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Abstract

Yao (in a lecture at DIMACS Workshop on structural complexity and cryptography) showed
that if a language L is 2-locally-random reducible to a Boolean function, then L ∈ PSPACE/poly.
Fortnow and Szegedy quantitatively improved Yao’s result to show that such languages are in
fact in NP/poly (Information Processing Letters, 1992).

In this paper we extend Yao’s result to show that if a language L is 2-locally-random reducible
to a target function which takes values in {0, 1, 2}, then L ∈ PSPACE/poly.

1 Introduction

Informally a language L is locally-random reducible (in short lrr) to a target function f if, for
any input x, membership of x in L can be efficiently reduced to k random instances of f . If the
reduction makes k queries then it is called a k-local random reduction. Additionally if the target
function is the language L itself then it is called a random self-reduction. Such random reducibility
notions have been very useful in many areas of theoretical computer science including, complexity
theory, cryptography, and private information retrieval. Please see [Fei93] for a survey on local
random reductions and their applications.

A natural question that arises is: for a language L, is there a function f so that L locally-random
reduces to f? Beaver and Feigenbaum [BF90] showed that this is true: any language L is (n + 1)-
locally-random reduces to a specific function f . Beaver, Feigenbaum, Kilian, Rogaway [BFKR97]
improved this result to show that in fact, for any language L, there is a function f so that L
(n/ log n)-locally random reduces to f . In these constructions the range of the target function is
very large (in fact Ω(2n)).

Are there languages that are not k-lrr to any function, for a constant k? Abadi, Feigenbaum,
and Kilian [AFK89] showed that a language that is 1-lrr to any function is in NP/poly. For k > 1,
Yao [Yao90] showed that any language that is 2-locally-random reducible to a Boolean function is in
PSPACE/poly. Fortnow and Szegedy extended Yao’s result to show that such languages are in fact
in NP/poly ∩ co-NP/poly [FS92]. Regarding random self reductions, Feigenbaum, Kannan, and
Nisan [FKN90] showed that any function (need not be a language/Boolean function) that is uniform
2-random self-reducible is in fNP/poly (fNP is the functional version of NP). Feigenbaum and
Fortnow [FF93] showed that if an NP-complete set such as SAT is poly(n)-random self-reducible
with nonadaptive queries, then the Polynomial Hierarchy collapses.
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It appears that extending the results of Yao, and Fortnow and Szegedy for k > 2 is difficult. For
instance a lower bound for the case k > 2 will lead to a better lower bound for the length of certain
locally decodable codes. We discuss this in some detail in Section 3. In this paper we consider the
following question: can we extend the results of Yao, and Fortnow and Szegedy, for target functions
other than Boolean? Building the work of Yao, and Fortnow and Szegedy, we show that languages
outside PSPACE/poly are not 2-locally-random reducible to any 3-valued function. We show the
following theorem.

Theorem 1 (Main Theorem). If a language L is 2-locally-random reducible to functions g and
h that take values in {0, 1, 2}, then L ∈ PSPACE/poly.

2 Main Result

Definition 1 (locally-random reduction). A language L is k-locally-random reducible (k-lrr)
to functions g1, . . . , gk if there are polynomial-time functions σ and f and a polynomial q so that

- ∀x ∈ {0, 1}∗,∀r ∈ {0, 1}q(|x|), L(x) = f(g1(σ(1, x, r)), . . . , gk(σ(k, x, r)), x, r)

- for all i, σ(i, x, r) and σ(i, y, r) are identically distributed when |x| = |y| and r ∈ {0, 1}q(|x|)

is chosen uniformly at random.

Now we will state and prove our main result.

Theorem 1 If a language L is 2-locally-random reducible to functions g and h that take values
in {0, 1, 2}, then L ∈ PSPACE/poly.

Before giving the formal proof we give the proof idea. For this informal proof description, we
assume that the target functions g and h are the same. We first revisit the idea behind Yao-
Fortnow-Szegedy’s proof.

Let L be a language that is 2-lrr to a Boolean function g. Given a string x, let p and q be two
queries produced by the reduction using a random string r. Suppose the membership of x in L
depends only on p, and does not depends on q. Then by knowing g(p) we can decide x. In this
case, we say p sets x. Suppose p does not set x, this means the membership of x in L depends
on both p and q. The crucial observation is the following: When p does not set x, given g(p),
whether x belongs to L or not precisely depends on whether g(q) is 0 or 1. Thus by knowing g(p),
and L(x) we can deduce the value of g(q). We call this scenario p forces q via x. Now, the proof
Yao-Fortnow-Szegedy goes as follows. Let P = {p1, · · · pm} be a set of queries whose answers we
know, i.e, we know the values of g(pi), 1 ≤ i ≤ m. Let x be the input string. If there exists a p ∈ P
that sets x then we can decide the membership of x in L easily. On the other hand if no p in P
sets x, then for every p there exists a query q such that p forces q via x. Thus by giving L(x) as
advice we can compute the value of g(q) for all these q’s. Thus the set of queries whose answers we
know has doubled. Applying this argument iteratively we can decide answers to all the queries by
specifying L(x) for a polynomially small set of x’s. Using this idea it follows that L is in NP/poly.

