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Abstract

Optimal dispersers have better dependence on the error than optimal extractors. In this
paper we give explicit disperser constructions that beat the best possible extractors in some
parameters. Our constructions are not strong, but we show that having such explicit strong
constructions implies a solution to the Ramsey graph construction problem.

1 Introduction

Extractors [18, 8] and dispersers [13] are combinatorial structures with many random-like proper-
ties1. Extractors are functions that take two inputs – a string that is not uniformly distributed, but
has some randomness, and a shorter string that is completely random – and output a string that is
close to being uniformly distributed. Dispersers can be seen as a weakening of extractors: they take
the same input, but output a string whose distribution is only guaranteed to have a large support.
Both objects have found many applications, including simulation with weak sources, determinis-
tic amplification, construction of depth-two super-concentrators, hardness of approximating clique,
and much more [7]. For nearly all applications, explicit constructions are required.

Extractors and dispersers have several parameters: the longer string is called the input string,
and its length is denoted by n, whereas the shorter random string is called the seed, and its length is
denoted by d. Additional parameters are the the output length m, the amount of required entropy
in the source k and the error parameter ε. The two parameters that are of central interest for this
paper are the seed length d and the entropy loss Λ = k+d−m, a measure of how much randomness
is lost by an application of the disperser/extractor.

The best extractor construction (which is known to exist by nonconstructive probabilistic argu-
ments) has seed length d = log(n− k) + 2 log 1

ε + Θ(1) and entropy loss Λ = log 1
ε + Θ(1), and this

was shown to be tight by [10]. However, the situation for optimal dispersers is different. It can be
shown non-explicitly that there exist dispersers with seed length d = log(n− k) + log 1

ε + Θ(1) and
entropy loss Λ = log log 1

ε + Θ(1), and, again, this was shown to be tight by [10]. In particular we
see that optimal dispersers can have shorter seed length and significantly smaller entropy loss than
the best possible extractors. Up to this work, however, all such explicit constructions also incur a
significant cost in other parameters.
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1.1 Our Results

Ta-Shma and Zuckerman [17], and Reingold, Vadhan, and Wigderson [12] gave a way to construct
dispersers with small dependence on ε via an error reduction technique2. Their approach requires
a disperser for high min-entropy sources, and therefore our first result is a good disperser for
such sources. Next, we show a connection between dispersers with optimal dependence on ε and
constructions of bipartite Ramsey graphs3. This connection holds for dispersers that work well for
low min-entropies, and so our second construction focuses on this range.

1.1.1 A Good Disperser for High Entropies

Our goal is to construct a disperser for very high min-entropies (k = n − 1) but with very small
error ε, as well as the correct entropy loss of log log 1

ε and seed length of log 1
ε .

One high min-entropy disperser associates the input string with a vertex of an expander graph
(see Definition 2.11), and the output with the vertex reached after taking one step on the graph
[4]. This disperser has the optimal d = log 1

ε , but its entropy loss Λ = d = log 1
ε is exponentially

larger than the required log log 1
ε .

A better disperser construction, in terms of the entropy loss, was given by Reingold, Vadhan,
and Wigderson [12], who constructed high min-entropy dispersers in which the degree and entropy
loss are nearly optimal. Their constructions are based on the extractors obtained by the Zig-
Zag graph product, but the evaluation time includes factors of poly( 1

ε ) or even 21/ε, so they are
inefficient for super-polynomially small error. The reason these constructions incur this cost is that
they view their extractors as bipartite graphs, and then define their dispersers as the same graph,
but with the roles of the left-hand-side and right-hand-side reversed. This inversion of an extractor
is nontrivial, and thus requires much computation.

Our constructions are a new twist on the old theme of using random walks on expander graphs
to reduce the error. Formally, we get,

Theorem 1.1. For every ε = ε(n) > 0, there exists an efficiently constructible (n− 1, ε)-disperser
DSP : {0, 1}n×{0, 1}d 7→ {0, 1}m with d = (2+o(1)) log 1

ε and entropy loss Λ = (1+o(1)) log log 1
ε .

As a corollary of one of the lemmas used in this construction, Lemma 3.1, we also get the
following construction:

Corollary 1.2. There exists an efficiently constructible (n−1, ε)-disperser DSP : {0, 1}n×{0, 1}d 7→
{0, 1}m with d = O(log 1

ε ) and entropy loss Λ = log log 1
ε + O(1).

