
Hardness Amplification via Space-Efficient Direct

Products

Venkatesan Guruswami∗

Dept. of Computer Science & Engineering

University of Washington

Seattle, USA

venkat@cs.washington.edu

Valentine Kabanets†

School of Computing Science

Simon Fraser University

Vancouver, Canada

kabanets@cs.sfu.ca

May, 2005

Abstract

We prove a version of the derandomized Direct Product Lemma for deterministic space-
bounded algorithms. Suppose a Boolean function g : {0, 1}n → {0, 1} cannot be computed
on more than 1 − δ fraction of inputs by any deterministic time T and space S algorithm,
where δ 6 1/t for some t. Then, for t-step walks w = (v1, . . . , vt) in some explicit d-regular

expander graph on 2n vertices, the function g′(w)
def
= g(v1) . . . g(vt) cannot be computed on

more than 1 − Ω(tδ) fraction of inputs by any deterministic time ≈ T/dt − poly(n) and space
≈ S−O(t). As an application, by iterating this construction, we get a deterministic linear-space
“worst-case to constant average-case” hardness amplification reduction, as well as a family of
logspace encodable/decodable error-correcting codes that can correct up to a constant fraction
of errors. Logspace encodable/decodable codes (with linear-time encoding and decoding) were
previously constructed by Spielman [Spi96]. Our codes have weaker parameters (encoding length
is polynomial, rather than linear), but have a conceptually simpler construction. The proof of
our Direct Product Lemma is inspired by Dinur’s remarkable recent proof of the PCP theorem
by gap amplification using expanders [Din05].

1 Introduction

1.1 Hardness amplification via Direct Products

Hardness amplification is, roughly, a procedure for converting a somewhat difficult computational
problem into a much more difficult one. For example, one would like to convert a problem A that
is worst-case hard (i.e., cannot be computed within certain restricted computational model) into
a new problem B that is average-case hard (i.e., cannot be computed on a significant fraction of
inputs).

The main motivation for hardness amplification comes from the desire to generate “pseudo-
random” distributions on strings. Such distributions should be generated using very little true
randomness, and yet appear random to any computationally bounded observer. The fundamental
discovery of Blum, Micali, and Yao [BM84, Yao82] was that certain average-case hard problems

∗Supported in part by NSF Career Award CCF-0343672.
†Supported in part by an NSERC Discovery grant

1

Electronic Colloquium on Computational Complexity, Report No. 57 (2005)

ISSN 1433-8092

(one-way functions) can be used to build pseudorandom generators. Later, Nisan and Wigder-
son [NW94] showed that Boolean functions of sufficiently high average-case circuit complexity can
be used to derandomize (i.e., simulate efficiently deterministically) any probabilistic polynomial-
time algorithm.

The construction of [NW94] requires an exponential-time computable Boolean function family
{fn : {0, 1}n → {0, 1}}n>0 such that no Boolean circuit of size s(n) can agree with fn on more than
1/2 + 1/s(n) fraction of inputs. The quality of derandomization depends on the lower bound s(n)
for the average-case complexity of fn: the bigger the bound s(n), the better the derandomization.
For example, if s(n) = 2Ω(n), then every probabilistic polynomial-time algorithm can be simulated
in deterministic polynomial time.

Proving average-case circuit lower bounds (even for problems in deterministic exponential time)
is a very difficult task. A natural question to ask is whether a Boolean function of high worst-case
circuit complexity can be used for derandomization (the hope is that a worst-case circuit lower
bound may be easier to prove). The answer turns out to be Yes. In fact, worst-case hard Boolean
functions can be efficiently converted into average-case hard ones via an appropriate hardness
amplification procedure.

The first such “worst-case to average-case” reduction was given by Babai, Fortnow, Nisan,
and Wigderson [BFNW93]. They used algebraic error-correcting codes to go from a worst-case
hard function f to a weakly average-case hard function g. They further amplified the average-
case hardness of g via the following Direct Product construction. Given g : {0, 1}n → {0, 1},
define gk : ({0, 1}n)k → {0, 1}k as gk(x1, . . . , xk) = g(x1) . . . g(xk). Intuitively, computing g on k
independent inputs x1, . . . , xk should be significantly harder than computing g on a single input.
In particular, if g cannot be computed by circuits of certain size s on more than 1 − δ fraction of
inputs (i.e., g is δ-hard for circuit size s), then one would expect that gk should not be computable
(by circuits of approximately the same size s) on more than (1 − δ)k fraction of inputs. The result
establishing the correctness of this intuition is known as Yao’s Direct Product Lemma [Yao82], and
has a number of different proofs [Lev87, GNW95, Imp95, IW97].

1.2 Derandomized Direct Products and Error-Correcting Codes

Impagliazzo and Wigderson [Imp95, IW97] consider a “derandomized” version of the Direct Product
lemma. Instead of evaluating a given n-variable Boolean function g on k independent inputs
x1, . . . , xk, they generate the inputs using a certain deterministic function F : {0, 1}r → ({0, 1}n)k

such that the input size r of F is much smaller than the output size kn. They give several examples
of the function F for which the function g ′(y) defined as g(F (y)1) . . . g(F (y)k), where F (y)i denote
the ith n-bit string output by F (y) for y ∈ {0, 1}r , has average-case hardness about the same as
that of gk(x1, . . . , xk) for completely independent inputs xi. In particular, Impagliazzo [Imp95]
shows that if g is δ-hard (for certain size circuits) for δ < 1/O(n), then, for a pairwise independent
F : {0, 1}2n → ({0, 1}n)n, the function g′(y) = g(F (y)1) . . . g(F (y)n) is Ω(δn)-hard (for slightly
smaller circuits).

