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Abstract

We prove that an ω(log3 n) lower bound for the three-party number-on-the-forehead (NOF) com-
munication complexity of the set-disjointness function implies an nω(1) size lower bound for tree-like
Lovász-Schrijver systems that refute unsatisfiable CNFs. More generally, we prove that an nΩ(1) lower

bound for the (k + 1)-party NOF communication complexity of set-disjointness implies a 2nΩ(1)
size

lower bound for all tree-like proof systems whose formulas are degree k polynomial inequalities.

1 Introduction

Linear programming, the problem of optimizing a linear objective function over the points of a given poly-
hedron, was shown to be polynomial-time solvable over the rationals by Khachian [15]. When integrality
constraints are added, however, the resulting integer linear programming problem becomes NP-hard. Many
algorithms for such problems attempt to apply efficiencies from rational linear programming to the integral
case.

One of the most powerful of such approaches is to begin with the polytope defined by the original linear
program without integrality constraints and systematically pare down the polytope by repeatedly refining
the linear program with “cutting planes” that remove only nonintegral solutions until we are left with the
convex hull of the integral solutions. These are local methods in which the initial polytope Q (expressed by
the natural cutting planes constraints) is transformed through a sequence of local operations to smaller and
smaller polytopes (each contained in the original one), until the integral hull of Q is reached. (At this point,

∗Supported by NSF grants CCR-0098066 and ITR-0219468
†Supported by an Ontario Premiere’s Research Excellence Award, an NSERC grant, and the Institute for Advanced Study.

Research done while at the Institute for Advanced Study.
‡Supported by NSF Postdoctoral Fellowship DMS-0303258. Research done while at the Institute for Advanced Study.

1

Electronic Colloquium on Computational Complexity, Report No. 53 (2005)

ISSN 1433-8092




rational linear programming will find the correct solution.) For decision problems, this sequence terminates
with the empty polytope if and only if the initial polytope contains no integral points.

One such method is that of Gomory-Chvátal cuts [6] which derives each new cutting plane as a linear
combination and shift of existing facet constraints. There are even more subtle methods available, particu-
larly in the case of 01-programming, which is also NP-complete. In a seminal paper, Lovász and Schrijver
[16] introduced a variety of cutting planes methods that derive new cutting planes by first “lifting” the
inequalities to higher degree polynomial inequalities (in particular quadratic inequalities) and then “project-
ing” them down to linear inequalities using polynomial identities and the fact that x2 = x for x ∈ {0,1}.
These systems are now known as Lovász-Schrijver systems (LS).

It may be too costly to apply these techniques to pare all the way down to the integral hull. However,
even applying a smaller number of rounds of the procedure can often lead to a smaller polytope that has
good approximability ratio, one for which the best nonintegral solution is not too far away from the best
integral solution, so that by rounding we can achieve a good approximation to the optimal value.

There are two complexity measures that are commonly studied for Lovász-Schrijver and related cutting
planes proof systems: size and rank. Intuitively, rank is the number of intermediate polytopes that must be
passed through before arriving at the integral hull. In [16] it was shown that for any (relaxed) polytope P, if
the rank of P is d, then the optimization and decision problems for P can be solved exactly deterministically
in time nO(d). This very nice algorithmic property of Lovász-Schrijver systems makes them especially
appealing for solving or approximating NP-hard optimization problems via linear programming. A variety
of rank lower bounds for exact solution are known, even for the case of unsatisfiable systems [4, 8, 11, 7,
12]. Moreover, interesting bounds on the ranks required for good approximations to vertex cover [1] and
MaxSAT [5] have been obtained. This, in turn, implies inapproximability results for these problems for any
polynomial-time algorithm based on rank.

While there is a rich and growing body of results concerning rank, very little is known about the size of
LS proofs. Informally, the size of a LS procedure with respect to some polytope P is the smallest number
of hyperplanes defining all of the polytopes that we need to pass through before arriving at the integral
hull. Clearly size lower bounds imply rank lower bounds, and even tree-size lower bounds imply rank lower
bounds, but the converse is not known to be true. The one unconditional (tree-like) size lower bound known
for LS [12] is for a family of polytopes for which decision and optimization are trivial and for which the
integral hull has a trivial derivation in Chvátal’s cutting planes proof system.

Problems in which the facets represent clauses of a CNF formula and a decision algorithm for 01-
programming yields a propositional proof system are particularly important to analyze. Proving (tree-like)
size lower bounds for such polytopes was given as one of the main open problems in [12]. The only LS
size lower bounds known at present for such polytopes formulas are conditional results. First, it is an easy
observation that NP 6= coNP implies superpolynomial LS size lower bounds for some family of unsatisfiable
CNF formulas. It has also been shown by [19, 9, 10] that these lower bounds also hold under other natural
complexity assumptions.

In this paper we develop a new method for attacking size lower bounds for LS and for systems that
generalize LS. Our main result is a proof that lower bounds on the 3-party communication complexity of set
disjointness (in the number-on-forehead model) imply lower bounds on the size of tree-like LS proofs for
a particular family of unsatisfiable CNF formulas. We also generalize this result to a much more powerful
family of proof systems known as semantic LSk, where lines are now degree k polynomial inequalities. All
versions of LS are special cases of LS2, and Chvátal’s Cutting Planes proof system is a special case of LS1.

More generally, we show that proving lower bounds on the (k +1)-party communication complexity of
set disjointness implies lower bounds on the size of tree-like semantic LSk proofs. By a natural extension of
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the ideas in [2] one can show that the (k + 1)-party set disjointness problem is “complete” for the (k + 1)-
party communication complexity class (k + 1)-NPcc and a lower bound showing that it is not in (k + 1)-
RPcc would already given excellent lower bounds for LSk proofs. Such a result is already known in the case
k = 1 [2] (and was used in [13] to derive tree-like size lower bounds for Chvátal’s Cutting Planes system)
and set disjointness is one of the most well-studied problems in communication complexity.

Our proof can be seen as a generalization of [13] to arbitrary k but the extension requires a number of
new ideas and a substantially more complicated argument that includes a detailed analysis of large sets of
vertex-disjoint paths in expander graphs.

2 Definitions

2.1 Multiparty Communication Complexity and Set Disjointness

The k-party number-on-the-forehead (NOF) model of communication complexity computes functions (or
relations) of input vectors (x1, . . . ,xk) ∈ X1× . . .×Xk distributed among k parties, such that party i ∈ [k] sees
all x j for all j ∈ [k], j 6= i.

The k-party set disjointness problem DISJk,n : ({0,1}m)k → {0,1} is defined by DISJk,n(~x) = 1 iff there
is some j ∈ [n] such that xi, j = 1 for all i ∈ [k]. (We follow standard terminology although it might be more
appropriate to call this set intersection rather than disjointness.)

A (0,ε)-error k-party NOF communication protocol for set disjointness is a protocol that for every
disjoint input produces output 0 and for intersecting inputs outputs 1 with probability at least 1− ε.

It is conjectured that for any k ≥ 2 the k-party set disjointness problem requires nearly linear random-
ized NOF communication complexity. This conjecture is equivalent showing that nondeterministic k-party
communication complexity can be almost optimally separated from randomized k-party communication
complexity. The conjecture is proven for k = 2 [14], but the best known lower bound for k ≥ 3 is Ω(logn)
for general models and Ω(n1/k) for more restricted models [3].

2.2 Threshold Logics

The two most prevalent classes of threshold logics are Gomory-Chvátal cutting planes [6], and matrix cuts,
defined by Lovász and Schriver [16]. First we briefly describe Gomory-Chvátal cutting planes, which is
referred to in the literature as simply Cutting Planes (CP). A CP proof of unsatisfiability of a set of integer
linear inequalities f = { f1 ≥ a1, . . . fm ≥ am} is a sequence of integer linear inequalities g1 ≥ b1, . . . ,gq ≥ bq

such that each gi ≥ bi is either an inequality from f , an axiom (x ≥ 0 or 1− x ≥ 0), or is obtained by one of
the two rules: (i) gi ≥ bi is a positive integer linear combination of some previously derived inequalities; or
(ii) gi ≥ bi is obtained from a previous inequality cgi ≥ bi by rounding (to obtain gi ≥ dbi/ce).

There are several cutting planes proof systems defined by Lovász and Schrijver [16], collectively referred
to as matrix cuts. These systems allow one to ”lift” the linear inequalities to degree-two polynomials and
then project back to degree one, using the fact that x2 = x for x ∈ {0,1}. To see that the definitions below
are equivalent to the original definitions of Lovász and Schrijver, see [9].

Definition 2.1. Given a polytope P ⊆ Qn defined by aix ≥ bi for i = 1,2, . . . ,m:

(1) An inequality d − cT x ≥ 0 is called an N-cut for P if

d − cT x = ∑
i, j

αi j(bi −aT
i x)x j +∑

i j

βi j(bi −aT
i x)(1− x j)+∑

j

λ j(x
2
j − x j),
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where αi j,βi j ≥ 0 and λ j ∈ R for i = 1, . . . ,m, j = 1, . . . ,n.

