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Abstract

Consider a system M of parallel machines, each with a strictly increasing and differentiable
load dependent latency function. The users of such a system are of infinite number and act
selfishly, routing their infinitesimally small portion of the total flow r they control, to machines
of currently minimum delay. It is well known that such selfishness if modeled by a noncooperative
game may yield a Nash Equilibrium onM with cost unboundedly worst than the overallOptimum
one. We model such a system as a Stackelberg or Leader-Followers game, and present a simple
algorithm that computes the least flow βM (or “price of optimum”) that must be controlled
by a Leader in order to impose the overall optimum cost on M , as well as Leader’s optimum
strategy. The efficiency of our algorithm depends on the computation of the optimum and Nash
assignment on such systems. Such assignments can be computed efficiently [4] for the classes of
latency functions that we are interested in. Our motivation was [21] were the open question of
computing βM on a arbitrary system M was posed.
We were also greatly inspired from [7], in which the computation of βM was a major issue.

In that article systems with M/M/1 latency functions were studied, which are widely met in real
world applications. Furthermore, βM (n) was computed explicitly for Stackelberg games with
either n = 1 or a finite number n of Followers. It was demonstrated that βM (n) is nondecreasing
on n, and as n increases it becomes harder for the Leader to impose the overall optimum. Most
notably, it was conjectured that if n → ∞ then it is not possible for the Leader to impose
system’s overall optimum. This comes into contrast to our theoretical results. As a by-product,
we present a simple algorithm that computes the Nash Equilibrium for a systemM with M/M/1
latency functions.
We should stress here that the model of parallel machines, despite its simplicity, incurs the

worst coordination ratio as proved in [19].

1 Introduction

Selfish behavior in dynamic large scale networks such as Internet can be studied in the setting
of a noncooperative game through the mathematical framework of Game Theory. Decisions in
such networks are taken independently by their users [4, 7, 22, 17]. The users according to their
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own individual performance objectives make their choices bringing the network to fixed points,
where nobody want to deviate from, called Nash Equilibria [15, 16]. In this context, the interested
reader can find much of theoretic work in [7, 9, 20, 23, 10, 11, 12, 16, 17, 18]. Nash Equilibria are
inefficient and exhibit at general suboptimal network performance. As a measure of how worse is
the Nash equilibrium compared to the overall system’s optimum, the notion of coordination ratio
was introduced in [18, 11]. Their work have been extended and improved (price of anarchy here is
another equivalent notion) in [3, 4, 6, 11, 19, 20, 22].
As it is mentionted above the selfish behavior may be modeled by a noncooperative game. Such

a game could impose strategies that might induce an equilibrium closer to the overall optimum.
These strategies are formulated through pricing mechanisms [5], algorithmic mechanisms [13, 14]
and network design [23, 8]. The network administrator or designer can define prices, rules or even
construct the network, in such a way that induces near optimal performance when the users selfishly
use the system. Particulary interesting is the approach where the network manager takes part to
the non-cooperative game. The manager has the ability to control centrally a part of the system
resources, while the rest resources are used by the selfish users. This approach has been studied
through Stackelberg or Leader-Follower games [2, 20, 7, 9, 24]. The advantage of this approach is
that it might be easier to be deployed in large scale networks. This can be so, since there is no
need to add extra components to the network or, to exchange information between the users of the
network.

1.1 Motivation and contribution

Our work is motivated from [7, 20]. In [20] Roughgarden presented the LLF Stackelberg strategy
for a Leader, on a noncooperative game with an infinite number of Followers, each routing its
infinitesimal flow through machines of currently minimum delay (this setting corresponds to a
model well known as Flow Model [22]).
An important question possed in [21] was the computation of the least portion βM that a Leader

must control in order to enforce the overall optimum cost on a system M . In Section 2 we present
algorithm OpTop which computes βM and its optimality proof in Section 3. Most importantly, we
prove that OpTop is optimal for any system M with any class of latency functions for which we can
compute efficiently Nash and optimum assignments. For example, see page 18 in [4].
On trying to compute βM , we were greatly inspired from [7]. Their study was devoted to

machines with M/M/1 latency functions, that are widely met in real world applications. An
enlightening aspect of their work is that Korilis et al consider Leader-Followers noncooperative
games such that, either the number n of Followers, or the routing scheme of each individual
Follower, may vary. Thus, they investigate βM (n) on any system M such that n = 1, n = n0 (with
n0 finite), and n → ∞. As for routing scenarios, they consider cases such that (i) each Follower
adjusts his routing strategy according to the decisions of the Leader in his desire to minimize his
individual cost, and (ii) each Follower ships his flow through machines (links) of minimum currently
delay (simple-followers). Concerning routing scenario (i) it is proved that βM (n) is nondecreasing
on finite n (see Proposition 6.5) and as n is increasing it becomes harder for the Leader to impose
the optimum on M . According to routing scenario (ii), they conjecture that it is impossible for
a Leader to enforce the optimum on M as n → ∞ ([7] see Section 8, last paragraph of page 24).
These should be contrasted to our results, since in such a routing scenario, Optop always manages
to impose the optimum on M , computing the least possible βM (n).
In Appendix, our theoretical analysis of OpTop is validated experimentally with an algorithm
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implemented in C, that takes as input a 3-tuple of machines M (with linear or M/M/1 latencies)
and a total of flow r. Finally, also in Appendix we present a simple polynomial algorithm for
computing a Nash Equilibrium in a system M with M/M/1 latency functions working in the Flow
Model (see also [4] for a nice presentation of the area).