Observe that this proof does not go through if f is a 3-valued function. If p does not set x, we
can not claim p forces q via x. To get around this problem, we do the following: Suppose p does
not set x. By considering all three possible values (0, 1, and 2) for g(q), we compute possible values
for L(x). Since L(x) has only two possible values, there exist two possible values of g(q) that would
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say L(x) = b, and the remaining possibility for g(q) says L(x) = b. Thus majority of choices for
g(q) say L(x) = b. Now we assume L(x) = b and proceed. If it really happens that L(x) = b, then
we provide L(x) as advice. We observe that when this majority choice is wrong, g(p) and L(x)
together force g(q) to a unique value. Thus our strategy is: If p does not set x, then compute the
choice for L(x) by taking a majority vote. For all x’s for which the majority is wrong, we provide
L(x) as advice. We show that this idea can be implemented to get a PSPACE/poly algorithm for
L.

Now we present a formal proof.

Proof. Since L is 2-locally-random reducible to g and h, there exist polynomial-time computable
functions f, σ such that for every x,

∀r, f(g(σ(1, x, r)), h(σ(2, x, r)), x, r) = L(x).

Moreover, for every x, y, |x| = |y|, the random variables σ(1, x, r) and σ(1, y, r) are identically
distributed, and the random variables σ(2, x, r) and σ(2, y, r) are also identically distributed.

We will first introduce some notation that we use for the rest of the proof. σ(1, x, r) and
σ(2, x, r) will be denoted by σ1(x, r) and σ2(x, r) respectively. We will use p’s to denote the first
queries and q’s to denote the second queries.

Given x, let P (x) denote the multi-set of all possible first queries, and Q(x) denote the multi-set
of all possible second queries. That is P (x) = {σ1(x, r)|r ∈ {0, 1}q(|x|)} and Q(x) = {σ2(x, r)|r ∈
{0, 1}q(|x|)}. We stress that both P (x) and Q(x) are multi-sets.

Without loss of generality, we assume that we can easily distinguish first queries from second
queries. Let m be a bound on the length of queries in P (x) and Q(x). Since, σ1, and σ2 are
polynomial time-computable, m = poly(n). Since L is 2-locally random reducible to g and h, if x
and y are of same length, then P (x) = P (y) and Q(x) = Q(y). We will denote P (0n) with Pn and
Q(0n) with Qn.

Given a multi set A consisting of zeros and ones, let MAJ(A) = 1 if at least half the members of
A are 1, else MAJ(A) = 0.

Definition 2. For an x and r, let p = σ1(x, r).

- We say p sets x if the membership of L(x) can be decided by knowing only g(p), i.e.,

f(g(p), 0, x, r) = f(g(p), 1, x, r) = f(g(p), 2, x, r) = L(x).

- We say p and x force q if h(q) can be computed by knowing g(p) and L(x). I.e., there exists
unique b ∈ {0, 1, 2} such that

f(g(q), b, x, r) = L(x).

- We say that p weakly sets x if MAJ({f(g(p), 0, x, r), f(g(p), 1, x, r), f(g(p), 2, x, r)}) = L(x).

Similarly we can define setting, forcing, and weak setting for second query q = σ2(x, r).

Observation: Note that if p does not set or weakly set x then p and x force q.
For each n we will construct a “query tree” Tn. Each node of the tree is labeled with a query

from the multi sets Pn or Qn and each level of the tree will be associated with a string x ∈ {0, 1}n.
The tree will be such that by knowing L(x) for each of these x’s, we will be able to get answers to
any query in the query tree using a PSPACE procedure.
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We now give the construction of Tn. Consider strings in {0, 1}n in the lexicographic order. For
a string x, x + 1 denotes string which follows x in this ordering. Let ⊥ be a special string and
assume ⊥ < x for every x.

Construction Level 1
1. Fix a query p0 from Pn and label the root of the tree with p0

Let x0 = ⊥. Assume that we have built k levels of the tree and let x1, x2, · · · , xk−1 be the
strings associated with each level of the tree. We now define the tree at level k + 1 and associate a
string xk with level k. Define the following multi-sets.

Q′
k = {q | q ∈ Qn, and q is at level k},

P ′
k = {p | p ∈ Pn, and p is at level k}.