(2) A weakening of N-cuts, called N0-cuts can be obtained if when simplifying to the linear term d− cT x,
we view xix j as distinct from x jxi.

(3) An inequality d − cT x is called an N+-cut if

d− cT x = ∑
i, j

αi j(bi −aT
i x)x j +∑

i j

βi j(bi −aT
i x)(1− x j)+∑

j

λ j(x
2
j − x j)+∑

k

(gk +hT
k x)2,

where again αi j,βi j ≥ 0, λ j ∈ R for i = 1, . . . ,m, j = 1, . . . ,n and gk + hT
k x is a linear function for

k = 1, . . . ,n+1.

The operators N, N0 and N+ are called the commutative, non-commutative and semidefinite operators,
respectively. All three are collectively called matrix-cut operators.

Definition 2.2. A Lovász-Schrijver (LS) refutation for f is a sequence of inequalities g1, . . . ,gq such that
each gi is either an inequality from f or follows from previous inequalities by an N-cut as defined above,
and such that the final inequality is 0 ≥ 1. Similarly, a LS0 refutation uses N0-cuts and LS+ uses N+-cuts.

Definition 2.3. Let P be one of the proof systems CP, LS, LS0 or LS+. Let S be an P -refutation of f ,
viewed as a directed acyclic graph. If the underlying directed acyclic graph is a tree, then S is a tree-like
P -refutation of f . The inequalities in S are represented with all coefficients in binary notation. The size of
S is the sum of the sizes of all inequalities in S; the rank of S is the depth of the underlying directed acyclic
graph. For a set of boolean inequalities f , the P -size of f is the minimal size over all P refutations of f .
Similarly the P -treesize of f is the minimal size over all tree-like P -refutations of f .

Note that in our definition of these cutting planes systems, we can derive a new inequality from any
number of previous inequalities in one step, whereas in a typical proof system, we are restricted to fanin-
two. However, in light of Caratheodory’s theorem, we can assume without loss of generality that the fanin
is at most n + 1 in CP and n2 + n + 1 in LS, and so the size and treesize would not increase significantly if
instead our proof systems would be defined to have fanin 2.

All of above proof systems, CP, LS, LS0, and LS+, are special cases of more general semantic threshold
logic proof systems which we will define now.

A k-threshold formula over Boolean variables x1, . . . ,xn is a formula of the form ∑ j γ jm j ≥ t, where
γ j, t are integers, and for all j, m j is a multilinear monomial of degree at most k. The size of a k-threshold
formula is the sum of the sizes of γ j and t, written in binary notation.

Let f1, f2,g be k-threshold formulas in the variables ~x. We say that g is semantically entailed by f1 and
f2 if for every 0/1 assignment to~x that satisfies both f1 and f2, g is also satisfied.

Let f be an unsatisfiable CNF formula over x1, . . . ,xn, and let t1, . . . , tm be the underlying set of clauses
of f , written as 1-threshold inequalities. A Th(k) refutation of f , P , is a sequence of k-threshold formulas,
L1, . . . ,Lq, where each L j is one of the inequalities ti, i ∈ [m], or is semantically entailed by two formulas Li

and Li′ with i, i′ < j, and the final formula Lq is 0 ≥ 1. The size of P is the sum of the sizes of all k-threshold
formulas occurring in P . The proof is tree-like if the underlying directed acyclic graph, representing the
implication structure of the proof, is a tree. (That is, every formula in the proof, except for the formulas
from f , is used at most once as an antecedent of an implication.)

CP refutations are a special case of Th(1) semantic refutations, and thus lower bounds for tree-like Th(1)
semantic refutations imply similar lower bounds for tree-like CP. (This was already shown in [13].)
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As mentioned earlier, since we can assume that any of the Lovász-Schrijver systems can be assumed
to have fan-in two, it follows that any of the systems LS0, LS and LS+ can easily be converted into Th(2)
semantic refutations with at most a polynomial increase in size, and if the original proof is tree-like, so is
the semantic refutation. Thus, lower bounds for tree-like Th(2) semantic refutations imply similar lower
bounds for all tree-like Lovász-Schrijver systems.

2.3 Relating the Complexity of Threshold Logics to the Complexity of a Search Problem

Let f be an unsatisfiable CNF formula. We will be interested in the following search problem, Search f

associated with f : given a truth assignment α, find a clause from f which is falsified by α. The model for
this computation is a decision tree whose nodes evaluate polynomial threshold functions:

A k-threshold decision tree is a rooted, directed tree whose vertices are labeled with k-threshold func-
tions and edges are labeled with either 0 or 1. The leaves of the tree are labeled with clauses of f . A
k-threshold decision tree solves Search f in the obvious way: start at the root and evaluate the threshold
function; follow the edge that is consistent with the value of the threshold function; continue until the com-
putation reaches a leaf and output the associated clause. The size S of a k-threshold decision tree is the sum
of the sizes of all threshold formulas in the tree, where the coefficients are written in binary. The depth of a
k-threshold decision tree is the depth of the underlying tree.

The following lemma, similar to the degree 1 case in [13], shows that from a small tree-like Th(k)-
semantic refutation of an unsatisfiable formula f , a small-size, small-depth k-threshold decision tree for
Search f can be extracted.

Lemma 2.1. Let P be a tree-like Th(k)-semantic refutation of f of size S. Then there is a k-threshold
decision tree for Search f of depth O(logS) and size O(S).

Proof. Assume that P is a size S tree-like Th(k)-semantic refutation of f . We will describe a depth O(logS),
size O(S), k-threshold decision tree which computes the search problem associated with f . The proof is by
induction on S; clearly if S = 1 then the unsatisfiable formula is a single, false threshold formula, so the
lemma holds. For the inductive statement, assume that the size of P is S > 1. By the 1/3-2/3 trick, there
is an intermediate threshold formula f in P such that the number of formulas above f is between S/3 and
2S/3. Let the subtree of P with root formula f be denoted by A and let the remainder of P (consisting
of all formulas of P that are not in A , and with f replaced by 1 ≥ 1) be denoted by B . In our decision
tree, we first query f . If f evaluates to 0, we proceed on the subtree A and otherwise we proceed on the
subtree B . By induction, both A and B have size at most 2S/3, so the height of the decision tree obtained
will be log3/2(S)+ 1 ≤ O(log S). To see that the decision tree computes the search function, notice that if
f evaluates to false on a given truth assignment φ, then we proceed on the subproof A . By soundness of
the proof, at least one of the leaf formulas of A must be falsified by φ. A similar argument holds when f
evaluates to true.

The next lemma, adapted from arguments in [18], shows that any relation computed by a shallow k-
threshold decision tree can also be efficiently computed by a k+1 player communication complexity proto-
col (number-on-forehead model), over any partition of the variables. Some details are given in the appendix.

Lemma 2.2. Suppose that relation R(x1, . . . ,xkn) is computed by a a depth d k-threshold decision tree in
which all coefficients are bounded by N ≥ n. For any partition of the inputs into k sets,
(a) there is a k +1-party deterministic NOF communication complexity protocol for R in which O(d log N)
bits are communicated in total, and
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(b) there is a k + 1-party 0-error randomized NOF communication complexity protocol for R in which
O(d(log logN)2) bits are communicated in total and which computes an answer with probability at least
1− ε.

Proof Sketch. Observe that for each monomial m in each k-threshold formula there is at least one party that
can evaluate the monomial. Thus each k-threshold formula can be evaluated as the sum of k values known
to different parties. The k-threshold formulas can be evaluated using variants of the standard deterministic
or randomized 2-party communication algorithms for the GREATERTHAN function.

The following is a corollary.

Theorem 2.3. Suppose that f has a tree-like Th(k)-semantic refutation of size S. Then there exists a k +1-
party 0-error randomized NOF communication complexity protocol for Search f (over any partition of the
variables into k groups) that communicates O(log3 S) bits and produces an answer with probability at least
1−1/n.

Further, if all k-threshold formulas in the Th(k)-semantic refutation have coefficients bounded by a
polynomial in n, then the 0-error randomized communication complexity can reduced to O(log S(log log n)2)
or the protocol can be made deterministic using O(log S logn) bits.

2.4 k-fold Tseitin formulas

Our hard examples will be based on the well-known Tseitin graph formulas. Let G = (V,E) be any con-
nected, undirected graph and let ~c ∈ {0,1}V . The Tseitin formula for G with respect to charge vector ~c,
TS(G,~c), has variables Vars(G) = {ye | e ∈ E}. The formula states that for every vertex v ∈V , the parity of
the edges incident with v is equal to the charge, cv, at node v. It is expressed propositionally as the conjunc-
tion of the clauses obtained by expanding ⊕e3vye = cv for each v ∈V . Note that for a graph with maximum
degree d, each clause is of width ≤ d and the number of clauses is ≤ |V |2d .

Notice that TS(G,~c) is satisfiable if and only if ∑v∈V cv is even. For odd ~c, SearchT S(G,~c) takes a 0/1
assignment α to Vars(G) and outputs a clause of TS(G,~c) that is violated. In particular, a solution to
SearchT S(G,~c) will produce a vertex v such that the parity equation associated with vertex v is violated by α.