1.2 Model - Stackelberg strategies

For this study the model and notation of [20] is used. We consider a set M of m machines, each
with a latency function `(·) ≥ 0 continuous, differentiable and strictly increasing, that measures
the load depended time that is required to complete a job. Jobs are assigned to M in a finite and
positive rate r. Let the m-vector X ∈ Rm

+ denote the assignment of jobs to the machines inM such
that

∑m
i=1 xi = r. The latency of machine Mi ∈ M with load xi is `i(xi) and incurs cost xi`i(xi),

convex on xi. This instance is annotated (M, r). The Cost of an assignment X ∈ Rm
+ on the (M, r)

instance is C(X) =
∑m

i=1 xi`i(xi), measuring system’s performance. The minimum cost is incurred
by a unique assignment O ∈ Rm

+ , called the Optimum assignment. The unique assignment N ∈ Rm
+

defines a Nash equilibrium, if no user can find a loaded machine with lower latency than any other
loaded machine. That is, each machine Mi ∈M with load ni > 0 experiences commmon latency L
while any machine Mj ∈ M with load nj = 0 experiences latency Lj ≥ L. The Nash assignment
N causes cost C(N) commonly referred to as Social Cost [12, 10, 11, 7, 9, 16, 17, 18]. The social
cost C(N) is higher than the optimal one C(O), leading to a degradation in system performance.
The last is quantified via the Coordination Ratio[10, 11, 3] or Price of Anarchy (PoA) [22], i.e.

the worst-possible ratio between the social cost and optimal cost: PoA = C(N)
C(O) , and the goal is to

minimize PoA 1. To do so, a hierarchical non cooperative Leader-Follower or Stackelberg game is
used [2, 20, 7, 9, 24]. In such a game, there is a set M of machines, jobs with flow rate r and a
distinguished player or Leader who is responsible for assigning centrally a α portion of the rate r
to the system so as to decrease the total social cost of the system. The rest of the players, called
Followers are assigning selfishly the remaining (1− α)r flow in order to minimize their individual
cost. The Leader assigns S ∈ Rm

+ to M and the Followers react, inducing an assignment in Nash
assignment T . The goal of the Leader is achieved if C(S + T ) = C(O).

2 Algorithm OpTop

In this section we present an efficient algorithm that computes the least flow that should be con-
trolled by the leader in order to induce the overall optimum on a given system. Next we give
an example where we run this algorithm on a set of 5 machines with M/M/1 latency functions.
Let the optimum O := 〈o1, . . . , om〉 and the Nash assignment N := 〈n1, . . . , nm〉 of flow r on to
system M = {M1, . . . ,Mm}. Intuitively, OpTop initially loads si = oi to each machine Mi ∈ M
with ni < oi, that is, to all machines not appealing to the selfish users. Then it discards all these
not appealing machines. The remaining flow is assigned recursively by OpTop in exactly the same
fashion to the simplified subsystem of machines. It terminates as soon as it encounters a simplified
system with all of its machines optimally loaded (see also Example 1).

1Notice that in a general setting may exist a set A of Nash equilibria, then PoA is defined with respect to worst
one, i.e. PoA = maxN∈A

C(N)
C(O)

.
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Algorithm: OpTop (M, r)
Input: Machines M = {M1, . . . ,Mm}, flow r
Output: A portion β of flow r
begin:

Compute Optimum assignment O := 〈oi :Mi ∈M〉 of the flow r on machines M
r0 = r; β = CompOpTop(M, r, r0, O);

end;
Procedure: CompOpTop (M, r, r0, O)
Input: Machines M, flow r, initial flow r0, Optimum assignment O := 〈oi :Mi ∈M〉
Output: A portion β of initial flow r0
begin:

Compute the Nash assignment N := 〈ni :Mi ∈M〉 of flow r on M;

If (N ≡ O) return β = (r0 − r)/r0;
else (M, r,O)← Simplify(M, r,N,O); return CompOpTop(M, r, r0, O);

end if;
end;
Procedure: Simplify(M, r,N,O)
Input: Machines M, flow r

Nash assignment N := 〈ni :Mi ∈M〉, Optimum assignment O := 〈oi :Mi ∈M〉
Output: Reduced machines M, Reduced flow r, Reduced Optimum O := 〈oi :Mi ∈M〉
begin:

for i = 1 to size(M) do:
If oi > ni then
r ← r − oi; M ←M\{Mi}; O := O \ 〈oi〉;

end if;
end for;
return (M, r,O);

end;

The numerical stability of OpTop depends solely on the finite precision accuracy of the com-
putation of Nash and Optimum assignments on a given system M . Such computations can be
performed efficiently with arbitrary digits precision for all classes of machines considered in [4]. In
particular, for linear latency functions efficient computations of Nash and Optimum assignments
can be found in [20]. Also, for the case of M/M/1, an algorithm that runs in O(m2) time and
computes a Nash assignment is given in Appendix and for the corresponding Optimum see [7].
Therefore, for such latency classes OpTop runs in O(m3). In the following example, we run the
OpTop algorithm presented above, for a set of 5 machines with M/M/1 latency functions.

