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Abstract

Games may be represented in many different ways, and different representations of games
affect the complexity of problems associated with games, such as finding a Nash equilibrium.
The traditional method of representing a game is to explicitly list all the payoffs, but this incurs
an exponential blowup as the number of agents grows.

We study two models of concisely represented games: circuit games, where the payoffs are
computed by a given boolean circuit, and graph games, where each agent’s payoff is a function
of only the strategies played by its neighbors in a given graph. For these two models, we study
the complexity of four questions: determining if a given strategy is a Nash equilibrium, finding a
Nash equilibrium, determining if there exists a pure Nash equilibrium, and determining if there
exists a Nash equilibrium in which the payoffs to a player meet some given guarantees. In many
cases, we obtain tight results, showing that the problems are complete for various complexity
classes.

1 Introduction

In recent years, there has been a surge of interest at the interface between computer science and
game theory. On one hand, game theory and its notions of equilibria provide a rich framework
for modelling the behavior of selfish agents in the kinds of distributed or networked environments
that often arise in computer science, and offer mechanisms to achieve efficient and desirable global
outcomes in spite of the selfish behavior. On the other hand, classical game theory ignores compu-
tational considerations, and it is unclear how meaningful game-theoretic notions of equilibria are
if they are infeasible to compute. Finally, game-theoretic characterizations of complexity classes
have proved to be extremely useful even in addressing questions that a priori have nothing to
do with games, of particular note being the work on interactive proofs and their applications to
cryptography and hardness of approximation [GMR89, GMW91, FGL+96, AS98, ALM+98].

While the recent work at this interface has been extremely fruitful, some of the most basic
questions remain unanswered. In particular, one glaring open question (posed, for example, in
[Pap01]) is whether there exists a polynomial-time algorithm to find Nash equilibria in standard,
two-player “bimatrix” games. (Recall that a Nash equilibrium specifies randomized strategies
for both players so that neither can increase his/her payoff by deviating from the strategy. The
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fundamental result of Nash [Nas51] is that every game (even with many players) has such an
equilibrium.) This two-player Nash equilibrium problem is known to be P-hard [FIKU04], and
cannot be NP-hard unless NP = coNP [MP91]. The known algorithms are exponential time,
though recently a quasipolynomial-time algorithm has been given for finding approximate Nash
equilibria [LMM03] with respect to additive error ε = 1/polylog(n).

Given that characterizing the complexity of Nash equilibria problem in two-player games has
resisted much effort, it is natural to investigate the computational complexity of Nash equilibria
in other types of games. In particular, n-player games where each player has only a small (e.g.
a constant) number of strategies is potentially easier than two-player games with large strategy
spaces. However, in n-player games, the representation of the game becomes an important issue.
In particular, explicitly describing an n-player game in which each player has two strategies requires
an exponentially long representation (consisting of N = n · 2n payoff values) and complexity of this
problem is more natural for games given by some type of concise representation, such as the graph
games recently proposed by Kearns, Littman, and Singh [KLS01].

Motivated by the above considerations, we undertake a systematic study of the complexity
of Nash equilibria in games given by concise representations. We focus on two types of concise
representations. The first are circuit games, where the game is specified by a boolean circuit
computing the payoffs. Circuit games were previously studied in the setting of two-player zero-
sum games, where computing (resp., approximating) the “value” of such a game is shown to be
EXP-complete [FKS95] (resp., S2P-complete [FIKU04]). They are a very general model, capturing
essentially any representation in which the payoffs are efficiently computable. The second are the
graph games of Kearns, Littman, and Singh [KLS01], where the game is presented by a graph whose
nodes are the players and the payoffs of each player are a function only of the strategies played by
each player’s neighbor. (Thus, if the graph is of low degree, the payoff functions can be written
very compactly). Kearns et al. showed that if the graph is a tree and each player has only two
strategies, then approximate Nash equilibria can be found in polynomial time. Gotlobb, Greco,
and Scarcello [GGS03] recently showed that the problem of deciding if a degree-4 graph game has
a pure-Nash equilibrium is NP-complete.

In these two models (circuit games and graph games), we study 4 problems:

1. IsNash: Given a game G and a randomized strategy profile θ, determine if θ is a Nash
equilibrium in G,

2. ExistsPureNash: Given a game G, determine if G has a pure (i.e. deterministic) Nash
equilibrium,

3. FindNash: Given a game G, find a Nash equilibrium in G, and

4. GuaranteeNash: Given a game G, determine whether G has a Nash equilibrium that
achieves certain payoff guarantees for each player. (This problem was previously studied by
[GZ89, CS03], who showed it to be NP-complete for two-player, bimatrix games.)

We study the above four problems in both circuit games and graphical games, in games where each
player has only two possible strategies and in games where the strategy space is unbounded, in n-
player games and in 2-player games, and with respect to approximate Nash equilibria for different
levels of approximation (exponentially small error, polynomially small error, and constant error).

Our results include:

• A tight characterization of the complexity of all of the problems listed above except for
FindNash, by showing them to be complete for various complexity classes. This applies to all
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of their variants (w.r.t. concise representation, number of players, and level of approximation).
For the various forms of FindNash, we give upper and lower bounds that are within one
nondeterministic quantifier of each other.

• A general result showing that n-player circuit games in which each player has 2 strategies are
a harder class of games than standard two-player bimatrix games (and more generally, than
the graphical games of [KLS01]), in that there is a general reduction from the latter to the
former which applies to most of the problems listed above.

Independent Results. Several researchers have independently obtained some results related
to ours. Specifically, Daskalakis and Papadimitriou [DS04] give complexity results on concisely
represented graphical games where the graph can be exponentially large (whereas we always con-
sider the graph to be given explicitly), and Alvarez, Gabarro, and Serna [AGS05] give results on
ExistsPureNash that are very similar to ours.

Organization. We define game theoretic terminology and fix a representation of strategy profiles
in Section 2. Section 3 contains formal definitions of the concise representations and problems that
we study. Section 4 looks at relationships between these representations. Sections 5 through 8
contain the main complexity results on IsNash, ExistsPureNash, FindNash, and Guaran-

teeNash.

2 Background and Conventions

Game Theory A game G = (s, ν) with n agents, or players, consists of a set s = s1 × · · · × sn

where si is the strategy space of agent i, and a valuation or payoff function ν = ν1 × . . .× νn where
νi : s → R is the valuation function of agent i. Intuitively, to “play” such a game, each agent i
picks a strategy si ∈ si, and based on all players’ choices realizes the payoff νi(s1, . . . , sn).

For us, si will always be finite and the range of νi will always be rational. An explicit repre-
sentation of a game G = (s, ν) is composed of a list of each si and an explicit encoding of each
νi. This encoding of ν consists of n · |s| = n · |s1| · · · |sn| rational numbers. An explicit game with
exactly two players is call a bimatrix game because the payoff functions can be represented by two
matrices, one specifying the values of ν1 on s = s1 × s2 and the other specifying the values of ν2.

A pure strategy for an agent i is an element of si. A mixed strategy θi, or simply a strategy,
for a player i is a random variable whose range is si. The set of all strategies for player i will
be denoted Θi. A strategy profile is a sequence θ = (θ1, . . . , θn), where θi is a strategy for agent
i. We will denote the set all strategy profiles Θ. ν = ν1 × · · · × νn extends to Θ by defining
ν(θ) = Es←θ[ν(s)]. A pure-strategy profile is a strategy profile in which each agent plays some
pure-strategy with probability 1. A k-uniform strategy profile is a strategy profile where each
agent randomizes uniformly between k, not necessarily unique, pure strategies. The support of a
strategy (or of a strategy profile) is the set of all pure-strategies (or of all pure-strategy profiles)
played with nonzero probability.

We define a function Ri : Θ × Θi → Θ that replaces the ith strategy in a strategy profile θ by
a different strategy for agent i, so Ri(θ, θ′i) = (θ1, . . . , θ

′
i, . . . , θn). This diverges from conventional

notation which writes (θ−i, θ
′
i) instead of Ri(θ, θ′i).

Given a strategy profile θ, we say agent i is in equilibrium if he cannot increase his expected
payoff by playing some other strategy (giving what the other n − 1 agents are playing). Formally
agent i is in equilibrium if νi(θ) ≥ νi(Ri(θ, θ′i)) for all θ′i ∈ Θi. Because Ri(θ, θ′i) is a distribution
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over Ri(θ, si) where si ∈ si and νi acts linearly on these distributions, Ri(θ, θ′i) will be maximized
by playing some optimal si ∈ si with probability 1. Therefore, it suffices to check that νi(θ) ≥
νi(Ri(θ, si)) for all si ∈ si. For the same reason, agent i is in equilibrium if and only if each
strategy in the support of θi is an optimal response. A strategy profile θ is a Nash equilibrium
[Nas51] if all the players are in equilibrium. Given a strategy profile θ, we say player i is in ε-
equilibrium if νi(Ri(θ, si)) ≤ νi(θ)+ ε for all si ∈ si. A strategy profile θ is an ε-Nash equilibrium if
all the players are in ε-equilibrium. A pure-strategy Nash equilibrium (respectively, a pure-strategy
ε-Nash equilibrium) is a pure-strategy profile which is a Nash equilibrium (respectively, an ε-Nash
equilibrium).

Pennies is a 2-player game where s1 = s2 = {0, 1}, and the payoffs are as follows:

Player 2
Heads Tails

Player 1 Heads (1, 0) (0, 1)
Tails (0, 1) (1, 0)

The first number in each ordered pair is the payoff of player 1 and the second number is the payoff
to player 2.

Pennies has a unique Nash equilibrium where both agents randomize uniformly between their
two strategies. In any ε-Nash equilibrium of 2-player pennies, each player randomizes between each
strategy with probability 1

2 ± 2ε (see Appendix A for details).

Complexity Theory A promise-language L is a pair (L+, L−) such that L+ ⊆ Σ∗, L− ⊆ Σ∗, and
L+∩L− = ∅. We call L+ the positive instances, and L− the negative instances. An algorithm decides
a promise-language if it accepts all the positive instances and rejects all the negative instances.
Nothing is required of the algorithm if it is run on instances outside L+ ∪ L−.

Because we consider approximation problems in this paper, which are naturally formulated
as promise languages, all complexity classes used in this paper are classes of promise
problems. We refer the reader to the recent survey of Goldreich [Gol05] for about the usefulness
and subtleties of working with promise problems.

A search problem, is specified by a relation R ⊆ Σ∗ × Σ∗ where given an x ∈ Σ∗ we want to
either compute y ∈ Σ∗ such that (x, y) ∈ R or say that no such y exists. When reducing to a search
problem via an oracle, it is required that any valid response from the oracle yields a correct answer.

3 Concise Representations and Problems Studied

We now give formal descriptions of the problems which we are studying. First we define the two
different representations of games.

Definition 3.1 A circuit game is a game G = (s, ν) specified by integers k1, . . . , kn and circuits
C1, . . . , Cn such that si ⊆ {0, 1}ki and Ci(s) = νi(s) if si ∈ si for all i or Ci(s) = ⊥ otherwise.

In a game G = (s, ν), we write i ∝ j if ∃s ∈ s, s′i ∈ si such that νj(s) 6= νj(Ri(s, s
′
i)). Intuitively,

i ∝ j if agent i can ever influence the payoff of agent j.

Definition 3.2 [KLS01] A graph game is a game G = (s, ν) specified by a directed graph G =
(V,E) where V is the set of agents and E ⊇ {(i, j) : i ∝ j}, the strategy space s, and explicit
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representations of the function νj for each agent j defined on the domain
∏

(i,j)∈E si, which encodes
the payoffs. A degree-d graph game is a graph game where the in-degree of the graph G is bounded
by d.

This definition was proposed in [KLS01]. We change their definition slightly by using directed
graphs instead of undirected ones (this only changes the constant degree bounds claimed in our
results).

Note that any game (with rational payoffs) can be represented as a circuit game or a graph
game. However, a degree-d graph game can only represent games where no one agent is influenced
directly by the strategies of more than d other agents.

A circuit game can encode the games where each player has exponentially many pure-strategies
in a polynomial amount of space. In addition, unlike in an explicit representation, there is no
exponential blow-up as the number of agents increases. A degree-d graph game, where d is constant,
also avoids the exponential blow-up as the number of agents increases. For this reason we are
interested mostly in bounded-degree graph games.

We study two restrictions of games. In the first restriction, we restrict a game to having only
two players. In the second restriction, we restrict each agent to having only two strategies. We
will refer to games that abide by the former restriction as 2-player, and to games that abide by the
latter restriction as boolean.

If we want to find a Nash equilibrium, we need an agreed upon manner in which to encode the
result, which is a strategy profile. We represent a strategy profile by enumerating, by agent, each
pure strategy in that agent’s support and the probability with which the pure strategy is played.
Each probability is given as the quotient of two integers.

This representation works well in bimatrix games, because the following proposition guarantees
that for any 2-player game there exists Nash equilibrium that can be encoded in reasonable amount
of space.

Proposition 3.3 Any 2-player game with rational payoffs has a rational Nash equilibrium where
the probabilities are of bit length polynomial with respect to the number of strategies and bit-lengths
of the payoffs. Furthermore, if we restrict ourselves to Nash equilibria θ where νi(θ) ≥ gi for
i ∈ {1, 2} where each guarantee gi is a rational number then either 1) there exists such a θ where
the probabilities are of bit length polynomial with respect to the number of strategies and bit-lengths
of the payoffs and the bit lengths of the guarantees or 2) no such θ exists.

Proof Sketch: If we are given the support of some Nash equilibrium, we can set up a polynomially
sized linear program whose solution will be a Nash equilibrium in this representation, and so it is
polynomially sized with respect to the encoding of the game. (Note that the support may not be
easy to find, so this does not yield a polynomial time algorithm). If we restrict ourselves to Nash
equilibria θ satisfying νi(θ) ≥ gi as in the proposition, this merely adds additional constraints to
the linear program. �

This proposition implies that for any bimatrix game there exists a Nash equilibrium that is
at most polynomially sized with respect to the encoding of the game, and that for any 2-player
circuit game there exists a Nash equilibrium that is at most exponentially sized with respect to the
encoding of the game.

However, there exist 3-player games with rational payoffs that have no Nash equilibrium with
all rational probabilities [NS50]. Therefore, we cannot hope to always find a Nash equilibrium in
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this representation. Instead we will study ε-Nash equilibrium when we are not restricted to 2-player
games. The following result from [LMM03] states that there is always an ε-Nash equilibrium that
can be represented in a reasonable amount of space.

Theorem 3.4 [LMM03] Let θ be a Nash equilibrium for a n-player game G = (s, ν) in which all

the payoffs are between 0 and 1, and let k ≥ n2 log(n2 maxi |si|)
ε2

. Then there exists a k-uniform ε-Nash
equilibrium θ′ where |νi(θ) − νi(θ

′)| ≤ ε
2 for 1 ≤ i ≤ n.

Recall that a k-uniform strategy profile is a strategy profile where each agent randomizes uni-
formly between k, not necessarily unique, pure strategies. The number of bits needed to represent
such a strategy profile is O((

∑

i min{k, |si|}) · log k). Thus, Theorem 3.4 implies that for any that
for any n-player game (g1, . . . , gn) = (s, ν) in which all the payoffs are between 0 and 1, there exists
an ε-Nash equilibrium of bit-length poly(n, 1/ε, log(maxi |si|)). There also is an ε-Nash equilibrium
of bit-length poly(n, log(1/ε),maxi |si|).

We want to study the problems with and without approximation. All the problems that we
study will take as an input a parameter ε related to the bound of approximation. We define four
types of approximation:

1a) Exact Fix ε = 0 in the definition of the problem. 1

1b) Exp-Approx input ε ≥ 0 as a rational number encoded as the quotient of two integers. 2

2) Poly-Approx input ε > 0 as 1k where ε = 1/k

3) Const-Approx Fix ε > 0 in the definition of the problem.

With all problems, we will look at only 3 types of approximation. Either 1a) or 1b) and both
2 and 3. With many of the problems we study, approximating using 1a) and 1b) yield identical
problems. Since the notion of ε-Nash equilibrium is with respect to additive error, the above
notions of approximation refer only to games whose payoffs are between 0 and 1 (or are scaled to
be such). Therefore we assume that all games have payoffs which are between 0 and 1
unless otherwise explicitly stated. Many times our constructions of games use payoffs which are
not between 0 and 1 for ease of presentation. In such a cases the payoffs can be scaled.

Now we define the problems which we will examine.

Definition 3.5 For a fixed representation of games, IsNash is the promise language defined as
follows:

Positive instances: (G, θ, ε) such that G is a game given in the specified representation, and θ
is strategy profile which is a Nash equilibrium for G.

Negative instances: (G, θ, ε) such that θ is a strategy profile for G which is not a ε-Nash
equilibrium.

1We use this type of approximation only when we are guaranteed to be dealing with rational Nash equilibrium. This
is the case in all games restricted to 2-players and when solving problems relating to pure-strategy Nash equilibrium
such as determining if a pure-strategy profile is a Nash equilibrium and determining if there exists a pure-strategy
Nash equilibrium.

2We will only consider this in the case where a rational Nash equilibrium is not guaranteed to exist, namely in
k-player games for k ≥ 3 for the problems IsNash, FindNash, and GuaranteeNash.
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Notice that when ε = 0 this is just the language of pairs (G, θ) where θ is a Nash equilibrium of
G.

The the definition of IsNash is only one of several natural variations. Fortunately, the manner
in which it is defined does not affect our results and any reasonable definition will suffice. For
example, we could instead define IsNash where:

1. (G, θ, ε) a positive instance if θ is an ε/2-Nash equilibrium of G; negative instances as before.

2. (G, θ, ε, δ) is a positive instance if θ is an ε-Nash equilibrium; (G, θ, ε, δ) is a negative instance
if θ is not a ε + δ-Nash equilibrium. δ is represented in the same way is ε.

Similar modifications can be made to Definitions 3.6, 3.7, and 3.9. The only result affected is the
reduction in Corollary 4.6.

Definition 3.6 We define the promise language IsPureNash to be the same as IsNash except
we require that, in both positive and negative instances, θ is a pure-strategy profile.

Definition 3.7 For a fixed representation of games, ExistsPureNash is the promise language
defined as follows:

Positive instances: Pairs (G, ε) such that G is a game in the specified representation in which
there exists a pure-strategy Nash equilibrium.

Negative instances: (G, ε) such that there is no pure-strategy ε-Nash equilibrium in G.