Trevisan [Tre03] observes that any Direct Product Lemma proved via “black-box” reductions
can be interpreted as an error-correcting code mapping binary messages into codewords over a
larger alphabet. Think of an N = 2n-bit message Msg as a truth table of an n-variable Boolean
function g. The encoding Code of this message will be the table of values of the direct-product
function gk. That is, the codeword Code is indexed by k-tuples of n-bit strings (x1, . . . , xk), and
the value of Code at position (x1, . . . , xk) is the k-tuple (g(x1), . . . , g(xk)). The Direct Product
Lemma says that if g is δ-hard, then gk is ε ≈ 1 − (1 − δ)k-hard. In the language of codes, this

2

means that given (oracle access to) a string w over the alphabet Σ = {0, 1}k such that w and Code
disagree in less than ε fraction of positions, we can construct an N -bit string Msg ′ such that Msg
and Msg ′ disagree in less than δ fraction of positions.

Note that the error-correcting code derived from a Direct Product Lemma maps N -bit messages
to Nk-symbol codewords over the larger alphabet Σ = {0, 1}k . A derandomized Direct Product
Lemma, using a function F : {0, 1}r → ({0, 1}n)k as described above, yields an error-correcting code
with encoding length 2r. For example, the pairwise-independent function F from Impagliazzo’s
derandomized Direct Product Lemma would yield codes with encoding length N 2, which is a
significant improvement over the length N k.

The complexity of the reduction used to prove a Direct Product Lemma determines the com-
plexity of the decoding procedure for the corresponding error-correcting code. In particular, if a
reduction uses some non-uniformity (say, m bits of advice), then the corresponding error-correcting
code will be only list-decodable with the list size at most 2m. If one wants to get codes with ε being
asymptotically close to 1, then list-decoding is indeed necessary. However, for a constant ε, unique
decoding is possible, and so, in principle, there must be a proof of this weaker Direct Product
Lemma that uses only uniform reductions (i.e., no advice).

1.3 Derandomized Direct Products via uniform reductions

The derandomized Direct Product lemmas of [Imp95, IW97] are proved using nonuniform reduc-
tions. Using graph-based construction of error-correcting codes of [GI01], Trevisan [Tre03] proves
a variant of a derandomized Direct Product lemma with a uniform deterministic reduction.

More precisely, for certain k-regular expander graphs Gn on 2n vertices (labeled by n-bit strings),
Trevisan [Tre03] defines the function F : {0, 1}n → ({0, 1}n)k as F (y) = y1, . . . , yk, where yis are
the neighbors of the vertex y in the graph Gn. He then argues that, for a Boolean function
g : {0, 1}n → {0, 1}, if there is a deterministic algorithm running in time t(n) that solves g ′(y) =
g(F (y)1) . . . g(F (y)k) on Ω(1) fraction of inputs, then there is a deterministic algorithm running in
time O(tpoly(n, k)) that solves g on 1− δ fraction of inputs, for δ = O(1/k). That is, if g is δ-hard
with respect to deterministic time algorithms, then g ′ is Ω(1)-hard with respect to deterministic
algorithms running in slightly less time. Note that the input size of g ′ is n, which is the same as
the input size of g.

The given non-Boolean function g′ : {0, 1}n → {0, 1}k can be converted into a Boolean func-
tion g′′ on n + O(log k) input variables that has almost the same Ω(1) hardness with respect to
deterministic algorithms. The idea is to use some binary error-correcting code C mapping k-bit
messages to O(k)-bit codewords, and define g ′′(x, i) to be the ith bit of C(g′(x)).

1.4 Our results

In this paper, we analyze a different derandomized Direct Product construction. Let Gn be a d-
regular expander graph on 2n vertices, for some constant d. Denote by [d] the set {1, 2, . . . , d}. For
any t and any given n-variable Boolean function g, we define g ′ to be the value of g along a t-step
walk in Gn. That is, we define g′ : {0, 1}n×[d]t → {0, 1}t+1 as g′(x, i1, . . . , it) = g(x0)g(x1) . . . g(xt),
where x0 = x, and each xj (for 1 6 j 6 t) is the ijth neighbor of xj−1 in the graph Gn. We show
that if g is δ-hard to compute by deterministic uniform algorithms running in time T and space S
for δ < 1/t, then g′ is Ω(tδ)-hard with respect to deterministic algorithms running in time ≈ T/dt

and space ≈ S − O(t). Our proof of this Direct Product lemma is inspired by Dinur’s remarkable
recent proof of the PCP theorem by gap amplification using expanders [Din05].

3

Note that if g is δ-hard, then we expect gt(x1, . . . , xt) = g(x1) . . . g(xt) (on t independent inputs)
to be δ′ = 1− (1− δ)t-hard. For δ � 1/t, we have δ′ ≈ tδ, and so our derandomized Direct Product
construction described above achieves asymptotically correct hardness amplification.