1.1.2 Error Reduction for Dispersers

An error reduction takes a disperser with, say, constant error, and converts it to a disperser with
the desired (small) error ε. One way for achieving error reduction for dispersers was suggested by
Ta-Shma and Zuckerman [17], and Reingold, Vadhan, and Wigderson [12], and is obtained by first
applying the constant error disperser, and then applying a disperser with only error ε that works
well for sources of very high min-entropy (such as k = n− 1). Using the disperser of Theorem 1.1
we get:

2See Sect. 1.1.2 for details.
3For a formal definition, see Sect. 4.
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Theorem 1.3 (error reduction for dispersers). Suppose there exists an efficiently constructible
(k, 1

2)-disperser DSP1 : {0, 1}n × {0, 1}d1 7→ {0, 1}m1 with entropy loss Λ1. Then for every ε =

ε(n) > 0 there exists an efficiently constructible (k, ε)-disperser DSP : {0, 1}n × {0, 1}d 7→ {0, 1}m
with entropy loss Λ = Λ1 + (1 + o(1)) log log 1

ε and d = d1 + (2 + o(1)) log 1
ε .

If we take the best explicit disperser construction for constant error (stated in Theorem 2.10),
and apply an error reduction based on Corrolary 1.2, we get:

Corollary 1.4. There exists an efficiently constructible (k, ε)-disperser DSP : {0, 1}n × {0, 1}d 7→
{0, 1}m with seed length d = O(log n

ε ) and entropy loss Λ = O(log n) + log log 1
ε .

1.1.3 A Disperser for Low Entropies

Next, we construct a disperser for low min-entropies. The seed length of this disperser is d =
O(k) + (1 + o(1)) log 1

ε and the entropy loss is Λ = O(k + log log 1
ε ). Formally,

Theorem 1.5. There exists an efficiently constructible (k, ε)-disperser DSP : {0, 1}n × {0, 1}d 7→
{0, 1}m with d = O(k) + (1 + o(1)) log 1

ε and Λ = O(k + log log 1
ε ) entropy loss.

Notice that when ε is small (say 2−n2/3

) and k is small (say O(log(n))) the entropy loss is
optimal up to constant factors, and the seed length is optimal with respect to ε. At first glance
this may seem like only a small improvement over the previous construction, which was obtained
using the error reduction. However, we now shortly argue that the reduction of the seed length
from O(log(n)) + 2 log 1

ε to O(log(n)) + 1 · log 1
ε is significant.

First we note that for some applications, such as the Ramsey graph construction we discuss
below, the constant coefficient is a crucial parameter. A seed length of O(log(n)) + 2 log 1

ε does
not yield any improvement over known constructions of Ramsey graphs, whereas a seed length of
O(log(n)) + 1 · log 1

ε implies a vast improvement.
Second, we argue that in some sense the improvement in the seed length from 2 log 1

ε to 1 · log 1
ε

is equivalent to the exponential improvement of log 1
ε to O(log log 1

ε ) in the entropy loss. Say

DSP : {0, 1}n1 × {0, 1}d1 → {0, 1}n2 is a (k1, ε1) disperser. We can view DSP as a bipartite graph
with N1 = 2n1 vertices on the left, N2 = 2n2 vertices on the right, with an edge (v1, v2) in the
bipartite graph if and only if DSP(v1, y) = v2 for some y ∈ {0, 1}d1 . The disperser property then
translates to the property that any set A1 ⊆ {0, 1}n1 of size K1 = 2k1 , and any set A2 ⊆ {0, 1}n2

of size ε1N2 have an edge between them. This property is symmetric, and so every disperser DSP
from [N1] to [N2] can equivalently be thought of as a disperser from [N2] to [N1], which we call the
inverse disperser.

It then turns out that for certain settings of the paraments, if a disperser has seed length
dependence of 1 · log 1

ε on the error, then the inverse disperser has entropy loss O(log log 1
ε )

4.
However, as noted earlier, inverting a disperser is often computationally difficult, which is the
reason we require explicit constructions of dispersers in both directions.