Note that Exact ExistsPureNash is just a language consisting of pairs of games with pure-
strategy Nash equilibria.

Definition 3.8 For a given a representation of games, the problem FindNash is a search problem
where, given a pair (G, ε) such that G is a game in a specified representation, a valid solution is
any strategy-profile that is an ε-Nash equilibrium in G.

As remarked above, when dealing with FindNash in games with more than 2 players, we use
Exp-Approx rather than Exact. This error ensures the existence of some Nash equilibrium in
our representation of strategy profiles; there may be no rational Nash equilibrium.

Definition 3.9 For a fixed representation of games, GuaranteeNash is the promise language
defined as follows:

Positive instances: (G, ε, (g1, . . . , gn)) such that G is a game in the specified representation in
which there exists a Nash equilibrium θ such that, for every agent i, νi(θ) ≥ gi.

Negative instances: (G, ε, (g1, . . . , gn)) such that G is a game in the specified representation in
which there exist no ε-Nash equilibrium θ such that, for every agent i νi(θ) ≥ gi − ε.

When we consider IsNash, FindNash, and GuaranteeNash in k-player games, k > 2, we will
not consider Exact, but only the other three types: Exp-Approx, Poly-Approx, and Const-

Approx. The reason for this is that no rational Nash equilibrium is guaranteed to exist in these
cases, and so we want to allow a small rounding error. With all other problems we will not consider
Exp-Approx, but only the remaining three: Exact, Poly-Approx, and Const-Approx.
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4 Relations between concise games

We study two different concise representations of games: circuit games and degree-d graph games;
and two restrictions: two-player games and boolean-strategy games. It does not make since to
impose both of these restrictions at the same time, because in two-player, boolean games all the
problems studied are trivial.

This leaves us with three variations of circuit games: circuit games, 2-player circuit games,
and boolean circuit games. Figure 1 shows the hierarchy of circuit games. A line drawn between
two types of games indicates that the game type higher in the diagram is at least as hard as the
game type lower in the diagram in that we can efficiently reduce questions about Nash equilibria
in the games of the lower type to ones in games of the higher type. However, note that there is
not necessarily a reduction from 2-player version of an Exact problem to the Exp-Approx circuit
game version of that problem.

This also leaves us with three variations of degree-d graph games: degree-d graph games, 2-
player degree-d graph games, and boolean degree-d graph games. A 2-player degree-d graph game
is simply a bimatrix game (if d ≥ 2) so the hierarchy of games is as shown in Figure 1. Again,
note that there is not necessarily a reduction from the Exact bimatrix version of a problem to the
Exp-Approx graph game version of that problem.

It is easy to see that given a bimatrix game, we can always efficiently construct an equivalent
2-player circuit game. We will presently illustrate a reduction from graph games to boolean strategy
circuit games. This gives us the relationship in Figure 1.

Circuit

Graph

Bimatrix Boolean 
Graph

2-player 
Circuit

Boolean 
Circuit

Circuit

2-player 
Circuit

Boolean 
Circuit

Graph

Bimatrix Boolean 
Graph

All GamesGraph Games

Circuit Games

Figure 1: Relationships between games

Theorem 4.1 Given an n-player graph game of arbitrary degree G = (G, s, ν), in logarithmic
space, we can create an n′-player Boolean circuit game G ′ = (s′, ν ′) where n ≤ n′ ≤

∑n
i=1 |si| and

logarithmic space function f : Θ → Θ′ and the polynomial time function g : Θ′ → Θ 3with the
following properties:

3More formally, we specify f and g by constructing, in space O(log(|G|)), a branching program for f and a circuit
that computes g.
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1. f and g map pure-strategy profiles to pure-strategy profiles.

2. f and g map rational strategy profiles to rational strategy profiles.

3. g ◦ f is the identity map.

4. For each agent i in G there an agent i in G ′ such that for any strategy profile θ of G, νi(θ) =
ν ′i(f(θ)) and for any strategy profile θ ′ of G′, ν ′i(θ

′) = νi(g(θ′)).

5. If θ′ is an ε-Nash equilibrium in G ′ then g(θ′) is a dlog2 ke · ε-Nash equilibrium in G where
k = maxi |si|.

6. • For every θ ∈ Θ, θ is a Nash equilibrium if and only if f(θ) is a Nash equilibrium.

• For every pure-strategy profile θ ∈ Θ, θ is an ε-Nash equilibrium if and only if f(θ) is
and ε-Nash equilibrium.

Proof:

Construction of G ′

Given a graph game G, to construct G ′, we create a binary tree ti of depth log |si| for each
agent i, with the elements of si at the leaves of the tree. Each internal node in ti represents an
agent in G ′. The strategy space of each of these agents is {left, right}, each corresponding
to the choice of a subtree under his node. We denote the player at the root of the tree ti as i.

There are n′ ≤
∑n

i=1 |si| players in G ′, because the number of internal nodes in any tree is
less than the number of leaves. s

′ = {left, right}n′
.

For each i, we can recursively define functions αi′ : s
′ → si that associate pure strategies of

agent i in G with each agent i′ in ti given a pure-strategy profile for G ′ as follows:

• if s′i′ = right and the right child of i′ is a leaf corresponding to a strategy si ∈ si, then
αi′(s

′) = si

• if s′i′ = right and the right child of i′ is another agent j ′, then αi′(s
′) = αj′(s

′).

• If s′i′ = left, αi′(s
′) is similarly defined.

Notice each agent i′ in the tree ti is associated with a strategy of si that is a descendant of
i′. This implies that i is the only player in ti that has the possibility of being associated with
every strategy of agent i in G.

Let s′ be a pure-strategy profile of G ′ and let s = (s1, . . . , sn) be the pure-strategy profile of G
where si = αi(s

′). Then we define the payoff of an agent i′ in ti to be ν ′i′(s
′) = νi(Ri(s, αi′(s

′))).
So, the payoff to agent i′ in tree ti in G′ is the payoff to agent i, in G, playing αi′(s

′) when
the strategy of each other agent j is defined to be αj(s

′).

By inspection, G ′ can be computed in log space.

We note for use below, that αi′ : s
′ → si induces a map from Θ′ (i.e. random variables on s)

to Θi (i.e. random variables on si) in the natural way.

Construction of f : Θ → Θ′

Fix θ ∈ Θ. For each agent i′ in tree ti in G′ let Li′ , Ri′ ⊆ si be the set of leaves in the left and
right subtrees under node i′ respectively. Now let f(θ) = θ′ where Pr[θ′i′ =left] = Pr[θi ∈
Li′ ]/Pr[θi ∈ Li′ ∪ Ri′ ] = Pr[θi ∈ Li′ |θi ∈ Li′ ∪ Ri′ ].
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Note that if i′ is an agent in ti and some strategy si in the support of θi is a descendant
of i′, then this uniquely defines θi′ . However, for the other players this value is not defined
because Pr[θi ∈ Li′ ∪ Ri′ ] = 0. We define the strategy of the rest of the players inductively.
The payoffs to these players are affected only by the mixed strategies associated to the roots
of the other trees, i.e. {αj(θ

′), i 6= j}–which is already fixed–and the strategy to which they
are associated. By induction, assume that the strategy to any descendant of a given agent
i′ is already fixed, now simply define θ′i′ to be the pure strategy that maximizes his payoff
(we break tie in some fixed but arbitrary manner so that each of these agents plays a pure
strategy).

By inspection, this f be computed in polynomial time given G and s, which implies that given
G, in log space we can construct a circuit computing f .

Construction of g : Θ′ → Θ
Given a strategy profile θ′ for G′, we define g(θ′) = (α1(θ

′), . . . , αn(θ′)).

This can be done in log space because computing the probability that each pure strategy is
played only involves multiplying a logarithmic number of numbers together, which is known
to be in log space [HAB02]. This only needs to be done a polynomial number of times.

Proof of 1
If θ is pure-strategy profile, then for each agent i, there exists si ∈ si such that Pr[θi = si] = 1.
So all the agents in ti that have si as a descendant must choose the child whose subtree contains
si with probability 1, a pure strategy. The remaining agents merely maximize their payoffs,
and so always play a pure strategy (recall that ties are broken in some fixed but arbitrary
manner that guarantees a pure strategy).

αi′ : s
′ → si maps pure-strategy profiles to pure-strategies, so g(s′) = (α1(s

′), . . . , αn(s′))
does as well.

Proof of 2
For f we recall that if agent i′ in tree ti has a descendant in the support of θi, then
Pr[f(θ)i′ =left] = Pr[θi ∈ Li′ ]/Pr[θi ∈ Li′ ∪ Ri′ ] (Li′ and Ri′ are as defined in the con-
struction of f), so it is rational if θ is rational. The remaining agents always play a pure
strategy.

For g we have Pr[g(θ′)i = s] =
∑

s′:αi(s′)=s Pr[θ′ = s′], which is rational if θ′ is rational.

Proof of 3
Since g(f(θ)) = (α1(f(θ)), . . . , αn(f(θ))), the claim g ◦ f = id is equivalent to the following
lemma.

Lemma 4.2 The random variables αi(f(θ)) and θi are identical.

Proof: We need to show that for every si ∈ si, Pr[αi(f(θ)) = si] = Pr[θi = si]. Fix
si, let i = i′0, i

′
1, . . . , i

′
k = si be the path from the root i to the leaf si in the tree ti, let

dirj ∈ {left, right} indicate whether i′j+1 is the right or left child of i′j, and let Si′ be the
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set of all leaves that are descendants of i′. Then

Pr[αi(f(θ)) = si] =

k−1
∏

j=0

Pr[f(θ)i′j
= dirj ] =

k−1
∏

j=0

Pr[θi ∈ Si′j+1
|θi ∈ Si′j

] (by the definition of f)

= Pr[θ ∈ Si′
k
|θi ∈ Si′0

] (by Bayes’ Law)

= Pr[θi = si] (because Si′
k

= {si} and Si′0
= si)

Proof of 4
We first show that ν ′i(θ

′) = νi(g(θ′)). Fix some θ′ ∈ Θ′.

ν ′i(θ
′) = νi(Ri((α1(θ

′), . . . , αn(θ′)), αi(θ
′))) (by definition of ν ′i)

= νi(α1(θ
′), . . . , αn(θ′)) = νi(g(θ′)) (by definition of g)

Finally, to show that ν ′i(f(θ)) = νi(θ), fix θ ∈ Θ and let θ′ = f(θ). By what we have just
shown

ν ′i(θ
′) = νi(g(θ′)) ⇒ ν ′i(f(θ)) = νi(g(f(θ))) = νi(θ)

The last equality comes from the fact that g ◦ f = id.

Proof of 5
Fix some ε-Nash equilibrium θ′ ∈ Θ′ and let θ = g(θ′).

We must show that νi(θ) is within dlog2 ke · ε of the payoff for agent i’s optimal response.
To do this we show by induction that νi(Ri(θ, αi′(θ

′)) ≥ νi(Ri(θ, si)) − dε for all si that are
descendants of agent i′ in tree ti, where d is the depth of the subtree with agent i′ at the
root. We induct on d. The result follows by taking i′ = i, and noting that Ri(θ, αi(θ

′)) = θ
and d ≤ dlog2 ke.

We defer the base case and proceed to the inductive step. Consider some agent i ′ in tree ti such
that the subtree of i′ has depth d. i′ has two strategies, {left, right}. Let Ei′ = νi′(θ

′) =
ν(Ri(θ, αi(θ

′)) be the expect payoff of i′, and let Opti′ be the maximum of ν(Ri(θ, si)) over
si ∈ si that are descendants of i′. Similarly define El, Optl, Er, and Optr for the left subtree
and right subtree of i′ respectively. We know Ei′ ≥ max{El, Er} − ε because otherwise
i′ could do ε better by playing left or right. By induction El ≥ Optl − (d − 1)ε and
Er ≥ Optr − (d − 1)ε. Finally, putting this together, we get that

Ei′ ≥ max{El, Er} − ε ≥ max{Optl, Optr} − (d − 1)ε − ε = Opti′ − dε

The proof of the base case, d = 0, is the same except that instead of employing the inductive
hypothesis, we note that there is only one pure strategy in each subtree and so it must be
optimal.

Proof of 6
Fix some strategy profile θ ∈ Θ and let θ ′ = f(θ). Let θ be a Nash equilibrium and let i′ be
an agent in ti that has a descendant which is a pure strategy in the support of θi. All the
strategies in the support of αi′(θ

′) are also in the support of θi; but, all the strategies in the
support of θi are optimal and therefore agent i′ cannot do better. All of the remaining agents
are in equilibrium because they are playing an optimal strategy by construction. Conversely,
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if f(θ) is a Nash equilibrium, then g(f(θ)) is also by Part 5 above. But by Part 3 above,
g(f(θ)) = θ, and therefore θ is a Nash equilibrium.

Let θ be a pure-strategy ε-Nash equilibrium for G. Fix some agent i, and let si ∈ s be such
that Pr[θi = si] = 1. Then any agent in ti that does not have si as a descendant plays
optimally in f(θ). If agent i′ does have si as a descendant then according to f(θ), agent i′

should select the subtree containing si with probability 1. Assume without loss of generality
this is in the right subtree. If agent i′ plays right, as directed by f(θ), his payoff will be
νi(θ). If he plays left, his payoff will be νi(Ri(θ, s′i)), where s′i is the strategy that α assigns
to the left child of i′. But νi(θ) + ε ≥ νi(Ri(θ, s′i)) because θ is an ε-Nash equilibrium.

Now say that f(θ) is a pure-strategy ε-Nash equilibrium for G ′ where θ ∈ Θ is a pure-strategy
profile. Fix some agent i, and let si ∈ s be such that Pr[θi = si] = 1. If si is an optimal
response to θ, then agent i is in equilibrium. Otherwise, let s′i 6= si be an optimal response
to θ. Then let i′ be the last node on the path from i to si in the tree ti such that i′ has s′i as
a descendant. By definition of f and ν ′, agent i′ gets payoff νi(Ri(θ, si)) = νi(θ), but would
get payoff νi(Ri(θ, s′i)) if he switched strategies (because the nodes off of the path from i to
si in the tree ti play optimally). Yet f(θ) is an ε-Nash equilibrium, and so we conclude that
these differ by less than ε, and thus agent i is in an ε-equilibrium in G.

Corollary 4.3 There exist boolean games without rational Nash equilibria.

Proof: We know that there is some 3-player game G with rational payoffs but no rational Nash
equilibrium [NS50]. Applying the reduction in Theorem 4.1 to this game results in a boolean game
G′. If θ′ were some rational Nash equilibrium for G ′, then, by parts 2 and 5 of Theorem 4.1, g(θ ′)
would be a rational Nash equilibrium for G.

Corollary 4.4 With Exp-Approx and Poly-Approx, there is a log space reduction from graph
game ExistsPureNash to boolean circuit game ExistsPureNash

Proof: Given an instance (G, ε) where G is a graph game, we construct the corresponding boolean
circuit game G ′ as in Theorem 4.1, and then solve ExistsPureNash for (G ′, ε/ log2 k).

We show that (G, ε) is a positive instance of ExistsPureNash if and only if (G ′, ε/ log2 k) is
also. Say that (G, ε) is a positive instance of ExistsPureNash. Then G has a pure-strategy Nash
equilibrium θ, and, by Parts 1 and 6 of Theorem 4.1, f(θ) will be a pure-strategy Nash equilibrium
in G′. Now say that (G ′, ε/dlog2 ke) is not a negative instance of ExistsPureNash. Then there
exists a pure-strategy profile θ′ that is an ε/ log2 k-Nash equilibrium in G ′. If follows from Part 5
of Theorem 4.1 that g(θ′) is a pure-strategy ε-Nash equilibrium in G.

We do not mention IsNash or IsPureNash because they are in P for graph games (see Sec-
tion 5.)

Corollary 4.5 With Exp-Approx and Poly-Approx, there is a log space reduction from graph
game FindNash to boolean circuit game FindNash.

Proof: Given an instance (G, ε) of n-player graph game FindNash we transform G into an boolean
circuit game G ′ as in the Theorem 4.1. Then we can solve FindNash for (G ′, ε/dlog2 ke), where k
is the maximum number of strategies of any agent to obtain an (ε/dlog2 ke)-Nash equilibrium θ′ for
G′, and return g(θ′) which is guaranteed to be an ε-Nash equilibrium of G by Part 5 of Theorem 4.1.
G′ and g(θ′) can be computed in log space.
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Corollary 4.6 With Exp-Approx and Poly-Approx, there is a log space reduction from graph
game GuaranteeNash to boolean circuit game GuaranteeNash.

Proof: Given an instance (G, ε, (g1, . . . , gn)) of graph game GuaranteeNash we transform G
into an boolean circuit game G ′ as in the Theorem 4.1. Then we can solve GuaranteeNash for
(G′, ε/dlog2 ke, (g1, . . . , gn, 0, . . . , 0), where k is the maximum number of strategies of any agent. So
that we require guarantees for the agents at the roots of the trees, but have no guarantee for the
other agents.

We show that if (G, ε, (g1, . . . , gn)) is a positive instance of GuaranteeNash then so is
(G′, ε/dlog2 ke, (g1, . . . , gn, 0, . . . , 0)). Say that (G, ε, (g1, . . . , gn)) is a positive instance of Guaran-

teeNash. Then there exists some Nash Equilibrium of G, θ, such that νi(θ) ≥ gi for each agent
i. But then by Parts 6 and 4 of Theorem 4.1 respectively, f(θ) is a Nash Equilibrium of G ′ and
ν ′i(f(θ)) = νi(θ) ≥ gi for each agent i of G and corresponding agent i of G ′.

Say that (G ′, ε/dlog2 ke, (g1, . . . , gn, 0, . . . , 0)) is not a negative instance of GuaranteeNash.
Then there exists some (ε/dlog2 ke)-Nash equilibrium θ′ of G′ such that ν ′i(θ

′) > gi − ε/dlog2 ke for
each agent i at the root of a tree. But then by Parts 5 and 4 of Theorem 4.1 respectively, g(θ ′) is
an ε-Nash Equilibrium of G and νi(g(θ)) = ν ′i(θ

′) ≥ gi − ε/dlog2 ke ≥ gi − ε.
G′ can be computed in log space.

5 IsNash and IsPureNash

In this section, we study the problem of determining whether a given strategy profile is a Nash
equilibrium. Studying this problem will also help in studying the complexity of other problems.

