
Smoothed Analysis of

the Height of Binary Search Trees

Bodo Manthey∗ Rüdiger Reischuk

Universität zu Lübeck
Institut für Theoretische Informatik

Ratzeburger Allee 160, 23538 Lübeck, Germany

manthey/reischuk@tcs.uni-luebeck.de

Abstract

Binary search trees are one of the most fundamental data structures.
While the height of such a tree may be linear in the worst case, the average
height with respect to the uniform distribution is only logarithmic. The
exact value is one of the best studied problems in average case complexity.

We investigate what happens in between by analysing the smoothed
height of binary search trees: randomly perturb a given (adversarial) se-
quence and then take the expected height of the binary search tree gen-
erated by the resulting sequence. As perturbation models, we consider
partial permutations, partial alterations, and partial deletions.

On the one hand, we prove tight lower and upper bounds of roughly
Θ(

√
n) for the expected height of binary search trees under partial permu-

tations and partial alterations. That means worst case instances are rare
and disappear under slight perturbations. On the other hand, we examine
how much a perturbation can increase the height of a binary search tree,
i.e. how much worse well balanced instances can become.

Keywords: Smoothed Analysis, Binary Search Trees, Discrete Perturba-
tions, Permutations.

ACM Computing Classification: E.1 [Data Structures]: Trees; F.2.2
[Analysis of Algorithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems—sorting and searching; G.2.2 [Discrete Mathematics]
Combinatorics—permutations and combinations.

∗Supported by DFG research grant Re 672/3.

1

Electronic Colloquium on Computational Complexity, Report No. 63 (2005)

ISSN 1433-8092

1 Introduction

To explain the discrepancy between average case and worst case behaviour of
the simplex algorithm, Spielman and Teng introduced the notion of smoothed
analysis [28, 31]. Smoothed analysis interpolates between average case and worst
case analysis: Instead of taking the worst case instance or, as in average case
analysis, choosing an instance completely at random, we analyse the complexity
of (worst case) objects subject to slight random perturbations, i.e. the expected
complexity in a small neighbourhood of (worst case) instances.

Smoothed analysis takes into account that on the one hand a typical instance
is not necessarily a random instance and that on the other hand worst case
instances are often artificial and rarely occur in practice.

Let C be some complexity measure. The worst case complexity is maxx C(x),
and the average case complexity is Ex∼∆C(x), where E denotes expectation with
respect to a probability distribution ∆ (typically the uniform distribution). The
smoothed complexity is defined as maxx Ey∼∆(x,p)C(y). Here, x is chosen by an
adversary and y is randomly chosen according to some probability distribution
∆(x, p) that depends on x and a parameter p. The distribution ∆(x, p) should
favour instances in the vicinity of x. That means, ∆(x, p) should put almost
all weight on the neighbourhood of x, where “neighbourhood” has to be defined
appropriately depending on the problem considered. The smoothing parameter p
denotes how strong x is perturbed, i.e. we can view it as a parameter for the size
of the neighbourhood of x. Intuitively, for p = 0, smoothed complexity becomes
worst case complexity, while for large p, smoothed complexity becomes average
case complexity.

For continuous problems, Gaussian perturbations seem to be a natural per-
turbation model: they are concentrated around their mean, and the probability
that a perturbed number deviates from its unperturbed counterpart by d de-
creases exponentially in d. Thus, such probability distributions favour instances
in the neighbourhood of the adversarial instance. For discrete problems, even
the term “neighbourhood” is often not well defined. Thus, special care is needed
when defining perturbation models for discrete problems. Perturbation models
should reflect “natural” perturbations, and the probability distribution for an
instance x should be concentrated around x, particularly for small values of the
smoothing parameter p.

Smoothed complexity can be interpreted as follows: If the smoothed complex-
ity of an algorithm is low, then we must be unlucky to accidentally hit an instance
on which our algorithm behaves poorly, even if the worst case complexity of our
algorithm is bad. In this situation, worst case instances are isolated events.

While the smoothed complexity of continuous problems seems to be well un-
derstood, there are only few results on smoothed analysis of discrete problems.
In this paper, we are concerned with smoothed analysis of an ordering problem:
we examine the smoothed height of binary search trees.

2

Binary search trees are one of the most fundamental data structures and thus
a building block for many advanced data structures. The main criteria of the
“quality” of a binary search tree is its height, i.e. the length of the longest path
from the root to a leaf. Unfortunately, the height equals the number of elements in
the worst case, i.e. for totally unbalanced trees generated by an ordered sequence
of elements. On the other hand, if a binary search tree is chosen at random, then
the expected height is only logarithmic in the number of elements (more details
will be discussed in Section 1.1.2). Thus, there is a huge discrepancy between the
worst case and the average case behaviour of binary search trees.

We analyse what happens in between: an adversarial sequence will randomly
be perturbed and then the height of the binary search tree generated by the se-
quence thus obtained is measured. Thus, our instances are neither adversarial
nor completely random. As perturbation models, we consider partial permu-
tations, partial alterations, and partial deletions. For all three, we show tight
lower and upper bounds. As a byproduct, we also obtain tight bounds for the
smoothed number of left-to-right maxima, which is the number of new maxima
seen when scanning a sequence from the left to the right, thus improving a result
by Banderier et al. [4]. Thus, the number of left-to-right maxima of a sequence
is simply the length of the right-most path in the binary search tree grown from
that sequence.

In smoothed analysis one analyses how fragile worst case instances are. We
suggest to examine also the dual property: given a good (or best case) instance,
how much can the complexity increase by slightly perturbing the instance? In
other words, how stable are best case instances under perturbations? For binary
search trees, we show that there are best case instances that indeed are not stable,
i.e. there are sequences yielding trees of logarithmic depth, but slightly perturbing
the sequences yields trees of polynomial depth.

1.1 Previous Results

Since we are concerned with smoothed analysis and binary search trees, we briefly
review both areas.

1.1.1 Smoothed Analysis

Santha and Vazirani introduced the semi-random model [26], in which an adver-
sary adaptively chooses a sequence of bits and each is corrupted independently
with some fixed probability. Their semi-random model inspired work on semi-
random graphs [7, 16], which can be viewed as a forerunner of smoothed analysis
of discrete problems.

Spielman and Teng introduced smoothed analysis as a hybrid of average case
and worst case complexity [28, 31]. They showed that the simplex algorithm for
linear programming with the shadow vertex pivot rule has polynomial smoothed

3

complexity. That means, the running time of the algorithm is expected to be poly-
nomial in terms of the input size and the variance of the Gaussian perturbation.
Since then, smoothed analysis has been applied to a variety of fields, e.g., several
variants of linear programming [8, 30], properties of moving objects [10], online
and other algorithms [5, 27], property testing [29], discrete optimisation [6, 25],
graph theory [17], and computational geometry [11].

Banderier, Beier, and Mehlhorn [4] applied the concept of smoothed analysis
to combinatorial problems. In particular, they analysed the number of left-to-
right maxima of a sequence, which is the number of maxima seen when scanning
a sequence from left to right. Here the worst case is the sequence 1, 2, . . . , n,
which yields n left-to-right maxima. On average we expect Hn =

∑n
i=1 i−1 ≈ ln n

left-to-right maxima. The perturbation model used by Banderier et al. are partial
permutations, where each element of the sequence is independently selected with
a given probability p ∈ [0, 1] and then a random permutation on the selected
elements is performed (see Section 3.1 for a precise definition).