Example 1 Suppose a set M of 5 machines with latency functions `1(x1) =
1

0.6−x1
, `2(x2) =

1
0.24−x2

, `3(x3) =
1

0.3−x3
, `4(x4) =

1
0.2−x4

, `5(x5) =
1

0.4−x5
. The total flow of the system is r = 1.

We run the algorithm OpTop on the above set M and get the minimum portion of the flow r that
should be controlled centrally to induce the optimum performance of the system.

The Optimum assignment on M is O = 〈o1, . . . , o5〉 = 〈0.4017, 0.1146, 0.1598, 0.0855, 0.2381〉 and
the Nash one is N = 〈n1, . . . , n5〉 = 〈0.452, 0.092, 0.152, 0.052, 0.252〉 (Figure 1(a) in Appendix).
Observe that o2 > n2, o3 > n3, o4 > n4 and OpTop assigns optimally flow to machines M2,M3,M4

equal to o2 + o3 + o4 = 0.3599. Then OpTop simplifies the system M = {M1, . . . ,M5} to the
subsystemM ′ =M\{M2,M3,M4} = {M1,M5}. The remaining flow r′ that is going to be scheduled
on M ′ = {M1,M5} is r′ = r − (o2 + o3 + o4) = 0.6401. OpTop computes the Nash assignment
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N ′ = 〈n′
1, n

′
5〉 = 〈0.4199, 0.2199〉 on M ′ = {M1,M5} of the remaining flow r′ = 0.6401. The overall

optimum assignment O reduces to O′ = 〈o1, o5〉 = 〈0.4017, 0.2381〉 with respect to subsystem
M ′ = {M1,M5} (Figure 1(b) in Appendix). Observe M5 ∈ M ′ has Nash load n′

5 < o5 so M ′ is
further simplified toM ′′ = {M1} and the remaining flow is r

′′ = r′−o5 = 0.4017 (whileM5 receives
its optimal load o5). Once more, OpTop computes the Nash assignment N

′′ = 〈n′′
1〉 = 〈0.4017〉 on

M ′′ = {M1} (Figure 1(c) in Appendix) and the optimum one reduces with respect to M ′′ as
O′′ = 〈o1〉 = 〈0.4017〉. That is, OpTop has encountered a subsystem M ′′ = {M1} such that
O′′ = 〈0.4017〉 ≡ N ′′ end terminates returning the least portion βM = r−r′′

r
= 0.5983 needed to be

centrally controlled in order to enforce the overall Optimum O on M .

3 Optimality of algorithm OpTop

In the following Sections 3.1 and 3.2 we prove our main theorem:

Theorem 1 Consider a system of parallel machines M = {M1, . . . ,Mm}, with latency function
`i(·) per machine Mi ∈ M differentiable and strictly increasing. Algorithm OpTop computes the
least portion βM of total flow r that a Leader must control to induce overall optimum cost on M .

3.1 Useful machinery

We denote the corresponding Nash and Optimum assignments of flow r to system M as N =
〈n1, . . . , nm〉 with

∑m
i=1 ni = r, and O = 〈o1, . . . , om〉 with

∑m
i=1 oi = r. We give a more useful

definition for the Nash assignment N .

Definition 1 An assignment N = 〈n1, . . . , nm〉 of total flow
∑m

i=1 ni = r on the system of ma-
chines M = {M1, . . . ,Mm} is called Nash Equilibrium if there exists a constant LN > 0 such that
for each machine Mi ∈M , if ni > 0 then `i(ni) = LN , otherwise `i(ni) ≥ LN .

We denote as Stackelberg strategy S an assignment S = 〈s1, . . . , sm〉 of flow
∑m

i=1 si = βr, β ∈
[0, 1], on systemM . Given S, we denote the induced Nash assignment as T = 〈t1, . . . , tm〉 with

∑m
i=1 ti =

(1− β)r.

Definition 2 Given Stackelberg strategy S = 〈s1, . . . , sm〉 with
∑m

i=1 si = βr, β ∈ [0, 1], the as-
signment T = 〈t1, . . . , tm〉 of the remaining flow

∑m
i=1 ti = (1−β)r on system M = {M1, . . . ,Mm}

is an Induced Nash Equilibrium if there exists a constant LS > 0 such that for each Mi ∈ M , if
ti > 0 then `i(ti + si) = LS, otherwise `i(ti + si) = `i(0 + si) ≥ LS.

The Cost of an assignment X = 〈x1, . . . , xm〉 on M equals C(X) =
∑m

i=1 xi`i(xi). Then, strategy
S induces Nash assignment T with cost C(S + T ) =

∑m
i=1(si + ti)`i(si + ti).

Definition 3 Machine Mi ∈ M is called over-loaded (or under-loaded) if ni > oi (or ni < oi),
otherwise is called optimum-loaded, i = 1, . . . ,m.

Definition 4 Machine Mi ∈ M (or load si ∈ S) is called frozen if Stackelberg strategy S assigns
to it load si ≥ ni, i = 1, . . . ,m.