5.1 IsNash

A summary of the results for IsNash is shown in Figure 2.
Notice that with Poly-Approx and Const-Approx everything works much as with Exp-

Approx and Exact, but #P, counting, is replaced by BPP, approximate counting.
IsNash is in P for all graph games. When allowing arbitrarily many players in a boolean circuit

game, IsNash becomes P#P-complete (via cook reductions). When allowing exponentially many
strategies in a 2-player circuit game, it becomes coNP-complete. IsNash for a generic circuit game
combines the hardness of these 2 cases and is coNP#P-complete.

Proposition 5.1 In all approximation schemes, graph game IsNash is in P.

Proof: Given a instance (G, θ, ε), where G is a graph game, θ is an ε-Nash equilibrium if and only
νi(θ) + ε ≥ νi(Ri(θ, si)) for all agents i and for all si ∈ si. But there are only polynomially many
of these inequalities, and we can compute νi(θ) and νi(Ri(θ, si)) in polynomial time.

Proposition 5.2 In all approximation schemes, 2-player circuit game IsNash is coNP-complete.
Furthermore, it remains in coNP for any constant number of players, and it remains hard as long
as approximation error ε < 1.

Proof: In a 2-player circuit game, Exact IsNash is in coNP because given a pair (G, θ), we
can prove θ, is not a Nash equilibrium by guessing an agent i and a strategy s′i, such that agent i
can do better by playing s′i. Then we can compute if νi(Ri(θ, s′i)) > νi(θ) + ε. This computation
is in P because θ is in the input, represented as a list of the probabilities of each strategy in the
support of each player. The same remains true if G is restricted to any constant number of agents.
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Figure 2: Summary of IsNash Results

It is coNP-hard because even in a one-player game we can offer an agent a choice between a
payoff of 0 and the output of a circuit C. If the agent settling for a payoff of 0 is a Nash equilibrium,
then C is unsatisfiable. Notice that in this game, the range of payoffs is 1, and as long as ε < 1,
the hardness result will still hold.

In the previous proof, we obtain the hardness result by making one player choose between many
different strategies, and thus making him assert something about the evaluation of each strategy.
We will continue to use similar tricks except that we will often have to be more clever to get many
strategies. Randomness provides one way of doing this.

Theorem 5.3 Boolean circuit game Exp-Approx IsNash is P#P-complete via Cook reductions.

Proof: We first show that it is P#P-hard. We reduce from MajoritySat which is P#P-complete
under Cook reductions. A circuit C belongs to MajoritySat if it evaluates to 1 on at least half
of its inputs.

Given a circuit C with n inputs (without loss of generality, n is even), we construct an (n + 1)-
player boolean circuit game. The payoff to agent 1 if he plays 0 is 1

2 , and if he plays 1 is the output
of the circuit, C(s2, . . . , sn+1), where si is the strategy of agent i. The payoffs of the other agents
are determined by a game of pennies (for details see Section 2) in which agent i plays against agent
i + 1 where i is even.

Let ε = 1/2n+1, and let θ be a mixed strategy profile where Pr[θ1 = 1] = 1, and Pr[θi = 1] = 1
2

for i > 1. We claim that θ is a Nash equilibrium if and only if C ∈MajoritySat. All agents
besides agent 1 are in equilibrium, so it is a Nash equilibrium if the first player can do better by
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changing his strategy. Currently his expected payoff is m
2n where m is the number of satisfying

assignments of C. If he changes his strategy to 0, his expected payoff will be 1
2 . He must change

his strategy only if 1
2 > m

2n + ε.

Now we show that determining if (G, θ, ε) ∈ IsNash is in P#P. θ is an ε-Nash equilibrium if
νi(θ) + ε ≥ νi(Ri(θ, s′i)) ∀ i ∀ s′i ∈ {0, 1}. There are only 2n of these equations to check. For any
strategy profile θ, we can compute νi(θ) as follows:

νi(θ) =
∑

s1∈supp(θ1),··· ,sn∈supp(θn)

Ci(s1, s2, . . . , sn)
n

∏

j=1

Pr[θj = sj ] (1)

where Ci is the circuit that computes νi. Computing such sums up to poly(n) bits of accuracy can
easily be done in P#P.

Remark 5.4 In the same way we can show that, given an input (G, θ, ε, δ) where ε and δ are
encoded as in Poly-Approx, it is in P#P to differentiate between the case when θ is an ε-Nash
equilibrium in G and the case where θ is not a (ε + δ)-Nash equilibrium in G.

Theorem 5.5 Circuit game Exp-Approx IsNash is coNP#P-complete.

We first use a definition and a lemma to simplify the reduction:

Definition 5.6 #CircuitSat is the function which, given a circuit C, computes the number of
satisfying assignments to C.

It is known that #CircuitSat is #P-complete.

Lemma 5.7 Any language L ∈ NP#P is recognized by a nondeterministic polynomial-time TM
that has all its non-determinism up front, makes only one #CircuitSat oracle query, encodes a
guess for the oracle query result in its nondeterminism, and accepts only if the oracle query guess
encoded in the nondeterminism is correct.

Proof: Let L ∈ coNP#P and let M be a co-nondeterministic polynomial-time TM with access
to a #CircuitSat oracle that decides L. Then if M fails to satisfy the statement of the lemma,
we build a new TM M ′ that does the following:

1. Use non determinism to:

• Guess non-determinism for M .

• Guess all oracle results for M .

• Guess the oracle query results for M ′.

2. Simulate M using guessed non-determinism for M and assuming that the guessed oracle
results for M are correct. Each time an oracle query is made, record the query and use the
previously guessed answer.

3. Use one oracle query (as described below) to check if the actual oracle results correspond
correctly with the guessed oracle results.

4. Accept if all of the following occurred:
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• The simulation of M accepts

• The actual oracle queries results of M correctly correspond with the guessed oracle
results of M

• The actual oracle queries results of M ′ correctly corresponds with the guessed oracle
results of M ′

Otherwise reject

It is straightforward to check that, if M ′ decides L, then M ′ fulfills the requirements of the
Lemma.

Now we argue that M has an accepting computation if and only if M ′ does also. Say that a
computation is accepted on M . Then the same computation where the oracle answers are correctly
guessed will be accepted on M ′. Now say that an computation is accepted by M ′. This means that
all the oracle answers were correctly guessed, and that the simulation of M accepted; so this same
computation will accept on M .

Finally, we need to show that step 3 is possible. That is that we can check whether all the
queries are correct with only one query. Specifically, we need to test if circuits C1, . . . , Ck with
n1, . . . , nk inputs, respectively, have q1, . . . , qk satisfying assignments, respectively. For each circuit
Ci create a new circuit C ′i by adding

∑i−1
j=1 nj dummy variables to Ci. Then create a circuit C

which takes as in input an integer i and a bit string X of size
∑k

j=1 nj, as follows:

1. If the last
∑k

j=i+1 nj bits of X are not all 0 then C(i,X) = 0,

2. Otherwise, C(i,X) = C ′i(X) where we use the first
∑i

j=1 nj bits of X as an input to C ′i.

The circuit C has
∑k

i=1 (q′i · 2
n1+n2+···+ni−1) satisfying assignments where q′i is the number of

satisfying assignments of Ci. Note that this number together with the ni’s uniquely determines
the q′i’s. Therefore it is sufficient to check if the number of satisfying assignments of C equals
∑k

i=1 (qi · 2
n1+n2+···+ni−1).

Corollary 5.8 Any language L ∈ coNP#P is recognized by a co-nondeterministic polynomial-time
TM that has all its non-determinism up front, makes only one #CircuitSat oracle query, encodes
a guess for the oracle query result in its nondeterminism, and rejects only if the oracle query guess
encoded in the nondeterminism is correct.

Proof: Say L ∈ coNP#P, then the compliment of L, L̄, is in NP#P. We can use Lemma 5.7 to
design a TM M as in the statement of Lemma 5.7 that accepts L̄. Create a new TM M ′ from M
where M ′ runs exactly as M accept switches the output. Then M ′ is a nondeterministic polynomial-
time TM that has all its non-determinism up front, makes only one #CircuitSat oracle query,
and rejects only if an oracle query guess encoded in the nondeterminism is correct.

Proof Theorem 5.5: First we show that given an instance (G, θ, ε) it is in coNP#P to determine
if θ is a Nash equilibrium. If θ is not a Nash equilibrium, then there exists an agent i with a strategy
si such that νi(Ri(θ, si)) > νi(θ). As in the proof of Theorem 5.3 (see Equation 1), we can check
this in #P (after nondeterministically guessing i and si).

To prove the hardness result, we first note that by Lemma 5.8 it is sufficient to consider only
co-nondeterministic Turing machines that make only one query to an #P-oracle. Our oracle will
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use the #P-complete problem #Sat, so given an encoding of a circuit, the oracle will return the
number of satisfying assignments.

Given a coNP#P computation with one oracle query, we create a circuit game with 1 + 2q(|x|)
agents where q(|x|) is a polynomial which provides an upper bound on the number of inputs in the
queried circuit for input strings of length |x|. Agent 1 can either play a string s1, that is interpreted
as containing the nondeterminism to the computation and an oracle result, or he can play some
other strategy ∅. The rest of the agents, agent 2 through agent 2q(|x|) + 1, have a strategy space
si = {0, 1}.

The payoff to agent 1 on the strategy s = (s1, s2, . . . , s2q(|x|)+1) is 0 if s1 = ∅, and otherwise
is 1 − f(s1) − g(s), where f(s1) is the polynomial-time function checking if the computation and
oracle-response specified by s1 would cause the co-nondeterministic algorithm to accept, and g(s) is
a function to be constructed below such that Es2,...,s2q(|x|)+1

[g(s)] = 0 if s1 contains the correct oracle
query and Es2,...,s2q(|x|)+1

[g(s)] ≥ 1 otherwise, where the expectations are taken over s2, . . . , s2q(|x|)+1

chosen uniformly at random. The rest of the agents, agent 2 through agent 2q(|x|) + 1, receive
payoff 1 regardless.

This ensures that if agent 1 plays ∅ and the other agents randomize uniformly, this is a Nash
equilibrium if there is no rejecting computation and is not even a 1/2-Nash equilibrium if there is
a rejecting computation. If there is a rejecting computation then the first player can just play that
computation and his payoff will be 1. If there is no rejecting computation, then either f(s1) = 1
or contains an incorrect query result, in which case Es→θ[g(s)] ≥ 1. If either the circuit accepts or
his query is incorrect, then the payoff will always be at most 0.

Now we construct g(s1, s2, . . . , s2q(|x|)+1). Let C, a circuit, be the oracle query determined by the
nondeterministic choice of s1, let k be the guessed oracle results, and let S1 = s2s3 . . . sq(|x|)+1 and
S2 = sq(|x|)+2sq(|x|)+3 . . . s2q(|x|)+1. For convenience we will write g in the form g(k,C(S1), C(S2)).

g(k, 1, 1) = k2 − 2n+1k + 22n

g(k, 0, 1) = g(k, 1, 0) = −2nk + k2

g(k, 0, 0) = k2

Now let m be the actual number of satisfying assignments of C. Then, if agent 2 through agent
2q(|x|) + 1 randomize uniformly over their strategies:

E[g(k,C(S1), C(S2))]

= (m/2n)2g(k, 1, 1) + 2(m/2n)(1 − (m/2n))g(k, 0, 1) + (1 − (m/2n))2g(k, 0, 0)

= 22n(m/2n)2 − 2n+1(m/2n)k + k2 = (m − k)2

So if m = k then E[g] = 0, but if m 6= k then E[g] ≥ 1. In the game above, the range of payoffs is
not bounded by any constant, so we scale G to make all payments in [0, 1] and adjust ε accordingly.

Notice that even if we allow just one agent in a boolean circuit game to have arbitrarily many
strategies, then the problem becomes coNP#P-complete.

We now look at the problem when dealing with Poly-Approx and Const-Approx.

Theorem 5.9 With Poly-Approx and Const-Approx, boolean circuit game IsNash is BPP-
complete. Furthermore, this holds for any approximation error ε < 1.
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Proof: We start by showing boolean circuit game Poly-Approx IsNash is in BPP. Given
an instance (G, θ, ε), for each agent i and each strategy si ∈ {0, 1}, we use random sampling of
strategies according to θ to distinguish the following two possibilities in probabilistic polynomial
time:

• νi(θ) ≥ νi(Ri(θ, si)), OR

• νi(θ) + ε < νi(Ri(θ, si))

(We will show how we check this in a moment.) If it is a Nash equilibrium then the first case is
true for all agents i and all si ∈ {0, 1}. If it is not an ε-Nash equilibrium, then the second case is
true for some agents i and some si ∈ {0, 1}. So, it is enough to be able to distinguish these cases
with high probability.

Now the first case holds if νi(θ) − νi(Ri(θ, si)) ≥ 0 and the second case holds if νi(θ) −
νi(Ri(θ, si)) ≤ −ε. We can view νi(θ) − νi(Ri(θ, si)) as a random variable with the range [−1, 1]
and so, by a Chernoff bound, averaging a polynomial number of samples (in 1/ε) the chance that
the deviation will be more than ε/2 will be exponentially small, and so the total chance of an error
in the 2n computations is < 1

3 by a union bound.

Remark 5.10 In the same way we can show that, given an input (G, θ, i, k, ε) where G is a circuit
game, θ is a strategy profile of G, ε is encoded as in Poly-Approx, it is in BPP to differentiate
between the case when νi(θ) ≥ k and νi(θ) < k − ε.

Remark 5.11 Also, in this way we can show that, given an input (G, θ, ε, δ) where G is a boolean
circuit game, θ is a strategy profile of G, and ε and δ are encoded as in Poly-Approx, it is in
BPP to differentiate between the case when θ is an ε-Nash equilibrium in G and the case where θ
is not a (ε + δ)-Nash equilibrium in G.

We now show that boolean circuit game Const-Approx IsNash is BPP-hard. Fix some ε < 1.
Let δ = min{( 1−ε)

2 , 1
4}.

We create a reduction as follows: given a language L in BPP there exists an algorithm A(x, r)
that decides if x ∈ L using coin tosses r with two-sided error of at most δ. Now create G with |r|+1
agents. The first player gets paid 1− δ if he plays 0, or the output of A(x, s2s3 . . . sn) if he plays 1.
All the other players have a strategy space of {0, 1} and are paid 1 regardless. The strategy profile
θ is such that Pr[θ1 = 1] = 1 and Pr[θi = 1] = 1

2 for i > 1.
Each of the players besides the first player are in equilibrium because they always receive their

maximum payoff. The first player is in equilibrium if Pr[A(x, s2s3 . . . sn)] ≥ 1 − δ which is true if
x ∈ L. However, if x 6∈ L, then ν1(θ) = Pr[A(x, s2s3 . . . sn)] < δ, but ν1(R1(θ, 0)) = 1− δ. So agent
1 could do better by ν1(R1(θ, 0)) − ν1(θ) > 1 − δ − δ ≥ ε.

Theorem 5.12 With Poly-Approx and Const-Approx, circuit game IsNash is coNPBPP =
coMA-complete.4 Furthermore, this holds for any approximation error ε < 1.

ACAPP, the Approximate Circuit Acceptance Probability Problem is the promise-language
where positive instances are circuits that accept at least 2/3 of their inputs, and negative instances
are circuits that reject at least 2/3 of their inputs. ACAPP is in prBPP and any instances of a
BPP problem can be reduced to an instance of ACAPP.

4Recall that all our complexity classes are promise classes, so this is really prcoNPprBPP.
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Lemma 5.13 Any language L ∈ NPBPP is recognized by a nondeterministic polynomial-time TM
that has all its non-determinism up front, makes only one ACAPP oracle query, encodes an oracle
query guess in its nondeterminism, and accepts only if the oracle query guess is correct.

Proof: The proof is exactly the same as that for Lemma 5.8 except that we now need to show
that we can check arbitrarily many BPP oracle queries with only one query.

Because any BPP instance can be reduced to ACAPP we can assume that all oracle calls are
to ACAPP. We are given circuits C1, . . . , Cn and are promised that each circuit Ci either accepts
at least 2/3 of their inputs, or accepts at most 1/3 of its inputs. Without loss of generality, we are
trying to check that each circuit accepts at least 2/3 of their inputs (simply negate each circuit that
accept fewer than 1/3 of its inputs). Using boosting, we can instead verify that circuits C ′1, . . . , C

′
n

each reject on fewer than 1
2n+1 of their inputs). So simply and the C ′i circuits together to create

a new circuit C ′′, and send C ′′ to the BPP oracle. Now if even one of the Ci does not accept 2/3
of its inputs, then C ′i will accept at most a 1

2n+1 faction of inputs. So also, C ′′ will accept at most
a 1

2n+1 faction of inputs. But if all the Ci accept at least 2/3 of their inputs, then each of the C ′i
will accept a least a 1 − 1

2n+1 faction of their inputs. So C ′′ will accept at least a 1 − n
2n+1 > 2/3

fraction of its inputs.

Lemma 5.14 Any language L ∈ coNPBPP is decided by co-nondeterministic TM that only uses
one BPP oracle query to ACAPP, has all its nondeterminism up front, encodes an oracle query
guess in its nondeterminism, and rejects only if the oracle query guess is correct.

Proof: This corollary follows from Lemma 5.13 in exactly the same way as Corollary 5.8 followed
from Lemma 5.7.

Proof of Theorem 5.12: First we show that circuit game Poly-Approx IsNash is in
coNPBPP. Say that we are given an instance (G, θ, ε). We must determine if θ is an Nash
equilibrium or if it is not even an ε-Nash equilibrium.

To do this, we define a promise language L with the following positive and negative instances:

L+ = {((G, θ, ε), (i, s′i)) : s′i ∈ si, νi(Ri(θ, s′i)) ≤ νi(θ)}

L− = {((G, θ, ε), (i, s′i)) : s′i ∈ si, νi(Ri(θ, s′i) > νi(θ) + ε}

Now if for all pairs (i, s′i), ((G, θ, ε), (i, s′i)) ∈ L+, then θ is a Nash equilibrium of G, but if there
exists (i, s′i), such that ((G, θ, ε), (i, s′i)) ∈ L−, then θ is not an ε-Nash equilibrium of G. But
L ∈ BPP because, by Remark 5.10, as we saw in the proof of Theorem 5.9, we can just sample
νi(θ) − νi(Ri(θ, s′i)) = Es←θ[νi(s) − νi(Ri(s, s

′
i))] to see if it is ≥ 0 or < −ε.