To make the search problem hard for k-party NOF communication protocols (and thus, by Theorem 2.3,
hard for k−1-threshold decision trees) we modify TS(G,~c) by replacing each variable ye by the conjunction
of k variables,

Vk
i=1 yi

e, and expanding the result into clauses. We call the resulting k-fold Tseitin formula,
TSk(G,~c), and its variable set, Varsk(G) = {yi

e | e ∈ E, i ∈ [k]}.
For a fixed graph G and different odd-charge vectors~c ∈ {0,1}V (G), the various problems SearchT Sk(G,~c)

are very closely related. Define ODDCHARGEk(G) to be the k-party NOF communication search problem
which takes as input an odd charge vector ~c ∈ {0,1}V (G), seen by all players, and an assignment α to
Varsk(G), in which player i sees all values but the assignment αi

e to yi
e for e ∈ E(G), and requires that the

players output a vertex v that is a solution to SearchT Sk(G,~c).

3 Reduction from Set Disjointness to ODDCHARGE

We give a sequence of reductions to show that for a suitably chosen graph G, an efficient k-party NOF
communication complexity protocol for ODDCHARGEk(G) will imply an efficient 1-sided error randomized
k-party NOF protocol for the set disjointness relation.
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We apply the Valiant-Vazirani argument to show that, without loss of generality, it suffices to derive a
1-sided error protocol for a version of set disjointness in which the input has intersection size 0 or size 1,
and the job of the players is to distinguish between these two cases. We call this promise problem zero/one
set disjointness.

Fix G to be an appropriately chosen fixed-degree graph on n vertices with good expansion and girth
properties, where m = n1/3/ logn. Our reduction from zero/one set disjointness to ODDCHARGEk(G) goes
via an intermediate problem, EVENCHARGEk(G), which is the exact analog of ODDCHARGEk(G) except
that the input charge vector~c is even rather than odd and the requirement is either to find a charge violation
or to determine that no charge violation exists.

The reduction from EVENCHARGEk(G) to ODDCHARGEk(G), which is similar in spirit to a reduction
of Raz and Wigderson [20], works by planting a single randomly chosen additional charge violation. This
yields a protocol for EVENCHARGEk(G) that works well on average for each class of inputs with a given
number of charge violations.

The most difficult part of our argument is the reduction from zero/one set disjointness to
EVENCHARGEk(G) for suitable graphs G. The key idea is that for even ~c, charge violations of TSk(G,~c)
come in pairs: Given an instance ~x ∈ ({0,1}m)k of zero/one set disjointness, using the public coins, the
players randomly choose an even charge vector ~c and m vertex-disjoint paths in G, p1, . . . , pm, for each
j ∈ [m], the players plant the x1, j, . . . ,xk, j as the assignment along each edge of path p j , in a random solution
that otherwise meets the chosen charge constraint. By construction, a charge violation can occur only at the
endpoints of a path and only if there is an intersection in the set disjointness problem.

By far the most difficult part is ensuring that the resulting problem looks sufficiently like a random
instance of EVENCHARGEk(G) with either 0 or 2 charge violations so that we can apply the average case
properties of the protocol for EVENCHARGEk(G). This places major constraints on the graph G. The bulk
of the work is in showing that a small number of specific properties: rapid mixing, modest degree, and high
girth – properties all met by a family of expanders constructed in [17] – are sufficient.

Distributions on labeled graphs For the rest of the paper in the Tseitin tautologies we will use a family of
graphs Hn that is the union of two edge-disjoint graphs on the same set of n vertices [n], Gn and Tn. Gn will
be a ∆-regular expander graph of the form defined by Lubotzky, Phillips, and Sarnak [17] for ∆ = Θ(log n).
Since Gn has degree > n/2, there is a spanning tree Tn of maximum degree 2 (a Hamiltonian path) in Gn.
Clearly Hn also has maximum degree Θ(log n) and thus TSk(Hn,~c) has size nO(k).

Let Hn be such a graph and let ~c be an even charge vector. We define Sol(Hn,~c) to be the set of all 0/1
assignments to the edges of Hn so that for each vertex v ∈ [n], the parity of edges incident with v is equal to
cv. A uniform random distribution over Sol(Hn,~c) can be obtained by first selecting 0/1 values uniformly at
random for all edges in Gn and then choosing the unique assignment to the edges of Tn that fulfill the charge
constraints given by~c.

Given a bit value b associated with an edge e ∈ Gn, we can define a uniform distribution Lk(b) over
the corresponding variables yi

e, i ∈ [k]. Such an assignment is chosen randomly from Lk on input b by the
following experiment. If b = 1 then set all variables associated with edge e, y i

e, i ∈ [k] to 1. Otherwise if
b = 0, set the vector (~ye)i∈[k] by choosing uniformly at random from the set of 2k −1 not-all-1 vectors.

Definition 3.1. For any t ≥ 0 let Dt be a distribution given by the following experiment on input Hn =
Gn ∪Tn.

1. Choose an even charge vector~c ∈ {0,1}n uniformly at random.

2. Choose some β ∈ Sol(Hn,~c) uniformly at random.
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3. For each e ∈ Gn, select the values for the vector (ye)i∈[k] from Lk(βe) and for each e ∈ Tn, set yi
e = βe

for all i ∈ [k].

4. Select a random subset U ⊆ [n] of 2t vertices and produce charge vector ~c U from ~c by toggling all
bits cv for v ∈U.

5. Return the pair (α,~c U ) where α is the boolean assignment to the variables yi
e, i ∈ [k], e ∈ Hn.

Reduction from EVENCHARGE to ODDCHARGE

Lemma 3.1. Let G be any connected graph on n vertices and let ∆(G) be the maximum degree in G. Sup-
pose that Πodd is a randomized k-party NOF protocol for ODDCHARGEk(G) that produces an answer with
probability at least 1− ε, is correct whenever it produces an answer, and uses at most s bits of communi-
cation. Then there is a randomized k-party NOF protocol Πeven for EVENCHARGEk(G) that uses s+∆(G)
bits of communication and has the following performance:

Pr
(α,~c)∈D0

[Πeven(α,~c) = true] = 1

Pr
(α,~c)∈Dt

[Πeven(α,~c) ∈ Err(α,~c)] ≥ 2/3− ε for t ≥ 1.

Proof. Let Πodd be a protocol for ODDCHARGEk(G) and assume that V (G) = [n]. We give a protocol Πeven

for EVENCHARGEk(G). On input (α,~c) and random public string r: Using r, choose a random vertex
v ∈ [n]. Check whether the parity equation associated with vertex v is satisfied by α using at most ∆(G) bits
of communication. If it is not, return v. Otherwise, create an odd charge vector, ~c {v}, which is just like ~c
except that the value of cv is toggled. Now run Πodd on input (~c {v},α). If Πodd returns the planted error v
or if Πodd does not return a value then return “true”; if Πodd returns u 6= v, output u.

Suppose that (α,~c) ∈ D0. Then α satisfies all charges specified by~c, so when Πodd returns a vertex the
above protocol must output “true” because Πodd has one-sided error–that is, Πodd will only return a vertex u
when there is an error on the parity equation associated with u. Now suppose that (α,~c) ∈ Dt so exactly 2t
parity equations are violated. If the random vertex v does not satisfy its parity constraints, then the algorithm
is correct. The remaining case is when v satisfies the parity equation and in this case we call Πodd on a pair
(α,~c {v}) where exactly 2t +1 parity equations are violated.

We show the probability bound separately for each T ∈ [n](2t+1). Because the events Err(α,~c′) = T
partition the probability space, this proves the claim. By symmetry, for T ∈ [n](2t+1) and any function g with
codomain T , we have that Prα,~c,v[g(α,~c {v}) = v | Err(α,~c {v}) = T ] = 1/(2t +1) since it is equally likely for
~c′ =~c {v} to be generated as~c {u} for any u ∈ T . Thus we obtain:

Pr
α,~c,v

[Πeven(α,~c {v}) errs | Err(α,~c {v}) = T ]

= Pr
α,~c,v

[Πodd(α,~c {v}) = v or Πodd(α,~c {v}) is not defined | Err(α,~c {v}) = T ]

≤ 1/(2t +1)+ ε ≤ 1/3+ ε

for t ≥ 1.

Reduction from Zero/One Set Disjointness to EVENCHARGE: We now show how to use a k-party NOF
communication complexity protocol Πeven for EVENCHARGEk(Hn) as guaranteed by Lemma 3.1 to produce
a k-party NOF protocol for the zero/one set disjointness problem which uses the following definition.
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Definition 3.2. Let P(m)
l be the set of all sequences of m vertex-disjoint length l paths in Gn.

Lemma 3.2. Let m = n1/3/ log n. For sufficiently large n and for any even charge vector ~c, if there is a
probabilistic k-party NOF communication complexity protocol, Πeven for EVENCHARGEk(Hn) using s bits,
satisfying the conditions in Lemma 3.1 for D0 and D1, then there is a randomized (0,1/3+ε+o(1)) error k-
party NOF communication complexity protocol Π01dis j for zero/one set disjointness on input ~x ∈ ({0,1}m)k

that uses s bits of communication.