Luckily, by the selfish assignment N of the users, all machines may end up optimum-loaded. In
this way, N ≡ O and the cost C(N) of the system is minimized, that is C(N) = C(O). In general
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N 6≡ O, since the selfish users prefer and thus over-load fast machines, while dislike and under-load
slower ones, increasing the cost C(N) > C(O). The crucial role of strategy S is to wisely pre-assign
load si ≥ 0 to each machine Mi ∈ M . This is successful to the extent that the induced selfish
assignment T made by the users will assign an additional load ti ≥ 0 to each Mi, yielding the
nice property si + ti = oi for each i = 1, . . . ,m. Intuitively, strategy S biasses the initial Nash
assignment N to the induced one T , in a way that S + T ≡ O, minimizing the induced overall cost
C(S + T ) = C(O) of system M . It is convenient to state the following easy proposition.

Proposition 1 Consider the machines in M with latency functions `j(·) j = 1, . . . ,m. Let the
Nash assignment N = 〈n1, . . . , nm〉 of total flow r on to M . If N ′ = 〈n′

1, . . . , n
′
m〉 is the Nash

assignment of total flow r′ ≤ r on to M , then for each machine Mi ∈M it holds: n′
i ≤ ni.

Proof. Since N is a Nash assignment of the flow r on M , by Definition 1, ∃ LN > 0, such
that for each machine Mi ∈ M if ni > 0 then `i(ni) = LN , otherwise `i(ni) = `i(0) ≥ LN . Let
MN+

= {Mi ∈ M : ni > 0} and MN−
= {Mi ∈ M : ni = 0}. Similarly for N ′, let LN ′

> 0 the
corresponding constant, and MN ′+

= {Mi ∈ M : n′
i > 0} and MN ′−

= {Mi ∈ M : n′
i = 0}. To

reach a contradiction, suppose that ∃ Mi0 ∈MN ′+
such that n′

i0
> ni0 .

Case 1: If Mi0 ∈ MN−
then `i0(n

′
i0
) = LN ′

> `i0(ni0) = `i0(0) ≥ LN , since each `i(·) is strictly

increasing and n′
i0

> ni0 = 0. Then, each machine Mi ∈ MN+
must have load n′

i > ni under

N ′, otherwise it will experience latency `i(n
′
i) ≤ `i(ni) = LN < LN ′

which is impossible, since
N ′ is a Nash equilibrium. Therefore, we reach a contradiction since we get r′ ≥

∑

Mi∈MN+ n′
i >

∑

Mi∈MN+ ni = r.

Case 2: If Mi0 ∈ MN+
then `i0(n

′
i0
) = LN ′

> `i0(ni0) = LN . Therefore, each machine Mi ∈

MN+
must receive load n′

i > ni under N ′, otherwise each Mi ∈ MN+
will experience latency

`i(n
′
i) ≤ `i(ni) = LN < LN ′

. That is, in the same fashion, we reach a contradiction.

Theorem 2 describes each Stackelberg strategy S inducing Nash assignment T with cost C(S+T ) =
C(N). In other words, Theorem 2 describes exactly all those useless strategies that induce cost
indifferent form C(N). Then, it is useless for OpTop to employ such a strategy S when trying to
escape from a particular Nash equilibrium N with C(N) >> C(O).

Theorem 2 Consider the machines in M with latency functions `j(·) j = 1, . . . ,m. Let the Nash
assignment N = 〈n1, . . . , nm〉 of the total flow r to M . Suppose that for a Stackelberg strategy
S = 〈s1, . . . , sm〉 with

∑m
i=1 si = βr, β ∈ [0, 1], it holds sj ≤ nj , j = 1, . . . ,m. Given S, let the

induced Nash assignment T = 〈t1, . . . , tm〉 of the remaining flow (1−β)r. Then it holds nj = sj+tj
for each Mj ∈M , in other words, N ≡ S + T .

Proof. Since N is a Nash equilibrium on the machines in M with
∑m

i=1 ni = r, then there exists
a constant LN > 0, such that for each machine Mj ∈ M that receives load nj > 0 it holds
`j(nj) = LN . That is, all loaded machines incur the same latency LN to the system M . Consider
an arbitrary Stackelberg strategy S, assigning load sj ≤ nj to eachMj ∈M with

∑m
i=1 si = βr, β ∈

[0, 1]. Then, the initial system of machines M is transformed by S to the equivalent system MS ,
such that each machineMS

j ∈MS with load xj now experiences latency `S
j (xj) = `j(xj+sj). Since

for each Mj ∈M it holds sj ≤ nj then ∃ tj ≥ 0 such that tj = nj − sj and also
∑m

i=1 ti = (1− β)r.
Let T = 〈t1, . . . , tm〉 this assignment on MS . Obviously, for the same constant LN > 0 as above, it
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holds: `S
j (tj) = `j ((nj − sj) + sj) = `j(nj) = LN , for each Mj ∈ M with tj > 0. This means that

T is a Nash equilibrium on system MS and also S + T ≡ N .

In view of the negative result of Theorem 2, a natural question concerns the properties that
a Stackelberg strategy must have in order to induce cost 6= C(N). We answer this question on
Theorem 3 and its generalization Lemma 1 below, and before this, we give a convenient definition.