Remark 5.15 In the same way we can show that, given an input (G, θ, ε, δ) where G is a circuit
game, θ is a strategy profile of G, and ε and δ are encoded as in Poly-Approx, it is in coNPBPP

to differentiate between the case when θ is an ε-Nash equilibrium in G and the case where θ is not
a (ε + δ)-Nash equilibrium in G.

Now we show that circuit game Const-Approx IsNash is coNPBPP-hard. The proof is
similar to the proof of Theorem 5.5

Fix ε < 1 and let δ = min{ 1−ε
2 , 1

4}. Given a coNPBPP computation with one oracle query, we
create a circuit game with q(|x|) + 1 agents, where q is some polynomial which we will define later.
Agent 1 can either play a string s1 that is interpreted as containing the nondeterminism to be used

19



in the computation and an oracle answer, or he can play some other strategy ∅. The other agents,
agent 2 through agent q(|x|) + 1, have strategy space si = {0, 1}.

The payoff to agent 1 is δ for ∅, and 1−max{f(s1), g(s)} otherwise, where f(s1) is the polynomial
time function that we must check, and Es2,...,sq(|x|)+1

[g(s)] > 1 − δ if the oracle guess is incorrect,
and Es2,...,sq(|x|)+1

[g(s)] < δ of the oracle guess is correct. The other agents are paid 1 regardless.
We claim that if agent 1 plays ∅ and the other agents randomize uniformly, this is an Nash

equilibrium if there is no rejecting computation and is not even a δ-Nash equilibrium if there is a
failing computation.

In the first case, if the first agent does not play ∅, either the computation will accept and his
payoff will be 0, or the computation will reject but the guessed oracle results will be incorrect and
his expected payoff will be:

1 − max{f(s1), g(s)} = 1 − max{0, g(s)} = 1 − E[g(s)] > 1 − (1 − δ) = δ

So he would earn at least that much by playing ∅.
In the latter case where there is a failing computation, by playing that and a correct oracle

result, agents 1’s payoff will be 1 − max{f(s1), g(s)} > 1 − δ. And if we compare this to what he
would be paid for playing ∅, we see that it is greater by[1 − δ] − [δ] ≥ ε.

Now we define g(s). Let Cs1 be the circuit corresponding to the oracle query in s1, and let,

C
(k)
s1 be the circuit corresponding to running Cs1 k times, and taking the majority vote. We define

g(s) = 0 if C
(k)
s1 (s2s3 · · · sq(|x|)) agrees with the oracle guess in s1 and g(s) = 1 otherwise. Now if

the oracle result is correct, then the probability that C
(k)
s1 (s2s3 · · · sq(|x|)) agrees with it is 1− 2Ω(k),

and if the oracle results is incorrect, the probability that C
(k)
s1 (s2s3 · · · sq(|x|)) agrees with the oracle

results (in s1) is 2Ω(k), so by correctly picking k, g(s) will have the desired properties. Define q(|x|)
accordingly.

When approximating, it never made a difference whether we approximated by a polynomially
small amount or by any constant amount less than 1.

5.2 IsPureNash

In this section we will study a similar problem: IsPureNash. In the case of non-boolean circuit
games, IsPureNash is coNP-complete. With the other games examined, IsPureNash is in P.

Proposition 5.16 With any approximation scheme, circuit game and 2-player circuit game Is-

PureNash is coNP-complete. Furthermore, it remains hard for any approximation error ε < 1.

Proof: The proof is the same as that for Proposition 5.2: in the reduction for the hardness result
θ is always a pure-strategy profile. It is in coNP because it more restricted class of problems than
circuit game IsPureNash which is in coNP.

Proposition 5.17 With any approximation scheme, Boolean circuit game IsPureNash is P-
complete, and remains so even for one player and any approximation error ε < 1.

Proof: It is in P because each player has only one alternative strategy, so there are only polyno-
mially many possible deviations, and the payments for each any given strategy can be computed
in polynomial time.

It is P-hard even in a one-player game because, given a circuit C with no inputs (an instance
of CircuitValue which is P-hard), we can offer an agent a choice between a payoff of 0 and the
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output of the circuit C. If the agent settling for a payoff of 0 is a Nash equilibrium, then C then
must evaluate to 0. Notice that in this game, the range of payoffs is 1, and as long as ε < 1, the
hardness result will still hold.

Proposition 5.18 With any approximation scheme, graph game IsPureNash is in P for any
kind of graph game.

Proof: In all these representation, given a game G there are only a polynomial number of
players, and each player has only a polynomial number of strategies. To check that s is an ε-Nash
equilibrium, one has to check that for all agents i and strategies s′i ∈ si, νi(s) ≥ νi(Ri(s, si)). But
as mentioned there are only polynomially many of these strategies and each can be evaluated in
polynomial time.

6 Existence of pure-strategy Nash equilibria

We now will use the previous relationships to study the complexity of ExistsPureNash. Figure 3
give a summary of the results.

�
  P-

complete

Circuit

Graph

Bimatrix Boolean 
Graph

2-player 
Circuit

Boolean 
Circuit

in P

NP-complete

ExistsPureNas
h

All approximation schemes

 2

Figure 3: Summary of ExistsPureNash Results

The hardness of these problem is directly related to the hardness of IsPureNash. We can
always solve ExistsPureNash with one more non-deterministic alternation because we can non-
deterministically guess a pure-strategy Nash equilibrium, and then check that it is correct. Recall
that in the case of non-boolean circuit games, IsPureNash is coNP-complete. With the other
games examined, IsPureNash is in P (but is only proven to be P-hard in the case of boolean
circuit games; see Subsection 5.2). As shown in Figure 3, with the exception of bimatrix games,
this strategy of nondeterministically guessing and then checking is the best that one can do.

We first note that ExistsPureNash is an exceedingly easy problem in the bimatrix case
because we can enumerate over all the possible pure-strategy profiles and check whether they are
Nash equilibria.

ExistsPureNash is interesting because it is a language related to the Nash equilibrium of
bimatrix games that is not NP-complete. One particular approach to the complexity of finding
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a Nash equilibrium is to turn the problem into a language. Both [GZ89] and [CS03] show that
just about any reasonable language that one can create involving Nash equilibrium in bimatrix
games is NP-complete; however, ExistsPureNash is a notable exception. If we ask whether
this generalizes to concisely represented games, the answer is a resounding No. It seems that the
bimatrix case is an exception. In all other cases, ExistsPureNash can be solved with one more
alternation than IsPureNash and is complete for that class.

Theorem 6.1 Circuit game ExistsPureNash and 2-player circuit game ExistsPureNash are
Σ2P-complete with any of the defined notions of approximation. Furthermore, it remains hard as
long as approximation error ε < 1.

Proof: Membership in Σ2P follows by observing that the existence of a pure-strategy Nash
equilibrium is equivalent to the following Σ2P predicate:

∃s ∈ s,∀ i, s′i ∈ si

[

νi(Ri(s, s
′
i)) ≤ νi(s) + ε

]

To show it is Σ2P-hard, we reduce from the Σ2P-complete problem

QCircuitSat2 = {(C, k1, k2) : ∃X1 ∈ {0, 1}k1 ,∀X2 ∈ {0, 1}k2 C(X1, X2) = 1}

where C is a circuit that takes k1+k2 boolean variables. Given an instance (C, k1, k2) of QCircuitSat2,
create 2-player circuit game G = (s, ν), where si = {0, 1}ki ∪ {0, 1}.

Player i has the choice of playing a strategy Xi ∈ {0, 1}ki or a strategy yi ∈ {0, 1}. The payoffs
for the first player are as follows:

Player 2
X2 y2

Player 1 X1 C(X1, X2) 1
y1 1 Pennies1(y1, y2)

Payoffs of player 1

If both players play an input to C, then player 1 gets paid the results of C on these inputs. If both
play a strategy in {0, 1}, the payoff to the first player is the same as that in the game of pennies (1
if y1 = y2; 0 if y1 6= y2). If one player plays an input to C, and the other plays a strategy in {0, 1},
then the first player receives 1.

The payoffs of the second player are as follows:

Player 2
X2 y2

Player 1 X1 1 − C(X1, X2) 0
y1 0 Pennies2(y1, y2)

Payoffs of player 2

Player 2’s payoff is the opposite of the output of C when both players play an input to C. He
gets the payoff of the second player of pennies (0 if y1 = y2; 1 if y1 6= y2) when both players play
strategies in {0, 1}. Player 2’s payoff is 0 if one player plays an input to C while the other plays a
strategy in {0, 1}.

Now we show that the above construction indeed gives a reduction from QCircuitSat2 to 2-
player Circuit Game ExistsPureNash. Suppose that (C, k1, k2) ∈QCircuitSat2. Then there is
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an X1 is such that ∀X2, C(X1, X2) = 1, and we claim (X1, X2) is a pure-strategy Nash equilibrium
where X2 is any input to C. Player 1 receives a payoff of 1 and so cannot do better. Whatever
player 2 plays, he will get payoff 0 if he plays an input to C and 0 if he plays a strategy in {0, 1}.
So can do no better than playing X2.

Now suppose that (C, k1, k2) 6∈QCircuitSat2, i.e. ∀X1,∃X2 C(X1, X2) = 0. Then we want to
show there does not exist a pure-strategy ε-Nash equilibrium. Because the only payoffs possible
are 0 and 1 and we are only considering pure-strategies, if any agent in not in equilibrium, he can
do at least 1 better by changing his strategy.

If player 1 plays an input X1 to C, then player 2 always has a best response X2 where
C(X1, X2) = 0 so that he is paid 1, which is at least ε better than playing an X ′2 such that
C(X1, X2) = 1 or playing a strategy in {0, 1}. So if there is an pure-strategy ε-Nash equilibrium
where player 1 plays X1, then player 2 must be playing such an X2. But in this case, player 1 could
do 1 better by playing a strategy in {0, 1}. So no pure-strategy Nash equilibrium where player 1
plays X1.

In the case where player 1 plays a strategy in {0, 1}, player 2’s best response is to play the
opposite strategy in {0, 1}. He gets 1 for this strategy and 0 for all others. But then player 1 can
do 1 better by flipping his strategy in {0, 1}. So no pure-strategy Nash equilibrium exists in this
game. Therefore, if ∀X1,∃X2 where C(X1, X2) = 0, there does not exist a pure-strategy ε-Nash
equilibrium for any epsilon < 1.

For graph games, it was recently shown by Gottlob, Greco, and Scarcello [GGS03] have shown
that ExistsPureNash is NP-complete, even restricted to graphs of degree 4. Below we strengthen
their result by showing this also holds for boolean graph games, for graphs of degree 3, and for any
approximation error ε < 1.

Theorem 6.2 For boolean circuit games, graph games, and boolean graph games using any of the
defined notions of approximation ExistsPureNash is NP-complete. Moreover, the hardness result
holds even for degree-d boolean graph games for any d ≥ 3 and for any approximation error ε < 1.

Proof: We first show that boolean circuit game Exact ExistsPureNash is in NP. Then, by
Theorem 4.1, Exact ExistsPureNash is in NP for graph games as well. Adding approximation
only makes the problem easier. Given an instance (G, ε) we can guess a pure-strategy profile θ.
Let s ∈ s such that Pr[θ = s] = 1. Then, for each agent i, in polynomial time we can check that
νi(s) ≥ νi(Ri(s, s

′
i)) − ε for all s′i ∈ {0, 1}. There are only polynomially many agents, so this takes

at most polynomial time.

Now we show that ExistsPureNash is also NP-hard, even in degree-3 boolean graph games
with Const-Approx for every ε < 1. We reduce from CircuitSat which is NP-complete. Given
a circuit C (without loss of generality every gate in C has total degree ≤ 3; we allow unary gates),
we design the following game: For each input of C and for each gate in C, we create player with
the strategy space {true, false}. We call these the input agents and gate agents respectively, and
call the agent associated with the output gate the judge. We also create two additional agents P1

and P2 with strategy space {0, 1}.
We now define the payoffs. Each input agent is rewarded 1 regardless. Each gate agent is

rewarded 1 for correctly computing the value of his gate and is rewarded 0 otherwise.
If the judge plays true then the payoffs to P1 and P2 are always 1. If the judge plays false

then the payoffs to P1 and P2 are the same as the game pennies–P1 acting as the first player, P2

as the second.
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We claim that pure strategy Nash equilibria only exist when C is satisfiable. Say C is satisfiable
and let the input agents play a satisfying assignment, and let all the gate agents play the correct
value of their gate, given the input agents strategies. Because it is a satisfying assignment, the
judge plays true, and so every agent–the input agents, the gate agents, P1, and P2–receive a payoff
of 1, and are thus in a Nash equilibrium.

Say C is not satisfiable. The judge cannot play true in any Nash equilibrium. For, to all
be in equilibrium, the gate agents must play the correct valuation of their gate. Because C is
unsatisfiable, so no matter what pure-strategies the input agents play, the circuit will evaluate to
false, and so in no equilibrium will the judge will play true. But if the judge plays false, then P1

and P2 are playing pennies against each other, and so there is no pure-strategy Nash equilibrium.
Because the only payoffs possible are 0 and 1, if any agent is not in equilibrium, he can do at

least 1 better by changing his strategy. So there does not exists a pure-strategy ε-Nash equilibrium
for any ε < 1.

Note that the in-degree of each agent is at most 3 (recall that we count the agent himself if he
influences his own payoff), and that the total degree of each agent is at most 4.

The first thing to notice is that like IsPureNash this problem does not become easier with
approximation, even if we approximate as much as possible without the problem becoming trivial.
Also, similarly to IsPureNash, any reasonable definition of approximation would yield the same
results.

7 Finding Nash equilibria

Perhaps the most well-studied of these problems is the complexity of finding a Nash equilibria in a
game. In the bimatrix case FindNash is known to be P-hard but unlikely to be NP-hard. There
is something elusive in categorizing the complexity of finding something if we know that it is there.
[MP91] studies such problems, including finding Nash equilibrium.

Recently, [LMM03] showed that if we allow constant error, the bimatrix case FindNash is in
quasipolynomial time. The results are summarized in Figure 4.

In all types of games, there remains a gap of knowledge of less than one alternation. This
comes about because to find a Nash equilibrium we can simply guess a strategy profile and then
check whether it is a Nash equilibrium. It turns out that in all the types of games, the hardness
of FindNash is at least as hard as IsNash (although we do not have a generic reduction between
the two). Circuit game and 2-player circuit game Poly-Approx and Const-Approx FindNash

are the only cases where the gap in knowledge is less than one alternation.

In a circuit game, there may be exponentially many strategies in the support of a Nash equilib-
rium or the bit length of the probability that a particular strategy is played may be exponentially
large. In either case, it would take exponentially long just to write down a Nash equilibrium.
In order to avoid this problem, when we are not assured the existence of a polynomially sized
Nash equilibrium (or ε-Nash equilibrium), we will prove hardness results not with FindNash, but
with FindNashSimple. FindNashSimple an easier promise language version of FindNash, that
always has a short answer.

Definition 7.1 For a fixed representation of games, FindNashSimple is the promise language
defined as follows:
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Figure 4: Summary of FindNash Results

Positive instances: (G, i, si, k, ε) such that G is a game given in the specified representation,
and in every ε-Nash equilibrium θ of G, Pr[θi = si] ≥ k.

Negative instances: (G, i, si, k, ε) such that G is a game given in the specified representation,
and in every ε-Nash equilibrium θ of G, Pr[θi = si] < k.

FindNashSimple is easier than FindNash in that a FindNash algorithm can be used to
obtain FindNashSimple algorithm of similar complexity, but the converse is not clear.

Theorem 7.2 2-player circuit game Exact FindNashSimple is EXP-hard, but can be computed
in polynomial time with an NEXP oracle. However, if it is NEXP-hard, it implies that NEXP
is closed under complement.

In the proof we will reduce from a problem called GameValue. A 2-player game is a zero-
sum game if ν1(s) = −ν2(s) for all s ∈ s. By the von Neumann min-max theorem, for every
2-player zero-sum game there exists a value ν(G), such that in any Nash equilibrium θ of G,
ν1(θ) = −ν2(θ) = ν(G). Moreover, it is know that, given a 2-player circuit game G, it is EXP-hard
to decide if ν(G) ≥ 0 [FKS95].

Proof Theorem 7.2: We reduce from 2-player circuit game GameValue. Say we are given
such a zero-sum game G = (s, ν) and we want to decide if ν(G) ≥ 0. Without loss of generality,
assume the payoffs are between ±1/2. We construct a game G ′ = (s′, ν ′) as follows: s

′
1 = s1 ∪ {∅},

s
′
2 = s2 ∪ {∅}, and the payoffs are:
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Player 2
s2 ∅

Player 1 s1 1 + ν1(s1, s2) 0
∅ 0 1

Payoffs of player 1 in G ′

Player 2
s2 ∅

Player 1 s1 ν2(s1, s2) 1
∅ 1 0

Payoffs of player 2 in G ′

We claim that if ν(G) ≥ 0 then (G ′, 2, ∅, 1/2) is a positive instance of FindNashSimple, and if
ν(G) < 0 then (G ′, 2, ∅, 1/2) is a negative instance of FindNashSimple. Fix θ ′, a Nash equilibrium
for G′. Let pi = Pr[θ′i ∈ si]. It is straightforward to check that p1, p2 6= 0, 1. Let θ be the strategy
profile where θi is distributed as θ′i given that θ′i ∈ si. This is well defined because p1, p2 6= 0. Also,
θ is a Nash equilibrium of G because if either player could increase there payoff in G by deviating
from θ, they could also increase their payoff in G ′.

We will now relate 1− p2, the probability that agent 2 plays ∅, to ν(G). The expected payoff to
player 1 is p1p2(1 + ν(G)) + (1− p1)(1− p2), which we can view as a function of p1. Because agent
1 is in an equilibrium, he must play p1 to maximize this function. This can only happen at the
end points (p1 = 0 or 1) or when the derivative with respect to p1 is 0. We have already observed
that no Nash equilibrium occurs when p1 = 0 or 1, so one must occur when the derivative is 0.
The derivative with respect to p1 is p2(1 + ν(G)) − (1 − p2). And so p2(1 + ν(G)) − (1 − p2) =
0 ⇒ p2 = 1

2+ν(G) ⇒ 1 − p2 = 1 − 1
2+ν(G) . Therefore, if ν(G) ≥ 0 then in any Nash equilibrium θ ′,

Pr[θ′2 = ∅] ≥ 1
2 ; but if ν(G) < 0 then in any Nash equilibrium θ ′, Pr[θ′2 = ∅] < 1

2 .