Banderier et al. proved that the number of left-to-right maxima under partial
permutations is expected O(

√

(n/p) log n) for 0 < p < 1. On the other hand,

they showed a lower bound of Ω(
√

n/p) that holds for 1 < p ≤ 1/2.

1.1.2 Binary Search Trees

Given a sequence σ = (σ1, σ2, . . . , σn) of n distinct elements from any ordered
set, we obtain a binary search tree T (σ) by iteratively inserting the elements
σ1, σ2, . . . , σn into the initially empty tree (this is formally described in Sec-
tion 2.3).

The study of binary search trees is one of the most fundamental problems
in computer science since they are the building block for a large variety of data
structures (see e.g. Aho et al. [1, 2] and Knuth [18]). Moreover, the height of
T (σ) is just the number of levels of recursion required by Quicksort if the first
element of the sequence to be sorted is chosen as the pivot (see e.g. Cormen et
al. [9]).

The worst case height of a binary search tree obtained in this way is obviously
n: just take σ = (1, 2, . . . , n). (In this paper, the length of a path is the number
of vertices and not the number of edges it contains.) The expected height of the
binary search tree obtained from a random permutation (with all permutations
being equally likely) has been the subject of a considerable amount of research
in the past. We briefly review some results. Let the random variable H(n)
denote the height of a binary search tree obtained from a random permutation.
Robson [21] proved that EH(n) ≈ c ln(n) + o(ln(n)) for some c ∈ [3.63, 4.3112]
and observed that H(n) does not vary much from experiment to experiment [22].

Pittel [19] proved the existence of a γ > 0 with γ = limn→∞
EH(n)
ln(n)

. Devroye [12]

then proved that limn→∞
EH(n)
ln(n)

= α with α ≈ 4.31107 being the larger root of

4

α ln(2e/α) = 1. The variance of H(n) was shown to be O((llog n)2) by Devroye
and Reed [13] and by Drmota [14]. Robson [23] proved that the expectation of
the absolute value of the difference between the height of two random trees is
constant. Thus, the height of the random trees is concentrated around the mean.
A climax was the result discovered independently by Reed [20] and Drmota [15]
that the variance of H(n) actually is O(1). Furthermore, Reed [20] proved that
the expectation of H(n) is α ln n + β ln(ln n) + O(1) with β = 3

2 ln(α/2)
≈ 1.953.

Finally, Robson [24] proved strong upper bounds on the probability of large
deviations from the median. His results suggest that all moments of H(n) are
bounded from above by a constant.

Although worst case and average case height of binary search trees are very
well understood, nothing is known in between, i.e. when the sequences are not
completely random, but the randomness is limited.

1.2 New Results

We consider the height of binary search trees subject to slight perturbations
(smoothed height), i.e. the expected height under limited randomness. The height
of a binary search tree obtained from a sequence of elements only depends on the
ordering of the elements. Thus, one should use a perturbation model, which in
turn defines the “neighbourhood”, that slightly perturbs the order of the elements
of the sequence.

We consider three perturbation models (formally defined in Section 3): Partial
permutations, introduced by Banderier et al. [4], rearrange some elements, i.e.
randomly permute a small subset of the elements of the sequence. The other
two perturbation models are new. Partial alterations do not move elements but
replace some elements by new elements chosen at random. Thus, they change
the rank of some elements. Partial deletions remove some of the elements of the
sequence without replacement. Thus, they shorten the input, but turn out to be
useful for analysing the other two models.

For all three models, we prove matching lower and upper bounds for the
expected height of binary search trees obtained from sequences that have been
perturbed by one of the perturbation models. More precisely: for all p ∈ (0, 1)
and all sequences of length n, the height of a binary search tree obtained via
p-partial permutation is expected to be at most 6.7 · (1−p) ·

√

n/p for sufficiently
large n.

On the other hand, the height of a binary search tree obtained from the sorted
sequence via p-partial permutation is at least 0.8 · (1− p) ·

√

n/p in expectation.
This matches the upper bound up to a constant factor.

For the number of left-to-right maxima under partial permutations or partial
alterations, we are able to prove an even better upper bound of 3.6 ·(1−p) ·

√

n/p

for all sufficiently large n and a lower bound of 0.4 · (1 − p) ·
√

n/p.

5

Thus, under limited randomness, the behaviour of binary search trees differs
completely from both the worst case and the average case.

For partial deletions, we obtain (1 − p) · n both as lower and upper bound.
This result is straight-forward. The main reason for considering partial deletions
is that we can bound the expected height subject to partial alterations and per-
mutation by the expected height subject to partial deletions. The converse holds
as well, we only have to blow up the sequences quadratically. We exploit this
when considering the stability of the permutation models: we prove that partial
deletions and thus partial permutations and partial alterations as well are quite
unstable, i.e. can cause best case instances to become much worse. More pre-
cisely: there are sequences of length n that yield trees of depth O(log n), but the
expected height of the tree obtained after smoothing is Ω(nε) for some ε > 0 that
depends only on p.

1.3 Outline

In the next section, we introduce some basic notation. We define the perturba-
tion models partial permutations, partial alterations, and partial deletions in Sec-
tion 3. Then we show some basic properties of binary search trees (Section 4.1),
partial permutations (Section 4.2), and partial alterations (Section 4.3). In Sec-
tion 5 we show matching lower and upper bounds for the expected number of
left-to-right maxima under perturbation. After that, we consider the smoothed
height of binary search trees under partial permutations and partial alterations
(Section 6). We prove matching lower and upper bounds for the expected height
of binary search trees that hold for both perturbation models. Then we compare
partial deletions with the two other models (Section 7). These results are ex-
ploited in Section 8, where we consider the stability of the perturbation models.
Finally, we give some concluding remarks (Section 9).

2 Preliminaries

2.1 Notations

We denote by log and ln the logarithm to base 2 and e, respectively, while exp
denotes the exponential function to base e. We abbreviate the twice iterated
logarithm log ◦ log by llog. For any x ∈ R, let [x] = {x − i | i ∈ N, x − i > 0}.
For instance, [n] = {1, 2, . . . , n} and [n − 1

2
] = {1

2
, 3

2
, . . . , n − 1

2
} for n ∈ N.

Let σ = (σ1, . . . , σn) ∈ Sn for some ordered set S. We call σ a sequence.
Usually, we assume that all elements of σ are distinct, i.e. σi 6= σj for all i 6= j.
The length of σ is n. In most cases, σ will simply be a permutation of [n].
We denote the sorted sequence (1, 2, . . . , n) by σn

sort. When considering partial
alterations, we have σn

sort = (0.5, 1.5, . . . , n − 0.5) instead (this will be clear from

6

the context).
Let τ = (τ1, . . . , τt). We call τ a subsequence of σ if there are numbers

i1 < i2 < . . . < it with τj = σij for all j ∈ [t]. Let µ = {i1, . . . , it} ⊆ [n]. Then
σµ = (σi1 , . . . , σit) denotes the subsequence consisting of all elements of σ at
positions in µ. For instance, σ[k] denotes the prefix of length k of σ. By abusing
notation, we sometimes consider σµ as the set of elements at positions in µ, i.e.
in this case σµ = {σi | i ∈ µ}. However, whether we consider σµ as a sequence or
as a set will always be clear from the context. For µ ⊆ [n], we define µ = [n] \ µ.