1.1.4 The Connection to Ramsey Graphs

Our final result is a connection between dispersers and bipartite Ramsey graphs. Ramsey graphs
have the property that for every subset of vertices on the left-hand-side and every subset of vertices

4We remark that the entropy loss lower bound in [10] is obtained by proving a seed length lower bound, and then
using this equivalence.
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on the right-hand-side, there exists both an edge and a non-edge between the subsets. We show
that bipartite Ramsey graphs can be attained by constructing a disperser with O(log log 1

ε ) entropy
loss and 1 · log 1

ε seed length, as well as the additional property of being strong5. This connection
is formalized in Theorem 4.2.

2 Preliminaries

2.1 Dispersers and Strong Dispersers

Dispersers are formally defined as follows:

Definition 2.1 (disperser). A bipartite graph G = (L, R, E) is a (k, ε)-disperser if for every
S ⊂ L with |S| ≥ 2k, |Γ(S)| ≥ (1− ε)|R|, where Γ(S) denotes the set of neighbors of the vertices in
S.

As noted earlier, we will denote |L| = 2n and |R| = M = 2m. Also, the left-degree of the
disperser will be denoted by D = 2d.

We can describe dispersers as functions DSP : {0, 1}n × {0, 1}d 7→ {0, 1}m. DSP is a disperser
if, when choosing x uniformly at random from S and r uniformly at random from {0, 1}d, the
distribution of DSP(x, r) has support of size (1− ε)M .

We will also be interested in strong dispersers. Loosely speaking, this means that they have a
large support for most seeds. Equivalently, if we were to concatenate the seed to the output of the
disperser, then this extended output would have a large support. Here we actually give a slightly
more general definition, to include the case of almost-strong dispersers, which have a large support
when “most” of the seed is concatenated to the output.

Definition 2.2 (strong disperser). Denote by x[0..t−1] the first t bits of a string x. A (k, ε)-

disperser DSP : {0, 1}n × {0, 1}d 7→ {0, 1}m is strong in t bits if for every S ⊆ L with |S| ≥ 2k,
|{(DSP(x, r), r[0..t−1]) : x ∈ S, r ∈ {0, 1}d}| ≥ (1− ε)2m+t. DSP is a strong disperser if it is strong
in all d bits.

We also need the following proposition, which is implicit in [12].

Proposition 2.3 ([12]). Let

• DSP1 : {0, 1}n1 × {0, 1}d1 7→ {0, 1}m1 be a (k, ε1)-disperser with entropy loss Λ1, and let

• DSP2 : {0, 1}m1×{0, 1}d2 7→ {0, 1}m2 be an (m1− log 1
1−ε1

, ε2)-disperser with entropy loss Λ2.

Then DSP : {0, 1}n1 × {0, 1}d1+d2 7→ {0, 1}m2, where

DSP(x, r1, r2) = DSP2(DSP1(x, r1), r2) ,

is a (k, ε2)-disperser with entropy loss Λ = Λ1 + Λ2.

5See Definition 2.2.
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2.2 Extractors

To formally describe extractors, we first need a couple of other definitions:

Definition 2.4 (statistical difference). For two distributions X and Y over some finite domain,
denote the statistical difference between them by ∆(X, Y ), where:

∆(X, Y ) =
1

2

∑

i∈supp(X∪Y )

|Pr[X = i]− Pr[Y = i]| .

X and Y are ε-close if ∆(X, Y ) ≤ ε.

We also need a measure of the randomness of a distribution.

Definition 2.5 (min-entropy). The min-entropy of a distribution X, denoted by H∞(X), is
defined as

H∞(X) = min
i∈supp(X)

log
1

Pr[X = i]
.

Definition 2.6 (extractor). EXT : {0, 1}n × {0, 1}d 7→ {0, 1}m is a (k, ε)-extractor if, for any
distribution X with H∞(X) ≥ k, when choosing x according to X and r uniformly at random from
{0, 1}d, the distribution of EXT(x, r) is ε-close to uniform.

As with dispersers, we also consider strong extractors:

Definition 2.7 (strong extractor). EXT : {0, 1}n×{0, 1}d 7→ {0, 1}m is a (k, ε)-extractor if, for
any distribution X with H∞(X) ≥ k, when choosing x according to X and r uniformly at random
from {0, 1}d, the distribution of (EXT(x, r), r) is ε-close to uniform.