Now we show that 2-player circuit game Exact FindNashSimple is in NEXP. By Proposi-
tion 3.3, a Nash equilibrium that can be encoded in exponential space always exists in a 2-player
circuit game. Therefore, the non-determinism can guess a strategy profile θ that is at most ex-
ponentially long, and then we can check whether it is a Nash equilibrium in EXP. Because the
description of the strategy-profile that was guessed may be exponential in length, we cannot simply
use our result from IsNash to show that we can determine if θ is a Nash equilibrium. However,
it is not hard to see that we can verify this in a straight-forward manner by computing, for each
agent i, νi(θ) and νi(Ri(θ, si)) for all si ∈ si.

If 2-player circuit game FindNashSimple were NEXP-hard under cook reductions, it would
also be coNEXP-hard under cook reductions. However, this would imply coNEXP ⊆ NEXP,
because in NEXP we could simulate the polynomial-time algorithm with oracle access to Find-

NashSimple, guessing and verifying FindNashSimple oracle query results as follows: Given an
instance (G, i, si, k), nondeterministically guess a Nash equilibrium θ of G, verify that θ is indeed a
Nash equilibrium of G, and check whether Pr[θi = si] ≥ k.

This result is analogous to the bimatrix case; everything scales up by an exponential factor.
The problem becomes more tedious when we add exponentially small error. The difficulty is

that we only know GameValue is hard to solve exactly. Because we introduce an element of
approximation, we cannot use the same reduction in a straightforward manner. The reductions
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from EXP to GameValue used in [FIKU04] and [FKS95] require an error bound that is at least
doubly exponentially small.

Theorem 7.3 Circuit game Exp-Approx FindNashSimple is EXP-hard, but is in NEXP.
However, if it is NEXP-hard, it implies that NEXP is closed under complement. The EXP-
hardness holds even for circuit games with 6 players.

Proof: We first prove that circuit game Exp-Approx FindNashSimple is EXP-hard. We
reduce from SuccinctCircuitValue. Given a succinctly represented circuit C, we construct an
instance of FindNashSimple based upon a 6-player game G = (s, ν).

Let G be the set of gates in C and let N = |G|. We create 3 computing agents: c1, c2, and
c3; and we create 3 enforcing agents: e1, e2, and e3. Each computing agent has the strategy set
sci

= {g, ḡ : g ∈ G}. Each enforcing agent has the strategy set sei
= {g : g ∈ G}. The payoff of

the enforcing agents and the computing agents are designed so that in any ε-Nash equilibrium each
computing agent must play g or ḡ with probability at least 1/N − ε. The payoffs of the computing
agents are also designed so that each computing agent must play a strategy that corresponds with
a correct computation of C. That is, if g evaluates to true, each computing agent must play g with
probability close to 1

N and ḡ with probability close to 0; and if g evaluates to false, vice versa.
Let B = (N 2 + 2ε)/ε. We define the payoffs of the enforcer agents as follows:

sei
sci

νei

g g, ḡ −B

g 6= g, ḡ B
N−1

We define the payoffs of the computing agents as follows (t will be defined momentarily):

νc1(s) = t(sc1 , sc2 , sc3) − νe1(s)

νc2(s) = t(sc2 , sc3 , sc1) − νe2(s)

νc3(s) = t(sc3 , sc1 , sc2) − νe3(s)

We now define t(sci
, scj

, sck
) which will always be either −N 2 or 0. Let g be the gate such that

sci
∈ {g, ḡ}. Let gates g1 and g2 be the two inputs of g. If g1 is a constant, then for this definition

ignore scj
and instead use the value of the constant. Do likewise for g2 and sck

.
Then t(sci

, scj
, sck

) =

• −N2 if scj
∈ {g1, ḡ1} (or g1 is a constant) and sck

∈ {g2, ḡ2} (or g2 is a constant) and
g(scj

, sck
) 6= sci

where g(scj
, sck

) is the output of gate g using scj
and sck

(or the respective
constants) as the inputs.

• 0 Otherwise

Let ε = 1/(64N 2).

Claim 7.4 In any ε-Nash equilibrium, θ, for any i ∈ {1, 2, 3} and any g ∈ G, Pr[θci
∈ {g, ḡ}] ≥

1/N − ε.
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Proof of claim: Say not, then for some agent ci and gate g, Pr[θci
∈ {g, ḡ}] =

1/N − p for some p > ε. We show that in such a case, agent ci can do ε better by
changing his strategy.

By playing g, ei will get paid

(

1

N
− p

)

· (−B) +

(

1 −
1

N
+ p

)

·
B

N − 1
> pB

So ei has a strategy to get paid more than pB. But θ is an ε-Nash equilibrium, so
νei

(θ) > pB − ε. But this means that

νci
(θ) = t(θci

, θcj
, θck

) − νei
(θ) ≤ −νei

(θ) < −pB + ε

because it is always the case that t(θci
, θcj

, θck
) ≤ 0. If θ′ci

is the mixed strategy where
agent ci randomizes uniformly over all 2N strategies, νci

(Rci
(θ, θ′ci

)) ≥ −N2. This
is because here νei

(Rci
(θ, θ′ci

)) = 0 no matter what θei
is and t(sci

, scj
, sck

) ≥ −N2

regardless of the inputs.
Because this is a ε-Nash equilibrium, νci

(Rci
(θ, θ′ci

)) ≤ νci
(θ) + ε, i.e.

−N2 ≤ (−pB + ε) + ε.

Thus

p ≤
N2 + 2ε

B
= ε.

�

When C is correctly evaluated, each gate g ∈ G evaluates to either true of false. If gate g
evaluates to true, we call the strategy g correct. If gate g evaluates to false, we call the strategy ḡ
correct. If a strategy is not correct, we say it is incorrect. For any gate g, define g∗ to be the the
correct strategy for g and define ḡ∗ to be the incorrect strategy for g. In sci

there are N correct
strategies, and N incorrect strategies.

Claim 7.5 In any ε-Nash equilibrium θ, no agent ci plays an incorrect strategy with probability
greater than 2ε.

Proof of claim: The proof proceeds by induction over the layers of the circuit. We
defer the base case (i.e. constant gates). Fix a gate g ∈ G with input gates g1, g2. Now
fix a computing agent ci. By induction, assume that g1 and g2 are played incorrectly
by each computing agent with probability less than 2ε. By Claim 7.4 this implies that
each computing agent plays correctly with probability at least 1/N − 3ε.

We now show that the claim is true by showing that the expected payoff of ci for
playing the correct strategy of gate g is always more than 1

2 better than his payoff for
playing the incorrect strategy for gate g. Therefore, if agent ci is playing an incorrect
strategy for gate g with probability ≥ 2ε, agent ci could do ε better by playing the
correct strategy for gate g whenever he had previously played the incorrect strategy.
Note that strategies played for g, g1, and g2 that are used in computing payoffs are
always independent because t takes its three inputs from three different agents.
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We first compute νci
(Rci

(θ, g∗)). First note that t(g∗, scj
, sck

) = −N2 only if scj
= ḡ∗1

or sck
= ḡ∗2 , and each of these events happens with probability less then 2ε by induction.

So

νci
(Rci

(θ, g∗)) = t(g∗, θcj
, θck

) − νei
(Rci

(θ, g∗))

≥ −N2 · Pr[θcj
= ḡ∗1 ] − N2 · Pr[θck

= ḡ∗2 ] − νei
(Rci

(θ, g∗))

≥ −4N2ε − νei
(Rci

(θ, g∗))

= −
1

16
− νei

(Rci
(θ, g∗)).

We next compute νci
(Rci

(θ, ḡ∗)). First note that t(ḡ∗, scj
, sck

) = 0 unless scj
= g∗1

and sck
= g∗2 and each of these events is independent and happens with probability at

least 1/N − 3ε, by induction. So

νci
(Rci

(θ, ḡ∗)) = t(g∗, θcj
, θck

) − νei
(Rci

(θ, ḡ∗))

≤ −N2 · Pr[θcj
= g∗1 and θck

= g∗2 ] − νei
(Rci

(θ, ḡ∗))

≤ −N2 · (1/N − 3ε)2 − νei
(Rci

(θ, g∗))

= (1 − 3εN)2 − νei
(Rci

(θ, g∗))

< −9/16 − νei
(Rci

(θ, g∗)),

where the last inequality holds because ε < 1/12N . Since νei
(Rci

(θ, g∗)) = νei
(Rci

(θ, ḡ∗)),
we conclude that νci

(Rci
(θ, g∗)) − νci

(Rci
(θ, ḡ∗)) > −1/16 − (−9/16) = 1/2.

It remains to analyze the case where g1, g2, or both are actually constants in the
circuit. The analysis above remains the same. The only fact we used about g1 and g2 is
that, by induction, the probability that θcj

equals the correct value (gi or ḡi) is ≥ 1−3ε
and the probability that θcj

equals the incorrect value (gi or ḡi) is < 2ε. Thus, if g1

(resp. g2) is a constant input and, as per the definition of t, we treat θcj
as representing

the correct constant value, then the analysis above will still go through. �

Now we can solve an instance of SuccinctCircuitValue on an instance C by querying Find-

NashSimple on the instance (G, c1, o, 2ε, ε), where o is the output gate, and returning the same
answer. By Claim 7.5, if C evaluates to true, in any ε-Nash equilibrium c1 will play ō with prob-
ability less than 2ε and thus by Claim 7.4 will play o with probability at least 1/N − 3ε. If C
evaluates to false, by Claim 7.5, in any ε-Nash equilibrium c1 will play o with probability less than
2ε.

Now we show that circuit game FindNashSimple is in NEXP. We can nondeterministically
guess an ε-Nash equilibrium, and by Theorem 3.4 we can always find an ε-equilibrium that uses at
most exponential space. Therefore, the non-determinism can guess a strategy profile θ that is at
most exponentially long, and then we can check whether θ is an ε-Nash equilibrium by computing,
for each agent i, νi(θ) and νi(Ri(θ, si)) for all si ∈ si.

If FindNashSimple were NEXP-hard under cook reductions, it would also be coNEXP-hard
under cook reductions. However, then we would get coNEXP ⊆ NEXP, because in NEXP we
could simulate the polynomial-time algorithm with oracle access to FindNashSimple, guessing
and verifying FindNashSimple oracle query results as follows: Given an instance (G, i, si, k, ε),
nondeterministically guess an ε-Nash equilibrium θ of G, verify that θ is indeed an ε-Nash equilib-
rium of G, and check whether Pr[θi = si] ≥ k.
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Things get easier when we approximate. The main reason is that now we know there exists a
Nash equilibrium with a polynomially sized support by Theorem 3.4. Thus we can guess an ε-Nash
equilibrium and using a result like IsNash test that it is such. So here, unlike in the exponential
case, the complexity is at most one alternation more than the complexity of the corresponding
IsNash problem.

Definition 7.6 A promise language L is in S2P if there exists polynomial-time computable and
polynomially bounded relation R ⊂ Σ∗ × Σ∗ × Σ∗ such that:

1. If x ∈ L+ then ∃ y such that ∀ z, R(x, y, z) = 1.

2. If x ∈ L− then ∃ z such that ∀ y, R(x, y, z) = 0.

Theorem 7.7 Circuit game and 2-player circuit game Poly-Approx and Const-Approx Find-

Nash are S2P-hard but can be computed by a polynomial-time algorithm with access to a Σ2P
oracle.

We first prove a technical lemma that will later free us from messy computations.

Lemma 7.8 Let G = (s, ν) be a two-player, zero-sum game. Then if we create a new game
G′ = (s′, ν ′) where s

′
1 = s1 ∪ {∅}, s

′
2 = s2, and

ν ′i(s
′
1, s
′
2) = νi(s1, s2) if s′1 ∈ s1

ν ′i(s
′
1, s
′
2) = α if s′1 = ∅

If ν(G) < α− 4ε, then in any ε-Nash equilibrium θ ′ of G′, Pr[θ′i ∈ si] < 1/2. Also, if α+4ε < ν(G),
then in any ε-Nash equilibrium θ′ of G′, Pr[θ′i ∈ si] > 1/2.

Proof: For the sake of contradiction suppose that ν(G) < α− 4ε and θ ′ is an ε-Nash equilibrium
of G such that p = Pr[θ′i ∈ si] ≥

1
2 . Let θ1 denote the probability distribution over s

′
1 of θ′1 give

that θ′1 ∈ s1. θ1 is well defined because p > 0.
Player 2’s payoff is

p(ν2(R1(θ
′, θ1))) + (1 − p)(α)

However, player 2 can attain a payoff of

p(−ν(G)) + (1 − p)(α)

by playing an optimal strategy in G. Because θ ′ is an ε-Nash equilibrium, the difference of these
two values is at most ε:

p(−ν(G)) + (1 − p)(α)

−
[

p(ν2(R1(θ
′, θ1))) + (1 − p)(α)

]

≤ ε

⇒ −ν2(R1(θ
′, θ1)) ≤ ε/p + ν(G)

⇒ ν1(R1(θ
′, θ1)) ≤ ε/p + ν(G)

In the last step −ν2(R1(θ
′, θ1)) = ν1(R1(θ

′, θ1)) because G is a zero-sum game.
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Because player 1 can always receive α by playing ∅, he receives at least α − ε in any ε-Nash
equilibrium. This implies that:

α − ε ≤ ν1(θ
′)

= p(ν1(R1(θ
′, θ1))) + (1 − p)(α)

≤ p [ε/p + ν(G)] + (1 − p)(α) because ν1(R1(θ
′, θ1)) ≤ ε/p + ν(G)

< p [ε/p + (α − 4ε)] + (1 − p)(α) because ν(G) < α − 4ε

≤ α − ε

So we have found our contradiction. The other implication follows in a very similar manner.

Definition 7.9 For a fixed representation of games, PrefixNash is the promise language defined
as follows:

Positive instances: (G, x, 1k , ε, δ) such that G is a game given in the specified representation,
and there exists an ε-Nash equilibrium θ such that the encoding of θ is of length at most k
and begins with the string x.

Negative instances: (G, x, 1k, ε, δ) such that G is a game given in the specified representation,
and there exists no (ε+ δ)-Nash equilibrium θ such that the encoding of θ is of length at most
k and begins with the string x.

Both ε and δ are given in the appropriate representation depending on whether we are considering
Exact, Exp-Approx, Poly-Approx, or Const-Approx.

Proof Theorem 7.7: We first show that circuit game Poly-Approx FindNash can be com-
puted in polynomial time with a Σ2P oracle. The following claim reduces the problem to showing
that PrefixNash is in Σ2P and that there exists an encoding of an ε/2-Nash equilibrium that is
at most polynomially sized.

Claim 7.10 With Exact, with Exp-Approx, and with Poly-Approx, given a circuit game G
and ε such that there exists an ε/2-Nash equilibrium to G of size k, we can find an ε-Nash equilibrium
in time poly(|(G, ε), k) using a PrefixNash oracle.

Proof of claim: Given an instance (G, ε) of FindNash, the algorithm uses
the PrefixNash oracle to find successive bits of an ε-Nash equilibrium. The algo-
rithm runs as follows: assuming that the algorithm has already computed the first
i bits, x1x1 . . . xi the algorithm sends (G, x1x2 . . . xi0, 1

k, ε
2 + i ε

2k , ε
2k ) to the Prefix-

Nash oracle. If it accepts, then it sets xi+1 = 0, if it rejects, then the algorithm sends
(G, x1x2 . . . xi1, 1

k, ε
2 +i ε

2k , ε
2k ) to the PrefixNash oracle. If it accepts, it sets xi+1 = 1.

If it rejects, it halts and returns x1x2 . . . xi as the answer.

We first prove correctness. We begin by claiming that for every i where 0 ≤ i ≤ k,
the partial solution x1x2 . . . xi can be extended to an ε

2 + i ε
2k -Nash equilibrium encoded

by a string of length at most k. The base case, i = 0 is true by the hypotheses of
the claim. By induction assume that x1x2 . . . xi can be extended to an ε

2 + i ε
2k -Nash

equilibrium encoded by a string of length at most k. Then there are 3 cases: 1) the oracle
accepts the first query. In this case, x1x2 . . . xi0 can be extended to an ε

2 + (i + 1) ε
2k -

Nash equilibrium encoded by a string of length at most k (otherwise, the oracle would
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have rejected). 2) The first oracle query rejects, but the second accepts. In the case,
x1x2 . . . xi1 can be extended to an ε

2 +(i+1) ε
2k -Nash equilibrium encoded by a string of

length at most k. 3) The oracle rejects both queries. In this case, the algorithm stops.
This completes the proof by induction.

However, when the algorithm stops, x1x2 . . . xi could be extended to an ε
2 +i ε

2k -Nash
equilibrium encoded by a string of length at most k, but x1x2 . . . xi0 and x1x2 . . . xi1
cannot. Therefore, x1x2 . . . xi is the encoding of a Nash equilibrium. By the previous
claim, it is an ε

2 + i ε
2k -Nash equilibrium.

It is straightforward to verify that this algorithm runs in polynomial time. �

By Theorem 3.4 in every n-player game G, there exists a k-uniform ε/2-Nash equilibrium, where

k = 3n2 ln(n2 maxi{|si|})
(ε/2)2

. This is polynomially bounded with respect to the encoding of G as a circuit

game and |ε| where ε is represented as in Poly-Approx.
Finally, we show that circuit game Poly-Approx PrefixNash is in Σ2P. Given an instance

(G, x, 1k , ε, δ) we can guess an encoding of a strategy profile θ and then test in coNPBPP that
|θ| ≤ k, that the encoding of θ begins with the string x, and whether θ is an ε-Nash equilibrium or
not even an (ε+δ)-Nash equilibrium. It is clear that the first two criteria can be tested in coNPBPP.
By Remark 5.15 the last criterion can also be checked in coNPBPP. It is straightforward to verify
the correctness of this algorithm.

We have shown that this version of PrefixNash in Σ2P
BPP. However, Σ2P

BPP = Σ2P
because coNPBPP = coMA ⊆ Σ2P by [BM88]. Thus an ∃ coNPBPP-predicate can be replaced
by ∃Σ2P-predicate = Σ2P-predicate.

We now show that 2-player circuit game Const-Approx FindNash is S2P hard. We first
follow the proof of [FIKU04] which shows that approximating GameValue in 2-player circuit
games is S2P-hard in order to make a game with value either 1 or -1. Then we employ Lemma 7.8.

Recall that if a language is in S2P then there exists a polynomially balanced and polynomially
decidable predicate ϕ such that x ∈ L+ ⇒ ∃y,∀z ϕ(x, y, z) = 1 and x ∈ L− ⇒ ∃z,∀y ϕ(x, y, z) = 0.
Let p(|x|) be a polynomial that bounds the lengths of y and z.