Proof. Let~x be an instance of zero/one set disjointness. Protocol Π01dis j will call Πeven on the graph Hn, on
a pair (α,~c) chosen according to the following distribution/experiment:

1. On input~x with public coins r:

(a) Using public coins r, choose a random even charge vector~c ∈ {0,1}n .

(b) Using public coins r, choose a sequence of m vertex-disjoint length l paths, p1, . . . pm uniformly
at random from P(m)

l .

(c) Using the public coins r, choose β ∈ Sol(Hn −
Sm

j=1 p j,~c)

2. For all edges e ∈ Hn, all players other than player i compute αi
e as follows:

(a) If e ∈ p j for j ∈ [m], set αi
e = xi, j

(b) If e ∈ Gn and e 6∈ Sm
j=1 p j , choose the vector α1

e . . .αk
e according to the distribution Lk(βe).

(c) For the remaining edges e ∈ Tn, set all variables αi
e for i ∈ [k] equal to βe.

3. Return (α,~c)

We write R (~x) to denote the distribution on assignment/charge pairs produced by reduction Π01dis j when
given an input ~x. The following lemma shows that for t = | ∩~x| ∈ {0,1}, although R (~x) is not the same as
Dt , R (~x) is close to the distribution Dt in the `1 norm. This lemma is the main technical lemma in the proof.
The proof of this lemma can be found in the next section.

Lemma 3.3. Let~x ∈ ({0,1}m)k and | ∩~x| = 1. Then ||R (~x)−D1||1 is o(1).

Protocol Π01dis j will output 0 if Πeven returns “true” and 1 otherwise. If ∩~x = /0, by the above con-
struction, the support of R (~x) is contained in that of D0 and thus on R (~x), Πeven must answer “true” and
the vector ~x is correctly identified as being disjoint. In the case that ∩~x contains exactly one element,
Pr[Π 01dis j(~x)) = 0] ≥ 2/3− ε−o(1). This completes the proof of Lemma 3.2.

Reduction from Set disjointness to Zero/One Set disjointness

Lemma 3.4. If there is an (0,ε) randomized NOF protocol for the k-party zero-one-promise set-disjointness
problem that uses s bits of communication where ε is a constant < 1, then there is a (0, 1

3) randomized NOF
protocol for the k-party set-disjointness problem that uses O(s logn) bits of communication.

Naturally, our starting point is the well-known result of Valiant and Vazirani [21].

Lemma 3.5 (Valiant-Vazirani). Let a be a positive integer. Fix a nonempty S ⊆ {0,1}a, and choose
w1, . . .wa ∈ {0,1}a independently and uniformly. With probability at least 1/4, there exists j ∈ {0, . . . ,a} so
that |{x ∈ S | ∀i ≤ j, x ·wi = 0}| = 1.
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Proof of Lemma 3.4. Let Π be the protocol for the promise problem. Set a = dlog ne. Using public coins,
independently and uniformly choose w1, . . .wl ∈ {0,1}a. For j ∈ {0, . . .a}, the players run the protocol Π,
using the following rule for evaluating the input xi,r for i ∈ [k],r ∈ [m]: interpret r as a vector in {0,1}a , and
replace the value of xi,r by zero if for some j′ ≤ j, w j′ ·r 6= 0, and use the value xi,r if for all j′ ≤ j, w j′ ·r = 0.
If the protocol Π returns 1, the players halt and output 1, otherwise, the players proceed to round j + 1. If
no intersection is found after all a+1 rounds, the players announce that the inputs are disjoint.

Clearly, this protocol uses O(s logn) bits of communication, and by the 0-error property of Π on disjoint
inputs, it never outputs 1 when the inputs are disjoint. When the inputs are non-disjoint, the Valiant-Vazirani
construction ensures that with probability at least 1/4, at some round j the protocol Π is used on an input
with a unique intersection, and therefore, conditioned on this event, the correct answer is returned with
probability at least 1−ε. Therefore, the correct answer is returned with probability at least 1

4 − ε
4 . Because ε

is bounded away from 1 and the error is one-sided, a constant number of repetitions decreases the probability
of error to 1/3.

Combining the reductions

Theorem 3.6. Let k ≥ 2 and m = n1/3/ log n. For each n there is an odd charge vector~c ∈ {0,1}n such that
for any ε < 1/2 the size of any tree-like Th(k-1) refutation of TSk(Hn,~c) is at least 2Ω((Rk

ε(DISJk,m)/ log n)1/3).
Further if the coefficients in the Th(k-1) refutations are bounded by a polynomial in n then the refutation
size must be at least 2Ω(Rk

ε(DISJk,m)/(logn(log log n)2)) or at least 2Ω(Dk
ε(DISJk,m)/ log2 n).

Proof. By Theorem 2.3 and the definition of ODDCHARGEk(Hn), if for every ~c ∈ {0,1}n there is tree-like
Th(k-1) refutation of TSk(Hn,~c) of size at most S, then there is a 1/n-error randomized k-party NOF com-
munication complexity protocol for ODDCHARGEk(Hn) in which at most O(log3 S) bits are communicated.
By communicating the value of one edge at the vertex to be output by this ODDCHARGE k(Hn) protocol, the
players can check that this vertex is indeed in error and not produce an answer otherwise. This will produce
a 0-error protocol that outputs the correct answer with probability at least 1−1/n. By Lemma 3.1 this yields
a randomized 0-error k-party NOF protocol Πeven for EVENCHARGEk(Hn) that uses O(log3 S + logn) bits,
produces the correct answer for all inputs in the support of D0 and for inputs randomly chosen according
to D1 produces a correct answer with probability at least 2/3− 1/n. Applying Lemma 3.2 this yields a
(0,1/3 + 1/n + o(1))-error k-party protocol for zero/one set disjointness on ({0,1}m)k also of complexity
O(log3 S + logn). Finally applying Lemma 3.4 yields an error 1/3 randomized k-party NOF protocol for
DISJk,m of complexity O(log3 S log n+ log2 n) bits in total. Applying a similar reduction using the other parts
of Theorem 2.3 yields the claimed result.

We can in fact prove something slightly stronger:

Theorem 3.7. The same lower bounds as Theorem 3.6 hold for every odd charge vector ~c ∈ {0,1}n.

Proof. Observe that distributions Dt and R(~x) on the assignments to Varsk(Hn) both have the property that
for each edge e of Tn, α1

e = · · · = αk
e. Therefore in the proof of Theorem 3.6 observe that we can replace

TSk(Hn,~c) by T̃ S
k
(Hn,~c) = TSk(Hn,~c)∧EQ(Tn) where EQ(Tn) is the conjunction of (¬yi

e ∨ y j
e) for every

i 6= j ∈ [k] and every e ∈ Tn. The size of any Th(k-1) refutation of TSk(Hn,~c) is at least that of T̃ S
k
(Hn,~c).

Moreover, it is not hard to see that for any odd weight vectors ~c, ~d ∈ {0,1}n , T̃ S
k
(Hn,~c) and T̃ S

k
(Hn, ~d)

have proof sizes that differ by at most a polynomial additive term: Given a small proof of T̃ S
k
(Hn, ~d), let

S ⊂ [n] be the set of vertices v for which cv 6= dv. Since both c and d are odd weight vectors, |S| is even. Let
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M ⊂ E(Tn) be the set of edges of corresponding to |S|/2 disjoint sub-paths in Tn that match the elements in

S. Applying the substitution of yi
e = ¬yi

e for each e ∈ M and i ∈ [k] will convert a refutation of T̃ S
k
(Hn, ~d)

into a refutation of T̃ S
k
(Hn,~c) (and vice versa). The size of the proof is unchanged. (We needed the fact that

all edges along Tn had the same assignment for each yi
e so that the value of ∧k

i=1yi
e would be complemented

when we complemented the value of each yi
e.)

4 Proximity of distributions D1 and R (~x) when | ∩~x| = 1

In this section we prove Lemma 3.3 that for |∩~x|= 1 the distributions R (~x) and D1 are close in the `1 norm.
Let µD1 and µR (~x) be their associated probability measures. We will show that for all but a set of (α,~c) with
µD1 measure o(1), µD1(α,~c) = (1±o(1))µR (~x)(α,~c).

Given an instance of the set disjointness variables, ~x = ({0,1}m)k, for j ∈ [m] we say that the color of j
is the tuple (x1, j , . . . ,xk, j) ∈ {0,1}k . By construction, the assignment R (~x) has color (x1, j, . . . ,xk, j) on each
edge of the path p j.

Definition 4.1. Given an ordered sequence of paths ~p ∈ P(m)
l , an~x ∈ ({0,1}m)k, and an assignment α, write

χ(α~p) =~x if and only if every edge on path p j has color (x1, j, . . . ,xk, j) for every j ∈ [m].

We first observe that for any (α,~c) with |Err(α,~c)| = 2 the probability µD1(α,~c) depends only on the
number of edges e ∈ Gn having color 1k in α.

Definition 4.2. Let φ(a,b) = 2−a(2k −1)−(a−b).

Lemma 4.1. For any (α,~c) with |Err(α,~c)| = 2 and m1 = |{e ∈ E(Gn) | αe = 1k}|,

µD1(α,~c) =
φ(|E(Gn)|,m1)

2n−1
(n

2

) .