Definition 5 Each Stackelberg strategy S that satisfies Theorem 2 is called useless-strategy, oth-
erwise is called useful-strategy.

Theorem 3 states that any machine Mi ∈ M receiving load si ≥ ni by a strategy S (while there
is no machine Mj ∈ M with load sj < nj) will become non appealing for the subsequent selfish
assignment T of the users. That is, for each Mi ∈M assigned load si ≥ ni, its induced load by the
Nash assignment T equals ti = 0. Intuitively, in the induced Nash equilibrium T , the dictated load
si ≥ ni by strategy S to machine Mi will remain “frozen” to si, i ∈ {1, . . . ,m}.

Theorem 3 Let the Nash assignment N = 〈n1, . . . , nm〉 of the total load r on system M . Suppose
that for a Stackelberg strategy S = 〈s1, . . . , sm〉 with

∑m
i=1 si = βr we have either sj ≥ nj or

sj = 0, j = 1, . . . ,m. Then for the induced Nash assignment T = 〈t1, . . . , tm〉 of the remaining load
(1− β)r we have that tj = 0 for each Mj ∈M such that sj ≥ nj , j = 1, . . . ,m.

Proof. By Definition 1, since N is a Nash equilibrium onM , ∃ LN > 0 such that for eachMi ∈M ,
if ni > 0 then `i(ni) = LN , otherwise `i(ni) ≥ LN . Fix a Stackelberg strategy S on M , such
that for each machine Mi ∈ M , either si ≥ ni or si = 0. Let MS+

= {Mi ∈ M : si ≥ ni} and
MS−

= {Mi ∈ M : si = 0}, and notice that M = MS+
∪MS−

and MS+
∩MS−

= ∅. Each
Mi ∈MS+

receiving induced load ti ≥ 0 now experiences latency

`S+

i (ti) = `i(ti + si) ≥ `i(si) ≥ `i(ni) ≥ LN . (1)

On the other hand, each Mj ∈ MS−
receiving induced load tj ≥ 0 experiences the same (since

sj = 0) as the initial (that is, without applying strategy S) latency

`S−

j (tj) = `j(tj + sj) = `j(tj). (2)

In the sequel, the induced Nash assignment T by strategy S assigns the remaining flow on M

r −
m
∑

i=1

si = r −
∑

Mj∈MS+

sj ≤
∑

Mj∈MS−

nj . (3)

Having in mind (2) and (3), the crucial observation is that even if all the remaining flow that
appears in LHS of (3) is assigned selfishly only on subsystem MS−

, it is impossible the common
latency LS−

experienced by each loaded machine in MS−
to become LS−

> LN , so that at least
one machine in MS+

to become appealing for the selfish players. More formally, let T S−
be the

partial Nash assignment that corresponds to assigning the flow that appears in LHS of (3) only on
to the subsystem MS−

. By Definition 1, ∃ LS−
> 0 such that for each loaded machine Mj ∈MS−

with load 0 < tS
−

j ≤ nj (here RHS inequality stems from Proposition 1 and the RHS of (3)) it
holds

`S−

j (tS
−

j ) = `j(t
S−

j ) = LS−

≤ `j(nj) = LN . (4)
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By (1) and (4) it follows that no machine Mj ∈ MS+
is appealing for the overall induced Nash

assignment T .

A crucial limitation of Theorem 3 is that it does not rule out the existence of a strategy S assigning
load sj < nj to some machine Mj ∈ M in a way that at least one machine in MS+

to become
appealing for the selfish users. Lemma 1 rules out such a possibility. Intuitively, Lemma 1 states
that each assignment of load sj ≥ nj made by strategy S to each machine Mj ∈ MS+

remains
unaffected by its induced Nash load (i.e. T induces load tj = 0 on Mj), irrespectively of any
assignment of load si < ni made by S to any other machine Mi 6=Mj .

Lemma 1 Let the Nash assignment N = 〈n1, . . . , nm〉 of the total load r on system M . Suppose
that for a Stackelberg strategy S = 〈s1, . . . , sm〉 with

∑m
i=1 si = βr, β ∈ [0, 1], we have either sj ≥ nj

or sj < nj , j = 1, . . . ,m. Then for the induced Nash assignment T = 〈t1, . . . , tm〉 of the remaining
load (1− β)r we have that tj = 0 for each machine Mj ∈M such that sj ≥ nj , j = 1, . . . ,m.

