initially, C t=0

j = 1, for all 1 ≤ j ≤ m.
We shall first assume that there exists j? such that Ct=0

j?
= 0. Then yt = 0 for all t ≥ 1, and,

furthermore, the three variable nodes {xj?,1, xj?,2, xj?,3}, corresponding to the variables that appear in the
clause Cj?

, will also evaluate to 0 at time t = 1, and remain 0 thereafter. At time t = 2, all Cj will have
more than one input equal to 0. Consequently, all C t=2

j = 0, 1 ≤ j ≤ n. Thus, a single C t=0
j?

= 0 assures
the quick collapse to the “sink” stable configuration 0n+m+1.

Next, we examine the most interesting scenario, when the initial configuration (xt=0, Ct=0, yt=0) is of
the form (xt=0, 1m, 1); that is, we assume that, initially, all C t=0

j = 1 as well as yt=0 = 1. There are
two possibilities: either xt=0 is a satisfying truth assignment of the PE2-IN-3SAT instance I , or it is not a
solution of I . If I(xt=0) = false, then there must be at least one index j such that the clause Cj = 0. If
so, then the corresponding clause node Cj of our SyDS will evaluate to zero, as well: C t=1

j = 0. Hence,
at time t = 2, y2 = 0, and also xt=2

j,1 = xt=2
j,2 = xt=2

j,3 = 0. Thus, the resulting SyDS dynamics is the same
as in case of an initial configuration with C t=0

j = 0, only beginning one time step later. In particular, after
three time steps, (x3, C3, y3) = 0n+m+1, and, of course, (xt, Ct, yt) = 0n+m+1 for all t ≥ 3.

Finally, we now assume that xt=0 = (x0
1, ..., x

0
n) is a satisfying truth assignment of the PE2-IN-3SAT

formula. Then, at time t = 1, all the clause nodes C t=1
j will re-evaluate to 1, since each clause Cj in the

Boolean formula will have exactly two true inputs if and only if each clause node Cj of the corresponding
SyDS has exactly m + 1 + (3 − 1) = m + 3 (i.e., all but one) of its inputs equal to 1. Similarly,
yt=2 = yt=1 = yt=0 = 1. Since all the nodes Cj satisfy Ct=1

j = Ct=0
j = 1, it follows that each

variable node xi will retain its old value: x1
i = x0

i ∧ (∧j(i)C
0
j(i)) = x0

i ∧ 1 = x0
i , and, similarly, also

x2
i = x1

i ∧ 1 = x1
i = x0

i . It is now immediate that any starting configuration of the form (x0, 1m, 1), where
the Boolean n-vector x0 is a satisfying truth assignment of the given PE-2-IN-3SAT instance I , is a fixed
point of S .
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By the above analysis, we see that the phase space of S has a rather simple structure: no cycles
whatsoever, only short transients (the longest chains of transient states are of length 3), and the fixed points
of S are precisely the “sink” 0n+m+1, the configuration (x, C, y) = (1n, 1m, 0), and those configurations
(x, C, y) such that C = 1m, y = 1, and the Boolean n-vector x = (x0, ..., xn) is a satisfying truth
assignment of I . In particular, if I has |T | satisfying assignments, then S will have exactly |T | + 2 fixed
points, and the claim of the theorem follows.

By the aforementioned invariance of fixed points with respect to the node update ordering, the next result
on the hardness of counting FPs in symmetric Boolean SDSs is not at all surprising.

Theorem 4.3 The problem of counting fixed point configurations of symmetric Boolean SDSs (abbreviated
as #FP-SYM-SDS) is #P-complete.

Proof: In order to prove the theorem explicitly, as well as establish several other complexity-theoretic
counting results for symmetric Boolean SDSs, we consider the following construction of an SDS S’ from
the SyDS S used in the proof of the previous theorem.

• The underlying graph and the local node updating functions are as in the SyDS construction in the
previous theorem.