Finally, for both dispersers and extractors, and S ⊆ (n) and T ⊆ (d), denote by EXT(S, T ) =
{EXT(s, t) : s ∈ S, t ∈ T} and DSP(S, T ) = {DSP(s, t) : s ∈ S, t ∈ T}.

2.3 Previous Explicit Constructions

In this paper we are interested in explicit constructions, which we now define formally.

Definition 2.8 (explicit family). A family of functions fn : {0, 1}n × {0, 1}dn 7→ {0, 1}mn is
an explicit family of extractors/dispersers if for every n, fn is an extractor/disperser, and if there
exists an algorithm A such that, given x ∈ {0, 1}n and r ∈ {0, 1}dn, A computes fn(x, r) in time
polynomial in n.

We will refer to extractors and dispersers as explicit when we mean that there exist explicit
families of such functions.

In our construction, we will use the following extractor of Srinivasan and Zuckerman [14] and
disperser of Ta-Shma, Umans and Zuckerman [16]:

Theorem 2.9 ([14]). There exists an efficiently constructible strong (k, ε)-extractor EXTSZ :
{0, 1}n × {0, 1}d 7→ {0, 1}m with d = O(m + log n

ε ) and Λ = 2 log 1
ε + O(1).

Theorem 2.10 ([16]). For every k < n and any constant ε > 0, there exists an efficiently
constructible disperser DSPTUZ : {0, 1}n × {0, 1}d 7→ {0, 1}m with d = O(log n) and m = k −
3 log n−O(1).
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2.4 Expander Graphs

A main tool we use in our construction is an expander graph.

Definition 2.11 (expander). Let G = (V, E) be a regular graph with normalized adjacency matrix
A (the adjacency matrix divided by the degree), and denote by λ the second largest eigenvalue (in
absolute value) of A. Then G is an (N, D, α)-expander if G is D-regular, |V | = N , and λ ≤ α.

An expander G is explicit if there exists an algorithm that, given any vertex v ∈ V and index
i ∈ {0, 1, . . . , D− 1}, computes the i’th neighbor of v in time poly(log |V |). Intuitively, the smaller
the value of α, the better the expander, implying better parameters for our construction. Thus, we
wish to use graphs with the optimal α ≤ 2√

D
, called Ramanujan Graphs.

A minor technicality involving Ramanujan Graphs is that there are known explicit constructions
only for certain values of N and D. However, for any given N and D, it is possible to find a
description of the Ramanujan Graphs of Lubotzky, Phillips and Sarnak [6] that are sufficient for
our needs. These graphs satisfy all the requirements, with |V | ∈ [N, (1 + δ) ·N ] and degree D, and
can be found in time poly(n, 1

δ ) [1, 4].
Since the Ramanujan Graphs of [6] are Cayley graphs, they also have the useful property of

being consistently labelled: in any graph G = (V, E), the label of an edge (u, v) ∈ E is i if following
edge i leaving u leads to v. The graph is consistently labelled if for all vertices u, v, w ∈ V , if
(u, v) ∈ E with label i and (w, v) ∈ E with label j, then i 6= j. Loosely speaking, if we take two
walks on a consistently labelled graph following the same list of labels but starting at different
vertices, then the walks will not converge into one walk.

The reason expander graphs will be useful is Kahale’s Expander Path Lemma [5]:

Lemma 2.12 ([5]). Let G be an (N, D, α)-expander, and let B ⊂ V with density β = |B|
|V | . Choose

X0 ∈ V uniformly at random, and let X0, . . . , Xt be a random walk on G starting at X0. Then

Pr[∀i, Xi ∈ B] ≤ (β + α)t .

3 A High Min-Entropy Disperser

In this section we prove Theorem 1.1. Our technique is motivated by the construction of Cohen
and Wigderson [3]. In the context of deterministic amplification, Cohen and Wigderson [3] used a
random walk on an expander graph to reduce the error from polynomially small to exponentially
small. Translating their work into the current notion of a disperser, their construction has the
following parameters: d = (2 + α) log(1/ε) and Λ = log log(1/ε), for some constant α. Cohen and
Wigderson used this disperser as a sampling procedure, and they were only interested in the case
k ≥ n− 1

poly(n) . In fact, their construction does not attain the above parameters for smaller entropy
thresholds, such as k = n− 1.