Proof. By Definition 1, since N is a Nash equilibrium on M , ∃ LN > 0 such that for each machine
Mi ∈ M , if ni > 0 then `i(ni) = LN , otherwise `i(ni) ≥ LN . Consider an arbitrary strategy S
and let MS+

= {Mi ∈ M : si ≥ ni} and MS−
= {Mi ∈ M : si < ni}. Similarly as in (1), each

Mi ∈MS+
receiving induced load ti ≥ 0 now experiences latency

`S+

i (ti) = `i(ti + si) ≥ `i(si) ≥ `i(ni) ≥ LN . (5)

However, here we do not have the nice fact as in (2) for the machine latencies in M S−
(since now

sj 6= 0 ). We can circumvent this as follows. The induced Nash assignment T assigns on system M
the remaining flow that equals

rS = r −
m
∑

Mi∈ MS+
∪MS−

si ≤ rS−

= r −
∑

Mi∈MS+

si ≤
∑

Mi∈MS−

ni, (6)

where the rightmost inequality stems from the fact that

rS+
=

∑

Mi∈MS+

si ≥
∑

Mi∈MS+

ni. (7)

Now, we prove that even if the flow rS−
in (6) is scheduled selfishly only on the subsystem MS−

,
then all machines with load > 0 in it, would not experience common latency LS−

> LN so that
at least one machine in MS+

to become appealing for scheduling any excess of flow. Let NS−

the partial Nash assignment (that is, without previously assigning S on to subsystem M S−
) when

scheduling flow rS−
appearing in (6) only on to subsystem MS−

. Also, applying strategy S on to
subsystemMS−

, let TS−
the induced partial Nash assignment (that is, by assigning previously S on

to subsystem MS−
) when scheduling the remaining of rS−

appearing in (6) only on to subsystem
MS−

. Let nS−

i (or tS
−

i ) denote the load assigned by NS−
(or TS−

) to each Mi ∈ MS−
. Then, we

have the following two cases.

Case 1: Suppose that for each machine Mi ∈ MS−
it holds si ≤ nS−

i . Then we can apply
Theorem 2 when assigning the remaining of rS−

on subsystem MS−
. In this way, for each machine

Mi ∈MS−
it holds si + tS

−

i = nS−

i . Furthermore, from Inequality (6) we realize that

rS−

=
∑

Mi∈MS−

nS−

i ≤
∑

Mi∈MS−

ni. (8)
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Applying Proposition 1, we conclude that for each loaded machine Mi ∈ MS−
it holds `i(n

S−

i ) ≤
`i(ni) = LN and using (5) the lemma is proved.

Case 2: Suppose that there exists at least one machine Mi ∈ MS−
such that si > nS−

i . Then
we can construct T S−

as follows. For each machine Mi ∈ MS−
such that si ≤ nS−

i we set 2

tS
−

i ≤ nS−

i − si, otherwise we set tS
−

i = 0. Clearly, each machine Mi ∈ MS−
with tS

−

i > 0
experiences a common latency

LS−

= `S−

i (tS
−

i ) ≤ `i((n
S−

i − si) + si) = `i(n
S−

i ) ≤ `i(ni) = LN ,

and the lemma follows. On the other hand, each machine Mi ∈ MS−
with tS

−

i = 0 already has
load sj due to S such that nS−

j < sj < nj . Therefore,

LS−

≤ `S−

j (tS
−

j ) = `S−

j (0) = `j(sj) < `j(nj) = LN ,

and the lemma follows.

In Section 3.2 we apply Theorem 3, Lemma 1 and Proposition 2 to discard the machines with frozen
load sj = oj ≥ nj and simplify the initial game. Clearly, such machines will never be affected by
the induced selfish play of the users on the rest of machines. Therefore, using Proposition 2, we
focus on the remaining machines with load under S that equals si < ni, which may be affected by
the selfish users, trying to find a subsequent partial Stackelberg strategy on them that will induce
the optimum cost.

Proposition 2 Let the system M = {M1, . . . ,Mm} and the Nash assignment N = 〈n1, . . . , nm〉
of the total load r on M . Fix a Stackelberg strategy S = 〈s1, . . . , sm〉 such that either sj ≥ nj or

sj < nj , j = 1, . . . ,m. Let the subset of frozen machines MS+
= {Mj ∈ M : sj ≥ nj}, j =

1, . . . ,m, and their frozen load rS+
=
∑

Mj∈MS+ sj . Then the initial Stackelberg game of flow r

on M can be simplified to scheduling the remaining unfrozen flow rS−
= r − rS+

to the remaining
unfrozen subsystem of machines MS−

=M \MS+
.

3.2 The optimal evolution of OpTop

3.2.1 Phase 1: OpTop loads optimally all initially under-loaded machines.

During Phase i ≥ 1, let N i = 〈ni
1, . . . , n

i
m〉 denote the Nash assignment of flow ri (where r1

equals the initial total flow r) on to subsystem of machinesM i (whereM1 is the initial systemM).
Also, let O = 〈o1, . . . , om〉 denote the overall optimum assignment of flow r onto system M (notice
that O is not parameterized with respect to the ith Phase). We introduce the following partition
(according to Definition 3) of the system M 1 ≡M of machines, during Phase 1

M1− = {Mj ∈M1 : n1
j < oj} and M1+

= {Mj ∈M1 : n1
j ≥ oj}. (9)

• According to Theorem 3 and Lemma 1, if during Phase 1 a Stackelberg strategy S1 =
〈s1

1, . . . , s
1
m〉 assigns load s1

j such that oj < n1
j < s1

j to at least one over-loaded machine

Mj ∈M1+
(see Definition 3) thenMj will remain frozen to an unfavorably high value s

1
j > oj ,

2See on Appendix the validity of this inequality.
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irrespectively of any load s1
i strategy S

1 may assign to any other machineMi 6=Mj . Therefore,
Mj will never reduce its load to the optimum value oj , and thus the system M will never
converge to its overall optimum assignment O.