• Let the node ordering be given by Π = (y, C1, ...., Cm, x1, ..., xn). Thus,

yt+1 = yt ∧ (∧m
j=1C

t
j),

Ct+1
j = ALL-BUT-ONE {yt+1, Ct+1

1 , ..., Ct+1
j−1, C

t
j , C

t
j+1, ..., C

t
m, xt

j1
, xt

j2
, xt

j3
},

and, for any i such that 1 ≤ i ≤ n,

xt+1
i = xt

i ∧ (∧j(i)C
t+1
j(i) ),

where, as before, Cj(i) denotes precisely those clause nodes that correspond to the clauses in the
original Boolean formula in which the variable xi appears.

We will only sketch the analysis of what the phase space of S’ looks like, since much of the case analysis
coincides with that for SyDS S in the previous Theorem.

Case 1: Ct=0 6= 1m. Since y1 = y0 ∧ (∧m
j=1C

0
j ), and at least one of C0

j (say, C0
j?

) is 0, the node vertex
y will evaluate to y1 = 0. Hence, each C1

j will have at least two zero inputs, namely y and Cj?
, and

hence the ALL-BUT-ONE function at node Cj will evaluate to zero at time t = 1, for all j. Hence, if not
all C0

j are initially equal to 1, S’ will collapse to the sink 0n+m+1 in a single step. We observe that there
are exactly (2m − 1) × 2n+1 = 2m+n+1 − 2n+1 configurations C such that C0 6= 1m, all of which except
for the sink 0n+m+1 are transient configurations and, moreover, each of these TCs is also a garden of Eden.

Case 2: Ct=0 = 1m. This is the more interesting case with several sub-cases to consider. First, if
(y0, C0, x0) = (0, 1m, 1n), then it is straight-forward to verify that this configuration is a fixed point that
DOES NOT correspond to a solution of the corresponding instance I of PE2-IN-3SAT. If, on the other
hand, y0 = 0 and x0 6= 1n, then at time t = 1, there are at least two nodes holding the value 0; in
particular, there exists Cj� such that Ct=1

j�
= 0 since the node update function at Cj� has at least two zero

inputs at time t = 1. Consequently, at time t = 2, every clause node Cj will have at least two zero inputs,
namely, yt=2 and either Ct=1

j�
(if j ≤ j�), or Ct=2

j�
(if j > j�). Therefore, Ct=2

j = 0 for all j = 1, ..., m,
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and subsequently x2
i = 0, for all i = 1, ..., n. Thus, in this case, the collapse to the sink 0n+m+1 takes (at

most) two steps. Furthermore, the convergence from an initial state (0, 1m, x0 6= 1n) to 0n+m+1 takes two
steps if and only if Ct=1

1 = 1 (and only one step, otherwise).
Finally, the remaining sub-cases to consider correspond to the initial configurations of S’ of the form

(y0, C0, x0) = (1, 1m, x0). In this case, if xt=0 = xtrue is a satisfying truth assignment for the PE2-IN-
3SAT formula I , then the configuration (1, 1m, x0) will be a fixed point of S’. If, however, x0 = xfalse

is a falsifying truth assignment for I , then, at time t = 1, at least one of the C t=1
j will evaluate to 0, and

consequently, at time t = 2, first the node y will update to yt=2 = 0, and, since each C t=2
j will have at

least two zero inputs, all the clause nodes will then evaluate to 0, and subsequently so will all the variable
nodes xt=2

i ; i.e., S’ will converge to the sink 0n+m+1 in at most two steps. We observe that, in the
case of an initial global configuration of the form (1, 1m, x0

false), the convergence to 0n+m+1 will always
take exactly two steps: that it cannot take more than two steps follows from the discussion above, whereas
that it cannot take only one step stems from the observation that y1 = y0 ∧ (∧m

j=1C
0
j ) = 1, implying that

(y1, C1, x1) 6= 0n+m+1.
Given the above analysis, it is immediate that S’ will have |T | + 2 fixed points if and only if the

corresponding PE2-IN-3SAT formula has |T | satisfying truth assignments. Hence, the #P-hardness of
counting the fixed points of this restricted class of symmetric Boolean SDSs follows from the #P-hardness
of counting the satisfying truth assignments of instances of PE2-IN-3SAT formulae. Since the membership
of #FP-SYM-SDS in the class #P is easy to show, the claim of the theorem follows.