Let L be a promise language in S2P, now construct a game G′ so that, given an ε-Nash
equilibrium to G ′, we can determine if a given x is in L+ or L−. Given an x, construct an instance
of FindNash (G ′, ε) as follows.

First, let G be the 2-player circuit game G = (s, ν) where si = { strings of length ≤ p(|x|)} and

ν1(s1, s2) = −ν2(s1, s2) = ϕ(x, s1, s2)

Let ε < 1
4 .

If x ∈ L+ the first player has a strategy s1 such that whatever strategy s2 ∈ s2 player 2 plays,
ϕ(x, s1, s2) evaluates to true. So player 1 has a strategy that guarantees him a payoff of 1. On the
other hand, if x ∈ L− the second player has a strategy that guarantees him a payoff of 1.

We create a new game G ′ as in Lemma 7.8. G ′ = (s′, ν ′) where s
′
1 = s1 ∪ {∅}, s

′
2 = s2, and

• ν ′i(s1, s2) = νi(s1, s2) if s1 ∈ si

• ν ′1(∅, s2) = ν2(∅, s2) = 0

Then if x ∈ L+, ν(G) = 1 and so because 0+4ε < ν(G) by Lemma 7.8 in any ε-Nash equilibrium θ ′

of G′, Pr[θ′ = ∅] < 1/2. However, if x ∈ L−, ν(G) = −1 and so because ν(G) < 0−4ε by Lemma 7.8
in any ε-Nash equilibrium θ′ of G′, Pr[θ′ = ∅] ≥ 1/2.
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This hardness result was based off the hardness of GameValue similarly to the 2-player circuit
game FindNash hardness proof which reduced directly from GameValue.

The next two hardness results use a different general approach. The hardness of these problems
is derived from the hardness of IsNash.

We could have obtained the result that Circuit Game FindNash is coMA-hard by using a
proof similar to that of Theorem 7.11 below that is based on the hardness of IsNash. However it
is known that coMA ⊆ S2P, so the above is a stronger result.

Unlike ExistsPureNash, FindNash is a lot harder in boolean circuit games than in graph
games. This is because of the hardness of IsNash in boolean circuit games.

Theorem 7.11 Boolean circuit game Exp-Approx FindNash is P#P-hard via cook reductions
but can be computed in polynomial time given an NP#P oracle.

Proof: We first show that Boolean circuit game Exp-Approx FindNash can be computed
in polynomial time given an NP#P oracle. By Claim 7.10, which presents a polynomial time
algorithm with a PrefixNash oracle for finding a polynomially sized ε-Nash equilibrium, it is
enough to show that PrefixNash for Boolean circuit games is in NP#P and that there exists an
encoding of an ε/2-Nash equilibrium of at most polynomially size.

By Theorem 3.4 in every n-player game G, there exists an ε/2-Nash equilibrium that can be
encoded in polynomial space.

We now show that circuit game Exp-Approx PrefixNash is in NP#P. Given an instance
(G, x, 1k , ε, δ) we can guess an encoding of a strategy profile θ and then test in P#P that |θ| ≤ k,
that the encoding of θ begins with the substring x, and whether θ is an ε-Nash equilibrium or
not even an (ε + δ)-Nash equilibrium. It is clear that the first two criteria can be tested in P#P.
By Remark 5.4 the last criterion can also be checked in P#P. It is straightforward to verify the
correctness of this algorithm.

The proof of the hardness result is very similar to that of Theorem 5.3. Again, we reduce from
MajoritySat which is P#P-complete under Cook reductions. A circuit C belongs to Majori-

tySat if it evaluates to 1 on at least half of its inputs.
Given a circuit C with n inputs , we construct an n+1-player boolean circuit game. The payoffs

to agent 1 are as follows:

• 1
2 −

(

1
2

)n+1
for playing 0

• the output of the circuit C(s2, . . . , sn+1), where si is the strategy of agent i, for playing 1

The payoff of the other agents is determined by a game of pennies (for details see Section 2) in

which agent i plays against agent i + 1 where i is even. Let ε = 1
2n ·

(

1
2

)n+2
.

Now we claim it is possible to determine whether a majority of the inputs satisfy C by checking
player 1’s strategy in any ε-Nash equilibrium. If C belongs to MajoritySat, then Pr[θ1 = 0] < 1/2;
If C does not belong to MajoritySat then Pr[θ1 = 0] ≥ 1/2.

Say that a majority of the inputs are accepted and let θ be an ε-Nash equilibrium for G. By
Theorem A.1, in pennies to obtain an ε-Nash equilibria, it is necessary that each player plays
each strategy with probability ∈ [1/2 − 2ε, 1/2 + 2ε]. That is, for each i = 2, . . . , n + 1, the
random variable θi has statistical distance at most 2ε from a uniform random bit. This implies
that the joint distribution (θ2, . . . , θn+1) has statistical distance at most 2ε · n from Un. Thus,
|E[C(θ2, . . . , θn+1)] − E[C(Un)]| ≤ 2εn = (1/2)n+2.
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So the payoff to agent 1 for playing 0 is 1
2 −

(

1
2

)n+1
and for playing 1 is E[C(s2, . . . , sn+1)] ≥

1/2−
(

1
2

)n+2
. So by playing s1 = 1, agent 1 expects to do better by at least 1/2−

(

1
2

)n+2
− [1/2−

(

1
2

)n+1
] =

(

1
2

)n+2
> 2ε. And so the following claim shows that Pr[θ1 = 0] < 1/2.

Claim 7.12 Let θ be an ε-Nash equilibrium. If there exists a strategy si ∈ si such that νi(Ri(θ, si)) ≥
νi(Ri(θ, s′i)) + 2ε for all s′i ∈ si, s′i 6= si, then Pr[θi = si] ≥ 1/2.

Proof of claim: For the sake of contradiction, assume that θ is an ε-Nash
equilibrium where Pr[θi = si] < 1/2. Let v = maxs′i∈si,s′i 6=si

νi(Ri(θ, s′i)). νi(θ) <
1
2νi(Ri(θ, si)) + 1

2v ≤ 1
2νi(Ri(θ, si)) + 1

2 (νi(Ri(θ, si)) − 2ε) = νi(Ri(θ, si)) − ε. So by
changing his strategy to si, agent i could do ε better. Therefore θ is not an actual
ε-Nash equilibrium. �

Now say that C is not a member of MajoritySat and θ is a Nash equilibrium for G. We
will show that Pr[θ1 = 0] ≥ 1/2. By the same reasoning as above, in any ε-Nash equilibrium

|E[C(s2, . . . , sn+1)] − E[C(Un)]| ≤
(

1
2

)n+2
.

So the payoff to agent 1 for playing 0 is 1
2 −

(

1
2

)n+1
and for playing 1 is E[C(s2, . . . , sn+1)] ≤

1/2−
(

1
2

)n
+

(

1
2

)n+2
. So by playing s1 = 0, agent 1 expects to do better by at least 1/2−

(

1
2

)n+1
−

[1/2 −
(

1
2

)n
+

(

1
2

)n+2
] =

(

1
2

)n+2
> 2ε. And so by Claim 7.12, Pr[θ1 = 0] ≥ 1/2.

In the previous result, the hardness comes from the hardness of IsNash, so it is not surprising
that boolean circuit game FindNash becomes easier when we introduce approximation.

Theorem 7.13 Boolean circuit game Poly-Approx and Const-Approx FindNash are BPP-
hard, but can be computed in polynomial time with an oracle to NPBPP = MA.

Proof: We show that Boolean circuit game Poly-Approx FindNash can be computed in
polynomial time with an oracle to NPBPP = MA. By Claim 7.10, which gives a polynomial time
algorithm with access to a PrefixNash oracle for finding a polynomially sized ε-Nash equilibrium,
it is enough to show that PrefixNash is in coNPBPP and that there exists an encoding of an
ε/2-Nash equilibrium that is at most polynomially sized.

By Theorem 3.4, in every boolean circuit game G, there exists an ε/2-Nash equilibrium that
can be encoded in polynomial space.

We now show that circuit game Poly-Approx PrefixNash is in NPBPP. Given an instance
(G, x, 1k , ε, δ) we can guess an encoding of a strategy profile θ and then test in BPP that |θ| ≤ k,
that the encoding of θ begins with the substring x, and whether θ is an ε-Nash equilibrium or not
even an (ε + δ)-Nash equilibrium. It is clear that the first two criteria can be tested in P. By
Remark 5.11 the last criterion can also be checked in BPP. It is straightforward to verify the
correctness of this algorithm.

We now show that boolean circuit game Const-Approx IsNash is BPP-hard. Given a BPP
language L and an instance x, we create a game so that we can tell whether x ∈ L by looking at
the first agent’s strategy in any 1

100 -Nash equilibrium.
We create a reduction as follows: given a language L in BPP there exists an algorithm A(x, r)

that decides if x ∈ L using coin tosses r with two-sided error of at most 1
100 . Let n = |r| and let

k = dlog25 100ne.
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Now create G with n·k+1 agents. Each player has a strategy space of {0, 1}. Let w = w1w2 . . . wn

where wi = XOR(s(i−1)k+2, s(i−1)k+3, . . . , si·k+1). The first player gets paid:

• 1/2 if he plays 0

• the output of A(x,w) if he plays 1.

All the other players play pennies against each other. So agent i plays pennies with agent i + 1
where i is even. Let ε = 1/100

We claim that if x ∈ L, then Pr[θ1 = 0] < 1/2 in any ε-Nash equilibrium, and that if x 6∈ L,
then Pr[θ1 = 0] ≥ 1/2 in any ε-Nash equilibrium.

Say that x ∈ L and that θ is an ε-Nash equilibrium for G. By Theorem A.1, in order to be in
an ε-equilibrium, all player but the first, must randomize between their two strategies, playing 0
with probability ∈ [1/2 − 2ε, 1/2 + 2ε]. The bits from the strategies of agents 2 through n · k + 1
are fully independent, and so by the next claim, if we XOR k of them together, the resulting bit is
within (4ε)k = 1/(100n) of being uniform.

Claim 7.14 Let X1, . . . , Xn be independent random variables where, Xi ∈ {0, 1} and Pr[Xi = 0] ∈
[1/2 − ε, 1/2 + ε]. Let X = XOR(X1, . . . , Xn), then Pr[X = 0] ∈ [1/2 − (2ε)n, 1/2 + (2ε)n].

Proof of claim: First create variables Yi = 2Xi − 1 (so that Yi ∈ {−1, 1} and
if Xi = 0 then Yi = −1 and if Xi = 1 then Yi = 1). E[Yi] = 2E[Xi] − 1 and so
−2ε ≤ E[Yi] ≤ 2ε. Let Y =

∏n
i=1 Yi. It is straightforward to check that Y = 2X − 1.

And so (E[Y ]+1)
2 = E[X].

But

|E[Y ]| =
n

∏

i=1

|E[Yi]| ≤
n

∏

i=1

|2ε| = (2ε)n

And so Pr[X = 1] = E[X] ∈ [1/2 − (2ε)n

2 , 1/2 + (2ε)n

2 ]. �

Because each input wi to the circuit is within 1/(100n) of uniform, their joint distribution is
within 1/100 of uniform. So

|E[A(x,w)] − E[A(x,Un)]| ≤
1

100
where Un is the uniform distribution over strings of length n. So if player 1 plays 0, his payoff is
1/2. But if player 1 plays 1, his payoff is

E[A(x,w)] ≥ E[A(x,Un)] −
1

100
≥

98

100

Therefore, because agent 1 expects to do better by 98
100 − 1

2 ≥ 2ε by playing 1, by Claim 7.12,
Pr[θ1 = 0] < 1/2.

Say x 6∈ L and θ is an ε-Nash equilibrium of G. Then by the same reasoning as above

|E[A(x,w)] − E[A(x,Un)]| ≤
1

100

And so the payoff to agent 1 for playing 0 is 1
2 , but the payoff to player 1 for playing 1 is

E[A(x,w)] ≤ E[A(x,Un)] +
1

100
≤

2

100

Therefore, because agent 1 expects to do better by 1
2 − 2

100 > 2ε by playing 0, by Claim 7.12,
Pr[θ1 = 0] ≥ 1/2.
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Finally, we show the complexity for graph games.

Theorem 7.15 With any type of approximation, graph game and boolean graph game FindNash

can be computed in polynomial time with access to an NP oracle, but neither is NP-hard unless
NP = coNP. Furthermore, graph game and boolean graph game FindNash are P-hard, even
when restricted to boolean graphs of degree ≥ 3.

Proof: We show that graph game Exp-Approx FindNash can be computed in polynomial time
with an oracle to NP. By Claim 7.10, which gives a polynomial time algorithm with access to a
PrefixNash oracle for finding a polynomially sized ε-Nash equilibrium , it is enough to show that
PrefixNash is in NP and that there exists an encoding of a Nash equilibrium that is at most
polynomially large.

By Theorem 3.4 in every graph game G, there exists an ε/2-Nash equilibrium that can be
encoded in polynomial space.

We now show that graph game Exp-Approx PrefixNash is in NP. Given an instance
(G, x, 1k , ε, δ) we can guess an encoding of a strategy profile θ and then test in P that |θ| ≤ k, that
the encoding of θ begins with the substring x, and whether θ is an ε-Nash equilibrium or not a
(ε+ δ)-Nash equilibrium. It is clear that the first two criteria can be tested in P. The last criterion
can be verified in P by testing that for each agent i and for all si ∈ si that νi(θ) ≥ νi(Ri(θ, si))− ε.
There are only polynomially many agents, each agent has only polynomially many strategies, and
because the payoff function for agent i is encoded explicitly, νi(θ) can be computed in polynomial
time.

To show the hardness result, we reduce from CircuitValue. Given a circuit C, we construct
a game G with an agent for each gate in C. Each agent has possible strategies {0, 1} and is paid
1 for correctly computing the output of his gate (with respect to the strategies of the agents that
correspond to the inputs to his gate), and is paid 0 otherwise. Let ε = 1/100.

We call the strategy of the agent associated with gate g correct if it corresponds with the output
of the gate in an evaluation of C. The unique Nash equilibrium of G is where each player plays the
correct strategy.

Claim 7.16 In any ε-Nash equilibrium, each player must play the correct strategy with probability
≥ 1 − 2ε.

Proof of claim: We proceed by induction, but we defer the base case. Assume that
the two agents associated with the inputs gates to a particular gate g play the correct
pure strategy with probability ≥ 1 − 2ε. Let v be the payoff the agent associated with
the gate g with he plays his correct strategy. We know that v ≥ (1−2ε)2 because if both
of the input agents play their correct strategies then the agent associated with g will
receive a payoff of 1 when he plays his correct strategy. If g plays the opposite strategy
his payoff will be 1 − v. Now say that g plays the opposite strategy with probability p.
Because he is in an ε-equilibrium, we know that (1 − p)v + p(1 − v) + ε ≥ v because he
can get paid v if he just plays the correct strategy all the time. By simple arithmetic,
this implies that

p ≤
ε

2v − 1
≤

ε

2(1 − 2ε)2 − 1
(by what we know of v) ≤ 2ε (by inspection when ε ≤

1

100
)
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The base case consists of those agents connected directly to the constant gates. However,
if we view the constant gates as agents who always tell the truth, then the previous
argument applies.

Therefore, in any ε-Nash equilibrium, each player must play the strategy correspond-
ing with the correct valuation of the circuit with probability ≥ 1 − 2ε. �

So by looking at the strategy in an ε-Nash equilibrium of the agent at the output gate, we can
correctly deduce the value of the circuit.

8 Existence of Nash equilibria with guaranteed properties

Because FindNash is a search problem where a solution is guaranteed to exist, it is hard to define a
nontrivial language from it. It is possible to create languages from FindNash by adding additional
constraints on the equilibrium. For example: does there exists a Nash equilibrium where each player
is paid at least x amount? does there exists a Nash equilibrium with social welfare x? or does there
exists a Nash equilibrium in which player 1 does not play some strategy si? It turns out that in the
bimatrix case, for almost any constraint the language ends up being NP-complete [CS03, GZ89].5

GuaranteeNash is another of such a problem. In our results, each GuaranteeNash problem
is complete for the class that was the upper bound for the same instance of FindNash. Figure 5
shows a summary of the results.

Poly-Approx and Const-Approx

NEXP-
complete 

Circuit

Graph

Bimatrix Boolean 
Graph

2-player 
Circuit

Boolean 
Circuit

NP-complete

NP  -complete
#P

�
 P-

complete

Circuit

Graph

Bimatrix Boolean 
Graph

2-player 
Circuit

Boolean 
Circuit

NP-
complete

NP      = MA - 
complete

BPP
2

except 
Const-Approx Bimatrix is
Const-Approx Bimatrix isin P

~

Exact or Exp-Approx

GuaranteeNash

Figure 5: Summary of GuaranteeNash Results

Theorem 8.1 Circuit game Exp-Approx GuaranteeNash and 2-player circuit game Exact

GuaranteeNash are NEXP-complete.

5Note that our results show that ExistsPureNash was an exception to this rule. It was trivial in bimatrix games,
but at least NP-hard in every other setting.
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Proof: We first show that 2-player circuit game Exact GuaranteeNash is in NEXP. Given
instance (G, ε, (g1, . . . , gn)), guess a strategy profile θ, of at most exponential length, and then check
whether θ is a Nash equilibrium that meets the guarantees.

The correctness of this algorithm follows from Proposition 3.3 which tells us that if a Nash
equilibrium that meets the guarantees exists, then one exists which is at most exponentially large.

To check that θ is a Nash equilibrium, we need only check that νi(θ) ≥ νi(Ri(θ
′
i, si)) for all

agents i and for all si ∈ si. Because there are only 2 agents, and only an exponential number
of strategies, there are only exponentially many of these inequalities. To check that θ meets the
guarantees, we need only check that νi(θ) ≥ gi for at most polynomially many agents. Therefore,
it is enough to show that we can compute νi in EXP. But

νi(θ) =
∑

s1∈s1

∑

s2∈s2

[

Pr[θ′1 = s1] · Pr[θ′2 = s2] · vi(s1, s2)
]

All values that are multiplied or summed have at most exponential bit size, thus ν(θ) can be
computed in EXP.

We next show that circuit game Exp-Approx GuaranteeNash is in NEXP. Given instance

(G, ε, (g1, . . . , gn)) we guess a n2 log(n2 maxi |si|)
ε2 -uniform strategy profile θ. We then check whether θ

is an ε-Nash equilibrium that is within ε of meeting the guarantees. If it is, we accept, otherwise
we reject.

