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Abstract. It is well known that coset-generating relations lead to trac-
table constraint satisfaction problems. These are precisely the relations
closed under the operation zy~'z where the multiplication is taken in
some finite group. Bulatov et al. have on the other hand shown that any
clone containing the multiplication of some “block-group” (a particular
class of semigroups) also yields a tractable CSP. We consider more sys-
tematically the tractability of CSP(I") when I is a set of relations closed
under operations that are expressible as polynomials over a finite semi-
group. In particular, we unite the two results above by showing that if S
is a block-group of exponent w and I is a set of relations over S pre-
served by the operation defined by the polynomial f(x,y,z) = zy“ 'z
over S, then CSP(I") is tractable. We show one application of this re-
sult by reproving an upper bound by Klima et al. on the complexity of
solving systems of equations over certain block-groups.

We show that if S is a commutative semigroup and € is an idempotent
clone consisting of polynomials over S, then C is tractable iff it contains

the polynomial zy“~'z. If S is a nilpotent group, we show that a clone
of polynomials over S is tractable iff it contains a Malt’sev operation,

and conjecture that this holds for all groups.
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1 Introduction

Constraint satisfaction problems (CSPs) provide a natural way to study in a
unified framework a number of combinatorial problems arising in various areas
of computer science. An instance of CSP consists of a list of variables, a domain
and a set of constraints relating the variables and we ask whether the variables
can be assigned domain values such that all constraints are satisfied.

In general, the CSP problem is NP-complete and one thus tries to identify
tractable (i.e., polynomial-time solvable) restrictions of the problem. In particu-
lar, a lot of attention has been paid to the case where the relations available to
construct constraints lie in a fixed finite set I of relations over a finite domain. It
is conjectured that for any such I' the problem CSP(TI') is always either tractable
or NP-complete [10]. An algebraic approach has been particularly successful in
making progress on this question [12,11]: it was shown that the tractability of
CSP(I') depends on the algebraic properties of the set of operations under which
all relations of I' are closed. This has lead to the identification of very broad
classes of sets of relations (often called islands of tractability) for which CSP(I")
is known to have polynomial-time algorithms [2,7, 8,10, 5] and has validated the
conjecture mentioned above for domains of size two [16] and three [1].

Feder and Vardi [10] have shown that if a set I' of relations over a finite
group G is coset-generating (i.e. every Rin I'is a coset of a power of the group),
then CSP(I') is tractable. Equivalently, I" is coset-generating iff it is closed
under the ternary operation t(z,y,2) = zy 1z where multiplication is taken
in the group. Another island of tractability uncovered by Bulatov, Jeavons, and
Volkov [5] states that CSP(I) is tractable if I" is closed under the multiplication
of a particular type of semigroup called a block-group. This result generalizes
a previous result of Jeavons, Cohen, and Gyssens [12] where multiplication was
taken in a semilattice.

In light of these two results, we consider more systematically classes I' of
relations whose closure properties can, as above, be expressed using polynomi-
als over a semigroup. Our long term objective is to classify all corresponding
problems CSP(I") as either tractable or NP-complete. Our first result gives a
new sufficient condition for the tractability of CSP(I"). We show that if S is a
block-group of exponent w and I" is a set of relations over S that are preserved
under the ternary operation f(z,y,z) = zy“~'z then CSP(I') is tractable. This
result generalizes both of the results [10,5] just mentioned. We show that our
theorem can be applied to reprove an upper bound of [13] on the complexity of
solving systems of equations over a certain subclass of block-groups.

Next we consider necessary conditions for tractability. These are expressed
in terms of clones, or sets of such closure operations — definitions are given in
Section 2. For technical reasons, we restrict ourselves to idempotent clones, which
are known to still determine the complexity of CSP(I"). We show:

— If §'is a commutative semigroup the sufficient condition given by the previous
theorem is also necessary: if C is a nontrivial idempotent clone of polynomials
over S, then C is tractable iff it contains the operation zy“~1z.



— If S is a nilpotent group and C is a nontrivial clone of polynomials over S
then C is tractable iff it contains a Malt’sev operation. This is a type of
operations of which zy*~1z is a prime example and that is known to imply
tractability [2,3]. We conjecture that this in fact holds for any finite group.

The paper is organized as follows. Section 2 presents the required notions of
semigroup theory as well as an introduction to constraint satisfaction problems
and the algebraic approach to their study. In Section 3 we prove the new sufficient
condition for the tractability of CSP(I") and give one application of the result. In
Section 4 we consider sets of relations I' that are closed solely under operations
that can be described by polynomials over a semigroup and investigate necessary
and sufficient conditions for the tractability of CSP(I).