Proof. Let U = Err(α,~c). The probability under D1 that U is chosen to be flipped is 1/
(n

2

)
and, given U , all

of the 2n−1 even charge vectors ~cU are equally likely. Conditioned on these events, the chance that α labels
the edges for the randomly selected element of Sol(Hn,~c) is 2−|E(Gn)|(2k −1)−(|E(Gn)|−m1).

Definition 4.3. For U ⊂V with |U |= 2 let P(m)
l (U) be the set of all elements of P(m)

l that have a path whose
endpoints are U.

Now consider the measure µR (~x)(α,~c). Let {i} = ∩~x ⊆ [n], U = Err(α,~c) with |U | = 2, and m1 = |{e ∈
E(Gn) | αe = 1k}|. By the definition of R (~x),

µR (~x)(α,~c) = Pr
~p∈P(m)

l

[Ends(pi) = Err(α,~c)∧χ(α~p) =~x]

× Pr
~c′∈{0,1}n , α′∈Lk(Sol(Hn−~p,~c′))

[α′ = αGn−~p and ~c′ =~c]

= Pr
~p∈P(m)

l

[Ends(pi) = Err(U)]× Pr
~p∈P(m)

l (U)

[χ(α~p) =~x]

× φ(|E(Gn)|−ml,m1− l)/2n−1.

Observe that pi is a uniformly chosen element of Pl and we can analyze the first term using the following
property of random paths on LPS expanders proved as part of Lemma 4.9 in Section 4.2.2.
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Lemma 4.2. For u 6= v ∈V (Gn) and l ≥ c1 logn/ log logn,
Prp∈Pl [Ends(p) = {u,v}] = (1±o(1))/

(n
2

)
.

Thus

µR (~x)(α,~c) = (1±o(1))
φ(|E(Gn)|−ml,m1 − l)(n

2

)
2n−1

· Pr
~p∈P(m)

l (U)

[χ(α~p) =~x]

= (1±o(1))
µD1(α,~c)
φ(ml, l)

· Pr
~p∈P(m)

l (U)

[χ(α~p) =~x].

It follows that we will obtain the desired result if we can show that for all but a o(1) measure of (α,~c) under
µD1 ,

Pr
~p∈P(m)

l (U)

[χ(α~p) =~x] = (1±o(1))φ(ml, l) = (1±o(1))2−ml(2k −1)−(m−1)l

where U = Err(α,~c). In the case that this happens, we say that (α,~c) is well-distributed for~x.
Using the second moment method we prove the following lemma which shows that for all but a o(1)

measure of (α,~c) under µD1 , (α,~c) is indeed well-distributed for~x. The detailed proof is given in Section 4.1.

Lemma 4.3. Let m ≤ n1/3/ logn and l = 2dc1 logn/ log log ne and~x ∈ ({0,1}m)k with |∩~x| = 1. For almost
all U ⊂ [n] with |U | = 2,

Pr
(α,~c)∈D1

[(α,~c) is well-distributed for~x | Err(α,~c) = U ] = 1−o(1)

Lemma 3.3 follows from this almost immediately.

Proof of Lemma 3.3. Let ~x ∈ ({0,1}m)k and | ∩~x| = 1. By Lemma 4.3 and the preceding argument, for all
but a set B of U that forms o(1) fraction of all subsets [n] of size 2,

Pr
(α,~c)∈D1

[µR (~x)(α,~c) = (1±o(1))µD1(α,~c) | Err(α,~c) = U ] = 1−o(1).

By Lemma 4.2, Pr(α,~c)∈D1
[Err(α,~c) ∈ B] = o(1). Therefore by summing over distinct choices of U , we

obtain that with probability 1−o(1) over (α,~c) ∈ D1, µR (~x)(α,~c) = (1±o(1))µD1 (α,~c). This is equivalent
to the desired conclusion that ||D1 −R (~x)||1 is o(1).

4.1 Most (α,~c) are well-distributed

In this section we use the second moment method to prove Lemma 4.3. For this purpose we will need the
following property of the LPS expander graphs Gn, proved in Section 4.2 which will allow us to show that
the correlations considered in the second moment method are low.

Definition 4.4. For ~p,~q ∈ P(m)
l we write ~p ∼s ~q when ~p and ~q share exactly s edges. Let γ > 0 be a positive

real number. We say that U ⊂V (Gn) is γ-nice if for all s ≥ 0, Pr
~p,~q∈P(m)

l (U)

[~p ∼s ~q] ≤ γs.

Theorem 4.4. (proved in § 4.2) Suppose that m ≤ n1/3/ logn and l = 2dc1 logn/ log log ne. There are con-

stants c > 0 and c′ such that for all but a o(1) fraction of sets U = {u,v} ⊂V (Gn), for all ~q ∈ P(m)
l (U) and

every integer s ≥ 0,
Pr

~p∈P(m)
l (U)

[~p ∼s ~q] ≤ (c′/(log log n)1/4 +(logn)−c)s,

i.e. almost every U ∈V (2) is (c′/(log log n)1/4 +1/ logc n)-nice.
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We now use this in our application of the second moment method to prove that most (α,~c) pairs are
well-distributed:

Lemma 4.5. Let m ≤ n1/3/ log n and l = 2dc1 log n/ log logne, ~x ∈ ({0,1}m)k with | ∩~x| = 1, and |U | = 2.
If U is γ-nice with γ = o(2−k), then

Pr
(α,~c)∈D1

[(α,~c) is well-distributed for~x | Err(α,~c) = U ] = 1−o(1)

Proof. For each ~p ∈ P(m)
l (U), let X~p denote the indicator variable for the event that χ(α~p) =~x.

We now calculate E(α,~c)∈D1
[X~p]. For (α,~c) chosen according to D1, the assignment α~p is distributed

according to (Lk)
ml ; therefore, since for χ(α~p) to equal~x, α~p must have precisely l edges whose color is 1k

and l(m−1) edges whose color is a lift of label 0,

E(α,~c)∈D1
[X~p] = Pr

(α,~c)∈D1

[X~p = 1] = φ(ml, l) = 2−ml(2k −1)−(m−1)l.

Let X = ∑
~p∈P(m)

l (U)
X~p. X is the random variable denoting the number of sequences ~p ∈ P(m)

l (U) for which

χ(α~p) =~x. By the linearity of expectation, E(α,~c)[X ] = φ(ml, l) · |P(m)
l (U)|.

We use the second moment method to show that X is concentrated near its expectation. For ~p,~q ∈
P(m)

l (U), the random variables X~p and X~q are correlated if and only if ~p and ~q share an edge. Because U is
γ-nice Pr

~p,~q∈P(m)
l (U)

[~p ∼s ~q] ≤ γs.

When X~p = 1, the colors of all edges of ~p are determined. Therefore given X~p = 1, if ~p ∼~q, either some
edge that ~p and ~q share ensures that X~q = 0, or the probability that X~p = X~q = 1 is non-zero. In the latter
case consider G′ =

Sm
i=1(pi ∪ qi) which contains 2ml − s edges. Since α is distributed as L G′

k on the edges
of G′, the probability that χ(α~p) = χ(α~q) =~x is larger than [φ(ml, l)]2 by a factor of either 2 or 2(2k −1) per
shared edge depending on whether that edge has label 1 or 0.

Let D = ∑~p∼~q Pr(α,~c)[X~p = X~q = 1].

D =
ml

∑
s=1

∑
~p∼s~q

Pr
(α,~c)

[X~p = X~q = 1]

≤
ml

∑
s=1

∑
~p∼s~q

(2(2k −1))s Pr
(α,~c)∈D1

[X~p = 1] Pr
(α,~c)∈D1

[X~q = 1]

=
ml

∑
s=1

∑
~p∼s~q

(2(2k −1))s[φ(ml, l)]2

=
ml

∑
s=1

|P(m)
l (U)|2 Pr

~p,~q∈P(m)
l (U)

[~p ∼s ~q](2(2k −1))s[φ(ml, l)]2

= [|P(m)
l (U)|φ(ml, l)]2

lm

∑
s=1

Pr
~p,~q∈P(m)

l (U)

[~p ∼s ~q](2(2k −1))s

= [E(α,~c)∈D1
(X)]2

ml

∑
s=1

Pr
~p,~q∈P(m)

l (U)

[~p ∼s ~q](2(2k −1))s

≤ [E(α,~c)∈D1
(X)]2

ml

∑
s=1

γs(2(2k −1))s.
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Since γ = o(2−k) by hypothesis, ∑∞
s=1 γs(2(2k − 1))s is o(1) and thus D is o([E(α,~c)∈D1

]2). Therefore,
E(α,~c)(X

2) = D+E(α,~c)(X) = o([E(α,~c)(X)2)+E(α,~c)(X) and by the second moment method,

Pr
(α,~c)∈D1

[|X −E(α,~c)∈D1
(X)| ≥ εE(α,~c)∈D1

(X)] ≤
D+E(α,~c)∈D1

(X)

ε2E(α,~c)(X)2 = o(1).

