
Time Hierarchies for Computations

with a Bit of Advice

Konstantin Pervyshev

Department of Mathematics and Mechanics

St. Petersburg State University

E-mail: tpc@mail.ru

19th May 2005

Abstract

A polynomial time hierarchy for ZPTime with one bit of advice
is proved. That is for any constants a and b such that 1 < a < b,
ZPTime[na]/1 (ZPTime[nb]/1.

The technique introduced in this paper is very general and gives the
same hierarchy for NTime∩coNTime, UTime, MATime, AMTime
and BQTime. It also significantly simplifies the previously known
proofs of hierarchies for BPTime and RPTime with advice.

1 Introduction

1.1 Time Hierarchies

It is believed that time is the most important computational resource.
But is that so? Does a computer given more time solve harder prob-
lems?

One can easily construct a function f : {0, 1}∗ → {0, 1}∗ com-
putable in time O(n3) not computable in time O(n2) where n is the

length of an argument. Just let the value of the function f(x) be 1n3

,
a binary string formed of n3 symbols “1”, where n is the length of x.
The obtained result, however, is not satisfactory because it simply tells
that a computer performs more operations in time O(n3) than in time
O(n2).

Let us restate the question. Is that true that there exists a predicate
χL : {0, 1}∗ → {0, 1} computable in time O(n3) not computable in
time O(n2)? Is there a language L recognizable in time O(n3) not
recognizable in O(n2)? An answer to the question stated in this way,
no matter positive or negative, would be essential.

In the 1960s Hartmanis and Stearns [HS65] showed that for any con-
stants a and b such that 1 < a < b, DTime[na] (DTime[nb] where
DTime[nd] is a class of the languages decidable by multi-tape deter-
ministic Turing machines operating within O(nd) steps. Consequently,

1

Electronic Colloquium on Computational Complexity, Report No. 54 (2005)

ISSN 1433-8092

there exists a language L recognizable in cubic time not recognizable
in quadratic time.

After that, in the 1970s Cook [Coo72] proved a time hierarchy for
nondeterministic computations also. It was shown that NTime[na] (
NTime[nb]. Diagonalization, a mathematical technique proposed by
Cantor, was used in the both papers [HS65] and [Coo72] to prove time
hierarchies.

But this technique fails to work with probabilistic classes, in par-
ticular, with BPTime (the languages recognized by probabilistic al-
gorithms with two-sided error), RPTime (the languages recognized
by probabilistic algorithms with one-sided error) and ZPTime (the
languages recognized by probabilistic algorithms with correct answers
only). The main obstacle is that these classes impose some restric-
tions on the error probability of their machines, and, thus, not every
probabilistic machine is appropriate for recognizing languages.

So there are many long-standing open questions concerning time
as a computational resource. One of them is whether the classes
BPTime[n] and BPP =

⋃

d BPTime[nd] are different. The same
for RPTime and ZPTime is of big interest.

1.2 Computations with Advice

In 2002 Barak [Bar02] suggested a new technique for proving time hi-
erarchies that uses an optimal algorithm introduced by Levin [Lev73].
This technique was developed later by Fortnow and Santhanam [FS04]
who showed that there exists a polynomial time hierarchy for BPTime
with one-bit advice, that is for the class of the languages recogniz-
able by probabilistic algorithms with two-sided error that use one
bit of advice for every input length. Formally, it was proved that
BPTime[na]/1 (BPTime[nb]/1.

The idea was to take some hard, PSPACE-complete language A
and show that it is decidable by some optimal BPTime-algorithm in
time T (n) but no other BPTime-algorithm can decide it “noticeably”
faster. To achieve this optimality effect, the algorithm simulates all
possible probabilistic machines and uses an instance checker for the
PSPACE-complete problem A [BFL91, TV02] to verify the answers
of the machines.

Unfortunately, no enumeration of all and only BPTime-machines
operating within a certain amount of time is known. The classes of
computations like BPTime are called semantic classes. Among them
one can name also RPTime, ZPTime and many others. They are op-
posed to so-called syntactic classes. The examples of them are DTime
and NTime.