2 Preliminaries and Background

2.1 Finite Semigroups

A semigroup is a set S with a binary associative operation that we denote mul-
tiplicatively as -g or - when no ambiguity exists. An element s € S is said to be
idempotent if it is its own square, i.e. s* = s. In this paper we are solely con-
cerned with finite semigroups, and in that case there exists a minimal integer w
such that for all s € S the element s is idempotent. We call w the exponent of
the semigroup. If S is a group then s* is the identity element of the group since
it is the only idempotent element.

A class of finite semigroups V is a pseudo-variety if it is closed under finite
direct products and formation of subsemigroups and homomorphicimages. Some
of the pseudo-varieties that we will use are:

— SL, the pseudo-variety of finite semilattices, i.e. of commutative semigroups
in which every element is idempotent;

— Ab, the pseudo-variety of finite Abelian groups;

— BG, the pseudo-variety of block-groups, or semigroups that satisfy the iden-

Our main theorem concerns block-groups, an important class in the theory of
finite semigroups that admits a number of interesting characterizations [15]. We
state some of their relevant properties. Most useful to us will be the following: the
finite semigroup S is not a block-group iff it contains two distinct idempotents
e, f such that ef = e and fe = f or such that ef = f and fe = e. It can easily be
deduced that semilattices and groups are special cases of block-groups, but not
all block-groups are in the pseudo-variety generated by semilattices and groups.

Let Fg : {s¥ : s € S} be the set of idempotents of S. If § € BG, the
subsemigroup of S generated by Eg satisfies (zy)* = (yz)“. This can be used to
show that if two sequences eq,...,e, and fi,..., f,, of idempotents of S satisfy
{ers.o,en} ={f1,-.-, fm} (as sets), then (e1...€,)" = (f1... [ m)“.

For any semigroup S and any idempotent e € S, the set of elements s such
that es = se = s forms a subgroup G. with identity element e. For all s € G,



we have s* = e and thus s“t1 = s. We will say that s € S is a subgroup element
if it lies in some G.. We will say that a semigroup is a union of groups if all its
elements are subgroup elements.

2.2 CSPs and Universal Algebra

Let D be a finite domain and I" be a finite set of relations over D. In the sequel,
D and I' will always denote respectively a finite domain and a finite set of
relations over that domain. The constraint satisfaction problem over I', denoted
CSP(I) is the following decision problem. The input consists of a list of variables
zy,...,2, and constraints that are pairs (S;, R;) where R; is a k;-ary relation
in I and S;, the scope of the constraint, is an ordered list of k; variables. We ask
whether the variables can be assigned values in D such that every constraint is
satisfied. Tt is conjectured that for any I' the problem CSP(I) is either tractable
or NP-complete [10]. Over the last ten years, a lot of ground was covered towards
establishing this conjecture using an algebraic approach pioneered by [12] that
considers the closure properties of I', as we next explain formally.

An operation f on D is simply a function f : D' — D. We naturally extend f
so that it takes as inputs ¢ k-tuples @y, ... ,@; of values in D by defining

f(m, ,a_t) = (f(all,... ,aﬂ),... ,f(alk,... ,atk)).

We say that a k-ary relation R over D is closed under f if for any ¢ k-tuples
of R, say @r,...,a; we also have f(a7,...,d) € R.

By extension we say that I' is closed under f if every relation of I' is closed
under f, and denote as Pol(I') the set of all such finitary operations f (the
notation is due to the fact that every such f is called a polymorphism of I'
in universal algebra). The fundamental link to the complexity of CSPs is the
following theorem.

Theorem 1 ([11]). If I, I'y are sets of relations over D such that Pol(Ih) C
Pol(Iy) then CSP(I%) is polynomial-time reducible to CSP(I7).

The following is a crucial property of all the sets of the form Pol(I).
Lemma 2 (see e.g. [12]). For any set of relations I' over D: (1) Pol(I") con-

tains all the projection functions m; ,(21,...,2,) = ;. (2) If g is a k-ary oper-
ation in Pol(I') and fi,..., fy are t-ary operations in Pol(I'), then their com-
position

g(fla"' afk)(mla"' 733t) :g(fl(xla-" 7It)7"' 7fk(mla"' amt))

is also in Pol(I).

Note that from (1) and (2) it follows that Pol(I") is also closed under identifica-
tion of variables, since this can be obtained by composition with projections.
In universal algebra lingo, a set of operations containing all the projections
and closed under composition is called a clone. For a set of operations F, we
denote by (F) the clone generated by F, i.e. the smallest clone containing F'.