• In the same fashion, applying Lemma 1, if during Phase 1 strategy S1 assigns load s1
j such

that n1
j < s1

j < oj to at least one under-loaded machine Mj ∈ M1− then Mj will remain
frozen to an unfavorably low load s1

j < oj .

Then OpTop must assign load s1
j = oj > n1

j to each initially under-loaded machine Mj ∈ M1− ,
otherwise under-loaded machines will never attain their overall optimum load. Furthermore, by
Theorems 2, 3 and Lemma 1, it is wasteful any assignment of flow s1

i < n1
i to any other machine

Mi ∈ M1. Clearly, no such assignment oi < s1
i < n1

i can affect favorably any load assignment
s1
j = oj > n1

j to any initially under-loaded machine Mj ∈ M1− . We conclude that at the end of

Phase 1 algorithm OpTop constructs the Stackelberg strategy S1 such that in each Mj ∈ M1− it

assigns load s1
j = oj , while in each Mj ∈M1+

it assigns s1
j = 0.

Simplification of the initial game: Each initially under-loaded machineMj ∈M1− will remain
frozen to its induced by S1 optimum load s1

j = oj > n1
j . Using Proposition 2, we can simplify the

game by discarding each initially under-loaded machine Mj ∈ M1− that becomes frozen by S1.

During Phase 1 algorithm OpTop needs a portion r1− to frozen the machines in M 1− r1− =
∑

Mj∈M1− oj . Then the initial Stackelberg game of flow r1 on M1 can be simplified to scheduling

the remaining flow r2 = r1 − r1− to the remaining machines M 2 =M1 \M1− .

3.2.2 Phase i ≥ 2: the recursive nature of OpTop.

During Phase 2, we consider the Nash assignment N 2 = 〈n2
j : Mj ∈ M2〉 when scheduling the

remaining flow r2 = r1− r1− on the simplified system M2 =M1 \M1− and, similarly as in Phase

1 let,

M2− = {Mj ∈M2 : n2
j < oj} and M2+

= {Mj ∈M2 : n2
j ≥ oj}. (10)

Then, applying similarly as in Section 3.2.1 Theorem 2 and 3, Lemma 1 and Proposition 1, OpTop
constructs the subsequent Stackelberg strategy S2 onto subsystem M2 such that in each Mj ∈M2−

it assigns s2
j = oj , while in each Mj ∈ M2+

it assigns s2
j = 0. Then, once more, OpTop simplifies

the game, scheduling flow r3 = r2 − r2− = r2 −
∑

Mj∈M2− oj onto subsystem M3 = M2 \M2− .

Finally, OpTop terminates as soon as it reaches a Phase i0 where the simplified subsystem M i0 has
the property

M i0
−

= {Mj ∈M i0 : ni0
j < oj} ≡ ∅, (11)

and outputs the least possible flow β(M) needed to impose the overall optimum on system M that
equals

β(M) =

∑i0−1
k=1 rk−

r1
=

r1 − ri0

r1
, i0 ≥ 1.
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Discussion

The efficiency of OpTop depends solely on the computation of Nash and Optimum assignment on
a given system M . In [20] a O(m2) time algorithm is presented for computing both Nash and
Optimum assignment for linear latency functions. In the Appendix we present a similar O(m2)
time algorithm that computes the Nash assignment for M/M/1 latencies while the optimum one
can be computed as in [7] using standard optimization techniques from Nonlinear Programming.
Therefore, for such latencies OpTop runs in O(m3) time. In addition, for a more general class of
latency functions we can consider the approaches as in [1].
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Appendix

Experimental validation of optimality

In this section we present our results which show that the OpTop algorithm computes the least
possible fraction β of the total flow r the leader should control to induce optimal assignment to the
setM of machines. To do so, we computed using the algorithm Exhaustive below the corresponding
minimum portion β of flow, for random 3-tuples machines for both linear and M/M/1 functions.

Algorithm: Exhaustive (M, r)
Input: Machines M = {M1,M2,M3}, flow rate r
Output: A portion β of flow rate r
begin:

Compute the Optimum assignment O := 〈o1, o2, o3〉 of flow r on machines M;

Compute the Cost Copt of the Optimum assignment O;
for r0 = 0 to r do:

for x = 0 to r0 do:
for y = 0 to r0 − x do:

S := 〈x, y, r0 − x− y〉

12



Compute the induced Nash assignment N := 〈n1, n2, n3〉
of flow r − r0 on machines M and leader assignment S;

Compute the Cost Cind of the induced Nash assignment N;

If (Copt == Cind) return β = r0/r; break; end if

end for;
end for;

end for;
end;

We made extensive experiments both 3-tuples of machines with both linear and M/M/1 latency
functions and the results stated that the OpTop algorithm computes the least possible portion of
flow that should be controlled by the leader. An interested reader can find our experimental results
in [25].