2.2 Probability Theory

We denote probabilities by P and expectations by E. To bound large deviations,
we will frequently use Chernoff bounds [3, Corollary A.7]. Let p ∈ (0, 1) and
let X1, X2, . . . , Xn be mutually independent random variables with P(Xi = 1) =
1 − P(Xi = 0) = p and X =

∑n
i=1 Xi. Clearly, E(X) = pn. The probability that

X deviates by more than a from its expectation is bounded from above by

P(|X − p · n| > a) < 2 · exp

(

−2a2

n

)

. (2.1)

We will frequently use the following lemma.

Lemma 2.1. Let k ∈ N, α > 1 and p ∈ [0, 1]. Assume that we have mutually
independent random variables X1, . . . , Xk as above. Then

P
(
(X > αpk) ∨ (X < α−1pk)

)
≤ 2 · exp

(
−2(1 − α−1)2p2k

)
.

Proof. Since α − 1 ≥ 1 − α−1 for all α > 1, let a = (1 − α−1)pk. Then we apply
Formula 2.1 and get

P
(
(X > αpk) ∨ (X < α−1pk)

)
≤ P

(
|X − pk| > (1 − α−1)pk

)

< 2 · exp

(

−2(1 − α−1)p2k2

k

)

= 2 · exp
(
−2(1 − α−1)2p2k

)
.

2.3 Binary Search Trees and Left-to-right Maxima

Let σ = (σ1, . . . , σn) be a sequence. We obtain a binary search tree T (σ) from
σ by iteratively inserting the elements σ1, σ2, . . . , σn into the initially empty tree
as follows:

• The root of T (σ) is the first element σ1 of σ.

7

1

2

3

4

5

6 8

7

Figure 1: The binary search tree T (σ) obtained from σ = (1, 2, 3, 5, 7, 4, 6, 8). We
have height(σ) = 6.

• Let σ< = σ{i|σi<σ1} be σ restricted to elements smaller than σ1. Then the
left subtree of the root σ1 of T (σ) is obtained inductively from σ<.

Analogously, let σ> = σ{i|σi>σ1} be σ restricted to elements greater than σ1.
Then the right subtree of the root σ1 of T (σ) is the tree obtained inductively
from σ>.

Figure 1 shows an example. We denote the height of T (σ) by height(σ), i.e.,
height(σ) is the number of nodes on the longest path from the root to a leaf. (We
consider a single node as a tree of height one.)

The element σi is called a left-to-right maximum of σ if σi > σj for all
j ∈ [i − 1]. Let ltrm(σ) denote the number of left-to-right maxima of σ. We
have ltrm(σ) ≤ height(σ) since the number of left-to-right maxima of a sequence
is just the length of the right-most path in the tree T (σ).

3 Perturbation Models for Permutations

Since we deal with ordering problems, we need perturbation models that slightly
change a given permutation of elements. There seem to be two natural pos-
sibilities: either change the positions of some elements or change the elements
itself.

Partial permutations implement the first possibility: a subset of the elements
is randomly chosen, and then these elements are randomly permuted.

The second possibility is realised by partial alterations. Again, a subset of the
elements is chosen at random. Then the chosen elements are replaced by random
elements.

The third model, partial deletions, also starts by randomly choosing a subset
of the elements. These elements are then removed without replacement.

For all three models, we obtain the random subset as follows. Consider a
sequence σ of length n and p ∈ [0, 1]. Every element of σ is marked independently
of the others with probability p. To be more formally: the random variable Mn

p

8

is a random subset of [n] with P(i ∈ Mn
p) = p for all i ∈ [n]. For any µ ⊆ [n] we

have P(Mn
p = µ) = p|µ| · (1 − p)|µ|.

Let µ ⊆ [n] be the set of positions marked. If i ∈ µ, then we say that position
i and element σi are marked. Thus, σµ is the set (or sequence) of all marked
elements.

We denote by height-perm
p
(σ), height-alter

p
(σ), and height-del

p
(σ)

the expected height of the binary search tree T (σ′) originated from the sequence
σ′ obtained by performing a p-partial permutation, alteration, and deletion, re-
spectively, on σ (all three models will formally be defined in the following). Anal-
ogously, we denote by ltrm-perm

p
(σ), ltrm-alterp(σ), and ltrm-delp(σ) the

expected number of left-to-right maxima of the sequence σ ′ obtained from σ via
p-partial permutation, alteration, and deletion, respectively.

3.1 Partial Permutations

The notion of p-partial permutations has been introduced by Banderier et
al. [4]. Given a random subset Mn

p , the elements at positions in Mn
p are permuted

according to a permutation drawn uniformly at random: Let σ = (σ1, . . . , σn) and
µ ⊆ [n]. Then the sequence σ′ = Π(σ, µ) is a random variable with the following
properties:

• Π chooses a permutation π of µ uniformly at random and

• sets σ′
π(i) = σi for all i ∈ µ and σ′

i = σi for all i /∈ µ.

Thus, a p-partial permutation Π(σ, Mn
p) of σ consists of two steps: randomly

mark elements of σ as described above, i.e. randomly create a set µ = Mn
p ⊆ [n]

of marked elements, and then randomly permute all the marked elements, i.e. the
elements at positions in µ. Note that i ∈ µ does not necessarily mean that σi is
at a position different from i in Π(σ, µ); the random permutation can of course
map π(i) = i.

Example 3.1. Figure 2 shows an example.

By choosing p, we can interpolate between average and worst case: for p = 0,
no element is marked and σ′ = σ, while for p = 1, all elements are marked and
thus σ′ is a random permutation of the elements of σ with all permutations being
equally likely.

Let us show that partial permutation are indeed a suitable perturbation model
by proving that the distribution of Π(σ, Mn

p) favours sequences close to σ. There-
fore, we firstly have to introduce a metric on our sequences. Let σ and τ be two
sequences of length n. Without loss of generality, we assume that both are
permutations of [n]. Otherwise, we replace the jth smallest element of either
sequence by j for j ∈ [n]. We define the distance d(σ, τ) between σ and τ as

9

4

3 7

5

86

(a) 2 3 65 81 7 4

675324 18(b)

(c)

1

2

Figure 2: A partial permutation. (a) The sequence σ = (1, 2, 3, 5, 7, 4, 6, 8)
(Figure 1 shows T (σ)). The first, fifth, sixth, and eighth element is (ran-
domly) marked, thus µ = Mn

p = {1, 5, 6, 8}. (b) The marked elements are
randomly permuted. The result is the sequence σ′ = Π(σ, µ), in this case
σ′ = (4, 2, 3, 5, 7, 8, 6, 1). (c) T (σ′) with height(σ′) = 4.

d(σ, τ) = |{i | σi 6= τi}|, thus d is a metric. Note that d(σ, τ) = 1 is impossible
since there are no two permutations that differ in exactly one position.

The distribution of Π(σ, Mn
p) is symmetric around σ with respect to d, i.e.

the probability that Π(σ, Mn
p) = τ for some fixed τ depends only on d(σ, τ).