Using the connection between CSP(I') and Pol(I") given by Theorem 1, we
say that a clone C is tractable if CSP(I') is tractable for every I' such that
C C Pol(I'). On the other hand, we say that C is NP-complete if there exists a
set of relations I" such that C C Pol(I") and CSP(I") is NP-complete. Note that
we will shamelessly assume P # NP.

We can thus view the task of resolving the CSP conjecture as that of proving
that any clone is either tractable or NP-complete. An important simplification
is known [6]: in order to obtain such a classification it suffices in fact to consider
clones in which every operation f is idempotent, i.e. satisfies f(z,...,z) = z.
We call these the idempotent clones.

The first half of this task is to identify tractable clones and many such “islands
of tractability” have already been identified in this way. For example, a ternary
operation M (z,y, z) is said to be Malt’sev if it satisfies M (z,2,y) = y and
M (z,y,y) = «: Bulatov showed that any clone containing a Malt’sev operation
is tractable [2, 3]. This very general result covers an important special case first
identified as tractable by [10]: Suppose that the domain D is a finite group and
that any k-ary relation of I" is a coset of a subgroup of D*. We then say that I’
is coset generating, and it can be verified from the definition of a coset that I
is closed under the operation M(z,y,z) = z-y~' - z (where multiplication and
inverse are those of the group D). This operation is Malt’sev since M (z, z,y) =
zr~l'y=yand M(z,y,y) = zy~'y = = as required.

Bulatov et al. [5] considered the tractability of clones generated by a semi-
group, i.e. generated by the binary operation z -s y for some semigroup S. They
showed that the clone (-s) is tractable if S is a block-group and NP-complete
otherwise. This result extends another well-known result stating that any I
closed under the multiplication in a semilattice is tractable [12]. In both cases,
it is shown that such CSPs are solved by an arc-consistency algorithm.

For the remainder of this paper, we focus on clones whose operations can all
be described by expressions over a finite semigroup S. Formally, a polynomial P
over the semigroup S is simply a finite sequence P = x;, - - --z;,, of (possibly re-
peating) variables. A polynomial containing k distinct variables naturally defines
a k-ary function, but in order to express the projections with such polynomials
we allow for unused variables and e.g. represent the projection m; ,(z1,...,2,)
by the polynomial z;. We say that a clone is a clone of polynomials if every
operation in the clone can be represented in this way. Note that the composition
of polynomials is again a polynomial so that the clone generated by a set of
polynomials is indeed a clone of polynomials.

3 A Polynomial that Guarantees Tractability

Our main goal in this section is to prove the following sufficient condition for
the tractability of a clone.

Theorem 3. If S is a block-group and C is a clone containing the polynomial
xy“~1z then C is tractable.



Note that when S is a group, this condition is equivalent to saying that
every I' such that C C Pol(I") is coset-generating. Also if C is generated by -s for
some block-group S then in particular it must contain the polynomial zy* =1z
which can be obtained from zy by composition. Hence this result generalizes the
results of [10,5] mentioned before.

?

Proof (Theorem 3). Let P be an instance of CSP(I'), with C C Pol(I'). If P has
any solution then it has one in which every variable z; has a value a; that is a
subgroup element. Indeed, by the closure properties of I', if @ is a solution, then
aa”~'a = @t! also is and every element of the latter is a subgroup element.

We will give a polynomial-time algorithm to solve P, which will work in two
stages. In the first stage, we will assign to every variable z; some subgroup G,
such that if P is satisfiable then it is satisfiable by an assignment that sets each z;
to a value in G¢,. We will do this by using an arc-consistency procedure. In the
second stage we will reduce the CSP(I") problem to an instance of CSP(A),
where A is a coset-generating set of relations over the direct product of the
subgroups G., and then solve this CSP with the algorithm of [10].

We begin by enforcing arc-consistency for P. To every variable z;, we asso-
ciate a set of possible values V; C S. We find the largest V; s.t. for any constraint
of P, say ({xi,,..., i, }, R) and for any value a;, € V;; there exist a;, € V;, s.t.
(@iy, - ,ai.) € R. It is well known that this can be done in polynomial time by
initializing each V; to S and gradually removing values that violate the above
requirement. Also, if any V; becomes empty we know that P has no solution.

If Vi,...,V, are the sets produced by the arc-consistency algorithm, we de-
fine e; to be the idempotent (HaeVi a”)¥. Recall that since S is a block group, the
value of a product of the form (s ...s¥)* depends solely on the set {sq,...,s;:}
and our definition of e; is thus sound.

Lemma 4. If P has a solution then it has one in which each variable z; is
assigned a value a; that lies in the subgroup G, where the e; are the idempotents
obtained through the arc-consistency algorithm.