Combining the function g′ with any linear error-correcting code C (with constant relative dis-
tance) mapping (t+1)-bit messages into O(t)-bit codewords, we can get from g ′ a Boolean function
on n + O(t) variables that also has hardness Ω(tδ). Applying these two steps (our expander-walk
Direct Product followed by an encoding using the error-correcting code C) to a given δ-hard n-
variable Boolean function g for log 1/δ iterations, we can obtain a new Boolean function g ′′ on
n + O(t log 1/δ) variables that is Ω(1)-hard. If g is δ-hard for deterministic time T and space S,
then g′′ is Ω(1)-hard for deterministic time ≈ Tpoly(δ) and space ≈ S − O(log 1/δ).

In terms of running time, this iterated Direct Product construction matches the parameters
of Trevisan’s Direct Product construction described earlier. Both constructions are proved with
uniform deterministic reductions. The main difference seems to be in the usage of space. Our
reduction uses at most O(n + log 1/δ) space, which is at most O(n) even for δ = 2−n. Thus
we get a deterministic uniform “worst-case to constant average-case” reduction computable in
linear space. The space usage in Trevisan’s construction is determined by the space complexity of
encoding/decoding of the “inner” error correcting code C from k to O(k) bits, for k = O(1/δ). A
simple deterministically encodable/decodable code would use space Ω(k) = Ω(1/δ).

We also show that constant-degree expanders which have expansion better than degree/2 can
be used to obtain a simple space-efficient hardness amplification. However, it is not known how to
construct such expanders explicitly.

Related work. Our deterministic linear-space hardness amplification result is not new. A de-
terministic linear-space “worst-case to constant average-case” reduction can be also achieved by
using Spielman’s expander-based error-correcting codes [Spi96]. His codes have encoding/decoding
algorithms of space complexity O(log N) for messages of length N , which translates into O(n)-space
reductions for n-variable Boolean functions.

In light of the connection between Direct Product Lemmas and error-correcting codes explained
earlier in the introduction, our iterated Direct Product construction also yields a deterministic
logspace (in fact, uniform NC1) encodable/decodable error-correcting code that corrects a constant
fraction of errors. Spielman’s NC1 encodable/decodable codes also correct a constant fraction of
errors, but they have much better other parameters. In particular, Spielman’s encoding/decoding is
in linear time, and so the length of the encoded message is linear in the size of the original message.
In contrast, our encoding time and the length of the encoding is only polynomial in the size of the
original message. We believe, however, that our codes have a conceptually simpler construction,
which closely follows the “Direct Product Lemma” approach.

Remainder of the paper. We give the necessary definitions in Section 2. In Section 3, we state
and analyze our Direct Product Lemma. Applications of our Direct Product Lemma to linear-space
hardness amplification and logspace encodable/decodable codes are given in Section 4. Section 5
proves a simpler version of the Direct Product Lemma, under the assumption that expanders with
expansion better than degree/2 can be efficiently constructed.

4

2 Preliminaries

2.1 Worst-case and average-case hardness

Given a bound b on a computational resource resource (resource can be, e.g., deterministic time,
space, circuit size, or some combination of such resources), we say that a function f : A → B (for
some sets A and B) is worst-case hard for b-bounded resource if every algorithm using at most b
amount of resource disagrees with the function f on at least one input x ∈ A.

For 0 6 δ 6 1 and a bound b on resource, a function f : A → B is called average-case δ-hard
(or, simply, δ-hard) for b-bounded resource if every algorithm using at most b amount of resource
disagrees with the function f on at least a fraction δ of inputs from A. Observe that for δ = 1/|A|,
the notion of δ-hardness coincides with that of worst-case hardness.

2.2 Expanders

Let G = (V,E) be any d-regular undirected graph on n vertices. Let A = {ai,j}
n
i,j=1 be the

normalized adjacency matrix of G, i.e., ai,j = 1
d
∗(the number of edges between i and j). For a

constant λ < 1, the graph G = (V,E) is called a λ-expander if the second largest (in the absolute
value) eigenvalue of the matrix A is at most λ.

Another (essentially equivalent) definition of expanders is the following. A d-regular graph
G = (V,E) is an (α, β)-expander if for every subset W ⊆ V with |W | 6 α|V |,

∣

∣

∣
{v ∈ V | ∃w ∈ W such that (v, w) ∈ E}

∣

∣

∣
> β|W | .

The well-known basic property of expander graphs is fast mixing. For any vertex v of the graph,
a random walk from v of t steps will end up at a vertex w that is very close to being uniformly
distributed among all vertices of G; the deviation from the uniform distribution can be bounded by
λt. Another basic property of expanders, which we will use in the analysis of our Direct Product
Lemma, is the following lemma; a variant of this lemma (for edge sets rather than vertex sets) is
proved in [Din05, Lemma 5.4].

Lemma 1. Let G = (V,E) be any d-regular λ-expander, and let S ⊂ V be any set. For any value
t, let Wi, for i ∈ [0..t], be the set of all t-step walks in G that pass through a vertex from S in step i.

Then, for each i ∈ [0..t], a random walk from the set Wi is expected to contain at most 2t |S|
|V | +O(1)

vertices from the set S.