Lemma 3.2. Let p ∈ (0, 1), σ and τ be a permutations of [n] with d = d(σ, τ).
Then

P(Π(σ, Mn
p) = τ) =

n∑

k=d

pk · (1 − p)n−k ·
(

n − d

k − d

)

· 1

k!
.

Proof. All d positions where σ and τ differ must be marked. This happens with
probability pd. The probability that k − d (k ≥ d) of the remaining positions
are marked is

(
n−d
k−d

)
· pk−d · (1− p)n−k. Thus, the probability that k positions are

marked, d of which are where σ and τ differ is
(

n−d
k−d

)
· pk · (1 − p)n−k.

If k positions are marked overall, the probability that the “right” permutation
is chosen is 1/k!, which completes the proof.

Let Pd =
∑n

k=d pk · (1 − p)n−k ·
(

n−d
k−d

)
· 1

k!
the probability that Π(σ, Mn

p) = τ
for a fixed sequence τ with distance d to σ. Then Pd tends exponentially fast to
zero with increasing d. Thus, the distribution of Π(σ, Mn

p) is highly concentrated
around σ.

3.2 Partial Alterations

Let us now introduce p-partial alterations. For this perturbation model, we
restrict the sequences of length n to be a permutation of [n− 1

2
] (see Section 2.1).

Every element in Mn
p is replaced by a real number drawn uniformly and

independently at random from [0, n) to obtain a sequence σ ′. With probability
one, all elements in σ′ are distinct.

Instead of considering permutations of [n− 1
2
], we can also consider permuta-

tions of [n] and draw the random values from [1
2
, n+ 1

2
). This does not change the

10

results. Another possibility is to consider permutations of [n] and draw the ran-
dom values from [0, n + 1). This does not change the results by much. However,
for technical reasons we consider partial alterations as introduced above.

Example 3.3. Let σ = (0.5, 1.5, 2.5, 4.5, 6.5, 3.5, 5.5, 7.5) (which is the sequence
of Example 3.1 with 0.5 subtracted from each element) and µ = {1, 5, 6, 8}. By
replacing the marked elements with random numbers, we may obtain the sequence
(3.96 . . . , 1.5, 2.5, 4.5, 7.22 . . . , 7.95 . . . , 5.5, 0.67 . . .).

Like partial permutations, partial alterations interpolate between worst case
(p = 0) and average case (p = 1). Partial alterations are somewhat easier to
analyse: the majority of the results on the average case height of binary search
trees (see for instance Pittel [19] and Devroye [12]) is obtained not via random
permutations but the binary search trees are grown from a sequence of n random
variables that are uniformly and independently drawn from [0, 1). There is no
difference between partial permutations and partial alterations for p = 1. This
seems to hold for all p; the bounds obtained for partial permutations and partial
alterations are equal for all p.

3.3 Partial Deletions

As third perturbation model, let us introduce p-partial deletions: again, we
have a random marking Mn

p as in Section 3.1. Then we delete all marked elements
and obtain the sequence σMn

p
.

Example 3.4. The sequence σ and the marking µ as in Example 3.1 yield the
sequence (2, 3, 5, 6).

Partial deletions are not really perturbing a sequence: any ordered sequence
remains ordered even if elements are deleted. The main reason for considering
partial deletions is that they are easy to analyse when considering the stability of
perturbation models (Section 8). The results obtained for partial permutations
then carry over to partial permutations and partial alterations since the expected
height with respect to these three models is closely related (Section 7).

4 Basic Properties

In this section, we state some basic properties of binary search trees (Section 4.1),
partial permutations (Section 4.2), and partial alterations (Section 4.3) that we
will exploit in subsequent sections.

11

4.1 Properties of Binary Search Trees

We start by introducing a new measure for the height of binary search trees.
Let µ ⊆ [n] and σ be a sequence of length n. The µ-restricted height of
T (σ), denoted by height(σ, µ), is the maximum number of elements of σµ on
a root-to-leaf path in T (σ).

Lemma 4.1. For all sequences σ of length n and µ ⊆ [n], we have

height(σ) ≤ height(σ, µ) + height(σ, µ) and
height(σ, µ) ≤ height(σµ) .

Proof. Consider any path of maximum length from the root to a leaf in T (σ).
This path consists of at most height(σ, µ) elements of σµ and at most height(σ, µ)
elements of σµ, which proves the first part.

For the second part, let a and b be elements of σµ that do not lie on the same
path from the root to a leaf in T (σµ). Assume that a < b. Then there exists a c
prior to a and b in the sequence σµ with a < c < b. Thus, a and b do not lie on
the same root-to-leaf path in the tree T (σ) as well. Consider now any root-to-leaf
path of T (σ) with height(σ, µ) elements of σµ. Then all these elements from σµ

lie on the same root-to-leaf path in T (σµ), which proves the second part of the
lemma.

Of course we have height(σ, µ) ≤ height(σ) for all σ and µ. But height(σµ) ≤
height(σ), which would imply height-delp(σ) ≤ height(σ), does not hold in gen-
eral: Consider σ = (c, a, b, d, e) (we use letters and their alphabetical ordering
instead of numbers for readability) and µ = {2, 3, 4, 5}, then σµ = (a, b, d, e).
Thus, height(σ) = 3 and height(σµ) = 4. This will further be investigated in
Section 8, when we consider the stability of the perturbation models.

For bounding the smoothed height from above, we will use the following
lemma, which is an immediate consequence of Lemma 4.1.

Lemma 4.2. For all sequences σ of length n and µ ⊆ [n], we have

height(σ) ≤ height(σµ) + height(σ, µ) .

Proof. We have height(σ) ≤ height(σ, µ)+height(σ, µ) ≤ height(σµ)+height(σ, µ)
according to Lemma 4.1.

For left-to-right maxima, we can state equivalent lemmas. Let σ be a sequence
of length n and µ ⊆ [n]. Then ltrm(σ, µ) denotes the µ-restricted number
of left-to-right maxima of σ, i.e. the number of elements σi for i ∈ µ such that
σi > σj for all j ∈ [i − 1]. We omit the proof of the following lemma since it is
almost equal to the proofs of the lemmas above.

12

Lemma 4.3. Let σ be a sequence of length n and µ ⊆ [n]. Then

ltrm(σ) ≤ ltrm(σ, µ) + ltrm(σ, µ) ,
ltrm(σ, µ) ≤ ltrm(σµ) , and
ltrm(σ) ≤ ltrm(σµ) + ltrm(σ, µ) .

4.2 Properties of Partial Permutations

Let us now prove some properties of partial permutations. The two lemmas
proved in this section are crucial for estimating the smoothed height under partial
permutations. In the next section, we prove counterparts of these lemmas for
partial alterations that will play a similar role in estimating the height under
partial alterations.

We start by proving that the expected height under partial permutations
merely depends on the elements that are left unmarked. The marked elements
contribute at most height O(log n). Thus, when estimating the expected height
in the subsequent sections, we can restrict ourselves to considering the elements
that are left unmarked.

Lemma 4.4. Let σ be a sequence of length n and p ∈ (0, 1). Let µ ⊆ [n] be the
random set of marked positions and σ′ = Π(σ, µ) be the random sequence obtained
from σ via p-partial permutation. Then

height-permp(σ) = E(height(σ′)) ≤ E (height(σ′, µ)) + O(log n) .