3.1 The Basic Construction

Lemma 3.1. For all positive w, t, and δ there exists an (n−c, ε)-disperser DSP : {0, 1}n×{0, 1}d 7→
{0, 1}m computable in time poly(n, 1

δ ) with:

• ε ≤
(

1− 1
(1+δ)2c + 2

2w/2

)t
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• d = wt + log t

• Λ ≤ log t

Proof. Consider a Ramanujan Graph G = (V, E) with |V | ∈ [N, (1 + δ)N ] and degree 2w, which
can be constructed in time poly( 1

δ ) (see Sect. 2.4). Associate with an arbitrary set of N vertices
of G the strings {0, 1}n, which in turn correspond to the vertices on the left side of the disperser.
Again, for every string s ∈ {0, 1}d, we think of s = r ◦ i, where r ∈ {0, 1}wt and i ∈ {0, 1}log t. The
disperser is defined as DSP(x, r ◦ i) = (y, r), where y ∈ V is the vertex of G reached after taking
a walk consisting of the last i steps encoded by r, starting at the vertex associated with x. Now
define S ⊂ {0, 1}n, an arbitrary set of starting vertices, such that |S| ≥ 2n−c.

For a pair (y, r), denote by ←−ry the walk r ending at y, backwards. By backwards we mean that
if the i’th step of the walk is from v to u, then the (t − i)’th step of ←−ry has the label of the edge

from u to v. If (y, r) is bad (i.e. for no x ∈ S and i ∈ {0, 1}log t, DSP(x, r ◦ i) = (y, r)), then the
walk ←−ry starting at vertex y in G never hits a vertex x ∈ S. This implies that in all t steps, the
walk stays in S. Note that because the graph is consistently labelled, there is a bijection from pairs
(y, r) to pairs (y,←−ry ). Thus, to bound ε, it suffices to bound the probability that a random walk in
G stays in S. We use the Expander Path Lemma (Lemma 2.12) to bound this probability by

ε ≤
( |S|
|V | + λ

)t

,

where λ is the second largest eigenvalue (in absolute value) of G. Since |S| ≥ N
2c ,

|S|
|V | ≤

|V | − N
2c

|V | ≤ (1 + δ)N − N
2c

(1 + δ)N
= 1− 1

(1 + δ)2c
.

Thus,

ε ≤
(

1− 1

(1 + δ)2c
+ λ

)t

≤
(

1− 1

(1 + δ)2c
+

2

2w/2

)t

for a Ramanujan Graph. It is clear that d = wt + log t. Since the length of the output is at least
n + wt, the entropy loss Λ ≤ log t.

3.2 Parameters

By using Lemma 3.1 with w = 6, t = 5
2 log 1

ε , and δ = 1
poly(n) we get Corollary 1.2 of Section 1.1.1.

For our high min-entropy disperser, we wish to reduce the coefficient in the seed length. Thus,
we will compose two different dispersers guaranteed by Lemma 3.1. The effect of composing two
dispersers is captured by Proposition 2.3.

The first disperser will have entropy requirement n− 1, and error ε1 = 2
2w/2

. This is chosen in
order to satisfy ε1 = λ, the second eigenvalue of the expanders used in the disperser constructions,
and thus simplify the analysis. The second disperser will take a subset of {0, 1}n2 with error
ε1 = 2

2w/2
(or, equivalently, entropy requirement n2 − log 1

1−ε1
), and have error ε, as desired. Both

dispersers will be as guaranteed by Lemma 3.1, with the same w. This means that both expander
graphs will have the same degree, and thus the same bound on λ, but their sizes will be different.
Note that for the first expander, we do not care too much about the size of |V |, and so we choose δ
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to be some constant, to yield a graph with |V | ∈ [N, 3
2N ]. For the second expander, however, this

size is relevant, so we must choose a smaller δ.
We now restate and prove Theorem 1.1.

Theorem 1.1. For every ε = ε(n) > 0, there exists an efficiently constructible (n− 1, ε)-disperser
DSP : {0, 1}n×{0, 1}d 7→ {0, 1}m with d = (2+o(1)) log 1

ε and entropy loss Λ = (1+o(1)) log log 1
ε .