To summarize, the phase space of SDS S’ constructed in the proof above looks as follows. Since there
are n+m+1 nodes, there are 2n+m+1 configurations in total. Among these, there are precisely |T |+2 fixed
points, where |T | is the number of solutions of the corresponding PE2-IN-3SAT formula I. The number of
these solutions is in the range {0, 1, ..., 2n}. All of the |T | fixed points corresponding to the solutions of I,
as well as the fixed point (y = 0, C = 1m, x = 1n), are isolated fixed points, in a sense that they do not
have any in-coming transients. In other words, each such configuration has a unique predecessor, namely,
itself. The state 0n+m+1 is the “sink” for S’, in that all transient chains eventually end in 0n+m+1. All
the remaining configurations are transient states, and, in particular, S’ does not have any temporal cycles.
Furthermore, all the transient chains are very short, since every transient configuration is either a garden of
Eden, or its predecessor is a garden of Eden; this is immediate from the fact that every convergence to the
sink 0n+m+1 takes at most two steps.

How many transient states, then, does SDS S’ have? Let |F | = 2n − |T | denote the number of
falsifying truth assignments for the PE2-IN-3CNF formula I . Since there are |T | + 2 fixed points and
no temporal cycles4, it is immediate that there are exactly 2m+n+1 − |T | − 2 = 2m+n+1 + |F | − 2n − 2
transient states; we denote the number of transient configurations by |#TC|. Since 0 ≤ |T | ≤ 2n, it
follows that 2m+n+1 − 2 ≥ |#TC| ≥ 2m+n+1 − 2n − 2. Therefore, in order to determine the exact
number of transient states of S’, one has to determine the number of satisfying truth assignments of the
corresponding PE2-IN-3SAT formula I; but, even without knowing anything about the number of solutions
of I , one can always readily estimate |#TC|, since the fraction of all global configurations of S’ that are
TCs lies, roughly, between 1 − Θ(2−m) and 1. Hence, determining |#TC| for this class of symmetric
Boolean SDSs exactly is hard, but approximately estimating this number is relatively easy, and it gets easier
as the number of clauses m grows with respect to the number of variables n.

It is possible to make the given bounds on |#TC| and |#FP | sharper, if we notice that the nontrivial
instances of the CNF-type Boolean formulae in general, and our PE2-IN-3SAT in particular, are never

4For some deeper reasons behind cycle-freeness of the sequential graph automata similar to our SDS S’, see, e.g., [20, 46].
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tautologies, and furthermore one can use combinatorial arguments to come up with lower bounds for the
number of falsifying truth assignments. We shall not dwell upon a detailed combinatorial analysis based on
various features of the underlying instance of PE2-IN-3SAT. Instead, we will only establish a crude lower
bound for the number of falsifying assignments, |F |. First, we observe that both 0n+m+1 and 1n+m+1

are always falsifying truth assignment, for any nonempty instance of PE2-IN-3SAT. Second, consider any
satisfying truth assignment, xtrue ∈ {0, 1}n. By definition of PE2-IN-3SAT, if we assign Boolean values
to x1, ..., xn according to xtrue, then each clause of the given instance will contain exactly two variables
equal to 1. Hence, the component-wise negation of this Boolean vector will yield exactly one out of three
variables being true in each clause, and therefore it will be a falsifying truth assignment of this PE2-IN-
3SAT formula. These two facts that hold for any nontrivial PE2-IN-3SAT formula together imply that the
number of falsifying truth assignments for any instance of PE2-IN-3SAT must satisfy |F | ≥ 2n−1 + 1, or,
equivalently, 0 ≤ |T | ≤ 2n−1 − 1. This enables us to sharpen the previously given bounds on the number
of fixed points, transient states and gardens of Eden of an SDS constructed from a PE2-IN-3SAT formula
the way we constructed S’. Concretely,

2 ≤ |#FP | = |T | + 2 ≤ 2n−1 + 1;
2m+n+1 − 2n−1 − 1 ≤ |#TC| = 2m+n+1 + |F | − 2n − 2 ≤ 2m+n+1 − 2; and
2m+n+1 − 2n+1 − 1 ≤ |#GE| ≤ |#TC| − |F | ≤ 2m+n+1 − 2n−1 − 1.
Thus, for the restricted class of symmetric Boolean SDSs constructed from the PE2-IN-3SAT instances,

approximating the number of fixed points is as hard as approximating the number of satisfying truth assign-
ments of the corresponding instances of PE2-IN-3SAT, but estimating the number of transient states and
gardens of Eden, i.e., the fraction of all configurations that happen to be TC (GE), is relatively easy, and gets
easier as the number of clauses m in the corresponding PE2-IN-3SAT formula grows.