By choosing ε as an appropriate function that is o(1), we obtain that with probability 1− o(1) in the

choice of (α,~c) ∈ D1, X = (1± o(1))φ(ml, l) · |P(m)
l (U)| and therefore with probability 1− o(1) in (α,~c),

Pr
~p∈P(m)

l (U)
[χ(α~p) =~x] = (1±o(1))φ(ml, l) and thus (α,~c) is well-distributed for~x.

Proof of Lemma 4.3. Let~x ∈ ({0,1}m)k and | ∩~x| = 1. By Theorem 4.4 there is a δ > 0 so that for all but a
o(1) fraction of sets U ⊂V (Gn) with |U | = 2, U is γ-nice for γ = c′′/(log log n)1/4 for some constant c′′ and
γ is o(2−k). Therefore, Pr(α,~c)∈D1

[Err(α,~c) is γ-nice] = 1−o(1) and by Lemma 4.5,
Pr(α,~c)∈D1

[(α,~c) is well-distributed for~x | Err(α,~c) = U ] = 1−o(1).

4.2 Graph Theoretic Properties of LPS Expanders

4.2.1 The Lubotzky-Phillips-Sarnak Expanders

The crucial properties of the expander graphs Gn constructed in [17] that we need are:

1. Gn is regular of degree ∆ = Θ(log n).

2. Gn is connected and non-bipartite.

3. The second eigenvalue of Gn is O(
√

log n).

4. The girth of Gn is Ω(log n/ log logn).

A walk in Gn is chosen by selecting a start node and repeatedly following one of the ∆ edges adjacent to
the current node.

Proposition 4.6. There exists c1 > 0 so that for every u,v ∈ V (Gn), a random walk in Gn of length l ≥
c1 logn/ log log n starting at u ends at vertex v with probability at least 1/n−1/n2 and at most 1/n+1/n2.

We consider random walks and random paths in the Gn graphs of a fixed length l = l(n)= 2dc1 log n/ log logne
that is twice the minimum length specified in Proposition 4.6 so that their midpoints are nearly uniformly
distributed.

4.2.2 Approximating Paths by Walks

The reduction Π01dis j chooses a random sequence of length l paths in Gn; however the usual mixing property
of expanders, Proposition 4.6, only discusses random walks of length l. We show that for Θ(log n) degree
LPS expanders, the distribution of random paths of a given length is close to that for random walks of that
length (something that requires mixing time smaller than degree for example).

Remark 1. In principle one might replace disjoint paths in the definition of Π01dis j by disjoint walks of the
same length, conditioned on each having distinct endpoints. However, in that case it would be overwhelm-
ingly likely that many walks will repeat edges and therefore, as graphs, they would contain different numbers
of edges. This would significantly complicate the second moment argument of Lemma 4.5.
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More precisely we will show that, because Gn is expanding and has high girth, random walks in Gn not
only mix well but they are paths almost surely as well. We state some folklore properties of random walks
and observe how they translate into properties of random paths.

For v ∈V (Gn), let Wl(v) be the set of all ∆l walks of length l in Gn starting at v and Pl(v) be the set of all
paths of length l in Gn with one endpoint v. Let µWl(v) be the measure given by a uniform distribution over
Wl(v) and µPl(v) be the measure given by a uniform distribution over Pl(v).

Lemma 4.7. There exists a universal constant c3 so that for every v ∈V (Gn) and for each path p ∈ Pl(v),
(1− c3/ log logn)µPl (v)(p) ≤ µWl(v)(p) ≤ µPl(v)(p). Moreover, for w uniformly chosen from Wl(v) the proba-
bility that w is not a path is at most c3/ log logn.

Proof. Observe that every p ∈ Pl(v) has equal measure under µWl(v) so µWl(v)(p) ≤ µPl(v)(p) and, moreover,
µWl(v)(p) = µPl(v)(p)µWl(v)(Pl(v)).

Set g = girth(Gn). By the properties of Gn, g ≥ c0 logn/ log logn for some constant c0 > 0 and its degree
∆ ≥ c2 logn for some constant c2 ≥ 0. Notice that for any walk w of length l each vertex in w can have at
most l/(g−3) many neighbors also in w. (If u is a vertex in w that has two neighbors u ′ and u′′ in Gn within
distance g−3 on w then there is a cycle of length g−1 in w∪{(u,u′),(u,u′′)} which is a subgraph of Gn.)
Therefore

µWl(v)(Pl(v)) ≥
(

∆− l/(g−3)

∆

)l

≥ 1− l2

∆(g−3)

≥ 1− 2dc1 logn/ log logne2

c2 logn · (c0 logn/ log log n−3)
≥ 1− c3/ log logn

for some constant c3.

The following are folklore properties of random walks in Gn.

Proposition 4.8. Let Wl be the set of all walks of length l in Gn.

1. For each v ∈V (Gn), Prw∈Wl [v ∈V (w)] ≤ (l +1)/n.

2. For each u 6= v ∈V (Gn), Prw∈Wl [Ends(w) = {u,v}] = (1±2/n)/
(n

2

)
.

Proof. There is a sequence of l +1 vertices (not necessarily distinct) on each walk w in Wl and precisely ∆l

walks in which v is the i-th vertex in w. Therefore, in total there are at most (l +1)∆ l walks with v ∈V (w).
(This is an overcount since v may appear more than once in w.) Since there are precisely n∆ l random walks
in Gn of length l, Prw∈Wl [v ∈V (w)] ≤ (l +1)/n.

By Proposition 4.6 the chance that a particular pair of distinct vertices {u,v} appear as endpoints of w is
2
n(1/n±1/n2) which is (1±2/n)/

(n
2

)
.

We obtain the following easy corollary which includes a proof of Lemma 4.2.

Lemma 4.9. Let Pl be the set of all paths in Gn of length l.

1. Let V ′ ⊆V (Gn). There exists a constant c so that

Pr
p∈Pl

[V (p)∩V ′ 6= /0] ≤ (1+ c/ log logn)
|V ′|(l +1)

n
.
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2. Let u 6= v ∈V (Gn). Then Prp∈Pl [Ends(p) = {u,v}] = (1±o(1))/
(n

2

)

Proof. By Proposition 4.8, for w a randomly chosen walk of length l in Gn,

Pr
w∈Wl

[V (w)∩V ′ 6= /0] ≤ |V ′|(l +1)

n
,

and by Lemma 4.7, Prw∈Wl [w is a path] ≥ 1− c3/ log logn. The random distribution of paths p of length l
in Gn is the same as the random distribution of walks w of length l in Gn conditioned on w being a path.
Therefore

Pr
p∈Pl

[V ∩V (p) 6= /0] = Pr
w∈Wl

[V ∩V (w) 6= /0 | w is a path]

≤ |V |(l +1)

(1− c3/ log logn)n

≤ (1+ c/ log logn)
|V |(l +1)

n
,

for some constant c.
For u 6= v ∈ V (Gn), by Lemma 4.7 Prp∈Pl [Ends(p) = {u,v}] is within a 1 ± o(1) factor of

Prw∈Wl [Ends(w) = {u,v}] and by Proposition 4.8 the latter is (1±o(1))/
(n

2

)
which yields the desired prop-

erty.

4.2.3 The Proof of Theorem 4.4

In this subsection we prove Theorem 4.4. We will actually prove a slightly stronger result in which ~q ∈
P(m)

l (U) is replaced by any subgraph of Gn with at most m(l +1) vertices and maximum degree at most 2.
It will be convenient to consider sequences of length l paths Pm

l that are not necessarily vertex-disjoint.

Let µ
P(m)

l
be the uniform measure on P(m)

l and µPm
l

be the uniform distribution on Pm
l .

Lemma 4.10. Suppose that m ≤ n1/3/ log n and l = 2dc1 log n/ log logne. For any ~p ∈ P(m)
l ,

(1−o(1))µ
P(m)

l
(~p) ≤ µPm

l
(~p) ≤ µ

P(m)
l

(~p).

Proof. Conditioned on the paths in ~p ∈ Pm
l being vertex-disjoint µPm

l
is uniform over P(m)

l . By Lemma 4.9,
the probability that the i-th path shares a vertex with paths p1, . . . , pi−1 is at most (1 + c/ log logn)(l +
1)2(m−1)/n ≤ 2l2m/n and the probability that the paths in Pm

l are not vertex-disjoint is at most 2l2m2/n ≤
1/n1/3.

We first observe that if we only we required that ~p ∈ P(m)
l rather ~p ∈ P(m)

l (U) – i.e., we had no require-
ment that one path in ~p have its endpoints in U – then the exponentially-decaying bound on intersection size
of Theorem 4.4 would be relatively easy.