Proof. Our disperser DSP will consist of the composition of two other dispersers, an (m1 − 1, ε1)-
disperser DSP1 : {0, 1}n × {0, 1}d1 7→ {0, 1}m1 and a (n − log 1

1−ε1
, ε)-disperser DSP2 : {0, 1}m1 ×

{0, 1}d2 7→ {0, 1}m. These dispersers will be as guaranteed by Lemma 3.1, with parameters
t1, w1, δ1 = 1

2 and t2, w2, δ2 respectively. Recall that ti indicates the length of the walk, wi is
the number of bits needed to specify a step in the expander graph, and δi is related to the size of
the expander graph. We will have

DSP(x, r1 ◦ r2 ◦ i1 ◦ i2) = DSP2(DSP1(x, r1 ◦ i1), r2 ◦ i2) .

Let w = w1 = w2, a parameter we will choose later. For DSP1, we wish its error to be ε1 ≤ 2
2w/2

.

By Lemma 3.1,
(

1− 2
3 · 1

2 + 2
2w/2

)t1
=
(

2
3 + 2

2w/2

)t1
≤ 2

2w/2
. If λ < 1

6 (which it will be), then it

suffices to satisfy ( 3
4)t1 ≤ 2

2w/2
. This occurs whenever t1 ≥ 3

2w, so set t1 = 3
2w. Thus, DSP1 will

output m1 bits, with error ε1 ≤ 2
2w/2

. Furthermore, the required seed length d1 = t1w = 3
2w2.

We now apply DSP2 on these strings, with δ2 = 1
1−ε1

− 1. The construction time is poly( 1
δ2

) =

2O(w). By Lemma 3.1, the error is

ε ≤
(

1− 1− ε1

1 + δ2
+ λ

)t2

< (2ε1 + λ)t2 =

(

6

2w/2

)t2

.

This implies that

t2 =
log ε

log 6
2w/2

= log
1

ε

(

1

log 2w/2

6

)

< log
1

ε

(

2

w − 6

)

.

The required seed length is

d2 = t2w =
2w

w − 6
log

1

ε
= (2 +

12

w − 6
) log

1

ε
.

We now analyze the parameters we obtained in the composition of DSP1 and DSP2. By Proposi-
tion 2.3, the total seed length of DSP is d = (2+ 12

w−6) log 1
ε + 3

2w2. If we pick w = ω(1), but also w =

o(log log 1
ε ), then d = (2+o(1)) log 1

ε , as claimed. The entropy loss Λ ≤ log[(2+ 12
w−6) log 1

ε ]+log 3
2w2,

and with the above choice of w, we get Λ = (1 + o(1)) log log 1
ε .
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3.3 Error Reduction for Dispersers

With a high min-entropy disperser at hand, we get the error reduction for dispersers:

Theorem 1.3. Suppose there exists an efficiently constructible (k, 1
2)-disperser DSP1 : {0, 1}n ×

{0, 1}d1 7→ {0, 1}m1 with entropy loss Λ1. Then for every ε = ε(n) > 0 there exists an effi-
ciently constructible (k, ε)-disperser DSP : {0, 1}n × {0, 1}d 7→ {0, 1}m with entropy loss Λ =
Λ1 + (1 + o(1)) log log 1

ε and d = d1 + (2 + o(1)) log 1
ε .

Proof. This is attained by composing DSP1 with our high min-entropy disperser, as in Proposi-
tion 2.3.

4 Dispersers and Bipartite Ramsey Graphs

Our construction of low min-entropy dispersers was motivated by the connection of such dispersers
to bipartite Ramsey graphs.

Definition 4.1. A bipartite graph G = (L, R, E) with |L| = |R| = N is (s, t)-Ramsey if for every
S ⊆ L with |S| ≥ s and every T ⊆ R with |T | ≥ t, the vertices of S and the vertices of T have at
least one edge and at least one non-edge between them in G.

By the probabilistic method, it can be shown that (2 log N, 2 log N)-Ramsey graphs exist. How-
ever, the best known explicit constructions are of (N δ, N δ)-Ramsey graphs, for any constant δ > 0
[2]. We now argue that constructions of low min-entropy dispersers may provide new ways of
constructing bipartite Ramsey graphs.