In summary, enumerating the fixed points of Symmetric Boolean SDSs and SyDSs exactly is #P-
complete, and approximating the number of FPs to within, say, 2|V |1−ε

is NP-hard, for any ε > 0. Similarly,
counting exactly all TCs or all GEs of a Symmetric Boolean S(y)DS is #P-complete, as well. The complex-
ity of counting GEs and TCs in symmetric S(y)DSs approximately, however, cannot be deduced from our
constructions herewith and, to the best of our knowledge, is still open.

4.3 Counting in Symmetric Boolean SDSs and SyDSs with Bounded Node Degrees

The constructions of symmetric Boolean SDSs and SyDSs in the previous subsection include a “central
control” node, y, that has an unbounded degree. Also, the clause nodes Cj in Theorems 4.2 and 4.3 are
forming a clique, thus also being of unbounded degree. We now transform the SyDS and SDS constructions
from the previous subsection so that the node y is eliminated altogether, and so that each clause node Cj

has only O(1) neighbors. This reduction in the maximum node degree allowed will be done at the expense
of doubling the number of the clause nodes, so that the resulting symmetric Boolean S(y)DS has n + 2m
nodes in total, where, as before, n is the number of variables and m is the number of clauses in the original
3CNF Boolean formula.

Indeed, we shall eliminate the node y in the constructions in Theorems 4.2 and 4.3, and, instead, for
each clause node Cj , introduce its “clone” clause node, Cc

j . We now connect each node Cj to its clone
Cc

j and also to the clone of the successor clause node, C c
j+1 (mod m). We also delete all the edges among

the original clause nodes Cj . Thus, each original clause node Cj will now have exactly five neighbors: the
three variable nodes, xj1 , xj2 and xj3 , and the two cloned clause nodes, Cc

j and Cc
j+1 (mod m).

We will also assume that the 3CNF SAT instance is from a restricted class of monotone 3CNF formulae
where each variable xi appears in at most five clauses. This restriction does not affect the #P-completeness
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of the underlying counting problem. In fact, counting satisfying truth assignments of the positive (also
called monotone) 2CNF formulae, abbreviated as MON-2CNF-SAT, is #P-complete even when each variable
appears in at most five clauses [48]. Each of these MON-2CNF formulae can be converted into a special
case of the MAJORITY-MON-3CNF formulae, in which a clause is satisfied if and only if at least two out
of three unnegated variables (that is, their majority) appearing in this clause are true.

Namely, let’s introduce a fresh Boolean variable z, and expand each monotone clause (xj1 +xj2) in the
MON-2CNF formula into (xj1 +xj2 + z), as well as add a new clause, (z + z + z). Clearly, the satisfying
assignments of the original MON-2CNF formula are mapped in a one-to-one manner to the satisfying truth
assignments of the resulting MAJORITY-MON-3CNF formula, while the number of appearances of each
of the “old” variables xi has remained the same. Now, since only the new variable z occurs in a number of
clauses that is not bounded by O(1), this can be “fixed” by replacing a single variable z with a sequence of
distinct new variables z1, z2, ..., zm, by modifying each Cj = (xj1 + xj2) from the original MON-2CNF
into Cj = (xj1 + xj2 + zj), and by adding m new clauses, C ′

j = (zj + zj + zj), to the resulting
MAJORITY-MON-3CNF formula.

Since this, restricted type of the counting problem #MAJORITY-MON-3CNF is equivalent to #MON-
2CNF, and, therefore, #P-complete even when no variable occurs in more than five different clauses, and
since the general #MAJORITY-MON-3CNF is clearly in the class #P, we conclude that the general problem
of counting the satisfying assignments to a monotone 3CNF formula according to the MAJORITY rule is
#P-complete even when no variable appears in more than five different clauses, as well.