T . . 1
Proof. Let b € 8™ be any solution to P. We claim that @ = et

solution of P satisfying a* = e.

is then a

Since I' is closed under the operation zy“~'z, it is also closed under z*z (by
identifying z and y) and under 2*y“ z (by substituting y* z for z in the previous
polynomial). By iterating this procedure, we get that for any n, I' is closed under
the polynomial F(z1,...,2,41) = (2% ... x‘;)wx‘r‘:i%

Consider any constraint of P, e.g. ({zi,,-.., 2.}, B). By assumption, we
have ¢ = (b;,,...,b;,) € R. For a tuple #, we denote as t[j] the jth coordinate
of £. Let {Z1,...,%,} be the tuples of R such that each #;[j] lies in V;,. Since
we have enforced arc-consistency, we have in fact Vi, = {#[j] : k = 1...m}
and we can thus deduce that e;; = ([],_;., x[j])* for each j. By the closure

properties of I' we also know that F'(¢1,...,%m,,¢) is in R. Hence,

F(Tiyeo Ty @[] = (1 Talf)9) b5 = e bt



Therefore EEw+1+ils indeed a solution to P. The same methods allow one to further
verify that (EBW ¥ =g O

Thus, in polynomial time, we can associate to each variable z; a subgroup G,
such that if CSP(I") has any solution then it has one where z; is assigned a value
in G¢,. Let G be the direct product [] G. where the product is taken over the
n distinct idempotents e of S. We will identify any element lying in one of the
n canonical subgroups G. of G’ with the corresponding element in the subgroup
G. of S. For any k-ary relation R € I' and any k-idempotents ¢;,,...,¢e;, (not
necessarily distinct) we define the relation R., . C G* as consisting of tuples

(ai,...,ax) such that'

i

1. a; lies in the subgroup G, of G;
2. (ai,...,az) € R when we view the a;’s as elements of S.

The crucial observation is that each R is coset-generating, i.e. closed

€igyeee iy

under the operation zy“~'z. Indeed, if @, b,¢ € Re;,,...,e;, then certainly the

Tk
jth component of ab” 'z also lies in the subgroup G.;. Furthermore, the second
condition is satisfied since R is closed under zy*~1z.

Let A consist of relations over GG of the form R€i17~~~7€ik for some R € T.
Given an instance of CSP(I') in which every variable has been restricted to lie
in some particular subgroup we can naturally construct an instance of CSP(A)
that will be satisfiable iff the instance of CSP(I') can be satisfied. Since A is

coset-generating, we can solve CSP(A) in polynomial time. O

As we mentioned earlier, the “island of tractability” uncovered by this the-
orem subsumes the tractability results for coset-generating relations of [10] and
for clones generated by a block-group [5]. We give an application of this theorem
to a problem studied in [13]: for a finite semigroup S, let EQNY denote the prob-
lem of determining whether a system of equations over S has a solution. Note
that by introducing dummy variables we can assume that a system of equations
over S consists only of equations of the form zy = z or x = y where z,y, z are
variables or constants. We can thus think of the problem EQNYg as CSP(I's)
where I's is the set of relations definable by such an equation over S.

Theorem 5 ([13]). Let EQNY be the problem of testing whether a system of
equations over the semigroup S has a solution. If S is in SLV Ab (the pseudo-
variety generated by SL and Ab) then EQNY lies in P.

1 — 2 since

Proof. Any semigroup in SL V Ab is commutative and satisfies z**
both semilattices and Abelian groups have these properties. Consider an equation
over S of the form z1x9 = x3. If (a1,a2,a3), (b1,bs,b3), and (c1,c2,c3) are

solutions of this equation then we have by commutativity

w—1 w—1 -1 w—1
albl cla2b2 Cy = alag(blbz)“’ C1Cy = Clng C3.

! Alternatively, we could view this relation as multi-sorted in the sense of [4].



Similarly, if we consider an equation in which a constant appears, e.g. sz1 = z3
then since s = s“*! we get

salb‘f_1cl = Sal(sbl)w_lscl = agbf;_1cz.
Thus I's is closed under the polynomial zy“~'z over the block-group S and
EQNY is tractable by Theorem 3. O

One cannot directly infer the tractability of EQN% for S € SLV Ab by
simply using the tractability of Malt’sev operations or the tractability of clones
generated by a block group so the result of Theorem 3 seems required in this
case. It is worth noting that if S is a finite monoid then EQN% is NP-complete
when S is not in SL'V Ab [13]. An alternative proof of this latter fact was given
in [14] using an elegant universal algebra argument.