Therefore the optimal BPTime-algorithm needs a small advice to
get over the semantic difficulties when simulating the machines. It was
proved for the language A that

A ∈ BPTime[T (n)]/ log log T (n)

A 6∈ BPTime[T (n)ε]/ log log T (n)

2

where log log T (n) is the advice length. Most probably, the value of
T (n) grows faster than any polynomial. So a time translation is used
and a language B such that B ∈ BPP/1 and B 6∈ BPTime[nd]/1
is obtained from A. Consequently, BPTime[nd]/1 (BPP/1. The
last implies BPTime[na]/1 (BPTime[nb]/1 for any constants a and
b such that 1 < a < b [Bar02]. The same result holds for RPTime
[FST05] also.

Fortnow, Santhanam and Trevisan [FST05] used the idea of optimal
algorithm later on to prove a time time hierarchy for a wide range of
computations. In particular, they obtained a quasipolynomial time
hierarchy for ZPTime with one bit of advice:

ZPTime[n(log n)a

]/1 (ZPTime[n(log n)b

]/1

But a longer advice was needed to prove a polynomial time hierar-
chy. Namely, it was proved that ZPTime[nd]/l(n) (ZPP/l(n) where
l(n) is some function such that l(n) = O(log n log log n). At the same
time, the most interesting is a polynomial time hierarchy with only one
bit of advice.

1.3 New Approach

A new approach for proving time hierarchies is proposed in this paper.
It is based on the following idea which is very natural. Given more
time, a computer is able to recognize some hard language “better”
than before. That is, for any constant d > 1 there exists an optimal
polynomial-time algorithm M of some kind, BPTime for example,
that recognizes the hard language “better” than any algorithm of the
same kind within time O(nd). To some extent, our approach is inspired
by the paper of Fortnow, Santhanam and Trevisan [FST05].

The kind of optimality that the algorithm M possesses is different
from the optimality introduced by Levin [Lev73] where M would rec-
ognize some hard language faster than any other machine. In contrast
to Levin’s optimality, our algorithm M simply recognizes the hard lan-
guage better than others do and, thereby, does not have to “precisely”
recognize that hard language. Thus, M can even be implemented as a
polynomial-time algorithm.

So we have a flexibility that results in the proof of time hierar-
chies for a very broad range of computations with a shorter length
of advice than in [FST05]. In particular, we show that ZPP/l(n) *
ZPTime[nd]/(l(n) + 1) for some function l(n) ≤ log n. This time
hierarchy for ZPTime[nd] with advice of length O(log n) enables us
to apply a known result of Goldreich, Sudan and Trevisan [FST05,
Lemma 10] and obtain the following theorem:

Theorem 1.1. For any constant d > 1, ZPTime[nd]/1 (ZPP/1.

Using a translation [Bar02], we have a polynomial time hierarchy
for ZPTime with one-bit advice as a corollary of Theorem 1.1:

Corollary 1.1. For any constants a and b such that 1 < a < b,
ZPTime[na]/1 (ZPTime[nb]/1.

3

1.4 Contributions of this Paper

The technique introduced in this paper brings a polynomial time hi-
erarchy with one bit of advice for a very broad range of classes, both
syntactic and semantic. Among them, there are ZPTime, NTime ∩
coNTime, UTime (NTime with unambiguous accepting paths), MATime
(Merlin-Arthur games with time-bounded Arthur), AMTime (Arthur-
Merlin games with time-bounded Arthur) and BQTime (bounded-
error quantum). Before, only time hierarchies with O(log n log log n)
bits of advice were known for them [FST05].

Furthermore, the proof of polynomial time hierarchies for RPTime
and BPTime with one-bit advice obtained using the new technique is
significantly simpler than the previously known proofs [Bar02, FS04,
FST05]. In particular, no instance checker is used in this paper and
the constructed optimal algorithm is a polynomial-time algorithm. It
makes a time hierarchy proof much easier.