Proof. We have height(σµ) ∈ O(log n) since the elements at positions in µ are
randomly permuted. Then the lemma follows from Lemma 4.2.

And again we obtain an equivalent lemma for left-to-right maxima.

Lemma 4.5. Under the assumptions of Lemma 4.4, we have

ltrm-permp(σ) ≤ E (ltrm(σ′, µ)) + O(log n) .

The following lemma bounds the probability from above that no element of a
fixed set of elements is permuted to a position of a fixed set of positions.

Lemma 4.6. Let p ∈ (0, 1), α > 1, n ∈ N be sufficiently large, and σ be a
sequence of length n with elements from [n]. Let σ ′ = Π(σ, Mn

p).

Let ` = a
√

n/p and k = b
√

n/p with a, b ∈ Ω((polylog n)−1) ∩ O(polylog n).
Let A = σ′

[`] be the set of the first ` elements of σ′. Let B ⊆ [n] be any subset

with |B| = k.
Then P(A ∩ B = ∅) ≤ exp(−ab/α).

Proof. We choose β with 1 < β3 < α arbitrarily. According to Lemma 2.1, the
probability P that

13

• |Mn
p ∩ [`]| < β−1p`, i.e. that too few of the first ` positions are marked,

• |σMn
p
∩ B| < β−1pk, i.e. that too few of the elements of B are marked, or

• |Mn
p | > βpn, i.e. that too many positions are marked overall

is O(exp(−nε)) for fixed p ∈ (0, 1), β > 1, and appropriately chosen ε > 0. This
holds since a, b ∈ Ω((polylog n)−1).

From now on, assume that at least β−1p` of the first ` positions of σ are
marked, at least β−1pk elements in B are marked, and at most βpn positions are
marked overall. The probability that then no element from B is in A is at most

(
βpn − β−1p`

βpn

)β−1pk

=

(

1 − `

β2n

)β−1pk

=

(

1 − `

β2n

)β2n
`

`
β2n

·β−1pk

≤ exp

(

− `

β2n
· β−1pk

)

= exp

(

−ab

β3

)

.

Overall, P(A ∩ B = ∅) ≤ exp(−ab/β3) + P ≤ exp(−ab/α) for sufficiently large n
since a, b ∈ O(polylog n).

4.3 Properties of Partial Alterations

Partial alterations fulfil roughly the same properties as partial permutations. We
state the lemmas and restrict ourselves to pointing out the differences in the
proofs.

Lemma 4.7. Let σ be a sequence of length n with elements from [n − 1
2
] and

p ∈ (0, 1). Let σ′ be the random sequence obtained from σ via p-partial alteration
and µ be the random set of marked positions. Then

height-alterp(σ) ≤ E(height(σ′, µ)) + O(logn) and
ltrm-alterp(σ) ≤ E(ltrm(σ′, µ)) + O(log n) .

The following lemma is the counterpart of Lemma 4.6 above.

Lemma 4.8. Let p ∈ (0, 1), α > 1, and n ∈ N be sufficiently large, and σ be
a sequence with elements from [n − 1

2
]. Let σ′ be the random sequence obtained

from σ by performing a p-partial alteration.
Let ` = a

√

n/p and k = b
√

n/p with a, b ∈ Ω((polylog n)−1) ∩ O(polylog n).
Let A = σ′

[`] and B = [x, x + k) ⊆ [0, n).

Then P(A ∩ B = ∅) ≤ exp(−ab/α).

14

Proof. The proof is similar to the proof of Lemma 4.6. Choose β arbitrarily with
1 < β < α. Assume that at least β−1p` of the first ` positions of σ are marked.
Then the probability that no element in A assumes a value of B is at most

(
n − k

n

)β−1p`

=

((

1 − k

n

)n
k

)ab/β

≤ exp(−ab/β) .

The remainder of the proof is as in the proof of Lemma 4.6.

5 Tight Bounds for the Smoothed Number of

Left-To-Right Maxima

5.1 Partial Permutations

Theorem 5.1. Let p ∈ (0, 1). Then for all sufficiently large n and for all se-
quences σ of length n, we have

ltrm-permp(σ) ≤ 3.6 · (1 − p) ·
√

n/p .

Proof. According to Lemma 4.5, it suffices to show

E(ltrm(σ′, µ)) ≤ C · (1 − p) ·
√

n/p

for some C < 3.6, where µ ⊆ [n] is the random set of marked positions and
σ′ is the sequence obtained via randomly permuting the elements of σµ. Then

ltrm-permp(σ) ≤ C(1−p)
√

n/p+O(logn) ≤ 3.6(1−p)
√

n/p. We assume without
loss of generality that σ is a permutation of [n].

Let Kc = c
√

n/p for c ∈ [log n]. In this and the following proofs, we assume
that Kc is a natural number for the sake of readability. If Kc is not a natural
number, then we can replace Kc by dKce. The proofs remain valid.

Choose α with 1 < α < 1.001. Let P denote the probability that less than
α−1pKc of the first Kc positions are marked or that less than α−1pKc of the
Kc largest elements are marked for some c ∈ [log n] or that overall more than
αpn elements are marked. P tends exponentially fast to zero as n increases by
Lemma 2.1.

From now on, we assume that for all c ∈ [log n], at least α−1pKc of the Kc

first positions and of the Kc largest elements are marked. In this case, we say
that the partial permutation is partially successful. If a partial permutation is
not partially successful, we bound the expected number of left-to-right maxima
by n.

We call σ′ c-successful for c ∈ [log n] if one of the largest Kc elements
n, n − 1, . . . , n − Kc + 1 of σ is among the first Kc elements in σ′.

15

Assume that σ′ is c-successful and that x ∈ {n−Kc + 1, . . . , n} is among the
first Kc elements of σ′. Then only the unmarked among the first Kc positions and
the unmarked among elements larger than x can contribute to ltrm(σ ′, µ). All
other unmarked elements are smaller than x and located after x in σ ′. Thus, they
are no left-to-right maxima. The expected number of unmarked elements larger
than n−Kc plus the expected number of unmarked positions among the first Kc

positions is at most 2 · (1− p) ·Kc = Qc. Thus, we have E(ltrm(σ′, µ)) ≤ Qc if σ′

is c-successful.
The probability that a partially successful partial permutation is not c-suc-

cessful for c ∈ O(log n) is bounded from above by exp(−c2/α) according to
Lemma 4.6. Particularly, the probability that σ′ is not log n-successful is at
most P ′ = exp(−(log n)2/α). If σ′ is not log n-successful, we bound the number
of left-to-right maxima by n.

Thus, restricted to partially successful partial permutations, we have

P(ltrm-permp(σ) > Qc) ≤ exp(−c2/α) .

Hence, we can bound ltrm(σ′, µ) from above by

log n
∑

c=0

Qc+1 · P(σ′ is not c-successful but (c + 1)-successful) + n · (P + P ′)

≤ 2 · (1 − p) ·
√

n/p ·
∑

c∈N

(c + 1) · e− c2

α

︸ ︷︷ ︸

< 1.8 for α < 1.001

+n · (P + P ′)

≤ C · (1 − p) ·
√

n/p

for some C < 3.6, which proves the theorem.

The following lemma is an improvement of the lower bound proof for the num-
ber of left-to-right maxima under partial permutations presented by Banderier
et al. [4]. This way we get a lower bound with a much larger constant that holds
for all p ∈ (0, 1); the lower bound provided by Banderier et al. holds only for
p ≤ 1/2.