The correctness of this algorithm follows from Theorem 3.4 which states that if there exists

a Nash equilibrium that meets the guarantees, then there will exists a n2 log(n2 maxi |si|)
ε2

-uniform
ε-Nash equilibrium gets within ε/2 of the guarantees.

To check that θ is an ε-Nash equilibrium, we need only check that νi(θ) ≥ νi(Ri(θ
′
i, si)) + ε for

all agents i and for all si ∈ si. Because there are only a polynomial number of agents, and only an
exponential number of strategies, there are only exponentially many of these inequalities. To check
that θ meets the guarantees, we need only check that νi(θ) ≥ gi − ε for at most polynomially many
agents. Therefore, it is enough to show that we can compute νi in EXP. But

νi(θ) =
∑

s1∈si

· · ·
∑

sn∈sn

[

n
∏

i=1

(

Pr[θ′i = s1]
)

vi(s1, . . . , sn)

]

All values that are multiplied or summed have polynomial bit size (because it is a k-uniform strategy
profile), so the product of n of them is still polynomial. And the sum of exponentially many, is
exponential. Thus ν(θ) can be computed in EXP.

We now show that 2-player circuit game GuaranteeNash with exponentially small error is
NEXP-hard. We use a reduction very similar to the one of Conitzer and Sandholm [CS03] except
that instead of reducing from 3SAT, we reduce from the NEXP-complete problem Succinct

3SAT, and we keep track of approximation errors in the reduction.
Given a succinct representation of a Boolean formula ϕ in conjunctive normal form with the

set of variables V and the set of clauses C, let N = |V | be the number of variables, and let the
set L = {x, x̄ : x ∈ V } be the set of literals. We treat L, the set of literals, as formally distinct
from V , the set of variables 6, and define a function v : L → V such that v(x) = v(x̄) = x. We
construct the 2-player circuit game G = (s, ν) where s1 = s2 = V ∪C ∪L so that if ϕ is satisfiable
and l1, . . . , lN are literals that satisfy the formula (exactly one for each variable), then the strategy
where each player randomizes uniformly between those N literals is a Nash equilibrium where the

6So that |V ∪ L| = 3N .
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expected payoff to each player is N − 1; however, if ϕ is not satisfiable, then no ε-Nash equilibrium
with payoffs to each player of at least N − 1 − ε exists.

Define ν1(s1, s2) = ν2(s2, s1) as follows:

1. ν1(l1, l2) = N − 1 where l1 6= l̄2 for all l1, l2 ∈ L
This will ensure each player gets a high payoff for playing the aforementioned strategy.

2. ν1(l, l̄) = N − 4 for all l ∈ L
This will ensure that each player does not play a literal and its negation.

3. ν1(v, l) = 0 where v(l) = v, for all v ∈ V , l ∈ L
This, along with rule 4, ensures that for each variable v, each agent plays either l or l̄ with
probability at least 1/N where v(l) = v(l̄) = v.

4. ν1(v, l) = N where v(l) 6= v, for all v ∈ V , l ∈ L

5. ν1(l, x) = N − 4 where l ∈ L, x ∈ V ∪ C
This, along with rules 6 and 7, ensures that if both players do not play literals, then the
payoffs cannot meet the guarantees.

6. ν1(v, x) = N − 4 for all v ∈ V , x ∈ V ∪ C

7. ν1(c, x) = N − 4 for all c ∈ C, x ∈ V ∪ C

8. ν1(c, l) = 0 where l ∈ c for all c ∈ C, l ∈ L
This, along with rule 9, ensures that for each clause c, each agent plays a literal in the clause
c with probability least 1/N .

9. ν1(c, l) = N where l 6∈ c for all c ∈ C, l ∈ L

Let ε = 1/2N 3 and let the guarantee to each player be N − 1.

First we show that if ϕ is satisfiable, then there exists a Nash equilibrium with the guarantees.
Say that l1, . . . , lN are literals that satisfy the formula (exactly one for each variable). Then the
strategy where each player randomizes uniformly between those N literals is a Nash equilibrium
where the expected payoff to each player is N − 1. The expected payoff to each player is N − 1
because they will always be playing l1 and l2 where l1 6= l̄2 and l1, l2 ∈ L. Secondly, there are
only two rules that pay out more than N − 1: ν1(c, l) = N where l 6∈ C for all c ∈ C, l ∈ L
and ν1(v, l) = N where v(l) 6= v, for all v ∈ V , l ∈ L. However, if agent i deviates and plays
any clause c, the other player will play a literal in that clause c with probability 1/N because he
randomizes between literals in a satisfying assignment. So in this case, agent i’s payoff is at most
1/N · 0 + (N − 1)/N · N = N − 1, and so agent i is no better off than before. Similarly no matter
what variable an agent deviates to, his opponent plays a corresponding literal with probability 1/N .

Now we show that if ϕ is not satisfiable, in any ε-Nash equilibrium at least one player fails to
receive an expected payoff of N − 1 − ε. Unless both players are playing a literal, the maximum
sum of the outcomes is 2N − 4. We cannot be in this case with probability greater than ε because
otherwise the payoffs will sum to less than 2N − 2 − 2ε. So both players play elements of L with
probability > 1 − ε.

Now assume that the probability that agent i plays l or l̄ for some specific l is less than
1/N − ε − 2ε

N (≥ 1/N − 2ε). Then the expected value for the other player, agent j, to play v(l) is
at least (1/N − ε − 2ε

N ) · 0 + ε · 0 + (1 − ε − (1/N − ε − 2ε
N ))N = N − 1 + 2ε (the first term is when
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agent i plays l or l̄, the second is when agent i does not play a literal, and the third term is when
agent i plays a literal 6= l, l̄). So either agent j can do ε better by changing his strategy or he is
already receiving N − 1 + ε and so the other player does not meet his guarantee (recall the sum of
payoffs is at most 2N − 2).

Now we show that for each pair of literal, there is one that is played with probability ≥ 1/N −
2ε − 1/N 2 while the other is played with probability less than 1/N 2.

If one player plays l and the other one −l, then the sum of payoffs is 2N − 8 and so this must
happen also with probability ≤ ε/3, otherwise at least one player will fail to meet his guarantee.
Without loss of generality, assume that player 1 plays l more than l̄. For the sake of contradiction,
assume player 1 plays l with probability less than 1/N − (1/N 2 +2ε) and so plays l̄ with probability
more than 1/N 2. (Recall that each player plays either l or l̄ with probability at least 1/N −ε− 2ε

N ≥
1/N −2ε.) Either the other agent plays l with probability less than 1/N 2 or plays l̄ with probability
greater than 1/N − (1/N 2 + 2ε). In either case, the two players play both l and l̄ with probability
[1/N − (1/N 2 + 2ε)][1/N 2] = 1/N3 − 1/N4 − 2/N6 ≥ 1

2N3 = ε. Which cannot happen. So player
1 must play l with probability greater than 1/N − (1/N 2 + 2ε) and by a symmetric argument so
must player 2. By the same argument, each must play l̄ with probability less than 1/N 2.

So in any ε-Nash equilibrium that meets the guarantees, we can create a correspondence between
literals and truth assignments. We say that a literal is true if it is played more often than its
negation. However, if ϕ is not satisfiable, it means that for the corresponding assignment, there
exists at least one clause with no satisfying literal. Now by changing his strategy to that clause,
agent i will expect to receive a payoff of N whenever the other player, agent j, plays a literal that
is not in that clause. Agent j plays a literal with probability > 1 − ε, and there only 3 literals in
the clause, each of which agent j plays with probability ≤ 1/N 2. By changing his strategy, agent i
will receive at least (1− ε−3/N 2)N > N −1+2ε. So either agent i can do ε better by changing his
strategy or he is already receiving N − 1 + ε and so the other player does not meet his guarantee
(recall the sum of payoffs is at most 2N − 2).

Theorem 8.2 Circuit game and 2-player circuit game Poly-Approx and Const-Approx Guar-

anteeNash are Σ2P-complete.

Proof: We first show that circuit game Poly-Approx GuaranteeNash is in Σ2P
BPP. Given

an instance (G, ε, (g1, . . . , gn)), we nondeterministically guess a polynomially small strategy profile
θ. Then we test whether θ is an ε/2-Nash equilibrium that is within ε/2 of meeting the guarantees
or whether θ is either not an ε-Nash equilibrium or fails to be within ε of the guarantees. In the
former case, we accept, in the latter case we reject.

We now argue the correctness of the algorithm. If (G, ε, (g1, . . . , gn)) is a positive instance of
GuaranteeNash, then there exists a Nash equilibrium with the guaranteed properties in G. By
Theorem 3.4 there exists an ε/2-Nash equilibrium θ that can be represented in polynomial space
where the payoffs of each player are within ε/2 of the guarantees. So the algorithm will accept
upon guessing θ.

If (G, ε, (g1, . . . , gn)) is a negative instance of GuaranteeNash, then there does not exist any
ε-Nash equilibrium within ε of meeting the guaranteed properties. So whatever strategy profile θ
the algorithm guesses, either θ will fail to be an ε-Nash equilibrium or θ will fail to be within ε of
the guarantees. Therefore the algorithm will always reject θ.

It is now left to show that in coNPBPP we can tell wither whether θ is an ε/2-Nash equilibrium
that is within ε/2 of meeting the guarantees or whether θ is either not an ε-Nash equilibrium or
fails to be within ε of the guarantees. Note that by Remark 5.15 we can verify whether θ is an
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ε/2-Nash equilibrium or not even an ε-Nash equilibrium in coNPBPP. Also, in BPP we can test
whether νi(θ)− ε/2 ≥ gi or νi(θ) < gi − ε by Remark 5.10. Therefore we can test whether all these
properties hold or at least one fails to hold in coNPBPP.

Finally, recall from the proof of Theorem 7.7 that Σ2P = Σ2P
BPP.

We now show that 2-player circuit game Const-Approx GuaranteeNash is Σ2P-hard.
We reduce from QCircuitSat2, which is Σ2P-complete. QCircuitSat2 = {(C, k1, k2) : ∃x ∈
{0, 1}k1 ,∀y ∈ {0, 1}k2 C(x, y) = 1} where C is a circuit that takes k1 + k2 boolean variables. Given
such an instance (C, k1, k2) create 2-player circuit game G = (s, ν), where si =

(

{0, 1}k1 × {0, 1}k2
)

∪
{∅}. The payoffs to G will be designed so that if there exists an x0 ∈ {0, 1}k1 such that C(x0, y) = 1
for all y ∈ {0, 1}k2 , then a Nash equilibrium is for each player to play strategies of the form (x0, y)
(for any y ∈ {0, 1}k2 ) with probability 1. However, if no such x0 exists, the only ε-Nash equilibrium
will be to play ∅ most of the time.

We will only define the payoffs for the first player because the payoffs are symmetric, that is
ν1(s1, s2) = ν2(s2, s1).

1. x1 6= x2, ν1((x1, y1), (x2, y2)) = 0

2. ν1((x, y1), (x, y2)) =

• 1 − γ if C(x, y1) = C(x, y2) = 1

• 0 if C(x, y1) = 1 and C(x, y2) = 0,

• 1 if C(x, y1) = 0 and C(x, y2) = 1,

• 1
2 if C(x, y1) = C(x, y2) = 0

3. ν1(∅, ∅) = γ

4. ν1((x1, y1), ∅) = 0

5. ν1(∅, (x2, y2)) = 1 − γ

Let ε = 1
100 , γ = 1

10 , and gi = 1 − γ.
We now show that if (C, k1, k2) ∈ QCircuitSat then there exists a Nash equilibrium that

meets the guarantees and if (C, k1, k2) 6∈ QCircuitSat then no ε-Nash equilibrium in which each
player is paid within ε of his guarantees exists. Let (C, k1, k2) ∈QCircuitSat, then there exist
some x0 such that for all y, C(x0, y) = 1. Let θ be the strategy profile where both agents play
(x0, 0

k2) with probability 1. Now the payoff to each agent is 1 − γ and it is easy to see that this is
a Nash equilibrium.

Now suppose that (C, k1, k2) 6∈QCircuitSat. We must show that no ε-Nash equilibrium gets
within ε of the guarantees. For the sake of contradiction, assume that such a strategy profile θ
exists. We first note that for both players to get within ε of their guarantees, the sum of the payoffs
to the agents must be greater than 2 − 2γ − 2ε ≥ 2 − 4γ.

We claim that Pr[θ1 = (x, y1) ∧ θ2 = (x, y2) such that C(x, y1) = C(x, y2) = 1] > 1 − 4γ. The
maximum sum of payoffs for any strategy profile is 2 − 2γ. If both agents do not agree on the x
component of the strategy and do not both play a pairs (x, y) which satisfy C, then the maximum
sum of their payoffs will be 1. If this happens with probability more than 4γ, the sum of the payoffs
will be at most (1 − 4γ) · (2 − 2γ) + 4γ · 1 = 2 − 6γ + 4γ2 < 2 − 4γ. So this cannot happen in an
ε-Nash equilibrium that meets the guarantees.

However, because (C, k1, k2) 6∈QCircuitSat, for any x ∈ {0, 1}k1 there exists some y such that
C(x, y) = 0. We claim that if agent 1 unilaterally changes his strategy to θ ′1 so that every time he had
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played a strategy (x, y) where C(x, y) = 1 in θ1 he now plays a strategy (x, y′) where C(x, y′) = 0
in θ′1, then ν1(R1(θ, θ′1)) > ν1(θ) + ε. Agent 1 will always be paid at least as much, and whenever
in θ the strategies were such that s1 = (x, y1) and s2 = (x, y2) where C(x, y1) = C(x, y2) = 1 the
strategies in θ2 will instead be s1 = (x, y′1) and s2 = (x, y2) where C(x, y1) = 0 and C(x, y2) = 1.
And in this case agent 1 will receive γ more than before. However, this happens with probability
> 1−4γ. Therefore his payoff will increase by γ−4γ2 > ε. So there is no ε-Nash equilibrium where
each agent comes within ε of his guarantees.

Theorem 8.3 Boolean circuit game Exp-Approx GuaranteeNash is NP#P-complete.

Proof: We first show that boolean circuit game Exp-Approx GuaranteeNash is in NP#P.
Given an instance (G, ε, (g1, . . . , gn)), we nondeterministically guess a polynomially small strategy
profile θ. Then we test whether θ is an ε/2-Nash equilibrium that is within ε/2 of meeting the
guarantees or whether θ is either not an ε-Nash equilibrium or fails to be within ε of the guarantees.
In the former case, we accept, in the latter case we reject.

We now argue the correctness of the algorithm. If (G, ε, (g1, . . . , gn)) is a positive instance of
GuaranteeNash, then there exists a Nash equilibrium with the guaranteed properties in G. By
Theorem 3.4 there exists an ε/2-Nash equilibrium θ that can be represented in polynomial space
where the payoffs of each player are within ε/2 of the guarantees. So the algorithm will accept
upon guessing θ.

If (G, ε, (g1, . . . , gn)) is a negative instance of GuaranteeNash, then there does not exist any
ε-Nash equilibrium with the guaranteed properties. So whatever strategy profile θ the algorithm
guesses, either θ will fail to be an ε-Nash equilibrium or θ will fail to be within ε of the guarantees.
Therefore the algorithm will always reject θ.

It is now left to show that in NP#P we can tell whether θ is an ε/2-Nash equilibrium that is
within ε/2 of meeting the guarantees or whether θ is either not an ε-Nash equilibrium or fails to be
within ε of the guarantees. We can do this by using a #P oracle to compute ν as in Equation 1 (in
proof of Theorem 5.3) to within a polynomial number of bits of accuracy. Therefore in P#Pwe can
test whether νi(θ) + ε/2 ≥ νi(Ri(θ, si)) or νi(θ) + ε < νi(Ri(θ, si)) for every agent i and si ∈ {0, 1}
and can test whether νi(θ) ≥ gi + ε/2 or νi(θ) < gi − ε for every agent i.

We now show that boolean circuit game Exp-Approx GuaranteeNash is NP#P-hard. Say
that we have a language L ∈ NP#P. By Corollary 5.7 there exists a non-deterministic TM M that
computes L which makes only one query calls to a #CircuitSat oracle, has all its nondeterminism
at the beginning, and only accepts computations where the correct oracle query result is encoded
in the nondeterminism. Let f(|x|) be a polynomial that bounds the length of a string needed to
encode the nondeterminism of M , let g(|x|) (without loss of generality even) be a polynomial that
bounds the number of inputs to the circuit queried by M , and let y be a string of bits that encodes
the nondeterminism used in M on a particular run.

Given an input x we construct a boolean game G with the following agents: f(|x|) agents
y1, . . . , yf(|x|) called y agents, f(|x|) agents y′1, . . . , y

′
f(|x|) called y′ agents, g(|x|) agents z1, . . . , zg(|x|)

called z agents, and agents J1, J2, and J3 called the judges.
Let the string y = sy1sy2 . . . syf(|x|)

encode the nondeterminism of M , and let C be the circuit
sent to the oracle query using the nondeterminism encoded in y, let k be the oracle query guess
encoded by y, let m be the actual number of satisfying assignments of C, and let n be the number
of inputs to C.

The payoffs are as follows:

y agents: agent yi is paid 1 regardless.
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y′ agents: agent y′i receives payoff 1 if his strategy is the same as yi’s and 0 otherwise.

z agents: The z agents are paid according to a game of pennies (see Section 2). Agent zi plays
pennies against agent zi+1 where i is odd.

agent J1: J1 receives payoff
k+ 1

2
2n if he plays 0 and C(sz1sz2 . . . szk

) otherwise.

agent J2: J2 receives payoff
k− 1

2
2n if he plays 0 and C(sz1sz2 . . . szk

) otherwise.

agent J3: J3 receives payoff 1 if J1 plays 0, J2 plays 1, and M run on input x with the nondeter-
ministic choices encoded by y accepts assuming that the query result encoded by y is correct.
Otherwise, J3 receives 0.

We guarantee that J3 and all the y′i be paid 1. We make no guarantees to the other players.
Let ε = 1/(200 · f(|x|) · g(|x|) · 2n).

Now we show that if x ∈ L then there exists a Nash equilibrium in G with these guarantees,
and if x 6∈ L then there exists no ε-Nash equilibrium in G within ε of these guarantees.