2 Preliminaries

2.1 Notation and Definitions

DTime[nd]/l(n) is the class of the languages recognized by determin-
istic multi-tape Turing machines with advice of length l(n) in time
O(nd). Given input of length n, such machines read an advice string
an of the length l(n) located at an “advice tape”. Notice that any other
advice {ai}i6=n is unknown when processing an input of the length n.

A property P (n) holds infinitely often (i.o.) iff P (n) is true for
infinitely many numbers n. A property P (n) holds almost always (a.a.)
iff P (n) is true for every n starting with some n0. Let L|n denotes
L∩Σn where L is a language over an alphabet Σ. Let us define a class
of the languages that are “infinitely often” recognized by deterministic
machines:

i.o.DTime[nd] = {L ∈ Σ∗ : ∃L′ ∈ DTime[nd] : i.o. L|n = L′|n}

Since the result presented in this paper holds for a broad range
of computations, we state and prove it for some hypothetic kind of
computations called CTime. It has very natural properties which are
stated bellow.

It may be useful to think of the abstract CTime-computations as
of some particular kind of computations, ZPTime for instance. The
class ZPTime is one of the numerous examples of the computations
that were unknown before to have a polynomial time hierarchy with
only one bit of advice.

A probabilistic machine N is a ZPTime-machine iff for every input
x it produces an answer in {0, 1,⊥}, and for some language LN the
following holds:

• x ∈ LN =⇒ Pr {N(x) = 1} > 1/2 and Pr {N(x) = 0} = 0

• x /∈ LN =⇒ Pr {N(x) = 0} > 1/2 and Pr {N(x) = 1} = 0

4

The language LN is recognized by that machine N . Obviously, the
ZPTime-machine N recognizes only one language. Notice that not
every probabilistic machine is a ZPTime-machine. ZPTime is one of
the semantic classes.

ZPTime[nd]/l(n) is a class of the languages recognized by ZPTime-
machines with advice of length l(n) in time O(nd). A class ZPP/l(n)
is defined as

⋃

d ZPTime[nd]/l(n).

2.2 Hypothetic CTime

Assume that there exist some hypothetic CTime-machines. Also let
{Mi}

∞
i=1 be an effective enumeration of all but not only CTime-

machines. CTime[nd]/l(n) is the class of the languages recognized
by CTime-machines within time O(nd) with advice of length l(n). A
class CP/l(n) is defined as

⋃

d CTime[nd]/l(n). A class i.o.CTime
is defined in the following way:

i.o.CTime[nd] = {L ∈ Σ∗ : ∃L′ ∈ CTime[nd] : i.o. L|n = L′|n}

Sometimes we use the notation CTime[nd]/l(n) not only for the
class of languages but also for the CTime-machines operating within
time O(nd) with advice of length l(n). The usage of this notation is
clear from the context.

Now we declare the properties required from CTime-computations:

Computability: For any constant a, CTime[na] ⊆ DTime[2n2a

].

Soundness: A polynomial-time machine N from DTime is a polynomial-
time machine from CTime.

Composition: A machine C1 from DTime[na] that finishes its exe-
cution by running a machine C2 from CTime[nb] on an input of
length m(n) belongs to CTime[na + (m(n))b].

Simulation: A polynomial-time machine S from DTime that finishes
by simulating a machine Mi(x) from CTime that operates within

time c · nb on the input x is a polynomial-time machine from
CTime.

1. S can simulate different machines on different inputs.

2. S simulates only one machine Mi(x) on a particular input x.

3. S simulates only CTime-machines.

4. S simulates only those machines that operate within c · nb steps
where c and b are fixed for the machine S.

Given an input x, the machine S determines what CTime-machine
Mi(x) to simulate. Assume that this choice is made by writing the num-
ber i(x) on a special “simulation tape”. Mention that S can simulate
only those machines that operate within strictly c ·nb steps, not O(nb)
steps. Otherwise we cannot guarantee that S is a polynomial-time
machine.