Lemma 5.2. Let p ∈ (0, 1), α > 1, and c > 0. Then for all sufficiently large n,
there exist sequences σ of length n with

ltrm-permp(σ) ≥ exp(−c2α) · c · (1 − p) ·
√

n/p .

Proof. Let Kc = c
√

n/p. Let σ = (n−Kc +1, n−Kc +2, . . . , n, 1, 2, . . . , n−Kc).
Choose β arbitrarily with 1 < β3 < α. Let P denote the probability that more
than βpKc of the first Kc elements or less than β−1pn of the remaining elements
are selected. P tends exponentially fast to zero as n increases (Lemma 2.1).

16

Let µ be the set of marked positions and µc = µ ∩ [Kc] be the set of marked
positions among the first Kc positions. Let y = |µ\µc| and µc = {i1, . . . , ix} with
i1 < . . . < ix, i.e. |µc| = x. Let f be a random permutation of µ. We say that f
is successful if f(i) > i for all i ∈ µc. Thus, under a successful permutation, all
marked elements of {n − Kc + 1, . . . , n} are moved further to the back.

If f is successful, then all Kc − x unmarked elements of {n − Kc + 1, . . . , n}
are left-to-right maxima. Provided that at most βpKc of the first Kc elements
are marked, i.e. x ≤ βpKc, the expectation of Kc − x is at least (1 − p)Kc.

Let us bound the probability from below that the random permutation of µ is
successful for a given µ: For ix, there are y positions allowed and x positions not
allowed, for ix−1, there are y positions allowed (all in µ \ µc plus ix minus f(ix))
and x − 1 positions not allowed, . . . , for i1, there are y positions allowed and
one position not allowed. Thus, the probability that the random permutation is
successful is at least
(

y

y + x

)x

=
((

1 − x

y + x

)y+x
x

︸ ︷︷ ︸

≥e−1·(1− x
y+x

)

) x2

y+x ≥ exp

((

ln

(

1 − x

y + x

)

− 1

)

· x2

y + x

)

.

Provided that x ≤ βpKc and x + y ≥ y ≥ β−1pn, we obtain that the probability
that the random function is successful is at least

exp

((

ln

(

1 − βpKc

β−1pn

)

− 1

)

· β2p2K2
c

β−1pn

)

= exp

((

ln

(

1 − β2c√
pn

)

− 1

)

· β3c2

)

= Q · exp(−β3c2)

for Q =
(

1 − β2c√
pn

)β3c2

, which tends to one as n increases. Thus, with probability

at least (1−P) ·Q ·exp(−β3c2), all unmarked elements of {Kc +1, . . . , n} are left-
to-right maxima. Furthermore, we have (1−P) ·Q · exp(−β3c2) ≥ exp(−c2α) for
sufficiently large n. Since the expectation of the number of unmarked elements
among the first Kc elements is at least (1 − p)Kc, the lemma is proved.

By choosing α sufficiently close to 1 and c =
√

1/2, we immediately get the
following theorem from Lemma 5.2.

Theorem 5.3. For all p ∈ (0, 1) and all sufficiently large n, there exists a se-
quence σ of length n with

ltrm-permp(σ) ≥ 0.4 · (1 − p) ·
√

n/p .

Theorem 5.3 also yields the same lower bound for height-permp(σ) since the
number of left-to-right maxima of a sequence bounds the height of the binary

17

search tree obtained from that sequence from below. However, for the smoothed
height of binary search trees, we can prove a stronger lower bound (Theorem 6.3).

Another consequence of Lemma 5.2 is that there does not exist a constant c
such that the number of left-to-right maxima is at most c·(1−p)·

√

n/p with high
probability, i.e. with probability at least 1−n−Ω(1). Thus, the bounds proved for
the expectation of the tree height or the number of left-to-right maxima cannot be
generalised to bounds that hold with high probability. A bound that holds with
high probability can directly be obtained from Lemma 4.6: Let σ ′ be the sequence
obtained from σ via p-partial permutation. Then height(σ ′) ∈ O(

√

(n/p) · log n)
with probability at least 1 − n−Ω(1). The same holds for ltrm(σ′).

5.2 Partial Alterations

As for the height of binary search trees, we obtain the same upper bound for the
expected number of left-to-right maxima under partial alterations.

Theorem 5.4. Let p ∈ (0, 1). Then for all sufficiently large n and for all se-
quences σ of length n (where σ is a permutation of [n − 1

2
]), we have

ltrm-alterp(σ) ≤ 3.6 · (1 − p) ·
√

n/p .

Proof. The main difference between the proof of this theorem and the proof of
Theorem 5.1 is that we have to use Lemma 4.8 instead of Lemma 4.6.

The sequence σ′ obtained from σ via p-partial alteration is called c-successful
if there is at least one element of the interval [n − Kc, n) among the first Kc

elements of σ′. The remainder of the proof goes the same way as the proof of
Theorem 5.1.

Let us now prove the counterpart for partial alterations of Lemma 5.2.

Lemma 5.5. Let p ∈ (0, 1), α > 1, and c > 0. Then for all sufficiently large n,
there exist sequences σ of length n with

ltrm-alterp(σ) ≥ exp(−c2α) · c · (1 − p) ·
√

n/p .

Proof. Let Kc = c
√

n/p. Let σ = (Kc + 1, Kc + 2, . . . , n, 1, 2, . . . , Kc). Choose β
arbitrarily with 1 < β < α. Let P denote the probability that more than βpKc

are marked. P tends exponentially fast to zero as n increases (Lemma 2.1).
Let µ be the set of marked positions and µc = µ ∩ [Kc] be the set of marked

positions among the first Kc. Let µc = {i1, . . . , ix} with i1 < . . . < ix, i.e. |µc| = x.
We have σij = n − Kc + ij − 1

2
for all j ∈ [x]. Let σ′ be the sequence obtained

from σ by replacing all marked elements by random numbers from [0, n). We say
that σ′ is successful if σ′

ij
≤ n−Kc. If σ′ is successful, then all Kc − x unmarked

elements among the first Kc elements of σ are left-to-right maxima.

18

The probability that σ′ is successful is at least

(
n − Kc

n

)x

=
((

1 − Kc

n

) n
Kc

︸ ︷︷ ︸

≥e−1·(1−Kc
n

)

)xKc
n ≥ exp

((

ln

(

1 − Kc

n

)

− 1

)

· xKc/n

)

.

Provided that x ≤ βpKc, we obtain that the probability that the random function
is successful is at least

exp

((

ln

(

1 − βpKc

n

)

− 1

)

· βpK2
c /n

)

= exp

((

ln

(

1 − βc√
pn

)

− 1

)

· βc2

)

= Q · exp(−βc2)

for Q =
(

1 − βc√
pn

)βc2

, which tends to one as n increases. Thus, with probability

at least (1−P) ·Q ·exp(−βc2), all unmarked among the first Kc elements are left-
to-right maxima. The expectation of the number of unmarked elements among
the first Kc elements is at least (1 − p)Kc. Furthermore, for sufficiently large n,
we have (1 − P) · Q · exp(−βc2) ≥ exp(−αc2), which proves the lemma.