Lemma 4.11. Suppose that m ≤ n1/3/ log n and l = 2dc1 logn/ log logne. There is some constant c ≥ 0 such
that for all subgraphs G′ of Gn with at most m(l +1) vertices and every integer s ≥ 0,

Pr
~p∈P(m)

l

[|E(∪~p)∩E(G′)| ≥ s] ≤ (logn)−cs.
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Proof. For ~p ∈ P(m)
l , because each component of ~p is a path of length l, if |E(∪~p)∩E(G′)| ≥ s then there

are at least ds/le paths pi in ~p that that share an edge (and therefore a vertex) with ∪~p. By Lemma 4.9,
the probability that a random pi from Pl shares a vertex with G′ is at most (1 + c/ log log n)(l + 1)2m/n <
2l2m/n. Therefore for elements of Pm

l , the probability that there are least r = ds/le such paths is at most(m
r

)
(2l2m/n)r < (2l2m2/n)r/2. By Lemma 4.10, the probability that this happens for elements of P(m)

l is at
most (2l2m2/n)r ≤ ns/(3l) = (logn)−cs for some constant c > 0.

The major complication of the proof of Theorem 4.4 is the assumption that ~p contains a path with
endpoints u and v for U = {u,v}, u 6= v. We base the analysis of paths with endpoints U on the analysis of
walks with endpoints U . For some sets U , for example if u and v are adjacent in Gn, the distributions of
random walks and random paths with endpoints U may not be close to each other.1 We will see that for most
choices of U , the probabilities under the two distributions are close to each other and this will be enough to
obtain the bound required by Theorem 4.4.

Definition 4.5. For U = {u,v} ∈V (Gn) let Wl(U) be the set of all walks in Gn of length n that have endpoints
U.

Lemma 4.12. There is a constant c4 such that for all but at most a c4/ log logn fraction of pairs u 6= v ∈
V (Gn)

Pr
w∈Wl({u,v})

[w is a path] ≥ 2/3.

Proof. By Lemma 4.7,
Pr

w∈Wl

[w is not a path] ≤ c3/ log logn.

Therefore by definition,

∑
u6=v∈V (Gn)

Pr
w∈Wl

[Ends(w) = {u,v}] Pr
w∈Wl ({u,v})

[w is not a path] ≤ c3/ log logn.

By Proposition 4.8, Prw∈Wl [Ends(w) = {u,v}] ≥ (1−2/n)
(n

2

)−1
and thus

(1−2/n)

(
n
2

)−1

∑
u6=v∈V (Gn)

Pr
w∈Wl({u,v})

[w is not a path] ≤ c3/ log logn,

which says that the expected value

Eu6=v∈V(Gn)( Pr
w∈Wl({u,v})

[w is not a path]) ≤ c3/ log logn
(1−2/n)

.

We now apply Markov’s inequality to obtain that the fraction of pairs u 6= v ∈ V (Gn) for which
Prw∈Wl({u,v})[w is not a path] ≥ 1/3, is at most c3/ log logn

(1−2/n)/3 ≤ c4/ log logn for some constant c4.

1Even in these cases the distributions may be sufficiently close but we do not need to analyze them.
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Bounding Intersection Size of Random Walks

Lemma 4.12 will allow us to use the following analysis involving a random walk with endpoints in U rather
than a random path. As in the proof for part (a), we also find it convenient to do the calculation assuming
independent random choices of paths.

Lemma 4.13. Let G′ be a subgraph of Gn with the property that every vertex has degree at most d in G′.
For fixed v ∈V (Gn),

Pr
w∈Wl(v)

[|E(w)∩E(G′)| ≥ s] ≤
(

l
s

)(
d
∆

)s

.

Proof. There are at most
(l

s

)
many choices of steps in the random walk in which the first s shared edges

can occur. Fix some such set of steps S ⊆ [l]. For each i ∈ S a necessary condition for the i-th edge in the
walk to lie in E(G′) is that the endpoint u after step i−1 must lie in V (G′). Since degG′(u) ≤ d, given that
u ∈ V (G′), the probability that the i-th edge lies in E(G′) is then at most d/∆. That is, conditioned on a
shared edge in each of the first j elements in S, the chance of a shared edge in the j +1-st element in S is at
most d/∆ because every vertex has degree at most d in G′. This yields a total probability at most

(l
s

)
(d/∆)s

as required.

In order to analyze the random walks in Wl(U) we need more than the result of Lemma 4.13 since it
constrains only one endpoint of the random walk rather than both endpoints. We can view each half of a
random walk in which both endpoints are constrained as two random walks of half the length with only one
endpoint constrained. (Obviously, these two half-length walks are highly correlated.)

Lemma 4.14. Let l = 2dc1 log n/ log logne. Let G′ be a subgraph of Gn in which every vertex has degree at
most d. For u 6= v ∈V (Gn),

Pr
w∈Wl({u,v})

[|E(w)∩E(G′)| ≥ s] <

(
2dl
∆

)s/2

.

Proof. Without loss of generality, walk w∈Wl({u,v}) starts at u and ends at v. Let l ′ = l/2. Let w =(wu,wv)
where wu and wv each have length l ′. We first observe that wu is nearly uniformly distributed in Wl′(u):

Let w∗ ∈Wl′(u) and let v∗ be the end of w∗.

Pr
w∈Wl({u,v})

[wu = w∗ | w starts at u]

=
Prw∈Wl(u)[wu = w∗ and wv, starting at v∗, ends at v]

Prw∈Wl(u)[w ends at v]

=
Prwu∈Wl′ (u)[wu = w∗] ·Prwv∈Wl′(v∗)[wv ends at v]

Prw∈Wl(u)[w ends at v]

Clearly Prwu∈Wl′(u)[wu = w∗] = ∆−l′ = ∆−l/2 and since l > l ′ ≥ c1 logn/ log logn by Proposition 4.6, both
Prwv∈Wl′ (v∗)[wv ends at v] and Prw∈Wl(u)[w ends at v] are 1/n±1/n2 and thus

Pr
w∈Wl({u,v})

[wu = w∗ | w starts at u] = (1±O(1/n))∆−l/2.

Since Gn is a regular undirected graph, a length l random walk from u to v has the same distribution as a
length l random walk from v to u. Thus by symmetry with the above argument, within a 1±O(1/n) factor,
wv is distributed as a (nearly) uniform random walk of length l ′ starting at v.
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Now if there are a total of s edges in common between w and G′ then at least ds/2e must be shared
between G′ and one of the two halves of w, wu and wv. By Lemma 4.13 and the above argument each of these
probabilities is at most (1+O(1/n))( dl′

∆ )ds/2e and the total probability is at most 2(1+O(1/n))( dl
2∆ )ds/2e ≤

(2 dl
∆ )ds/2e.

Deriving the bound

Lemma 4.15. Let l = 2dc1 logn/ log logne and m ≤ n1/3/ log n. For any fixed subgraph G′ of Gn with at
most m(l +1) vertices and maximum degree at most 2, and any set U = {u,v} ⊂V (Gn),

Pr
(w,~p))∈Wl(U)×Pm−1

l

[|(E(w)∪E(~p))∩E(G′)| ≥ s] ≤ (c′′/ log logn)s/4 +(logn)−cs/2.

Proof. If there are s edge intersections between E(w)∪E(~p) and G′, then at least s/2 of them occur in either

w or ~p. Lemma 4.14 implies that Prw∈Wl(U)[|E(w)∩E(G′)| ≥ s/2] ≤
(

4l
∆
)s/4 ≤ (c′′/ log logn)s/4.

By Lemma 4.11, Pr~p∈Pm−1
l

[|E(~p)∩E(G′)| ≥ s/2] ≤ Pr~p∈Pm
l
[|E(~p)∩E(G′)| ≥ s/2] ≤ (log n)−cs/2.

We now obtain Theorem 4.4:

Lemma 4.16. Suppose that m ≤ n1/3/ log n and l = 2dc1 logn/ log logne. For all but a c4/ log logn fraction
of all U = {u,v}, u 6= v ∈V (Gn), there are constants c,c′ > 0 such that for all subgraphs G′ of Gn with at
most m(l +1) vertices and maximum degree 2 and for every integer s ≥ 0,

Pr
~p∈P(m)

l (U)

[|E(∪~p)∩E(G′)| ≥ s] ≤ ((c′/ log log n)1/4 +(logn)−c)s.

Proof. By Lemma 4.12, for all but a c4/ log logn fraction of U , Prw∈Wl(U)[w is a path] ≥ 2/3. For any such
U , since the distribution of w ∈ Wl(U) conditional on w being a path is uniform over Pl(U), the measure
of any event on Pl(U)×Pm−1

l is at most 3/2 times that on Wl(U)×Pm−1
l . Further, by the same argument

as Lemma 4.10, the probability that the paths in ~p chosen from Pl(U)×Pm−1
l are vertex disjoint is at least

1− o(1) conditioned on being vertex disjoint the distribution of ~p is uniform over P(m)
l (U). Therefore the

measure of any event on P(m)
l (U) is at most (1 + o(1))3/2 ≤ 2 times that on Wl(U)×Pm−1

l . Applying
Lemma 4.15 and adjusting constants c and c′ yields the bound.

5 Discussion

There are a couple of interesting open problems related to our work beyond the natural problem of the com-
munication complexity of DISJk. First, does semantic LSk have a separation oracle, as LS does? This is
closely related to whether or not LSk is automatizable and we conjecture that the answer to both questions is
negative. Secondly, is it possible to extend our lower bounds to other tautologies that would imply inapprox-
imability results for polynomial-time LSk-based algorithms? (For example, if we could prove superpolyno-
mial lower bounds for tree-like LSk proofs of random 3CNF formulas, this would imply inapproximability
results for LSk-based linear programming algorithms for MaxSAT [5].)