Suppose we have some strong (k, ε)-disperser DSP that outputs 1 bit, and has seed length
d = sn + log 1

ε . Consider the bipartite graph G = (L, R, E), such that there is an edge between
x ∈ L and y ∈ R if and only if DSP(x, y) = 1. Then for every S ⊂ L with |S| ≥ 2k, and every
T ⊂ R with |T | > 2ε|R|, there must be an edge and a non-edge between S and T . To see this,
suppose there was no non-edge. Then this implies that DSP(S, t) = 1 ◦ t, for all t ∈ T , and for no
t ∈ T does DSP(S, t) = 0 ◦ t. This means that the disperser misses more than an ε-fraction of the
outputs, a contradiction.

How good of a Ramsey graph does this yield? If we set k = O(log n) and ε = 2−n−sn , then we
get a 2n × 2n graph that is (poly(n), 2sn + 1)-Ramsey. If sn = O(log n), then this would yield a
(poly(n), poly(n))-Ramsey graph, which is significantly better than any current construction, even
for the non-bipartite case.

Theorem 4.2 is a generalization of the above: for dispersers in which the seed length d =
sn + t log 1

ε :

Theorem 4.2. Let DSP : {0, 1}n×{0, 1}d 7→ {0, 1}1 be a strong (k, ε)-disperser with d = sn+t log 1
ε ,

where sn is only a function of n. Let ε = 2−
n−sn

t , implying that d = n. Define the bipartite graph
G = (L, R, E) with |L| = |R| = 2n, such that there is an edge between x ∈ L and y ∈ R if and only

if DSP(x, y) = 1. Then G is (2k, 2
t−1

t
n+ sn

t
+1 + 1)-Ramsey.

Note that the coefficient t plays a crucial role in the quality of the Ramsey graph. If t = 1,
then it is possible to get extremely good Ramsey graphs. On the other hand, if the seed length is
d > 2 log 1

ε , then the graph is worse than (2k,
√

2n)-Ramsey.
We now prove Theorem 4.2.
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Proof. Suppose towards a contradiction that G is not (2k, 2
t−1

t
n+ sn

t
+1)-Ramsey, i.e. there exist some

S ⊆ L and T ⊆ R with |S| = 2k and |T | > 2
t−1

t
n+ sn

t
+1, such that all vertices of S are connected

(or disconnected) to all vertices of T . Without loss of generality, assume they are connected. This
implies that DSP(S, T ) = 1 ◦ x for x ∈ T . In particular, this means that for no x ∈ T is the

string 0 ◦ x in the output of DSP(S, (d)). But |{0 ◦ x : x ∈ T}| = |T | > 2
t−1

t
n+ sn

t
+1 = ε2n+1, and

DSP(S, (d)) can not miss more than an ε-fraction of the 2n+1 outputs, so this is a contradiction.

5 A Low Min-Entropy Disperser

In this section, we construct a disperser with seed length d = O(log n) + (1 + o(1)) log 1
ε that is

almost strong. The following lemma is identical to Theorem 1.5 except that it also states that the
disperser is strong in many of its seed bits:

Lemma 5.1. There exists an efficiently constructible (k, ε)-disperser DSP : {0, 1}n × {0, 1}d 7→
{0, 1}m with d = O(k) + (1 + o(1)) log 1

ε that is strong in d − O(log k + log log 1
ε ) bits. If the

strong seed bits are concatenated to the output of the disperser, then the entropy loss of DSP is
Λ = O(k + log log 1

ε ).

Consider the following intuition. Given some source with min-entropy O(log n), we first apply
an extractor with m output bits (and think of m as a constant) and 1

2 · 2−m error. The error is
small enough relative to the output length to guarantee that half of the seeds are “good” in the
sense that all possible output strings are hit, and so the error for them is 0. The error over the
seeds, however, is large, because only half of the seeds are good. Our next step is then to use a
disperser with error half, to sample a good seed. The main advantage of this approach is that we
obtain a disperser with a very low error ε, by constructing only objects with relatively high error.

We now formalize the above discussion, and prove Theorem 1.5.

Proof. We wish to construct a (k, ε)-disperser DSP : {0, 1}n × {0, 1}d 7→ {0, 1}m. We use the
following two ingredients:

• EXT : {0, 1}n × {0, 1}dE 7→ {0, 1}m that is a (k, 2−m−1)-extractor, and,

• DSP′ : {0, 1}k′+log 1

ε × {0, 1}d′ 7→ {0, 1}dE that is a (k′, 1
2)-disperser, with d = k′ + log 1

ε + d′.