Computing Nash Equilibria on systems with M/M/1 latency func-

tions

We compute the Nash equilibrium of total flow r on a system M of machines with M/M/1 latency
functions by using a similar algorithm with the one presented in [20]. LetM be the set of machines
with latency functions `i(xi) =

1
ci−xi

, with ci > 0, i ∈ M . The selfish users prefer the machines
of highest capacity, so we order the machines from the highest c1 to the smallest one cm as:
c1 ≥ c2 ≥ · · · ≥ cm.
Our goal is to understand the structure of the Nash assignment N in relation to the flow rate

r. We construct the Nash assignment for 4 machines in M , using the Figure 2 in Appendix and
afterwards we generalize for m machines in M . While the portion x of the total flow r which is
currently scheduled on M increases, and remains x ∈ [0, c1 − c2) then ∀ i ≥ 2, `1(x) < `i(0), that
is,M1 remains most appealing. SinceM1 receives flow, it becomes loaded reducing its capacity and
increasing its latency. After a while, the latency in M1 becomes equal to the latency experienced
in M2. This happens as soon as M1 receives flow x1 = c1 − c2, which gives `1(x1) = `2(0). At
this point Phase 1 in Figure 2 in Appendix ends. Now, it starts Phase 2 depicted in Figure
2(phase:2) and x accumulates further. During this phase, for each x ∈ [c1 − c2, c2 − c3) it holds:
∀ i ≥ 3, `1(x) = `2(x) < `i(0). That is, M1 and M2 are equally appealing while M3 and M4 remain
unfavorable. As soon as x reaches (c2− c3) then M3 becomes equally attractive for the selfish users
as M1 and M2. Here Phase 2 ends and Phase 3 starts. That is, for each x ∈ [c2 − c3, c3 − c4) it
holds `1(x) = `2(x) = `3(x) < `3(0), which means that any additional portion x of flow is assigned
equally to M1,M2 and M3 till M4 becomes also appealing to the users.
In a more general setting of m machines in M the Nash assignment is constructed in phases:

at the end of Phase i the jobs are assigned to the i first machines and the Mi+1 machine is ready
to receive jobs if there are any left. Formally the Nash assignment N can be constructed using the
following: For i = 1, . . . ,m−1, let ui the m-vector ((c1−c2), (c2−c3), . . . , (ci−1−ci), 0, . . . , 0) ∈ Rm

and um =

(

(r−
∑m−1

i=1
ui)

m
, . . . ,

(r−
∑m−1

i=1
ui)

m

)

. The vector ui should be interpreted as specification of

the way jobs are assigned to the first i machines during Phase i. Next, we define the vector δi for
i = 1, . . . ,m as follows: We find the machineMk for which it holds that:

∑k
n=1 un−r < k (ck−1−ck).

Then the vector δ is δi = 1 for i = 1, . . . , k − 1, δk =

∑k

n=1
un−r

k2 (ck−1−ck)
and δi = 0 for i = k + 1, . . . ,m
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The scalar δi should be interpreted as the portion of jobs that could be assigned to the machines
during Phase i. Then we can describe the N Nash assignment as follows:

Lemma 2 Let an instance I of set of machines M with M/M/1 latency functions and flow rate r.
The Nash assignment N for I is given by:

N =
m
∑

i=1

δi · ui (12)
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Figure 1: (a) Optimum and Nash assignments of the setM = {M1,M2,M3,M4,M5}. (b) Optimum
and Nash assignments on the set M ′ = {M1,M5}. (c) Optimum and Nash assignments on the set
M ′′ = {M1}
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Figure 2: Calculation of Nash assignment for M/M/1 latency functions
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Lemma 1, Case 2

Given strategy S, let the subsystem MS−

0 ⊆ MS−
containing all machines Mi ∈ MS−

such that
si > nS−

i . Consider strategy S ′ such that on each Mi ∈MS−
\MS−

0 it assigns load s′i = si and for
each MS−

0 it assigns load s′i = si − (si − nS−

i ) = nS−

i (that is, it subtracts load (si − nS−

i )). In this
way we get

∑

Mi∈MS−

s′i <
∑

Mi∈MS−

si. (13)

Given strategy S ′, Theorem 2 applies on assigning selfishly the flow that appears on the RHS of
(14) onto subsystem MS−

, and let T S′−
the corresponding induced Nash assignment. Then, for

each machine Mi ∈ MS−
it holds tS

′−

i = nS−

i − s′i, and most importantly, each Mi ∈ MS−

0 gets
induced load tS

′−

i = 0. The crucial observation is that if we add back the subtracted load (si−nS−

i )
on each Mi ∈ MS−

0 then (i) strategy S ′ becomes S and (ii) each Mi ∈ MS−

0 becomes even less
appealing (recall tS

′−

i = 0 under S′). Furthermore, given strategy S, let T S−
the induced Nash

assignment of the flow that appears in the LHS of (14)

∑

Mi∈MS−

tS
−

i = rS−

−
∑

Mi∈MS−

si <
∑

Mi∈MS−

tS
′−

i = rS−

−
∑

Mi∈MS−

s′i, (14)

on subsystem MS−
. From Proposition (1), on selfisly assigning the flow in LHS of (14) onto

subsystem MS−
\MS−

0 , we conclude that each Mi ∈MS−
\MS−

0 now receives flow

tS
−

i ≤ tS
′−

i = nS−

i − s′i = nS−

i − si,

while each Mi ∈MS−

0 now receives tS
−

i = 0, as it was claimed in the Proof of Lemma 1, Case 2.
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