4 Tractable Clones of Polynomials

We have just shown that for a clone of polynomials over a block-group § to
be tractable, a sufficient condition is that it contains the operation zy~~!z.
In this section, we consider necessary conditions for tractability. Our goal is
to eventually be able to classify all clones of polynomials over any S as either
tractable or NP-complete. We first note that this question is only of real interest

if S is a block-group.

Theorem 6. If S is not a block-group, any clone of polynomials over S is NP-
complete.

Proof. Since S is not a block group, there exist idempotents e, f € S such that
ef =eand fe = foref = f and fe = e. Suppose w.l.o.g. that the former occurs
and let P = z;, ...x;, be a polynomial in the clone. If we set all variables to
one of e, f this polynomial will always return the value of z;, since ef = ee =€
and fe = ff = f. Hence, as first observed in [5], this operation preserves any
relation over the subdomain {e, f} and since there are NP-complete CSPs over
a binary domain (e.g. 3SAT), the clone is NP-complete. O

We also provide a condition on clones of polynomials that guarantees NP-
completeness over any semigroup. We need an extra semigroup-theoretic notion:
the subgroup exponent n of the semigroup S' is the least common multiple of the
exponents of the subgroups in S. When S is a union of groups, we have n = w
but in general we can only say that n is a divisor of w. We say that an operation
(polynomial) z'' ---z!'" is a d-factor if d > 1, d is a divisor of 5 (possibly n
itself), and |{1 < i < r:d|n;}| = r — 1, that is, if every n; but one is divided
by d. We say that the clone C is a d-factor if every operation in C is a d-factor.

Theorem 7. If C is a d-factor for some d then C is NP-complete.



Proof. We have that n = da for some 1 < a < w. Since 7 is the least com-
mon multiple of the exponents of all subgroup elements of S, there exists some
subgroup element s € S with exponent 7' (i.e. s1 s idempotent) such that
lem(n',a) = ka for some k > 1. Notice that & must divide d. Notice also that
for every 1 <1 < k, n’ does not divide la. Consequently s has exponent k.
Consider the subgroup A of S generated by s?, that is A = {s?,52%,..., s*2].
Clearly |A| > 2. Let f(z1,...,24) = 2'---2]" be any operation in C. First,
note that A forms a subuniverse for f: if ai,...,a, € A, f(ai,...,a,) isin A
too. Furthermore, the polynomial z}'' ---z}'" is a d-factor so there exists some
1 < j < r such that d divides n; for every 1 < 7 < r with i # j. If again
a,...,aq € A, each a; is a; = s for some I;. So we have a?i’ = shtiani = gman,
for some m;, and then f(a1,...,aq) = s™THG % for some m > 0, a value that
depends only on z;. Therefore, if g is is the restriction g of f to A, we have
gz, ... xy) = s™ m:j. It is easy to see that s™7x™J is one-to-one over A. Let
sF1% and s#2® be two different elements in A and let s™7tk1an; gmntk2an; he their
corresponding images. In order to be identical, ka has to divide (ky — kq)an;, or
equivalently k has to divide (k1 — k2)n;. First notice that since s¥1¢ and s¥2% are
different, k£ cannot divide k1 —k2. Furthermore, we shall show that ged(k, n;) = 1.
Let p be any common divisor to k and n;. Since p divides k, it also divides d
and then it also divides n; for every 7 such that 1 < i # j < r. If p also divides
nj then it must divide n+ 1, in contradiction with the fact that p divides 7.
Summarizing we have shown that there exists a set, namely A, of cardinality
at least 2, that is a subuniverse of every operation in C. Furthermore, for every

operation f(xq,...,x,)inC, the restriction fi4(z1,...,2,) of f to A is equivalent
to g(z;) for some one-to-one function g : A — A. It is well known that this
implies that C is NP-complete. O

In the next two subsections we will see that in the cases of commutative
semigroups and nilpotent groups, an idempotent clone of polynomialsis tractable
iff it is not a d-factor.

4.1 The Commutative Case

As we mentioned in Section 2, in order to understand the tractability of clones,
it suffices to consider idempotent ones. We concentrate on idempotent clones
from now on; this allows us to consider only unions of groups.

Lemma 8. Let S be a semigroup and C a nontrivial, idempotent clone over S.
Then S is a union of groups and for every polynomial &'} ... x;™ in C, Y aj is
congruent with 1 modulo w.

Proof. Take any operation in C other than a projection, and suppose it is de-
fined by the polynomial ;' ...z;™. This operation is idempotent if C is, so the
semigroup S must satisfy s = s for all s. Consequently, S must be a union
of groups. Furthermore )" «; is congruent with 1 modulo w for otherwise we
contradict the minimality of the exponent w. O



So in the proofs of the rest of the section we will implicitly assume that § is
a union of groups and that the polynomials in C satisfy the condition above.