If xk−1 = 1n (we have exhausted all the input strings), or Q′
k = Qn and P ′

k = Pn (we have
exhausted all the queries), then Tn is completely defined. Else, we construct level k + 1 by the
following procedure.

Construction Level k + 1
1. x← xk−1 + 1
2. If either (a). There exists a query q at level k that sets x

(b). There exists r such that both σ1(x, r) and σ2(x, r) in level k
then x← x + 1 and Goto Step 2

3. For each p ∈ P ′
k, let rp be the lexicographically least r such that σ1(x, rp) = p

For each q ∈ Q′
k, let rq be the lexicographically least r such that σ2(x, rq) = q

Let ap = MAJ{f(g(p), 0, x, rp), f(g(p), 1, x, rp), f(g(p), 2, x, rp)}
aq = MAJ{f(0, h(q), x, rq), f(1, h(q), x, rq), f(2, h(q), x, rq)}

4. Consider the multi set A = {aq | q ∈ Q′
k} ∪ {ap | p ∈ P ′

k}
If MAJ(A) = L(x), then x← x + 1 and Goto Step 2

5. Else /* define nodes at level k + 1, and associate a string with level k */
Associate the string x with level k
For every v ∈ Q′

k ∪ P ′
k such that av = L(x), q has only one child with label v

For each p ∈ P ′
k such that ap 6= L(x), p has two children with labels p and σ2(x, rp)

For each q ∈ Q′
k such that aq 6= L(x), q has two children with labels σ1(x, rp) and q

We now show some properties of the tree Tn. Let xk be the node associated with level k. We
first start with the following observation.

Claim 1. Let p ∈ P ′
k, let q = σ2(xk, rp). If ap 6= L(xk), then xk and p force q. Similarly, let

q ∈ Q′
k, let p = σ1(xk, rq). If aq 6= L(xk), then xk and q force p.

Proof. Let
M = {f(g(p), 0, xk , rp), f(q(p), 1, xk, rp), f(g(p), 2, xk , rp)}.

Since xk is the string associated with level k, p does not set xk. Thus, all the elements in the
multi-set M can not be the same. Since ap = MAJ(M) 6= L(xk), there exists a unique b ∈ {0, 1, 2}
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such that L(xk) = f(g(p), b, xk , rp). Thus knowing the values of L(xk) and g(p) gives the value of
h(q). Thus xk and p force q. Proof of the the second part of the claim is identical.

Let Sk be the multi-set consisting of all nodes at level k. Next we show that size of Sk+1 is
considerably larger than the size of Sk.

Claim 2. ∀k, |Sk+1| ≥
3
2 |Sk|.

Proof. Let xk be the string associated with level k. Step 5 of the above construction defines the
nodes in level k + 1. Observe that every node at level k has either one or two children. Every
q ∈ Q′

k, for which aq = L(xk), has exactly one child, and every q ∈ Q′
k, for which aq 6= L(xk), q

has exactly two children. Similarly, every p ∈ P ′
k, for which ap = L(xk), has exactly one child, and

every p ∈ P ′
k, for which ap 6= L(xk), p has exactly two children.

By definition of xk, we know L(xk+1) 6= MAJ(A), where A = {aq | q ∈ Q′
k} ∪ {ap | p ∈ P ′

k}.
Thus for more than half nodes v in level k, av 6= L(xk). All such nodes have exactly two children.
Thus |Sk+1| ≥

3
2 |Sk|. Note that here we use the fact that the sets Sk, Sk+1, P ′

k, and Q′
k are multi

sets.

Corollary 1. Depth of Tn is poly(n).

Claim 3. Let u be a first query, and let k be a level at which u appears. Given g(u) and L(xk),
there is a PSPACE algorithm that computes the children of p. Moreover, for each child v of u,
g(v) (h(v) if v is a second query) can be computed in PSPACE. A similar claim holds if u is a
second query.

Proof. Let k be a level at which u appears. Compute the least r such that σ1(xk, r) = u. Let
v = σ2(xk, r). Note that r can be computed in PSPACE and given r, v can be computed in
polynomial-time. Compute

au = MAJ({f(g(u), 0, xk , r), f(g(u), 1, xk , r), f(g(u), 2, xk , r}).

By the construction of Tn, if au = L(xk), u has only one children with label u. In this case we
know the value of g(u). Else au 6= L(xk). In this case u has two children with labels u and v. Since
au 6= L(xk), by Claim 1, u and xk force v. Since g(u) and L(xk) are known, h(v) can be computed.
Thus h(v) can be computed in PSPACE.

Next we claim that given g(p0), 〈x1, L(x1)〉, · · · , 〈xd, L(xd)〉 where d is the height of the tree
Tn, the tree Tn can be traversed in PSPACE. Given a node u, let value(u) = g(u) if u is a first
query, otherwise value(u) = h(u).