5

The declared properties are naturally extended to the case of com-
putations with advice. The machines C1 and S are responsible for
providing the machines C2 and Mi(x) with a correct advice.

All the results that we obtain for the class CTime are valid for any
kind of computations that reveal the properties of CTime-computations.
One can see that the semantic classes ZPTime, BPTime, RPTime,
NTime ∩ coNTime, UTime, MATime, AMTime and BQTime
have such properties. The syntactic classes DTime and NTime do
also have the properties of CTime.

Let LN denote the language recognized by the machine N . This
language depends on a particular class of computations, ZPTime for
example, the machine N belongs to.

3 Time Hierarchy for Classes with Advice

3.1 Main Theorem

Theorem 3.1. For any constant d > 1, CTime[nd]/1 (CP/1.

Theorem 3.1 is a straight-forward implication from the two follow-
ing lemmas which we prove in this section:

Lemma 3.1. For any constant d > 1 there exists a function l(n) ≤
log n such that CP/l(n) * CTime[nd]/(l(n) + 1).

Lemma 3.2. For any constant d > 1, if CP/l(n) * CTime[n2d]/(l(n)+
1) for some function l(n) ≤ log n, then CP/1 * CTime[nd]/1.

When proving Lemma 3.1 one can take dde instead of d. Therefore
we assume that d is a natural number.

The most part of this section is devoted to the proof of Lemma 3.1.
The idea of its proof is exposed in Subsection 3.2.

The generalized statement of Lemma 3.2 is presented in the paper of
Fortnow, Santhanam and Trevisan [FST05, Lemma 10] who refer to the
ideas of Goldreich, Sudan and Trevisan. For the sake of completeness
we give the proof of Lemma 3.2 in Subsection 3.6.

Using translation from [Bar02] we obtain a polynomial time hier-
archy with one bit of advice as a corollary of Theorem 3.1:

Corollary 3.1. For any constants a and b such that 1 < a < b,
CTime[na]/1 (CTime[nb]/1.

3.2 Proof Idea

To illustrate the proof idea, we assume for a moment that we want
to prove CP * CTime[nd]. Let us omit some details during the
exposition.

In the beginning, we take some hard language A and “rarefy” it to
obtain a language R(A) with some nice properties. After that, we con-
struct an optimal algorithm M from CP1 that recognizes the language

1Dependently on a context, we use notation CTime[nd]/l(n) both for languages and
for machines.

6

R(A) “better” than any machine N from CTime[nd]. That is for some
input length n, it holds that LM|n = R(A)|n

2 and LN |n 6= R(A)|n,
where LM and LN are the languages recognized by the machines M
and N correspondingly. Therefore, LM 6= LN for any language LN

from CTime[nd].
The kind of optimality that the algorithm M possesses is different

from Levin’s optimality [Lev73] where M is to recognize some language
faster than any other machine. In our case, M does not have to recog-
nize R(A) “everywhere”. But the trick used to obtain the optimality is
the same. The optimal algorithm M simulates all the machines from
CTime[nd] in order to recognize the language R(A) better than these
machines can do on their own.

Assume η(i, k) is an injective increasing function. The machine
M “competes” against a machine N = µ(i) on the input lengths
{η(i, k)}∞k=1. The language R(A), the field of completion, is con-
structed in the following way:

R(A)|η(i,0) = A|η(i,0) (1)

R(A)|η(i,k+1) = {0lx : x ∈ R(A)|η(i,k), l = η(i, k + 1) − η(i, k)} (2)

Due to the padding, the hardness of the input lengths η(i, k) de-
creases as the number k increases. Since A is hard enough, it is typ-
ical that LN |η(i,k) 6= R(A)|η(i,k) for any number k, or LN |η(i,k) =
R(A)|η(i,k) only starting with some k0 > 1. In the first case, M de-
feats N , because M can easily solve input lengths η(i, k) where k is
big enough.