We will need an infinite family of d-regular λ-expanders {Gn = (Vn, En)}∞n=1, where Gn is a
graph on 2n vertices; we assume that the vertices of Gn are identified with n-bit strings. We need
that such a family of graphs be efficiently constructible in the sense that given the label of a vertex
v ∈ Vn and a number i ∈ [d], the i’th neighbor of v in Gn can be computed efficiently by a deter-
ministic polynomial-time and linear-space algorithm. We will spell out the exact constructibility
requirement in Section 3.1.

2.3 Space complexity

We review definitions concerning space complexity, since for our main Direct Product Lemma, it
will be important to measure the space complexity of the algorithms quite carefully.

Definition 2 (Standard Space Complexity). An algorithm is said to compute a function f in
space S if given as input x on a read-only input tape, it uses a work tape of S cells and halts with
f(x) on the work tape. Such an algorithm is said to have space complexity S.

5

Definition 3 (Total Space Complexity). An algorithm A is said to compute a function f with
domain {0, 1}n in total space S if on an n-bit input x,

1. A has read/write access to the input tape,

2. in addition to the n input tape cells, A is allowed another S − n tape cells, and

3. at the end of its computation, the tape contains f(x).

Such an algorithm is then said to have total space complexity S.

Definition 4 (Input-Preserving Space Complexity). An algorithm A is said to compute a
function f with domain {0, 1}n in input-preserving space S if on an n-bit input x,

1. A has read/write access to the input tape,

2. in addition to the n input tape cells, A is allowed another S − n tape cells, and

3. at the end of its computation, the tape contains x; f(x).

That is, we allow the algorithm to write on the input portion of the tape, provided it is restored to
its original content at the end of the computation. Such an algorithm is then said to have input-
preserving space complexity S. (Note that the input-preserving space complexity of a function f(x)

is the same as the total space complexity of the function f ′(x)
def
= x; f(x).)

The following simple observation lets us pass between these models of space complexity with a
linear additive difference.

Fact 5. If there is an algorithm A with space complexity S to compute a function with domain
{0, 1}n, then there is an algorithm A′ with input-preserving (total) space complexity S+n to compute
f . Conversely, if there is an algorithm B ′ with input-preserving (total) space complexity S ′ to
compute f , then there is an algorithm B with space complexity S ′ to compute f .

We will use the input-preserving space complexity to analyze the efficacy of our Direct Product
Lemma and its iterative application to amplify hardness. However, by Fact 5 above, our end result
can be stated in terms of the standard space complexity of Definition 2.

3 A New Direct Product Lemma

3.1 Construction

We need the following two ingredients:

• Let G = (V,E) be any efficiently constructible d-regular expander on |V | = 2n vertices which
are identified with n-bit strings (here d is an absolute constant d, and so we will typically hide
factors depending on d in the O-notation). By efficient constructibility, we mean the following.
There is an algorithm running in time Texpander = poly(n) and total space Sexpander = O(n),

that given as input an n-bit string x and an index i ∈ [d], outputs the pair NG(x, i)
def
= (y, j),

where y ∈ {0, 1}n is the i’th neighbor in G of x, and j ∈ [d] is such that x is the j’th neighbor
of y. We can obtain such expanders from [RVW02].1

1Normally the space complexity of expander constructions is measured in the sense of Definition 2. However, by
fact 5, for O(n) space, we can pass freely to the total space complexity model of Definition 3.

6

• Let C be any polynomial-time and linear-space encodable (via Enc) and decodable (via Dec)
linear binary error-correcting code with constant rate 1/c and constant relative distance ρ.

Our construction proceeds in two steps.
Step 1: Let f : {0, 1}n → {0, 1} be any given Boolean function. For any t ∈ N, define a new,

non-Boolean function g : {0, 1}n × [d]t → {0, 1}t+1 as follows:

g(v, i1, . . . , it) = f(v)f(v1) . . . f(vt),

where for each 1 6 j 6 t, vj is the ijth neighbor of vertex vj−1 in the expander graph G (we identify
v with v0); recall that the vertices of G are labeled by n-bit strings.

Step 2: Finally, define a Boolean function h : {0, 1}n × [d]t × [c(t + 1)] → {0, 1} as

h(v, i1, . . . , it, j) = Enc(g(v, i1, . . . , it))j ,

where Enc(y)j denotes the the jth bit in the encoding of the string y using the binary error-
correcting code C.

Complexity of the encoding: Suppose that the n-variable Boolean function f is computable
in deterministic time T and input-preserving space S. Then the non-Boolean function g obtained
from f in Step 1 of the construction above will be computable in deterministic time Tg = O(t(T +
Texpander)) = O(t(T +poly(n))) and input-preserving space at most Sg = max{S, Sexpander}+O(t).
The claim about time complexity is obvious. For the space complexity, to compute g(v, i1, . . . , it),
we first compute f(v) using input-preserving space S. We then re-use this space to compute
NG(v, i1) = (v1, j1) in total space Sexpander. We remember i1, j1 (these take only O(1) space)
separately, but replace v by v1, and compute f(v1) in input-preserving space S. We next likewise
compute NG(v1, i2) = (v2, j2), and replace v1 by v2, compute f(v2), and so on. In the end, we would
have computed f(v)f(v1) . . . f(vt) in total space max{S, Sexpander} + O(t). However, we need to
restore the original input v, i1, i2, . . . , it. For this, we use the stored “back-indices” jt, jt−1, . . . , j1

to walk back from vt to v in a manner identical to the forward walk.
The Boolean function h obtained from g in Step 2 will be computable in time Tg + poly(t) and

input-preserving space Sg + O(t). Note that, assuming S > Sexpander, the input-preserving space
complexity of h is at most an additive constant term O(t) bigger than that of f .