We now turn to the construction of a bounded-degree symmetric Boolean SDS or SyDS from an instance
of the MAJORITY-MON-3CNF SAT.

The variable nodes in the S(y)DS constructed from such a 3CNF formula with a restricted number of
appearances of each variable will update according to the Boolean AND rule on (at most) six inputs. Each
variable node, as before, is connected to those, and only those, clause nodes such that the corresponding
variable in the Boolean 3CNF formula appears in the corresponding clause. Hence, each of these variable
nodes will have at most five neighbors. Since each of the original clause nodes has exactly five neighbors
in total, the local update rule at each such node needs to be a symmetric Boolean function of six inputs. So,
we let each node Cj update its state according to the “AT LEAST FIVE OUT OF SIX” rule.

Furthermore, we will also connect all the clone nodes Cc
j into a ring, so that the only neighbors of Cc

j

(beside Cj and Cj−1 (mod m)) are Cc
j−1 (mod m) and Cc

j+1 (mod m). Finally, each of the clone clause
nodes Cc

j will update according to the Boolean AND function of its five inputs (the states of its four
neighbors plus the current state of itself).

If a single clone node Cc
j?

at any point updates to 0, this node will eventually force all the remaining
cloned clause nodes Cc

j , and consequently also all the original clause nodes Cj , to become 0s, as well.
Similarly, if any of the original clause nodes Cj?

ever evaluates to 0, this will first cause its clone, Cc
j?

, to
evaluate to 0 (and stay at 0 thereafter), and that will, in turn, subsequently force all the other cloned clause
nodes to become 0s. Since each of the original clause nodes Cj will then have at least two neighbors stuck
in the state 0, that will also ensure that eventually Cj = 0 for all j = 1, ..., m. Therefore, if any of the
clauses in the original formula is not satisfied, the corresponding S(y)DS will converge to the sink fixed
point 0n+m+1.

In contrast, if initially all Cc
j = Cj = 1, and the original Boolean formula is satisfied, then all the

cloned clause nodes will remain at 1, and the corresponding global S(y)DS configuration is a fixed point
corresponding to a satisfying truth assignment of the original Boolean formula.

To summarize, the following strengthening of the results in the previous subsection holds:
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Theorem 4.4 The problem of counting the fixed points of a Symmetric Boolean SDS or SyDS is #P-complete,
even when each node in the underlying graph of the S(y)DS is of a degree di ≤ 5, and the nodes of this
S(y)DS use only two different symmetric update rules.

In fact, the upper bound on the maximum degree of any node in a symmetric Boolean S(y)DS can
be further reduced: the problem of exactly counting FPs in such SDSs and SyDSs remains #P-complete
even when each node degree is required not to exceed 4 (instead of 5 as in the theorem above). A weakly
parsimonious reduction directly from MON-2CNF SAT, where each variable in the 2CNF formula appears
in no more than four clauses, can be used to establish that result. That this, restricted version of #MON-
2CNF is still #P-complete follows from recent results by S. Vadhan [48] and C. Greenhill [23]. We leave
out the details due to space constraints. Insofar as the symmetric SDSs with the maximum node degrees
no greater than 3 are concerned, counting FPs in their configuration spaces, to the best of our knowledge,
remains an open problem.

5 Conclusions and Future Directions

Large-scale distributed computational and communication systems are often characterized by the property
that, while the individual components may be relatively simple and their behavior well-understood, due to
the interaction among these components and the interdependencies among different processes taking place at
different components, the overall system behavior can become extremely complex and hard to predict. This,
in particular, makes the design of reliable such systems challenging. Equally importantly, the verification of
various properties of interest, as well as the forecast of the likely future behavior patterns, become difficult
tasks.