Finally we would like to point out a connection between our main result and the complexity of dis-
joint NP pairs. An open question in complexity theory is whether or not all pairs of disjoint NP sets
can be separated by a set in P. This is known to be false under the assumption P 6= UP and also by the
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assumption P 6= NP∩ coNP. It is an open question whether or not it is implied by P 6= NP. Let us con-
sider the same question with respect to communication complexity rather than polynomial time: can every
pair of relations with small nondeterministic k-party communication complexity be separated by a small
probabilistic/deterministic protocol? In [20] the answer is shown to be unconditionally false for k = 2. In
particular, they give a pair of disjoint properties on 3m-vertex graphs G, a matching on 2m vertices of G
and an independent set of 2m + 1 vertices of G, and show that this pair cannot be separated by any small
probabilistic/deterministic protocol. In this paper, we have shown that for any k, the question is still false,
under k-RPcc 6= k-NPcc.
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[7] V. Chvátal, W. Cook, and M. Hartmann. On cutting-plane proofs in combinatorial optimization. Linear
Algebra and its Applications, 114/115:455–499, 1989.

[8] W. Cook, C. R. Coullard, and G. Turan. On the complexity of cutting plane proofs. Discrete Applied
Mathematics, 18:25–38, 1987.

[9] S. Dash. On the matrix cuts of Lovász and Schrijver and their use in Integer Programming. PhD thesis,
Department of Computer Science, Rice University, March 2001.

[10] S. Dash. An exponential lower bound on the length of some classes of branch-and-cut proofs. In
W. Cook and A. S. Schulz, editors, IPCO, volume 2337 of Lecture Notes in Computer Science, pages
145–160. Springer-Verlag, 2002.

20



[11] F. Eisenbrand and A. S. Schulz. Bounds on the Chvatal rank of polytopes in the 0/1-cube. Combina-
torica, 23(2):245–261, 2003.

[12] D. Grigoriev, E. A. Hirsch, and D. V. Pasechnik. Complexity of semi-algebraic proofs. In (STACS)
2002: 19th Annual Symposium on Theoretical Aspects of Computer Science, volume 2285 of Lecture
Notes in Computer Science, pages 419–430, Antibes, France, February 2002. Springer-Verlag.

[13] R. Impagliazzo, T. Pitassi, and A. Urquhart. Upper and lower bounds on tree-like cutting planes proofs.
In 9th Annual IEEE Symposium on Logic in Computer Science, pages 220–228, Paris, France, 1994.

[14] B. Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity of set inter-
section. In Proceedings, Structure in Complexity Theory, Second Annual Conference, pages 41–49,
Cornell University, Ithaca, NY, June 1987. IEEE.

[15] L. G. Khachian. A polynomial time algorithm for linear programming. Doklady Akademii Nauk SSSR,
n.s., 244(5):1093–1096, 1979. English translation in Soviet Math. Dokl. 20, 191–194.

[16] L. Lovasz and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization. SIAM J.
Optimization, 1(2):166–190, 1991.

[17] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277, 1988.

[18] N. Nisan. The communication complexity of threshold gates. In V.S.D. Mikl’os and T. Szonyi, editors,
Combinatorics: Paul Erdös is Eighty, Volume I, pages 301–315. Bolyai Society, 1993.

[19] P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations. Journal
of Symbolic Logic, 62(3):981–998, September 1997.

[20] R. Raz and A. Wigderson. Monotone circuits for matching require linear depth. Journal of the ACM,
39(3):736–744, July 1992.

[21] L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theoretical Computer Science,
pages 85–93, 1986.

21



6 Appendix

6.1 Evaluating k-threshold Decisions Trees Using Multiparty Communication Complexity

Lemma 6.1. If the search problem for f (x1, . . . ,xkn) has a k-threshold decision tree of depth d, and where
all k-threshold formulas have coefficients bounded by a polynomial in n, then there exists a k + 1-party
deterministic NOF communication complexity protocol for Search f (over any partition of the variables into
k groups) where O(d logn) bits are communicated.

Proof. Fix a partition of x1, . . . xkn. Let α1m1 + . . . + αqmm ≥ t be the k-threshold formula queried at the
root of the k-threshold decision tree for f . Then the set of monomials mi can be partitioned into k + 1
groups, where group i contains the monomials that can be “seen” by the ith player. Each player (in turn)
communicates the weighted linear combination of their monomials to the other players. After all players
have spoken, each player can simply add up the total sum and see if it is greater than the target t, in order
to evaluate the k-threshold formula. The k + 1 players then continue on the half of the decision tree which
agrees with the value of this formula. The protocol terminates after d rounds, and each round requires
O(logn) bits of communication.

Lemma 6.2. If the search problem for f has a threshold decision tree of depth d and size S, then there
exists a probabilistic communication complexity protocol for Search f with ε ≤ 1/n where O(d log2 S) bits
are communicated.

Proof. As above, the players will proceed in d rounds, at each step evaluating the threshold formula and
proceeding on the consistent subtree of half the size. Let f be the first threshold formula at the root of the
decision tree. Since the entire threshold decision tree has size S, all coefficients must also be bounded by size
2O(S). As before, partition the monomials of f into k+1 groups where the ith player can “see” the monomials
in group i. Each of the k +1 players computes the weighted sum of their respective monomials. Call these
sums y1, . . . ,yk+1, respectively. Note that for each i ≤ k + 1, |yi| ≤ O(S). Player k + 1 uses y′k+1 = t − yk+1

and by applying Lemma 6.3, there is a probabilistic protocol allowing the players to determine whether the
sum of the yi’s is at least t, where O(logS)2 bits are exchanged. After evaluating this formula f , the players
then continue on the half of the decision tree which agrees with the value of f . The protocol terminates after
d rounds, for a total of O(d log2 S) bits of communication.

Lemma 6.3. Let y1, . . . ,yk+1 be binary integers of length n. Then there is an O((k logn)2)-bit (k+1)-player
Number-in-Hand probabilistic protocol for determining whether y1 + . . .+ yk ≥ yk+1.

Proof. Consider first the case where there are 3 players (k+1 = 3), and they are trying to determine whether
x+ y ≥ z. The players will follow a divide and conquer strategy by recursively examining segments of their
strings.

Let the first half of x be x1, where |x1| = bn/2c, and the right half of x be x2, where |x2| = dn/2e.
Similarly let y1,y2,z1,z2 be the left and right halves of y and z respectively.

Player I randomly selects a prime number p ∈ [1,n3 logn] and sends (p,x1 mod p) to players II and
III. Then player II sends y1 mod p to player III, where p is the same prime. Player III then computes (x1

mod p+ y1 mod p), the sum of their left halves modulo the prime, and compares it to z1, modulo p.
The first case is when the sum is identical, ie., (x1 mod p+ y1 mod p) = z1 mod p. In this case, with

probability at least 1−1/n2, x1 + y1 = z1; that is, the actual sums of their left halves is equal to the left half
of z. To see this, notice that an error occurs whenever x1 +y1 6= z1, but (x1 +y1) mod p = z1 mod p, which
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happens if p divides (x1 +y1 − z1). Since x1 +y1 − z1 has at most O(n) prime divisors, and p is chosen from
O(n3) primes, the probability of error is less than 1/n2. Assuming that (x1 + y1 = z1), then we know that
x+y is at least as large as z, as long as the sum of the lower order bits is larger, that is, as long as x2 +y2 ≥ z2.
This is because the sum of x + y on the low order bits could induce a carry but this would just make x + y
larger than z. Thus we can continue by recursively checking whether or not (x2 + y2 ≥ z2).

The second case is when (x1 mod p + y1 mod p) = z1 − 1 mod p. Again, with probability at least
1− 1/n2 , this implies that x1 + y1 = z1 − 1. Assuming that this is the case, we know that x + y ≥ z if and
only if x2 + y2 ≥ z2 +2bn/2c+1. This is because in order for the sum of the higher order bits to be at least as
large as z1, we require at least one carry from the low order bits.

Since we can get a carry of either 0 or 1 from the low order bits, the final case is when (x1 mod p+ y1

mod p) is not equal to either z1 mod p or to z1 − 1 mod p. In this case, again with high probability we
know that (x1 +y1) is not equal to either z1 or to z1−1, and assuming this is the case, it follows that x+y ≥ z
if and only if x1 + y1 ≥ z1.

In any of the above cases, we can continue recursively on bit strings of half the original size. At each
stage, we send O(logn) bits, and the total number of stages is O(logn) for a total of O(logn)2 bits sent. The
probability of error at each stage is O(1/n2) and therefore the total error is less than 1/n (for sufficiently
large n).

For k+1 ≥ 3 the argument is very similar to the above argument, only now the carry from the low order
bits can be anything from 0 to k− 1, so we get k different cases, depending on whether the mod p sum of
the first k players inputs, (y1 mod p+ . . .+ yk mod p) is equal to yk+1 − i mod p, for i = 0, . . . ,k−1.
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