3.2 Analysis

We will show that the “direct product construction” described above increases the hardness of a
Boolean function f by a multiplicative factor Ω(t).

Lemma 6 (Direct Product Lemma). Suppose an n-variable Boolean function f has hardness
δ 6 1/t for deterministic time T and input-preserving space S > Sexpander + Ω(t). Let h be the
Boolean function obtained from f using the direct product construction described above. Then
h has hardness Ω(tδ) for deterministic time T ′ = T

O(t2dt) − poly(n) and input-preserving space

S′ = S − O(t).

The proof of the Direct Product Lemma above will consist of two parts. First we argue that
the non-Boolean function g (obtained from f by evaluating f along t-step walks in the expander
G) will have hardness Ω(t)-factor larger than the hardness of f . Then we argue that turning the
function g into the Boolean function h via encoding the outputs of g by a “good” error-correcting
code will reduce its hardness by only a constant factor independent of t (but dependent on the
relative distance ρ of the code).

7

Lemma 7. Suppose an n-variable Boolean function f has hardness δ 6 1/t for deterministic time
T and input-preserving space S > Sexpander + Ω(t). Let g be the non-Boolean function obtained
from f using the first step of the direct product construction described above. Then g has hardness
δ′ = Ω(tδ) for deterministic time T ′ = T

O(tdt) − tpoly(n) and input-preserving space S ′ = S − O(t).

Proof. Let C ′ be a deterministic algorithm using time T ′ and input-preserving space S ′ that com-
putes g correctly on 1 − δ′ fraction of inputs, for the least possible δ ′ that can be achieved by
algorithms with these time/space bounds. We will define a new deterministic algorithm C using
time at most T and input-preserving space S, and argue that δ ′ (the fraction of inputs computed
incorrectly by C ′) is at least Ω(t) times larger than the fraction of inputs computed incorrectly by C.
Since the latter fraction must be at least δ (as f is assumed δ-hard for time T and input-preserving
space S), we conclude that δ′ > Ω(tδ).

We will compute f by an algorithm C defined as follows. On input x ∈ {0, 1}n, for each i ∈ [0..t],
record the majority value bi taken over all values C ′(w)i, where w is a t-step walk in the graph G
that passes through x at step i and C ′(w)i is the ith bit in the (t+1)-tuple output by the circuit C ′

on input w (here we assumed that the t + 1 values output by C are indexed by 0, 1, . . . , t). Output
the majority over all the values bi, for 0 6 i 6 t. A more formal description of the algorithm is
given in the table Algorithm 1.

Input: x ∈ {0, 1}n.
Goal: Compute f(x).

count1 = 0
for each i = 0..t

count2 = 0
for each t-tuple (k1, k2, . . . , kt) ∈ [d]t

Compute the vertex y reached from x in i steps by taking edges labeled k1, k2, . . . , ki,
together with the “back-labels” `1, `2, . . . , `i needed to get back from y to x.

count2 = count 2 + C ′(y, `1, `2, . . . , `i, ki+1, . . . , kt)i
Restore x by walking from y for i steps using edge-labels `1, `2, . . . , `i.

end for
if count2 > dt/2 then count1 = count1 + 1 end if

end for
if count 1 > t/2 then Return 1 else Return 0

end Algorithm

Algorithm 1: Algorithm C

It is straightforward to verify that the algorithm C can be implemented in deterministic time
O(tdt(T ′ + tpoly(n))). By choosing T ′ as in the statement of the lemma, we can ensure that the
running time of C is at most T . It is also easy to argue that the input-preserving space complexity
S of algorithm C is at most max{Sexpander, S

′} + O(t) (the argument goes along the lines of the
one we used to argue about the complexity of the encoding at the end of Section 3.1). Hence by
choosing S ′ = S − O(t) > Sexpander we get the input-preserving space complexity of C at most S.

We now analyze how many mistakes the algorithm C makes in computing f . Define the set
Bad = {x ∈ {0, 1}n | C(x) 6= f(x)}. Pick a subset B ⊆ Bad such that |B|/|V | = min{|Bad |/|V |, 1/t}.
By definition, if x ∈ Bad , then for each of at least 1/2 values of i ∈ [0..t], the algorithm C ′ is wrong
on at least half of all t-step walks that pass through x in step i. Define a 0-1 matrix M with |B|
rows and t + 1 columns such that, for x ∈ B and i ∈ [0..t], M(x, i) = 0 iff C ′ is wrong on at least