As a step towards understanding the kind of emerging complexity in such large-scale decentralized in-
frastructures, as well as towards developing a general theory of their computer simulation, we have adopted
a discrete dynamical systems approach to abstracting and then formally analyzing these distributed infras-
tructures. The primary methodological approach to studying properties of a dynamical system is to study
its behavior, i.e., its configuration space. In this paper, we consider certain types of graph automata as
appropriate abstract discrete-time, discrete-state dynamical systems. We specifically focus on the prob-
lem of counting how many “fixed point” configurations such dynamical systems have in their configuration
spaces, when each of their nodes has only two distinct states, and updates according to some simple Boolean
function of the states of its neighboring nodes. Concretely, we establish that counting these fixed points in
Sequential and Synchronous Dynamical Systems is #P-complete, even when the following constraints on
the structure of an SDS or SyDS simultaneously hold:

• each local update rule is required to be a symmetric Boolean function; and

• the underlying graph of this SDS or SyDS is sparse in a very strong sense: all the node degrees are
uniformly bounded by a small constant; and

• the nodes of this SDS or SyDS use only two different symmetric Boolean update rules.

The counting problems and their complexity addressed herewith are, by themselves, perhaps of only a
limited practical interest. However, when the results in this paper are considered together with what has
been recently shown about the computational complexity of the existence of fixed points and gardens of
Eden [7], as well as of the reachability of these fixed points [6], a much more complete picture about the
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complexity of various restricted models of Boolean SDSs and SyDSs, and their fundamental configuration
space properties, is obtained. For example, combining together the hardness of Fixed Point Reachability
with the hardness of Counting Fixed Points implies that, for the actual decentralized systems that can be
abstracted via an appropriate type of SDS or SyDS or a similar graph automaton, global long-term prediction
is, in general, intractable. More specifically, given a starting global configuration of such a system, we in
general cannot efficiently predict either whether the actual system’s behavior is going to eventually stabilize
and reach a steady state, or how long is it going to take before it settles into this steady state, or what exactly
steady state (among possibly exponentially many) is the system going to settle in.

As for the future work, there are several directions along which we can strengthen the results presented
in this paper, and extend them to similar results about counting other types of configurations and other
emerging structures in discrete dynamical systems such as SDSs, Hopfield Networks or classical Cellular
Automata. One concrete open problem is the complexity of counting FPs in symmetric Boolean SDSs when
no node degree exceeds 3. We have been also studying the complexity of counting in various restricted types
of Boolean SDSs when it comes to the backward dynamics problems, such as those related to the number
of predecessors or the number of all ancestors of an arbitrary configuration. We will report new results in
that context elsewhere.

Another important issue, not directly addressed in this work, is that of approximately counting GEs and
all transient configurations in symmetric Boolean SDSs. The issue certainly cannot be resolved based on the
constructions that we have used in this paper to establish the computational intractability of counting FPs
(and exactly counting GEs), since approximately estimating the number of GEs and TCs in the constructed
SDSs and SyDSs can be readily seen to be easy5. In general, the SDSs and CA with the simple threshold
rules, such as Boolean AND or Boolean OR or MAJORITY, tend to have a relatively large number of GEs,
and also most of their configurations are typically TCs. However, this need not hold for arbitrary symmetric
SDSs and SyDSs, nor does it need imply that approximating #GE and #TC is always necessarily tractable.
We leave further discussion about approximately counting GEs, TCs and other types of structures for the
future work.

In summary, the formal discrete dynamical systems concepts, paradigms and methodology provide a
rich arsenal with which to tackle, in an abstract yet mathematically elegant setting, many fundamental prob-
lems in large-scale distributed computational and communication infrastructures and multi-agent systems.
Our results in this paper are an example of how the paradigms from nonlinear complex dynamics, cou-
pled with the computational complexity tools, can provide insights into which aspects of the large-scale
distributed systems’ global behaviors can be reasonably expected to be feasible to predict in practice, and
which ones cannot. In particular, it then follows that, in case of the latter, and under the usual assumptions
in computational complexity theory, there is no “short-cut” to the step-by-step computer simulation.

Acknowledgments: The author expresses his sincere gratitude to Gul Agha and Michael Loui (both from
University of Illinois), Harry Hunt (SUNY-Albany) and Madhav Marathe (Los Alamos National Laboratory)
for useful discussions, suggestions and/or feedback on various matters related to this paper.

5For reasons why, see the discussion at the end of subsection 4.2.
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