In the latter case, the optimal algorithm M, given an input x of
the length n = η(i, k0 − 1), constructs a string y = 0n̄−nx of the
length n̄ = η(i, k0) and simulates the machine N = µ(i) on it. Thus
LM|n = R(A)|n 6= LN |n. Certainly, M needs more than nd steps to
simulate n̄d steps of the machine N , because n̄ > n.

Where Advice Appears. Have we came up with a proof of a
polynomial time hierarchy for CTime? Unfortunately, we have not,
because no enumeration of all and only CTime-machines is known.
Since we need µ(i) to enumerate all CTime-machines, we have to let
it enumerate not only CTime-machines. But then M may leave the
class of CTime-computations when simulating some N = µ(i) that is
not a CTime-machine. Therefore M needs an advice on whether µ(i)
is a CTime-machine indeed.

Have we achieved a polynomial time hierarchy for CTime with one
bit of advice, that is CP/1 * CTime[nd]/1? Not yet, because now
M has to compete with not only CTime-machines, but also with any
possible correct advice for them. In the case of BPTime, M could
simulate a machine N = µ(i) with any possible advice (“0” and “1”)
and use an instance checker to choose the correct answer, and still
fulfill the requirements on probability of error. But in general case,
CTime does not have an instance checker.

2L|n = L ∩ {0, 1}n

7

The solution is to provide M directly with a correct advice for the
machine N = µ(i). Given an input of the length n = η(i, k − 1), M
receives an advice on (1) whether µ(i) is a CTime-machine operating
within time O(nd) with some advice {wn}

∞
n=1, and (2) what is a correct

advice w for µ(i) for the input length n̄ = η(i, k). Therefore if the
advice length is l(n), then l(n) = 1 + l(n̄) and l(n) decreases. It seems
to be an obstacle because it implies l(n) = ∞.

However, M needs no advice for the input lengths η(i, k) where k is
big enough and, thus, M directly solves that instances. So we manage
to keep l(n) ≤ log n while proving CP/l(n) * CTime[nd]/(l(n) + 1).
That enables us to use the result of Goldreich, Sudan and Trevisan
[FST05, Lemma 10] to obtain CP/1 * CTime[nd]/1.

3.3 Rarefied Language

Let {pi}
∞
i=1 be the set of all prime numbers (where p1 = 2, p2 = 3,

p3 = 5, . . .).

Definition 3.1 (Rarefied Language).

η(i, k) = pck

i , where c = 26d, i, k ∈ Z, i ≥ 1, k ≥ 0 (3)

π(x) =

{

z when |x| = η(i, k), x = 0lz, |z| = pi

⊥ otherwise
(4)

R(L) = {x : π(x) 6= ⊥, π(x) ∈ L} (5)

The mapping η(i, k) is an injection. For a given n let in and kn be
such numbers that n = η(in, kn), if possible. Also let mn = pin

.
In fact, mn is the “real” length of an instance x where n = |x|. In

order to solve the instance x, a polynomial-time algorithm can simply
check whether the word π(x) of the length mn is in L. A polynomial-

time algorithm can spend time poly(n) = poly(mck

n) for the instance
x = 0lπ(x). So the instances of the length η(i, k) becomes easier as k
increases.

Lemma 3.3 (Classification). For any two languages L and A, for
any infinite set I ⊆ N, at least one of the following items holds:

1. For almost all i ∈ I, for every k, L|η(i,k) = R(A)|η(i,k)

2. For infinitely many i ∈ I, for almost all k, L|η(i,k) 6= R(A)|η(i,k)

3. For infinitely many i ∈ I, for some k, L|η(i,k) 6= R(A)|η(i,k) and
L|η(i,k+1) = R(A)|η(i,k+1)

Proof. Assume that item (1) does not hold. Then for infinitely many
i ∈ I , for some k, we have L|η(i,k) 6= R(A)|η(i,k) . Therefore at least
one of items (2) and (3) holds.