8

half of all t-step walks that pass through x in step i. Then the fraction of 0s in the matrix M is at
least 1/2. By averaging, we conclude that there exists a subset I ⊆ [0..t] of size at least t/4 such
that, for each i ∈ I, the ith column of M contains at least 1/4 fraction of 0s. This means that for

each i ∈ I, the algorithm C ′ is wrong on at least |B|
4

dt

2 = 1
8 |B|dt of all |B|dt walks of length t that

pass through the set B at step i.
For x ∈ B and i ∈ [0..t], let us denote by Wi,x the set of all t-step walks that pass through x

in step i; observe that |Wi,x| = dt. We define Wi = ∪x∈BWi,x. Since Wi,x and Wi,y are disjoint
for x 6= y, we get |Wi| = |B|dt. Also, for x ∈ B and i ∈ [0..t], denote by W ∗

i,x the set of all t-step
walks w ∈ Wi,x such that C ′(w) 6= g(w). Define W ∗

i = ∪x∈BW ∗
i,x, and W ∗ = ∪t

i=0W
∗
i . Using this

notation, we have that |W ∗
i | >

1
8 |Wi| for each i ∈ I.

For each i ∈ [0..t], let Hi ⊆ Wi be the set of all walks w ∈ Wi that contain more than m
elements from B. Using the properties of the expander G, we can choose m to be a sufficiently
large constant (independent of t) such that, for all i, |Hi| < 1

16 |Wi|.
Indeed, by Lemma 1 above, for every i, a random walk w ∈ Wi is expected to contain at most

2t|B|/|V | + O(1) vertices from B. Since, by our choice of parameters, |B|/|V | 6 1/t, a random
w ∈ Wi contains on average at most b = O(1) vertices from B. By Markov’s inequality, the
probability that a random w ∈ Wi contains more than m = 16b vertices from B is at most 1/16.

Thus we have

∑

i∈I

|W ∗
i \ Hi| =

∑

i∈I

(|W ∗
i | − |Hi|) > |I|(

1

8
−

1

16
)|Wi| >

t

64
|B|dt. (1)

On the other hand, we have

∑

i∈I

|W ∗
i \ Hi| 6 m|W ∗ \ (∪t

i=0Hi)| 6 m|W ∗|. (2)

Combining Eqs. (1) and (2), we get

|W ∗| >
t

64m
|B|dt.

Dividing both sides by the number |V |dt of all possible t-step walks in G (which is the number of
all possible inputs to the algorithm C ′), we get that that C ′ makes mistakes on at least t

64m
|B|/|V |

fraction of inputs. Note that |B|/|V | > δ since f is assumed to be δ-hard for time T and input-
preserving space S. It follows that the function g is Ω(tδ)-hard for time T ′ and input-preserving
space S′.

The analysis of the second step of our Direct Product construction uses the standard approach
of “code concatenation”. We include a proof for the sake of completeness.

Lemma 8. Let A = {0, 1}n × [d]t. Suppose that a function g : A → {0, 1}t+1 is δ-hard for
deterministic time T and input-preserving space S. Let h : A × [c · (t + 1)] → {0, 1} be the Boolean
function obtained from g as described in Step 2 of the Direct Product construction above (using the
error-correcting code with relative distance ρ and rate 1/c). Then the function h is δ · ρ/2-hard for
deterministic time T ′ = (T − poly(t))/O(t) and input-preserving space S ′ = S − O(t).

Proof. Let C ′ be an algorithm running in deterministic time T ′ and input-preserving space S ′ that
computes h on 1 − δ′ fraction of inputs, for the smallest possible δ ′ achievable by deterministic
algorithms with such time/space bounds. Define an algorithm C computing g as follows: On input

9

a ∈ A, compute C ′(a, i) for all i ∈ [c ·(t+1)], apply the decoder function Dec of our error-correcting
code to the obtained c · (t + 1)-bit string, and output the resulting (t + 1)-bit string. Clearly, the
running time of C is at most c(t+1)T ′+poly(t), where the poly(t) term accounts for the complexity
of the decoding function Dec. The input-preserving space complexity of C is at most S ′ + O(t).

Consider the set Bad = {a ∈ A | C(a) 6= g(a)}. For each a ∈ Bad , the string C ′(a, 1) . . . C ′(a, c ·
(t+1)) must be at least ρ/2 far in relative Hamming distance from the correct encoding Enc(g(a)) of
g(a). Thus the number of inputs computed incorrectly by C ′ is at least |Bad | ρ2 c · (t + 1). Dividing
this number by the total number |A|c · (t + 1) of inputs to C ′, we get that C ′ is incorrect on

δ′ >
ρ
2
|Bad |
|A| fraction of inputs. Since g is assumed δ-hard for time T and input-preserving space S,

we get that |Bad |/|A| > δ. It follows that δ ′ >
ρ
2δ = Ω(δ).

Proof of Lemma 6. The proof follows by combining Lemmas 7 and 8.

3.3 Iteration

Our Direct Product Lemma (Lemma 6) can be applied repeatedly to increase the hardness of a
given Boolean function at an exponential rate, as long as the current hardness is less than some
universal constant. In particular, as shown in the corollary below, we can turn a δ-hard Boolean
function into a Ω(1)-hard Boolean function. Note that we state this result in terms of the usual
space complexity, and not the input-preserving space complexity that we used to analyze a single
Direct Product.