Theorem 9. Let S be a commutative semigroup and let C be a nontrivial idem-
potent clone of polynomials over S. If C is not a d-factor for any d, then it

contains xy* 1z,

Proof. By Lemma 8 S is a union of groups, and is commutative, so we can
assume that for every polynomial 7' ..., 2" all z;’s are different. Furthermore,

1 n

since z¢*! = z, every two polynomials z7" - - - 27
every 1 < i < 7, n; = n} modw, denote the same operation. We sometimes
allow negative indices n; in an expression, meaning by that any positive integer
of the form n; 4+ nw. Note also that since we are dealing with unions of groups,

nl n’
~and x;'---2," such that for

the subgroup exponent of S is simply its exponent w.
We need the following auxiliary lemma.

Lemma 10. Let ' -2} be any operation in C, let 1 < i # j < r,leta =
ged(ninj,w), and let v > 1. Then 2" *y~*=279F127 belongs to C.

Proof. First notice that we can identify and rename variables in the expression
z7' -+ -z to obtain in C the expression

n

YLy L a1 R L L

which is equivalent to z™iy*~"~"7s+1;7i By a further replacement, the expres-

sion (ytiyw miTnitlgni)nigemniongtlnigw—ni—nitlyniyng also belongs to C.

Setting ¢ = n;nj, this can be rewritten as as z¢y*~2¢*1z¢. Now we will show
that for every m > 1 the expression
m m _gmam g m
I‘i "'I;m—lyw ¢+ ZT "'Z;m—l

belongs to C. We will show it by induction on m. The case m = 1 has already been
proven. Let us assume that the statement holds for m. Then by identification
and composition we construct the expression

c™ c™ w—2Mc™41 ™ c™ye w—2c+1
(l‘l o Tgm—_1 y z2m—1+1"'x2m) Yy
c™ c™ w—2"c™ 41 _c™ c™ye
'(Zl "'sz—ly ZZm—1+1"'Z2m)
m+1 m+1 _om+1l _m+1 m+1 m+1

=z eeabm yeTE o LT
We are now almost done. There exists some [ > 1 such that ¢* = ¢! mod w.
Since ged(c',w) = ged(e,w) = a we have that for every r > 1, there exists some
integers «, 3 such that ac! + fw = ra. We can also assume that a > 0. Fix

some n such that 2*=1 > a. By setting m = nl we can infer that the expression

Cnl Cnl w_2nlcnl 1 Cnl cnl
xl "'l‘2n1_1y + Zl "'2277_1—1

belongs to C, and consequently that the expression
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obtained by identification and renaming of variables also belongs to C. This

becomes xPy* =201 2% if we set b = ac™. Finally notice that

O

We now continue the proof of Theorem 9. Assume that C is not a d-factor for
every divisor d > 1 of w. We will show that zy“~1z isin C. Let p1,...,px be the
set of prime divisors of w strictly larger than 1. We shall show by induction that
for every 1 <[ < k, there exists some a such that ged(a,py X -+- x p;) = 1 and
such that 2%y =27+129 belongs to C (*). Notice that the statement follows from
! = k and Lemma 10 since in this case ged(a,w) = ged(a x a,w) = 1. The case
I =1 is easy. Since C is nontrivial it contains an operation z|*---z?r and some
i # j such that p; does not divide n; and does not divide n;. Consequently pq
does not divide a = ged(w, n; x n;). By Lemma 10, 2%y*~2¢+1:2 belongs to C.
Assume now that statement (*) holds for ! < k. We shall show that it also holds
for [+ 1. By induction hypothesis there exists some a with ged(a, p1 x---xp) =1
such that z%y~~29+12 belongs to €. Also, by a reasoning analogous to the case
! = 1 we can infer that since C is not a p;41-factor we have that there exists
some b not divided by p;41 such that zby“~2+1:°, We can also assume that
p1 X + -+ X p; divides b.

Let us consider two cases: if p;;1 does not divide a then we are done since we
have that ged(a,p1 X --- X piy1) = 1. Otherwise, we proceed as follows. Notice
that the operation z?(zPy~—2b+1;0)w=2a+1,a helongs to C since it is obtained
by composition and identification of variables. Notice also that if we set ¢ =
a+b(w—2a+1) the previous expression is equivalent to z¢y~~2°t12¢ 1t is easy to
see that none of pq,..., piy1 divides ¢ and consequently ged(c, p1 X -+ -Xpiy1) = 1.
To see this, note that for every 1 < I’ < [, we have that py divides b (and
consequently b(w — 2a + 1)) but not a. Consequently pi cannot divide its sum.
Similarly since piy1 divides a, it cannot divide w — 2a + 1 (since otherwise it
would divide w + 1 in contradiction with the fact that it divides w). Thus, pj41
does not divide b(w — 2a + 1), so it cannot divide ¢. O

We obtain the following corollary from Theorems 7 and 9, plus the fact that
the operation zy“~'z implies tractability.