We will use the above lemma to classify the languages recognized
by CTime-machines. Consider a CTime-machine N and let IN =
{i : N = µ(i)}. When item (2) or (3) holds, the optimal algorithm
M has an opportunity to recognize the language R(A) better than the

8

machine N can. In the case of item (2), M directly solves an “easy”
input length η(i, k) where k is big enough, and defeats N . In the case
of item (3), M simulates N on the input length η(i, k +1) to solve the
input length η(i, k), and also defeats the machine N .

In the same time, it is possible to exclude item (1) by choosing the
language A to be hard:

Lemma 3.4 ([FST05, Lemma 5]). For any two constants a and b

such that 0 < a < b, DTime[2nb

] * i.o.DTime[2na

]/(n − log n)

Let us take a language A ∈ DTime[2n3d

] \ i.o.DTime[2n2d

]/(n −
log n). It is recognized by some deterministic machine MA operating

within CA · 2n3d

steps.

Lemma 3.5. For any language L ∈ CTime[nd]/(l(n) + 1) where
l(n) ≤ log n, item (1) of Classification Lemma 3.3 relatively to R(A)
does not hold.

Proof. Assume that item (1) holds for some language L ∈ CTime[nd]/(l(n)+
1). Then for almost all i ∈ I , for every k, L|η(i,k) = R(A)|η(i,k) . In
particular, we have L|pi

= R(A)|pi
for almost all i, because pi =

η(i, 0). Keeping in mind that R(A)|pi
= A|pi

, we see that A ∈

i.o.CTime[nd]/(l(n) + 1). Therefore A ∈ i.o.DTime[2n2d

]/(l(n) + 1),
a contradiction.

3.4 Optimal Algorithm

There is an enumeration of all CTime-machines {Mi}
∞
i=1. Some of

the enumerated machines are not from CTime. Let us construct a
new enumeration µ from the old one, where every CTime-machine
has infinitely many numbers:

µ(2l + r) = Mr, where 0 ≤ r < 2l. (6)

Let us describe the optimal algorithm M. Given an input x of
length n and an advice (an, bn), which is defined later, M performs
the following:

1. If π(x) = ⊥, then print 0 and stop.

2. Compute the values in and kn such that n = η(in, kn).

3. Run the machine MA on input π(x) for CA · n steps. If it gives
an answer r, print r and stop.

4. If an = 0, then print 0 and stop.

5. Let N = µ(in), n̄ = η(in, kn + 1), y = 0n̄−nx.

6. Simulate the CTime-machine N on the input y of the length n̄
with the advice bn for n̄d+1 steps.

M computes the values in, kn and pin
in time poly(n) where n is

the input length.

9

A word x of the length n = (pin
)ckn

= (mn)ckn

is “long”, if kn ≥
1
2 log mn. “Long” words are directly recognized by M with the help of
the deterministic machine MA, because:

ckn = (26d)kn ≥ (26d)
1

2
log mn = m3d

n (7)

n = (pin
)ckn

≥ 2ckn

≥ 2m3d

n (8)

CA · n ≥ CA · 2m3d

n (9)

Let us define the advice length function l(n):

l(n) =

{

log mn − 2kn when kn < 1
2 log mn

0 otherwise
(10)

In particular, for all the input lengths n that are not representable

as n = pck

i , the value of l(n) is equal to 0. Indeed, M needs no advice
for such input lengths. The machine M also succeeds without advice
when recognizing “long” words which have kn ≥ 1

2 log mn.
Now consider “short” words with kn < 1

2 log mn. Let n̄ = η(in, kn+
1). If a CTime-machine N = µ(in) with some advice w of the length
l(n̄)+1 (1) solves the R(A)-instances of the length n̄, and (2) completes
within n̄d+1 steps, then let an = 1 and bn = w, otherwise let an = 0.
Thus l(n) = l(n̄)+2 and, therefore, l(n) = log mn−2kn. Consequently,
we have l(n) ≤ log mn ≤ log n.