From the above lemma, we obtain the same lower bound for the number of
left-to-right maxima as for partial permutations.

Theorem 5.6. For all p ∈ (0, 1) and all sufficiently large n, there exists a se-
quence σ of length n with

ltrm-alterp(σ) ≥ 0.4 · (1 − p) ·
√

n/p .

As for partial permutations, a consequence of Lemma 5.5 is that we cannot
achieve a bound of O((1 − p) ·

√

n/p) that holds with high probability for the
number of left-to-right maxima or the height of binary search trees. But again, we
obtain from Lemma 4.8 that for all sequences, the height and the number of left-
to-right maxima under partial alterations is in O(

√

(n/p) · log n) with probability
at least 1 − n−Ω(1).

6 Tight Bounds for the Smoothed Height of Bi-

nary Search Trees

In this section, we consider the smoothed height of binary search trees under the
perturbation models partial permutation and partial alteration.

19

6.1 Partial Permutations

Let us now prove one of the main theorems of this work, namely an upper bound
for the expected height of binary search trees obtained from sequences under
partial permutations.

Theorem 6.1. Let p ∈ (0, 1). Then for all sufficiently large n and all sequences
σ of length n, we have

height-permp(σ) ≤ 6.7 · (1 − p) ·
√

n/p .

Proof. According to Lemma 4.4, it suffices to show

E(height(σ′, µ)) ≤ C · (1 − p) ·
√

n/p

for some fixed C < 6.7, where µ ⊆ [n] is the random set of marked positions and
σ′ is the sequence obtained via randomly permuting the elements of σµ. Then

height-permp(σ) ≤ C ·(1−p)·
√

n/p+O(log n) ≤ 6.7·(1−p)·
√

n/p for sufficiently
large n.

Choose α arbitrarily with 1 < α < 1.01. Without loss of generality, we assume
that σ is a permutation of [n].

Let c ∈ [log n] and Kc = c
√

n/p. We define D(d) =
∑d−1

i=1 i2 = 1
3
· (d − 1) ·

(d − 1
2
) · d. Then D(d) ≥ d3/8 for d ≥ 2.

We divide the sequence σ into blocks B1, B2, . . . , B(log n)2 . The block Bd con-
sists of d2Kc elements: B1 contains the elements of σ at the first Kc positions,
B2 contains the elements of σ at the next 4Kc positions, and so on. Thus,

Bd = σ[D(d+1)·Kc] \ σ[D(d)·Kc] .

Let B =
⋃(log n)2

d=1 Bd be the set of elements that are contained in any Bd. We have
|B| = D((log n)2 + 1) · Kc ≥ 1

8
· (log n)6 · Kc.

Every block Bd is further divided into d4 subsets A1
d, . . . , A

d4

d of elements as
follows: A1

d contains the d−2Kc smallest elements of Bd, A2
d contains the d−2Kc

second smallest elements of Bd, and so on. The subset A1
d contains the d−2Kc

smallest elements of Bd, A2
d the d−2Kc second smallest elements of Bd, . . . , and

Ad4

d contains the d−2Kc largest elements of Bd. Figure 3(a) illustrates the division
of σ into blocks B1, B2, . . . , B(log n)2 and subsets Ai

d for d ∈ [(log n)2] and i ∈ [d2].
Finally, we divide the numbers in [n] into log n ·√pn subsets C1, . . . , Clog n·√pn

with

Cj =

{√

n/p

log n
· (j − 1) + 1, . . . ,

√

n/p

log n
· j
}

.

Thus, C1 contains the (log n)−1 ·
√

n/p smallest numbers of [n], C2 contains the

(log n)−1 ·
√

n/p second smallest numbers of [n], and so on.

20

Let η = 1 + n−1/6. We call a set of positions or elements of cardinality k
partially successful in µ and σ′ if at least η−1pk and at most ηpk elements of
this set are marked. We say that µ and σ′ are partially successful if the following
properties are fulfilled:

• for all c ∈ [log n], d ∈ [(log n)2], and i ∈ [d4], Ai
d is partially successful in µ,

and

• for all j ∈ [log n
√

pn], Cj is partially successful in µ.

There are only polynomially many sets of elements that must be partially suc-

cessful, and every such set is of cardinality Ω
(√

n/p/ polylog n
)

. Thus, there

exists some ε > 0 such that the probability that µ and σ are partially successful
is O(exp(−nε)) according to Lemma 2.1. Let P denote this probability. If µ is
not partially successful, we bound the height of σ′ by n.

From now on, we assume that µ is partially successful.
We call a subset Ai

d for d ≥ 2 and i ∈ [d4] c-successful if at least one element
of Ai

d is permuted to one of the D(d)c
√

n/p positions that precede Bd. Thus, the
probability that a fixed Ai

d is not successful is at most exp(−c2D(d)d−2α−1) ≤
exp(−c2d/(8α)) according to Lemma 4.6: there are d−2c

√

n/p elements in Ai
d

and D(d)c
√

n/p positions that precede Bd.

We call a block Bd for d ≥ 2 c-successful if all subsets A1
d, . . . , A

d4

d of
Bd are c-successful. The probability that Bd is not c-successful is at most
d4 · exp(−c2d/(8α)) since there are d4 subsets A1

d, . . . , A
d4

d of Bd. Figures 3(a)
and 3(b) illustrate c-success.

Let d′ = (log n)2 + 1 and D′ = D(d′) ≥ (log n)6/8. A subset Cj is called

c-successful if at least one element of Cj is among the first D′c
√

n/p positions

of σ′. The probability that a fixed Cj is not c-successful is at most exp(− cD′

α log n
) ≤

exp(− c(log n)5

8α
). The probability that any Cj is not c-successful is bounded from

above by

log n · √np · exp

(

−c(log n)5

8α

)

≤ d′4 · exp

(

−c2d′

8α

)

(6.1)

for sufficiently large n.
Finally, we say that σ′ is c-successful if

• all blocks B1, B2, . . . , B(log n)2 are c-successful and

• all subsets C1, . . . , Clog n
√

pn are c-successful.

21

B3B2B1 B4

︸ ︷︷ ︸

B4 is divided into A1

4
, A2

4
, . . .

D(4) · Kc elements preceding B4

︷ ︸︸ ︷
the 42

· Kc elements of B4

︷ ︸︸ ︷

A
4
4A

1
4A

3
4A

1
4A

2
4A

5
4A

4
4A

4
4 A

3
4A

2
4

(a) Dividing the first D′ ·Kc elements of σ into blocks B1, . . . , B(log n)2 . For
instance, the block B4 is further divided into subsets A1

4, . . . , A
16
4 , where

A1
4 contains the Kc/4 smallest elements of B4, . . . , and A16

4 contains the
Kc/4 largest elements of B4. (For readability, B4 is divided into only five
subsets in the illustration.)

︸ ︷︷ ︸

the first D(4) · Kc positions of σ
′

︸ ︷︷ ︸

the location of B4 in σ

B4

︷ ︸︸ ︷

A
4
4A

1
4A

3
4A

1
4A

2
4A

5
4A

4
4A

4
4 A

3
4A

2
4

(b) A subset Ai
4 is c-successful if at least one element of Ai

4 is among the
first D(4) · Kc elements of σ′. The block B4 is c-successful if all Ai

4 are
c-successful.

Figure 3: The division of σ into blocks and subsets (shown here for B4).