Corollary 11. Let S be a commutative semigroup and C a nontrivial, idempo-
tent clone of polynomials over S. Then the following are equivalent:

— C is tractable.
— C is not a d-factor, for any d.
— C contains xy*~1z.

If S is a semilattice, we can easily obtain a stronger result.

tractable.



Proof. Since S is idempotent and commutative, any polynomial over S can be
rewritten as simply 1 ...z and if the clone is non-trivial, it must contain such
a polynomial with £ > 2. By identification of variables, the clone contains the
polynomial zy and is tractable. O

4.2 The Group Case

We now turn our attention to tractable clones of polynomials over groups. First,
we do not think that Corollary 11 can be extended to groups. We believe in
particular that the “near subgroup” operation of Feder [9] can in some cases be
represented as a polynomial over a group. In any case, the closure function that
defines near-subgroup problems is a Malt’sev operation and we conjecture:

Conjecture 13. Let C be an idempotent clone of polynomials over a group. Then C
is tractable iff it contains a Malt’sev operation.

By Theorem 11, the conjecture is true for Abelian groups because, as noted
in Section 2 the operation zy“~1z over a finite group is Malt’sev. Next we will
show that our conjecture holds for nilpotent groups which, in many ways, form
one of the simplest class of non-Abelian groups. A group is said to be nilpotent if
it is a direct product of p-groups. An alternative description will be more useful
for our purposes: Let G be a group. For every g, h € G, the commutator [g, h] of
g and h is the element g~'h~1gh. Note that gh = hg[g, h], so if g and h commute
[g, h] is the identity. An element of G is central if it commutes with every element
in G; the set of central elements of G is an Abelian subgroup.

For two subgroups G1 and G2 of G, [G1,G2] is the subgroup generated by
all commutators [g, h] with ¢ € G1 and h € G2. Define the lower central series
of G by Go = G, and G;41 = [G;, G]. Elements in G; are called commutators of
weight i + 1 of G. We say that G is nilpotent class k if G is trivial; note that
if G is trivial all elements in Gg_1 are central in G. A group is nilpotent if it is
nilpotent class k for some k.

We define commutator polynomials analogously. For two polynomials p1, pa,
[p1, p2] is the polynomial p‘f_lp‘;_lplpg. The only commutator polynomial of
weight 1 is the empty polynomial. A commutator polynomial of weight 2 is [z, y]
for two variables z,y. A commutator polynomial of weight k is [p, z], where z
is a variable and p a commutator polynomial of weight & — 1. Commutator
polynomials of weight k& + 1 or more are the identity in a nilpotent class k group.

Theorem 14. IfC is an idempotent clone of polynomials over a nilpotent group
and not a d-factor for any d, then C contains a Malt’sev operation.

Proof. Any polynomial p defining an operation over GG also defines an operation
over any subgroup H of G since the value of p lies in H when all variables are
themselves set to values in H. We will say that a polynomial (or a clone) is
interpreted over a subgroup H to mean that the variables of the polynomial
take values in H. Note that if C is not a d-factor interpreted over G it is not a
d-factor interpreted over H. Suppose H is an Abelian subgroup and suppose we



can show that C interpreted over H contains the polynomial z%y. One cannot
conclude that C interpreted over G contains the polynomial 22y itself for it may
be that it contains, say, zyx that, interpreted over the Abelian subgroup H is
indeed the same as z2y.

Fix a nilpotent class K group G. It is more convenient for the proof to redefine
the indices of the central series of G as follows: G = G and G _1 = [Gy, G], so
that GGy is the set of central elements of G and Gy, is nilpotent of class k. It can
be shown that any polynomial p in n variables over a nilpotent group of class k
can be rewritten in the following normal form

n

p:fo” H [, 2;]%9 ... H [y miy|wig] . oemg ] ik,

i=1 i,j<n B1yeeyik<n

In other words, p can be rewritten as a product of distinct commutator poly-
nomials raised to some power, where the “lightest” commutators appear first.
Note that if we interpret p over a nilpotent subgroup H of class k < K, it is
equivalent to the polynomial obtained by deleting all occurrences of commutator
polynomials of weight larger than k, since they are the identity over H.

We prove the following for all &k, by induction: There is a sequence @ of
commutator polynomials of weight at most k over the variables z, y, z such that
the operation zy~'2(Q) is Malt’sev over G and belongs to C when interpreted
over (Gi. The theorem follows from this statement for k = K.