Property 3.1. LM ∈ CP/l(n)

Proof. By the definition of the algorithm M and by the choice of the
advice {an, bn}

∞
n=1, M is a CTime-machine. Furthermore, it is a

polynomial-time machine, because n̄ = nc and µ(in) ≤ in ≤ n. Hence,
LM ∈ CP/l(n)

Property 3.2. For any i, for almost all k, LM|η(i,k) = R(A)|η(i,k) .

Proof. For any i, for all the numbers k ≥ 1
2 log pi, we have LM|η(i,k) =

R(A)|η(i,k) by means of running MA.

Property 3.3. Let IN = {i : µ(i) = N}. For any machine N from
CTime[nd]/(l(n)+1), for almost all i ∈ IN , for any k, if LN |η(i,k+1) =
R(A)|η(i,k+1) then LM|η(i,k) = R(A)|η(i,k) .

Proof. Consider a machine N from CTime[nd]/(l(n) + 1) operating
within CN · nd steps. For any i ∈ IN such that i > CN , for any k, we
have η(i, k) > CN . Let n = η(i, k) and n̄ = η(i, k + 1).

Now assume that LN |n̄ = R(A)|n̄. It means that the machine
N = µ(i) with some advice w of the length l(n̄) + 1 (1) solves the
R(A)-instances of the length n̄, and (2) completes within CN · n̄d <
n̄d+1 steps. Then, by the definition of the advice {an, bn}

∞
n=1, we have

an = 1 and bn = w. Consequently, by the definition of the algorithm
M, LM|n = R(A)|n.

10

3.5 Hierarchy with Logarithmic Advice

We prove Lemma 3.1 bellow:

Lemma. For any constant d > 1, there exists a function l(n) ≤ log n
such that CP/l(n) * CTime[nd]/(l(n) + 1).

Proof. By Property 3.1 we have LM ∈ CP/l(n) where LM is the
language recognized by the optimal algorithm M. It remains to prove
that

LM /∈ CTime[nd]/(l(n) + 1)

Consider any language LN ∈ CTime[nd]/(l(n)+1). It is recognized
by some CTime-machine N within time O(nd) with advice of the
length l(n) + 1. To prove that LN 6= LM, we classify LN relatively to
the language R(A) by Lemma 3.3 with IN = {i : µ(i) = N}.

Accordingly to Lemma 3.5, item (1) of the classification does not
hold for any language LN ∈ CTime[nd]/(l(n) + 1).

Assume that item (2) holds. Then for infinitely many i ∈ IN , for
almost all k, LN |η(i,k) 6= R(A)|η(i,k) . But by Property 3.2, for any i, for
almost all k, we have LM|η(i,k) = R(A)|η(i,k). Therefore for infinitely
many i ∈ IN , for almost all k, LM|η(i,k) 6= LN |η(i,k).

Assume that item (3) holds. Then for infinitely many i ∈ IN ,
for some k, LN |η(i,k) 6= R(A)|η(i,k) and LN |η(i,k+1) = R(A)|η(i,k+1).
By Property 3.3, for infinitely many i ∈ IN , for some k, we have
LM|η(i,k) = R(A)|η(i,k) 6= LN |η(i,k).

3.6 Advice Translation

We prove Lemma 3.2 bellow:

Lemma. For any constant d > 1 if CP/l(n) * CTime[n2d]/(l(n)+1)
for some function l(n) ≤ log n, then CP/1 * CTime[nd]/1.

Proof. Let us take a language L ∈ CP/l(n)\CTime[n2d]/(l(n)+1). It
is recognized by some machine M from CP/l(n) with advice {an}

∞
n=1

of length l(n). The idea of the proof is construct a language L′ from
the language L where the advice an would be coded into input length,
so that L′ ∈ CP/1 \CTime[nd]/1.