Corollary 9. Let f be an n-variable Boolean function that is δ-hard for deterministic time T and
space S > Ω(n+log 1

δ
). Then there is a Boolean function f ′ on n+O(log 1

δ
) variables such that f ′ is

Ω(1)-hard for deterministic time T ′ = Tpoly(δ)−poly(n) and space S ′ = S−n−O(log 1
δ
). Moreover,

if f is computable in time T̃ and space S̃, then f ′ is computable in time (T̃ + poly(n))/poly(δ) and
space S̃ + O(n + log 1

δ
).

Proof. Pick a constant t large enough so that the Ω(t) factor in the statement of Lemma 6 is at
least 2. With this choice of t, each application of our Direct Product construction will double the
hardness of the initial Boolean function.

By Fact 5, such an f is δ-hard for deterministic time T and input-preserving space S. Let f ′

be a Boolean function obtained from f by repeated application of the Direct Product construction
for log 1

δ
steps (using an expander with Sexpander = O(n)). Then it is straightforward to check

that f ′ is a n + O(t log 1
δ
)-variable Boolean function of Ω(1)-hardness for deterministic time T ′ =

TδO(t) − poly(n) and input-preserving space S ′′ = S − O(log 1
δ
). Referring to Fact 5 again, f ′ is

Ω(1)-hard for deterministic time T and space S ′ = S′′ − n = S − n − O(log 1
δ
).

The time and space upper bounds for f ′ follow easily from the complexity analysis of the
Direct Product construction (and using Fact 5 to convert from space to input-preserving space and
back).

Remark 10. The constant average-case hardness in Corollary 9 above can be boosted to any
constant less than 1/4 by one additional amplification with a suitable expander, as in [GI01, Tre03]
(specifically, see Theorem 7 in [Tre03]).

Remark 11. We want to point out that Spielman’s logspace encodable/decodable error-correcting
codes [Spi96] can also be used for “worst-case to constant average-case” hardness amplification via
deterministic linear-space reductions. So Corollary 9 is implicit in [Spi96].

10

4 Applications

4.1 Hardness amplification via deterministic space-efficient reductions

The iterated Direct Product construction of Corollary 9 gives us a way to convert worst-case
hard Boolean functions into constant-average-case hard ones, with space-efficient deterministic
reductions. The following theorems are immediate consequences of Corollary 9 and Remark 10.
Below we use standard notation for the complexity classes E = DTIME(2O(n)) and LINSPACE =
SPACE(O(n)).

Theorem 12. Let α < 1/4 be an arbitrary constant. If there is a language L ∈ E \ LINSPACE,
then there is a language L′ ∈ E that is α-hard for LINSPACE.

Theorem 13. Let α < 1/4 be an arbitrary constant. For every c > 0, there is a c′ > 0 such
that the following holds. If there is a language L ∈ LINSPACE that cannot be computed by any
deterministic algorithm running in linear space and, simultaneously, time 2c′n, then there is a
language L′ ∈ LINSPACE that is α-hard for any deterministic algorithm running in linear space
and, simultaneously, time 2cn.

4.2 Logspace encodable/decodable error-correcting codes

As mentioned in the introduction, every Direct Product Lemma gives rise to error-correcting codes
with encoding/decoding complexity determined by the complexity of the reductions used in the
proof of the Direct Product Lemma. In our case, we get error-correcting codes with polynomial rate
that have deterministic logspace encoding/decoding complexity, and can correct up to a constant
fraction of errors. Thus we get an alternative construction (with much weaker parameters) to
Spielman’s logspace encodable/decodable codes [Spi96].

Theorem 14. There is an explicit code C mapping n-bit messages to poly(n)-bit codewords such
that

1. C can correct a constant fraction of errors,

2. both encoding and decoding can be implemented in deterministic logspace (in fact, uniform
NC1).

Remark 15. We are not aware of any logspace encodable/decodable asymptotically good codes
other than Spielman’s construction [Spi96], and the recent improvements to its error-correction
performance [GI01, GI02]. Allowing NC2 complexity seems to give several other choices of error-
correcting codes.

5 A simple graph based amplification

Here we observe that the existence of efficiently constructible d-regular expanders with expansion
factor better than d/2 would give us another deterministic linear-space hardness amplification.

Recall Trevisan’s derandomized Direct Product construction.

Definition 16. Given a d-regular graph G on 2n vertices, where each vertex is identified with an
n-bit string, and a Boolean function f : {0, 1}n → {0, 1}, we define a function g = G(f) : {0, 1}n →
{0, 1}d as follows. For x ∈ {0, 1}n, let N1(x), N2(x), . . . , Nd(x) denote the d neighbors of x in G (as

per some fixed ordering). Then g(x)
def
= f(N1(x))f(N2(x)) . . . f(Nd(x)).

11

We note that a similar definition has been used in the construction of error-correcting codes in
several works beginning with [ABN+92] and more recently in [GI01, GI03].

Lemma 17. Let G = ({0, 1}n, E) be an efficiently (in total space Sexpander) constructible d-regular
(δ, d/2 + γd)-expander for some γd > 0. Let f : {0, 1}n → {0, 1} be δ-hard for deterministic time T
and input-preserving space S > Sexpander + Ω(d). Then the function g = G(f) from Definition 16
is γdδ-hard for deterministic time T ′ = T

d
− poly(n) and input-preserving space S − O(d).