We will specify the parameters later. Now, Given x ∈ {0, 1}n, r1 ∈ {0, 1}k
′+log 1

ε , and r2 ∈
{0, 1}d′ , define

DSP(x, r1 ◦ r2) = EXT(x, DSP′(r1, r2)) .

Fix S ⊆ {0, 1}n with |S| ≥ 2k. We say a seed s is “good” for S if |EXT(S, s)| = 2m, and “bad”
otherwise. As EXT is a strong extractor, at least half of all seeds s ∈ {0, 1}dE are good for S.

Claim 5.2. For all S as above, and all but an ε-fraction of the ri ∈ {0, 1}k
′+log 1

ε , DSP′(ri, {0, 1}d
′

)
hits a seed s that is good for S.

Proof. Suppose towards a contradiction that more than an ε-fraction of the ri do not hit any s that
is good for S. This implies that for at least ε · 2k′+log 1

ε = 2k′
x’s, DSP′(x, {0, 1}d′) misses more

than half of the outputs. Consider the set T of all such x’s. Then |DSP′(T, {0, 1}d′)| < 1
2 · 2dE ,

contradicting the fact that DSP′ is a (k′, 1
2)-disperser.
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Recall our disperser construction DSP(x, r1 ◦ r2) = EXT(x, DSP′(r1, r2)), and denote by R the
length of r1. Claim 5.2 above shows that for all but an ε-fraction of the r1’s, DSP′(r1, r2)) hits an
s that is good for S, and EXT(S, s) hits all of {0, 1}m. Thus, for all but an ε-fraction of the r1’s,
EXT(S, DSP′(r1, r2)) hits all of {0, 1}m. This implies that DSP is a (k, ε)-disperser that is strong
in R bits.

To complete the proof, let EXT = EXTSZ from Theorem 2.9, and let DSP′ = DSPTUZ from
Theorem 2.10, with k′ = O(k) and m = O(k). Then d′ = O(log(k + log 1

ε )) ≤ O(log k + log log 1
ε ),

and d = R+d′ = O(k)+(1+o(1)) log 1
ε . Thus, DSP is strong in R = d−d′ bits, as claimed. Finally,

the entropy loss is O(k) from the application of EXTSZ , and an additional O(log k+log log 1
ε ) from

the seed of DSPTUZ . Thus, the total entropy loss is Λ = O(k + log log 1
ε ).

Plugging in k = O(log n) we get:

Corollary 5.3. There exists an efficiently constructible (O(log n), ε)-disperser DSP : (n) × (d) 7→
(m) with d = O(log n)+(1+o(1)) log 1

ε that is strong in d−O(log log n+log log 1
ε ) bits. The entropy

loss of DSP is Λ = O(log n + log log 1
ε ).

As we saw above, having such a strong disperser would solve the Ramsey graph construction
problem.

6 Discussion

In this work we addressed one aspect of sub-optimality in dispersers, the dependence on ε, and
constructed min-entropy dispersers in which the entropy loss is optimally dependent on ε.

Another aspect has to do with the dependence of the entropy loss on n. Say DSP : {0, 1}n ×
{0, 1}d → {0, 1}m is a (k, ε) disperser with small error ε and close to optimal entropy-loss Λ. For
any source X ⊆ {0, 1}n of size 2k, DSP is close to being one-to-one on X (to be more precise, every
image is expected to have 2Λ pre-images, and the disperser property guarantees we are not far from
that). In particular every such disperser is also an extractor with some worse error, and if we fix ε
to be some constant, this disperser would actually be an extractor with constant error (where the
constant is greater than 1

2).
It follows that if we could improve Corollary 1.4 to have entropy loss independent of n, we would

get an extractor with constant error, optimal seed length and constant entropy loss! No current
extractor construction can attain such entropy loss, regardless of the error, without incurring a
large increase in seed length (generally, d = log2 n is necessary). So such dispersers may provide a
new means of obtaining better extractors.

A different issue is the distinction between strong and non-strong dispersers. It seems that a
possible conclusion from this work is that the property of being strong becomes very significant
when dealing with objects that are close to being optimal.
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