Let b(an) denote the number that has the binary representation
an. Evidently, we have 0 ≤ b(an) ≤ n − 1, because the advice length
is not greater than log n. Let sn =

∑n
i=1 i = O(n2). Then we con-

struct a language L′ = {0k1x : x ∈ L, |x| = n, k = sn−1 + b(an)}.
Therefore, every word x ∈ L of length n has an “image” in L′ that is
0k1x. The image length is determined solely by the length n and the
corresponding advice an. So the image length of a word x of length n
is:

m(n) = sn−1 + b(an) + 1 + n (11)

Every two words of different lengths have images of different lengths
also:

m(n) < sn + b(an+1) + 1 + (n + 1) = m(n + 1) (12)

11

To show that L′ ∈ CP/1, we construct a CTime-machine M ′

operating within polynomial time with one-bit advice {a′
m}∞m=1. Let

a′
m = 1 iff there exists a number n such that m = m(n). M ′ decides

on whether a word y = 0k1x of length m belongs to the language L′ in
the following way. The machine M ′ (1) computes the number n from
m, (2) verifies that |x| = n, (3) checks whether a′

m = 1, and, if it is so,
(4) runs the machine M on the input x with the advice an that can be
easily reconstructed from the length m.

For a contradiction, assume that L′ ∈ CTime[nd]/1. Then L′

is recognized by some machine M ′ from CTime[nd]/1 with one-bit
advice {a′

m}∞m=1. To obtain a contradiction with the choice of the
language L, let us construct a machine M ′′ from CTime[n2d]/(l(n) +
1) that recognizes the language L. We provide M ′′ with the advice
{an, a′

m(n)}
∞
n=1. Given an input x of length n, the machine M ′′ (1) lets

y = 0k1x where k = sn−1 + b(an), and (2) runs M ′ with the one-bit
advice a′

m(n) on the input y of the length m(n). One can easily see that

LM ′′ = L. Since |y| = O(|x|2), we have L ∈ CTime[n2d]/(l(n) + 1), a
contradiction.

4 Conclusions

The technique introduced in this paper brings a polynomial time hier-
archy with one bit of advice for a very broad range of classes, both syn-
tactic and semantic. Before, only two of the semantic classes, namely
BPTime and RPTime, were proved to have a time hierarchy with
one-bit of advice.

Now, we see that these time hierarchies are due to the properties of
the computations with advice rather than the properties of the classes
BPTime and RPTime. However, the question whether semantic
classes, in particular BPTime, have polynomial time hierarchies with-
out advice remains open.

Acknowledgments

I am grateful to my scientific advisor Edward A. Hirsch for introducing
me to the area and for valuable comments, and to Dimitri Grigoriev
for helpful discussions.

References

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-
deterministic exponential time has two-prover interactive protocols.
Computational Complexity, 1:3-40, 1991.

[Bar02] Boaz Barak. A Probabilistic-Time Hierarchy Theorem for
“Slightly Non-Uniform” Algorithms. Lecture Notes in Computer
Science, 2483:194-208, 2002.

12

[Coo72] Stephen A. Cook. A hierarchy for nondeterministic time com-
plexity. In Conference Record, Fourth Annual ACM Symposium on
Theory of Computing, pages 187-192, Denver, Colorado, 1–3 May
1972.

[FS04] Lance Fortnow and Rahul Santhanam. Hierarchy Theorems for
Probabilistic Polynomial Time. In Proceedings of the 45th IEEE
Symposium on Foundations of Computer Science, 2004.

[FST05] Lance Fortnow, Rahul Santhanam, and Luca Trevisan.
Promise Hierarchies. In Proceedings of the 37th ACM Symposium
on the Theory of Computing, 2005.

[HS65] J. Hartmanis and R. E. Stearns. On the computational com-
plexity of algorithms. Trans. Amer. Math. Soc. (AMS), 117:285-
306, 1965.

[Lev73] Leonid Levin. Universal search problems (in Russian). Prob-
lemy Peredachi Informatsii, 9(3):265-266, 1973.

[TV02] Luca Trevisan and Salil Vadhan. Pseudorandomness and
Average-case Complexity via Uniform Reductions. In Proceedings
of the 17th Annual IEEE Conference on Computational Complex-
ity, volume 17, 2002.

13

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