Proof. Let C ′ be a deterministic algorithm running in time at most T ′ and input-preserving space
S′ that computes g correctly on a fraction 1− δ ′ of the inputs, for the least possible δ ′ that can be
achieved by algorithms within these time/space bounds. Using C ′, we will define a deterministic
algorithm C running in time at most T and input-preserving space S, and argue that the fraction
of inputs x where C(x) 6= f(x) is at most δ ′/γd. Since f is assumed to be δ-hard, the algorithm C
must err on at least a fraction δ of inputs. Hence, we get that δ ′ > γdδ.

The algorithm C to compute f works as follows. On input x ∈ {0, 1}n, it will simulate C ′ on
all neighbors of x, record the value they “suggest” for f(x), and finally take a majority vote. More
formally, on input x ∈ {0, 1}n, for each 1 6 i 6 d, let yi be the i’th neighbor of x. Compute the
bit bi = C ′(yi)ji

, the ji’th component of the d-tuple C ′(yi), where ji ∈ {1, 2, . . . , d} is such that x
is the ji’th neighbor of yi. Finally, output the majority over all the bits bi, 1 6 i 6 d.

It is easily seen that the running time of C is at most d · (T ′ + poly(n)). The input-preserving
space complexity of C can be bounded by max{Sexpander, S

′} + O(d), as in the proof of Lemma 7.
Define the set Bad = {x ∈ {0, 1}n | C(x) 6= f(x)}. Since f is δ-hard for time T and space S,

and C runs in time T and space S, we have |Bad | > δ2n. Let B be an arbitrary subset of Bad of
size δ2n. By the expansion property of G, we have that the set

NG(B)
def
= {y ∈ {0, 1}n | ∃x ∈ B such that (x, y) ∈ E(G)}

satisfies
|NG(B)| > (d/2 + γd)|B| (3)

Since C bases its value for x on a majority vote among neighbors of x, the following holds: For
each x ∈ B, we must have that at least half of x’s neighbors in G must fall in the set

W
def
= {y ∈ {0, 1}n | C ′(y) 6= g(y)}

of values that C ′ gets wrong. Note that |W | = δ′2n. In other words, for each x ∈ B, at most d/2
neighbors of x fall outside W . Hence

|NG(B)| 6 |W | + (d/2) · |B| (4)

By (3) and (4), we have |W | > γd|B|, or equivalently δ′ > γdδ, as desired.

Thus, provided explicit expanders with expansion better than d/2 are known, we can apply the
above amplification repeatedly to get a deterministic linear-space “worst-case to constant average-
case” hardness amplification. Unfortunately, we do not know explicit expanders with expansion
factor better than d/2. The recent work of Capalbo et al. [CRVW02] applies only to bipartite
graphs (and guarantees expansion of only one of the two sides in the bipartition). Beating the d/2
barrier for general graphs remains a challenging open question.

12

References

[ABN+92] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth. Construction of asymptotically good
low-rate error-correcting codes through pseudo-random graphs. IEEE Transactions on
Information Theory, 38:509–516, 1992.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simu-
lations unless EXPTIME has publishable proofs. Computational Complexity, 3:307–318,
1993.

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-
random bits. SIAM Journal on Computing, 13:850–864, 1984.

[CRVW02] M.R. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness conductors
and constant-degree lossless expanders. In Proceedings of the Thirty-Fourth Annual
ACM Symposium on Theory of Computing, pages 659–668, 2002.

[Din05] I. Dinur. The PCP theorem by gap amplification. Electronic Colloquium on Computa-
tional Complexity, TR05-046, 2005.

[GI01] V. Guruswami and P. Indyk. Expander-based constructions of efficiently decodable
codes. In Proceedings of the Forty-Second Annual IEEE Symposium on Foundations of
Computer Science, pages 658–667, 2001.

[GI02] V. Guruswami and P. Indyk. Near-optimal linear-time codes for unique decoding and
new list-decodable codes over smaller alphabets. In Proceedings of the Thirty-Fourth
Annual ACM Symposium on Theory of Computing, pages 812–821, 2002.

[GI03] V. Guruswami and P. Indyk. Linear-time encodable and list decodable codes. In
Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing,
pages 126–135, 2003.

[GNW95] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR-Lemma. Electronic Collo-
quium on Computational Complexity, TR95-050, 1995.

[Imp95] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In Proceedings of
the Thirty-Sixth Annual IEEE Symposium on Foundations of Computer Science, pages
538–545, 1995.

[IW97] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Deran-
domizing the XOR Lemma. In Proceedings of the Twenty-Ninth Annual ACM Sympo-
sium on Theory of Computing, pages 220–229, 1997.

[Lev87] L.A. Levin. One-way functions and pseudorandom generators. Combinatorica,
7(4):357–363, 1987.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer and
System Sciences, 49:149–167, 1994.

[RVW02] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders. Annals of Mathematics, 155(1):157–187, 2002.

13

[Spi96] D.A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723–1732, 1996.

[Tre03] L. Trevisan. List-decoding using the XOR lemma. In Proceedings of the Forty-Fourth
Annual IEEE Symposium on Foundations of Computer Science, pages 126–135, 2003.

[Yao82] A.C. Yao. Theory and applications of trapdoor functions. In Proceedings of the Twenty-
Third Annual IEEE Symposium on Foundations of Computer Science, pages 80–91,
1982.

14

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