Claim 4. Let u a node. Given g(p0), 〈x1, L(x1)〉, · · · , 〈xd, L(xd)〉 where d is the height of the tree
Tn, and a level k, there is a PSPACE algorithm checks if u appears at level of Tn. If u appears at
level k, then this algorithm computes value(u).

Proof. Let Reach(w, value(w), u, s) be a subroutine that returns true if u can be reached from w
in exactly s steps. Consider the following recursive algorithm.
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Reach(w, value(w), u, s)
1 Current← w;
2 For each child v of Current
3 Compute value(v);
4 If Reach(v, value(v), u, s − 1) = true, then return true.

By Claim 3, Step 3 can be done in PSPACE. The recursion terminates when s = 1. Again by
Claim 3, given L(xk), Reach(node, value(node), u, 1) can be computed in PSPACE. By Claim 3,
it follows that value(u) can also be computed in PSPACE. Since the maximum out degree of Tn is
2, the above procedure can implemented in PSPACE.

Now we are ready to give a PSPACE/poly algorithm for L. The algorithm is given the advice
〈x1, L(x1)〉, · · · , 〈xd, L(xd)〉, p0 and g(p0). Let x be the given input. If x is one of x1, · · · , xd, then
L(x) can be computed trivially. Let xk−1 < x < xk. Since x is not the string associated with level
k + 1, one of the following must hold:

1. There exists a node v at level k that sets x.

2. There exists a r such that σ1(x, r) and σ2(x, r) appear at level k.

3. Majority of nodes at level k weakly set x.

We can check if Statement 1 holds or not as follows: For each r compute v = σ1(x, r). Check if
v appears in level k of Tn and if it appears compute g(v). By, Claim 4 this can be done in PSPACE.
Now, we can check if v sets x. If none of the first queries set x, check if any of the second queries
sets x. If we succeed in finding a v that sets x, then we know L(x).

If Statement 1 does not hold, we can check if Statement 2 holds as follows: For each r compute
u = σ1(x, r) and v = σ2(x, r). By Claim 4, in PSPACE, we can find if u and v occur at level k. If
so, we can also compute g(u) and h(v) and thus compute L(x). Thus if Statement 2 holds, then
also L(x) can be computed in PSPACE.

If Statement 1 and Statement 2 both do not hold, then Statement 3 must hold. For each node
v at level k compute av, also compute majority of av’s. This can be done in PSPACE as we can
systematically generate each node at level k. Since Statement 3 holds, majority of nodes at level k
weakly set x. Thus majority of av’s is the value of L(x).

Thus L is in PSPACE/poly.

3 Concluding Remarks

Is it possible to extend this tree-based technique to prove similar results for k-lrr for constant k > 3?
A positive answer to this will improve lower-bounds for certain locally decodable codes. We briefly
discuss this here.

A code C : {0, 1}n → Γm is a k-perfectly-smooth code if there is a probabilistic oracle algorithm
A such that for every x ∈ Σn and index i, 1 ≤ i ≤ n, A on input i makes k random queries to C(x)
(given as oracle to A) and outputs xi with probability 1. Moreover, for all i and j, the j th query
is uniformly distributed in {1, . . . ,m}. A k-perfectly-smooth code is also a locally decodable code
with certain parameters (if k is a constant). Yao-Fortnow-Szegedy proof can be adapted to show
that for a 2-perfectly-smooth code with |Γ| = 2, the length of the code m should be 2Ω(n) (this was
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done by Beigel, Fortnow, and Gasarch [BFG02] in the setting of Private Information Retrieval).
Using the techniques of this paper, we can show that for any 2-perfectly-smooth code with |Γ| = 3,

m = Ω(2n·log2

3

2 ). There are no exponential lower bounds known for k-perfectly-smooth codes for
k ≥ 3. Extending this tree-based technique will give an exponential lower bound for such codes.

Some lower bound techniques known for locally decodable codes can be used to prove similar
results for local random reductions. In particular, techniques of [KT00, DJK+02] can be used to
show that any language that is k-lrr to a function is in PSPACE/2εn for ε = 1− 1

k
. These arguments

will work even if the target function has range other than Boolean. See an excellent survey paper
by Trevisan [Tre04] for more on locally decodable and perfectly smooth codes, and their application
to complexity theory.

Finally, the local random reduction that we consider in this paper does not allow errors. This is
true for lower bound results in [Yao90, FS92, FKN90]. Extending these techniques to the general
nonzero error case is interesting since it may lead to a non-quantum proof of exponential lower
bounds for 2-locally-decodable codes: currently the known exponential lower bound proof for 2-
locally-decodable codes uses quantum information theory [KdW03].
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