For k = 1, @ is be the empty sequence. As C interpreted over GGy is not a
d-factor, and G is Abelian, by Corollary 11 C contains zy~'z when interpreted
over (71.

Inductively, let @ be a sequence of commutator polynomials of weight at most
k —1 such that zy~'2(Q is Malt’sev over G and contained in C when interpreted
over G _1. Then, C interpreted over Gy contains a polynomial of the form

P(z,y,z) =2y '2Q - ©;C
for some set of exponents «;, where ®; denotes concatenation over all commu-
tator polynomials C; of weight k on the variables z, y, z.

Let R be obtained by identifying 2 and y in P. If {D;} is the set of com-
mutator polynomials of weight k£ in 2 and z, this identification maps each C;
to some D;. Every commutator D; is central in Gy, so we can group all its
occurrences, and since zy~!zQ is Malt’sev,

R(z,2z) = P(z,z,2) =z ®1-Dfi
for appropriate exponents ;. Similarly, let S be obtained by identifying z and y
in P, so we have, for appropriate exponents ~;,

S(z,2z) = P(x,z,2) = x-@; D}

Now we move to the domain Gy and remain there until further notice. Let R(2)
be obtained by replacing z with R(z, z) in R, that is,

R®)(z,2) = R(z, R(z,2)) = R(x, z) - ®:(Di(x, R(x, 2)))7
==z~ @i(Di(ra Z))ﬁi : ®i(Di(1‘a R(.T, Z).))ﬁl



Now observe that if ¢ is central, then we have [u,vc] = u™!(ve) lu(ve) =

u~tv"luv = [u,v] for any u,v. Every D; has weight k, so it is central in Gg.

Thus D;(z, R(z, z)) = Dj;(x, z) over G and
R (z,2) = z- @(D; (, 2)) .
Iterating this process w — 1 times, we deduce that the polynomial
R@=D(z,2) = z - @;(D;(x, z)) =P

is in C when interpreted over Gy. Similarly, let S(3) be obtained by replacing
with S in S. By the same argument as before, we see that the polynomial

S(w—l)(la’ z) =z - @;(Di(, Z))(w—l)’h

is in C when interpreted over Gj.

Now, build T by replacing z with R“~1)(z,y) and z with S@=(y, z) in P.
Observe that the two previous replacements have no effect on @ and D; other
than permuting z and z, since any commutator of weight k£ placed in an argument
of a commutator polynomial of weight larger than 1 can simply be deleted. Using
again that the D; are central in G we have

T(w,y,2) = 2y~ 2Q(z, 9, 2) - ©; D~ (2, y) - @, DYV (y, ) - ©:C7 (2, , @)

While still in G, reorder the D; and C; in the following way: Let ¢(7) be such
that Ci(z,z,2) is Dy (2, z), and similarly let ¢(i) be such that Ci(z,z,z2) is
Dy (iy(z, 2). By the definition of 3;, v;, ¢, and ¢, there are just the right number
of each of the D; in T so that T can be equivalently written in G as

T(z,y,2) = 2y~ 2Q(z, y, 2) - ©i(Ci(2, 4, ) (Dyiy (4, 2))* ™ (Dyiy (2, )71

So this polynomial T'(x, y, z) belongs to C when interpreted over G, although it
need not be in C when interpreted in G. Still, it is easy to see that T is Malt’sev
in all G: When z = y, all the commutators on z and y vanish so we have

T(x,2,2) = zx_le(z, z,x)- ©i(Ci(z, 2, @) - (Dy)(2, x))“’_l)a"
=2+ 0i(Dy(i)(z,2) - (Dy(iy (2, x))“’_l)"“ =z,
and when y = z, all the commutators on z and y vanish and
T(x,z,2) = zz_la:Q(z, z,x) - ©;(Ci(z, 2z, x) - (D¢(i)(z, z))“’_l)"“
=z - ©i(Dy(i) (2, ) - (Dy(i) (2, 2))* 7)™ = @
This concludes the induction step and the proof of the theorem. O

Now from Theorems 7 and 14, plus the tractability of Malt’sev operations, we
obtain the following corollary.

Corollary 15. Let G be a nilpotent group and C a nontrivial, idempotent clone
of polynomials over G. Then the following are equivalent:



— C is tractable.
— C is not a d-factor, for any d.
— C contains a Malt’sev operation.

It is tempting to conjecture in light of Corollaries 11 and 15 that if S is a
block-group then an idempotent clone of polynomials over S is tractable iff it is
not a d-factor. It would also be interesting to identify the largest class of finite
groups for which the presence of zy~ !z is necessary and sufficient for tractability.
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