Say x ∈ L. Then there exists a nondeterministic guess y = y1y2 · · · yf(|x|) such that M accepts x
run with the nondeterminism encoded by y, and the query result encoded by y is correct. We claim
that the strategy profile θ is a Nash equilibrium that meets the guarantees where θ is the strategy
profile where: syi

= sy′
i

= yi; sJ1 = 0, sJ2 = 1, sJ3 = 0, and the z agents randomize uniformly
between their two strategies. We first show that each agent is in equilibrium playing θ. The y
agents and the y′ agents are in equilibrium because they all receive payoff 1. The z agents are
because they are playing the unique equilibrium strategy of pennies. J1 is in equilibrium because

he now receives
k+ 1

2
2n and playing 1 yields a payoff of C(sz1sz2 . . . szk

) which has expectation m
2n .

However, because y encodes a valid query guess, k = m. Similarly, J2 currently receives payoff

C(sz1sz2 . . . szk
) which is expected to be m

2n = k
2n and would receive only

k− 1
2

2n by changing his
strategy. Finally, J3’s payoff is independent of his strategy and so he is also in equilibrium.

The y′ agents all receive their guarantees of 1. J3 also receives his guarantee of 1 because
sJ1 = 0, sJ2 = 1, and running M on x with the nondeterminism encoded by y results in an
accepting computation.

Say x 6∈ L, then there exists no ε-Nash equilibrium within ε of the guarantees. For the sake
of contradiction, assume that an ε-Nash equilibrium θ exists in which each agent is within ε of
his guarantees. We note that each y agent must play some particular strategy with probability
greater than 1 − ε (if yi does not, then y′i cannot attain a payoff of at least 1 − ε). Let s̄yi

be the
strategy agent yi plays with probability ≥ 1− ε in θ, and let ȳ = s̄y1 s̄y2 . . . s̄yf(|x|)

. By union bound,

Pr[θy1θy2 . . . θyf(|x|)
= ȳ] ≥ 1 − f(|x|) · ε. Because ε < 1

100f(|x|) , ȳ is played with probability at least

99/100.
Also, by Theorem A.1, Pr[θzi

= 0] ∈ [1/2 − 2ε, 1/2 + 2ε]. E[C(θz1θz2 . . . θzn)] is within 2ε · n ≤
1/(100 · 2n) of m/2n.

Now because x 6∈ L either y encodes a rejecting computation on M , or the query result of ȳ is
incorrect. In the former case, J3 receives payoff 0 whenever ȳ is played, and so cannot receive more
than 1/100. In the latter case, k 6= m. If k < m then agent J1 will receive k+1/2

2n for playing 0, but

will receive at least m
2n − 1

100·2k for playing 1. Because [ m
2n − 1

100·2k ] − [k+1/2
2n ] > 2ε by Claim 7.12

Pr[θJ1 = 1] ≥ 1
2 and so J3’s payoff will be at most 1/2 < 1 − ε = gJ3 − ε. A symmetric argument

handles the case where k > m.

Theorem 8.4 Boolean circuit game Poly-Approx and Const-Approx GuaranteeNash are
NPBPP = MA-complete.
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Proof: We first show that boolean circuit game Poly-Approx GuaranteeNash is in NPBPP.
Given an instance (G, ε, (g1, . . . , gn)), we nondeterministically guess a polynomially small strategy
profile θ. Then we test whether θ is an ε/2-Nash equilibrium that is within ε/2 of meeting the
guarantees or whether θ is either not an ε-Nash equilibrium or fails to be within ε of the guarantees.
In the former case, we accept, in the latter case we reject.

We now argue the correctness of the algorithm. If (G, ε, (g1, . . . , gn)) is a positive instance of
GuaranteeNash, then there exists a Nash equilibrium with the guaranteed properties in G. By
Theorem 3.4 there exists an ε/2-Nash equilibrium θ that can be represented in polynomial space
where the payoffs of each player are within ε/2 of the guarantees. So the algorithm will accept
upon guessing θ.

If (G, ε, (g1, . . . , gn)) is a negative instance of GuaranteeNash, then there does not exist any
ε-Nash equilibrium within ε of meeting the guaranteed properties. So whatever strategy profile θ
the algorithm guesses, either θ will fail to be an ε-Nash equilibrium or θ will fail to be within ε of
the guarantees. Therefore the algorithm will always reject θ.

It is now left to show that in BPP we can tell whether θ is an ε/2-Nash equilibrium that is
within ε/2 of meeting the guarantees or whether θ is either not an ε-Nash equilibrium or fails to
be within ε of the guarantees. Note that by Remark 5.11 we can verify whether θ is an ε/2-Nash
equilibrium or not even an ε-Nash equilibrium in BPP. By Remark 5.10 in BPP we can determine
if νi(θ) ≥ gi −

ε
2 or νi(θ) ≥ gi − ε. Therefore we can test whether all these properties hold or at

least one fails to hold using calls to a BPP oracle.

We now show that boolean circuit game Const-Approx GuaranteeNash is NPBPP-hard.
Say that we have a language L ∈ NPBPP. By Lemma 5.13 there exists a non-deterministic TM M
that computes L which makes only one query calls to a BPP oracle for the problem ACAPP, has
all its nondeterminism at the beginning, and only accepts computations where the correct oracle
query is encoded in the nondeterminism. Let f(|x|) be a polynomial that bounds the length of a
string needed to encode the nondeterminism of M , let g(|x|) (without loss of generality even) be a
polynomial that bounds the number of inputs to the circuit queried by M , let y be a string of bits
that encodes the nondeterminism used in M on a particular run, and let r = dlog1/(4ε) 100g(|x|)e.

Given an input x we construct a boolean game G = (s, ν) with the following agents: f(|x|)
agents y1, . . . , yf(|x|) called y agents, f(|x|) agents y′1, . . . , y

′
f(|x|) called y′ agents, r · g(|x|) agents

z1, . . . , zr·g(|x|) called z agents, and agents J1 and J2 called the judges.
Let the string y = sy1sy2 . . . syf(|x|)

encode the nondeterminism of M , and let C be the circuit
sent to the oracle query using the nondeterminism encoded in y, let k ∈ {0, 1} be the oracle query
guess encoded by y, let m ∈ {0, 1} be the correct query response when C is queried, let n be the
number of inputs to C, and let w = w1w2 . . . wn where wi = XOR(sz(i−1)r+1

, sz(i−1)r+2
, . . . , szi·r).

The payoffs are as follows:

y agents: agent yi is paid 1 regardless.

y′ agents: agent y′i receives payoff 1 if his strategy is the same as yi’s and 0 otherwise.

z agents: The z agents are paid according to a game of pennies (see Section 2). Agent zi plays
pennies against agent zi+1 where i is odd.

agent J1: J1 receives payoff 1
2 if he plays 0 and C(w) if he plays 1.

agent J2: J2 receives payoff 1 if J1 plays k and M run on input x with the nondeterministic choices
encoded by y accepts assuming that the query result encoded by y is correct. Otherwise, J2

receives 0.
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We guarantee that J2 and all the y′i be paid 1. We make no guarantees to the other players.
Let ε = 1

800·f(|x|)·g(|x|) .

Now we show that if x ∈ L then there exists a Nash equilibrium in G with these guarantees,
and if x 6∈ L then there exists no ε-Nash equilibrium in G within ε of these guarantees.

Say x ∈ L. Then there exists a nondeterministic guess y = y1y2 · · · yf(|x|) such that M accepts
x run with the nondeterminism encoded by y and the query result encoded by y is correct. We
claim that the strategy profile θ is a Nash equilibrium that meets the guarantees where θ is the
strategy profile where: syi

= sy′
i

= yi; sJ1 = m, sJ2 = 1, and the z agents randomize uniformly
between their two strategies. We first show that in θ each agent is in equilibrium. The y agents
and the y′ agents are in equilibrium because they all receive payoff 1. The z agents are because
they are playing the unique equilibrium strategy of pennies. J1 is in equilibrium because if m = 0,
then C accepts at most 1

3 of its inputs. The XOR of uniformly random bits is uniformly random
so E[C(w)] = E[C(Un)] ≤ 1

3 (where Un is the uniform distribution over n-bit strings). And so J1

does better by playing sJ1 = 0 = m. If m = 1 a similar argument works. Finally, J2’s payoff is
independent of his strategy and so he is also in equilibrium.

The y′ agents all receive their guarantees of 1. J2 also receives his guarantee of 1 because
sJ1 = m = k (because the oracle query result encoded by y is correct) and running M on x with
the nondeterminism encoded by y results in an accepting computation.

Say x 6∈ L, then there exists no ε-Nash equilibrium within ε of the guarantees. For the sake
of contradiction, assume that an ε-Nash equilibrium θ exists in which each agent is within ε of his
guarantees. We note that each y agent must play some particular strategy with probability greater
than 1 − ε (if yi does not, then y′i cannot attain a payoff of at least 1 − ε). Let s̄yi

be the strategy
agent yi plays with probability ≥ 1 − ε in θ, and let ȳ = s̄y1 s̄y2 . . . s̄yf(|x|)

. By a union bound,

Pr[θy1θy2 . . . θyf(|x|)
= ȳ] ≥ 1 − f(|x|) · ε. Because ε < 1

100f(|x|) , ȳ is played with probability at least

99/100.
Also Pr[θzi

= 0] ∈ [1/2 − 2ε, 1/2 + 2ε] by Theorem A.1. So by Claim 7.14 each bit wi, which is
the XOR of r such bits, is within (4ε)r ≤ 1/100n of being uniform, and their joint distribution is
within 1/100 of uniform. So E[C(w)] is within 1/100 of E[C(Un)].

Now because x 6∈ L either y encodes a rejecting computation on M , or the query result of ȳ is
incorrect. In the former case, J3 receives payoff 0 whenever ȳ is played, and so cannot receive more
than 1/100. In the latter case, k 6= m. If k = 0 and m = 1 then agent J1 will receive 1

2 for playing
0, but will receive E[C(w)] ≥ E[C(Un)]− 1

100 ≥ 2
3 −

1
100 for playing 1. Because [ 23 −

1
100 ]− [12 ] > 2ε by

Claim 7.12 Pr[θJ1 = 1] ≥ 1
2 and so J3’s payoff will be at most 1/2 < 1 − ε. A symmetric argument

handles the case where k = 1 and m = 0.

Theorem 8.5 Graph game and boolean graph game GuaranteeNash is NP-complete for all
levels of approximation. The results hold even when restricted to degree d graphs, d ≥ 3.

Proof: Graph game GuaranteeNash is in NP because we can guess a strategy profile
n2 log(n2 maxi |si|)

ε2
-uniform strategy profile θ and test in polynomial time whether θ is an ε-Nash

equilibrium where each player is payed within ε of his guarantees. If it is, accept; if not, reject.
This algorithm works because by Theorem 3.4, if there exits a Nash equilibrium that meets the

guarantees, then there exists a n2 log(n2 maxi |si|)
ε2

-uniform ε-Nash equilibrium that gets within ε/2 of
the guarantees.

To show that it is NP-hard, we reduce from CircuitSat. Given a circuit C we create an
instance of boolean graph game GuaranteeNash, (G, ε, (1, . . . , 1)). We create G with the following
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agents: 2 input agents x and x′ for each input x to C and a gate agent g for each gate g in the
circuit. Each agent has a strategy space of {0, 1}.

Each input agent x is paid 1 regardless. Each input agent, x′ is paid 1 only if it plays the
same strategy as x, the other input agent that represents the same circuit input. Except for the
gate agent associated with the output gate, each gate agent g is paid 1 for correctly computing the
output of his gate (with respect to the strategies of the agents that correspond to the inputs of his
gate), and is paid 0 otherwise. If an input x to the circuit is an input to a gate g, then the agent
associated with the gate g receives his payoff according to x’s strategy (not x ′’s strategy). The
output agent gets paid 1 only if both he correctly computes the output of his gate and that value
is 1. Let ε = 1/100.

We now show that if C ∈SAT, then there exists a Nash equilibrium that meets the guaran-
tees, but if C 6∈SAT, then there exist no ε-Nash equilibrium that comes within ε of meeting the
guarantees.

Say C has a satisfying assignment. The the strategy profile where all input agents play a
strategy which corresponds to some satisfying assignment, and the gate agents correctly evaluate
their gates is a Nash equilibrium that meets the guarantees. It is a Nash equilibrium because each
agent receives a payoff of 1, and so cannot do better. The input agents receive 1 because x and
x′ always play the same strategy. Each gate agent besides the output agent is paid 1 because he
correctly computes the output of his gate with respect to the strategies of the two inputs. The
output gate agent correctly computes the output of his gate with respect to the strategies of the
two inputs; moreover, because this is a satisfying assignment, the output he computes is 1, and so
he also receives a payoff of 1.

If C has no satisfying assignment, then there exists no ε-Nash equilibrium that comes within ε
of the guarantees. Every ε-Nash equilibrium of G which is within ε of the guarantees corresponds
to some evaluation of the circuit. By induction we show that every player in the game (with the
exception of the gate agent associated with the output gate) plays a pure strategy that corresponds
with some evaluation of the circuit with probability > 1 − 2ε.

The base case is the input gates. Every input agent x must play some strategy with probability
≥ 1− ε, otherwise, his strategy will not agree with x′’s strategy with probability ≥ 1− ε no matter
what x′ plays, and so x′’s payoff will be less than 1 − ε.

Given that the input agents each play some strategy the majority of the time, we can define a
correct strategy for gate agent g. We call the strategy of the gate agent g correct if it corresponds
with the output of the gate g in an evaluation of C using the strategy that agent x plays the
majority of the time as the input to gate x.

We claim that in any ε-Nash equilibrium, each gate agent besides the output agent must play
the correct strategy with probability ≥ 1−2ε. We proceed by induction. The base case has already
been proven. The inductive step is exactly as in the proof of Claim 7.16.

Therefore, in any qualifying Nash equilibrium, each player (beside the output gate player) must
play a strategy corresponding with the correct valuation of the circuit. But because there is no
satisfying assignment, the agent assigned to the output node, will not get a payoff close to 1. For
in the correct valuation, his gate evaluates to 0, but if he plays 0, he is paid nothing. So the best
he can do is play 1. Because each of the agents corresponding to the input gates play the correct
strategy with probability ≥ 1 − 2ε, and the output gate receives nothing when they both play the
correct strategy, the most that the output agent can be paid is 4ε < 1 − ε.

Conitzer and Sandholm [CS03] showed that Exact GuaranteeNash is NP-complete in bi-
matrix games. We observe that the same holds even for Poly-Approx:

Theorem 8.6 [CS03] Bimatrix Exact and Poly-Approx GuaranteeNash are NP-complete.
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Proof: The hardness proof is exactly the same as the proof of Theorem 8.1 except now N is
polynomial in the size of the input instead of exponential.

It is in NP because we can guess a polynomially-sized strategy profile, θ, and then in polynomial
time check that it is a Nash equilibrium that satisfies the guarantees. By Proposition 3.3 If such a
Nash equilibrium exits, then there exists one of at most polynomial size.

Theorem 8.7 Bimatrix Const-Approx GuaranteeNash is in P̃.

Proof: Given an instance (G, ε, (g1, . . . , gn)) simply look through all the k-uniform strategies,

where k = 4 log(4 maxi |si|)
(ε)2 for a strategy profile that is an ε-Nash equilibrium where the payoffs to

players are within ε/2 of their guarantees. There are only a quasipolynomial number of k-uniform
strategies and checking each strategy takes only polynomial time. If such a strategy is found,
accept, otherwise reject.

If there is no ε-Nash equilibrium within ε of the guarantees, surely the algorithm will not find
one. However, if there exists some Nash equilibrium θ that pays off each player his guaranteed
amount, then by Theorem 3.4 there will exist a k-uniform ε-Nash equilibrium θ ′ that is within ε/2
of the guarantees, and so the algorithm will find it.
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A Analysis of Pennies

The game of pennies G = (s, ν) involves 2 players. s1 = s2 = {0, 1} and the payoffs are as follows:

Player 2
Heads Tails

Player 1 Heads (1, 0) (0, 1)
Tails (0, 1) (1, 0)
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Pennies has a unique Nash equilibrium where both agents randomize uniformly between their
two strategies. If the second player does not randomize equally between his strategies, player 1’s
best strategy is to play, with probability 1, the strategy that player 2 plays more often. And
similarly if player 1 does not randomize equally, player 2 does the opposite of what player 1 plays
most often. So the only Nash equilibrium is when both players randomized equally between their
two options.

The following theorem gives us an idea of what constitutes an ε-Nash equilibrium in the game
of pennies.

Theorem A.1 In any ε-Nash equilibrium of pennies, each player randomizes between each strategy
with probability 1

2 ± 2ε.

Proof: Say that player 1 plays 1 with probability p and player 2 plays 1 with probability q.
Then the payoff to player 1 is pq + (1 − p)(1 − q). Now let p = 1

2 + δ and q = 1
2 + δ′. If agent 1

plays a pure strategy his payoff will be either q or 1− q. In any ε-Nash equilibrium it must be that
pq + (1 − p)(1 − q) + ε ≥ max{q, 1 − q} ⇒ max{q, 1 − q} − [pq + (1 − p)(1 − q)] ≤ ε.

Say that δ′ ≥ 0. Then we get

1

2
+ δ′ −

[

(
1

2
+ δ)(

1

2
+ δ′) + (

1

2
− δ)(

1

2
− δ′)

]

≤ ε ⇒ δ′ − 2δδ′ ≤ ε ⇒ δ′ ≤
ε

1 − 2δ

Similarly, if δ′ ≤ 0. Then we get

1

2
− δ′ −

[

(
1

2
+ δ)(

1

2
+ δ′) + (

1

2
− δ)(

1

2
− δ′)

]

≤ ε ⇒ −δ′ − 2δδ′ ≤ ε ⇒ −δ′ ≤
ε

1 + 2δ

Doing the same thing for agent 2 with δ > 0:

1

2
+ δ −

[

(
1

2
+ δ)(

1

2
− δ′) + (

1

2
− δ)(

1

2
+ δ′)

]

≤ ε ⇒ δ + 2δδ′ ≤ ε ⇒ δ ≤
ε

1 + 2δ′

And now with δ < 0:

1

2
− δ −

[

(
1

2
+ δ)(

1

2
− δ′) + (

1

2
− δ)(

1

2
+ δ′)

]

≤ ε ⇒ −δ + 2δδ′ ≤ ε ⇒ −δ ≤
ε

1 − 2δ′

Now by substitution and algebraic manipulation, we can see that this conditions require that
|δ|, |δ′| < 2ε.
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