Let c ≥ 5. The probability that σ′ is not c-successful is at most

(log n)2
∑

d=2

d4 · exp(−c2d/(8α)) + P(some Cj is not c-successful)

≤
∞∑

d=2

d4 · exp(−c2d/(8α)) ≤
∞∑

d=2

(
exp(−c2/(16α))

)d

=
exp(−c2/(16α))2

1 − exp(−c2/(16α))
= E(c, α) . (6.2)

The first inequality holds due to Formula 6.1, the second inequality holds since
c ≥ 5. If σ′ is not log n-successful, which happens with probability at most
E(log n, α) ≤ exp(−(log n)2/(16α)), we bound the height of T (σ′) by n.

Let Qc =
(

c · π2

3
+ 2

log n

)

· (1 − η−1p) ·
√

n/p.

Claim 6.2. If σ′ is c-successful, then height(σ′, µ) ≤ Qc.

22

Proof of Claim 6.2. Consider any path from the root to a leaf in T (σ ′). This
path cannot contain unmarked elements from both Ai−1

d and Ai+1
d for d ≥ 2 and

2 ≤ i ≤ d4 − 1 since there is at least one element of Ai
d that stands before all

unmarked elements of Ai−1
d and Ai+1

d .
It is possible that unmarked elements from Ai

d and Ai+1
d are on the same root-

to-leaf path in T (σ′). For every d and i, there are at most (1 − η−1p)cd−2
√

n/p
unmarked elements in Ai

d since σ′ is partially successful. Thus, for every d, at
most 2(1 − η−1p)cd−2

√

n/p elements of Bd are on the same root-to-leaf path in
T (σ′).

Let B = [n] \B be the set of elements of σ that are not contained in any Ai
d.

There cannot be unmarked elements from both Cj−1 ∩ B and Cj+1 ∩ B on the
same root-to-leaf path in σ′ since there is at least one element of Cj among the

first D′c
√

n/p elements of σ′. Thus, there are at most 2(1− η−1p)

√
n/p

log n
elements

of B ∩⋃log n·√np
i=1 Cj on the same root-to-leaf path in T (σ′).

Overall, the maximum number of elements on any root-to-leaf path in T (σ ′)
can be bounded from above by

(log n)2
∑

d=1

2 · (1 − η−1p) · c · d−2 ·
√

n/p + 2 · (1 − η−1p) · (log n)−1 ·
√

n/p

≤
(

2c ·
∞∑

d=1

1

d2
+

2

log n

)

· (1 − η−1p) ·
√

n/p

=

(

c · π2

3
+

2

log n

)

· (1 − η−1p) ·
√

n/p = Qc ,

which proves the claim.

According to Claim 6.2 and Formula 6.2, we have

P (height(σ′, µ) > Qc) ≤ E(c, α)

for 5 ≤ c ≤ log n. Furthermore,

η−1 =
1

1 + n−1/6
= 1 − n−1/6

1 + n−1/6
≥ 1 − n−1/6 . (6.3)

23

Hence, we can bound the expectation of height(σ′, µ) from above by

Q5 +

log n
∑

c=5

Qc+1 · P(σ′ is not c-successful but (c + 1)-successful)

+ n · (P + E(log n, α))
︸ ︷︷ ︸

=X

≤ (1 − η−1p)
︸ ︷︷ ︸

≤1−(1−n−1/6)p

·
√

n/p ·
(

5 +
∞∑

c=5

(
π2

3
(c + 1) +

2

log n

)

· E(c, α)

)

︸ ︷︷ ︸

=Y ∈O(1)

+X

≤ (1 − p) ·
√

n/p
︸ ︷︷ ︸

=Z

·Y + n2/6 · √p · Y + X
︸ ︷︷ ︸

∈o(Z)

= Z ·

5 +
π2

3
·

< 0.5 for α < 1.01
︷ ︸︸ ︷
∑

c≥5

(c + 1) · E(c, α)

︸ ︷︷ ︸

= C < 6.7 for α < 1.01

+ o(Z)

≤ C · (1 − p)
√

n/p

for sufficiently large n and α < 1.01. The second inequality holds due to For-
mula 6.3. The first equal sign holds since Z ·∑∞

c=5
2E(c,α)

log n
∈ o(Z). This completes

the proof.

As a counterpart to the above theorem, we prove the following lower bound.
Interestingly, the lower bound is obtained for the sorted sequence, which is not a
worst case for the expected number of left-to-right maxima; the expected number
of left-to-right maxima of the sequence obtained by partially permuting the sorted
sequence is only logarithmic [4].

Theorem 6.3. For all p ∈ (0, 1) and all sufficiently large n ∈ N, we have

height-permp(σ
n
sort) ≥ 0.8 · (1 − p) ·

√

n/p .

Proof. Let c > 0 be any constant and Kc = c
√

n/p. Let σ′ be the sequence
obtained from σn

sort via p-partial permutation. We say that σ′ is c-successful if
all marked elements among the first Kc elements of σn

sort are permuted further to
the back. According to Lemma 5.2, we have

P(σ′ is c-successful) ≥ exp(−c2α)

for arbitrarily chosen α > 1 and sufficiently large n. If σ ′ is c-successful and x
elements among the first Kc elements are unmarked, then height(σ′) ≥ x. Let
Q = (1 − p) ·

√

n/p for short. Analogously to Lemma 5.2, we obtain

P (height(σ′) ≥ cQ) ≥ exp(−c2α)

24

for α > 1 and sufficiently large n. The idea is now to consider c-success for all
c ∈ {0.1, 0.2, . . . , 9.9, 10} = C. Thus,

E(height(σ′)) ≥ Q ·
∑

c∈C

c · P(cQ ≤ height(σ′) < (c + 1)Q)

≥ Q ·
∑

c∈C

0.01 · P(height(σ′) ≥ cQ)

≥ Q ·
∑

c∈C

0.01 · exp(−c2α) ≥ 0.8 · Q

for sufficiently large n and α < 1.01, which proves the theorem.

6.2 Partial Alterations

The following theorem is obtained via a proof similar to the proof of Theorem 6.1.

Theorem 6.4. Let p ∈ (0, 1). Then for all sufficiently large n and all sequences
σ of length n (where σ is a permutation of [n − 1

2
]), we have

height-alterp(σ) ≤ 6.7 · (1 − p) ·
√

n/p .

Proof. The main difference between the proof of this theorem and the proof of
Theorem 6.1 is that we have to use Lemma 4.8 instead of Lemma 4.6. The blocks
Bd and Cj and the subsets Ai

d are defined in the same way. Now we have for
each subset Ad

i numbers ai
d = bmin Ad

i c and bi
d = dmax Ad

i e. We say that Ad
i is

c-successful if among the first D(d)c
√

n/p elements there is at least one element
of the interval [ai

d, b
i
d). The term c-successful for blocks Bd is defined in the same

way as in the previous proof. For subsets Cj, the term c-successful is defined just
like for Ad

i . The remainder of the proof goes along the same lines as the proof of
Theorem 6.1.

We also get the same lower bound for the height of the binary search trees
under partial alterations. Again, the lower bound is obtained for the sorted
sequence.

Theorem 6.5. For all p ∈ (0, 1) and all sufficiently large n ∈ N, we have

height-alterp(σ
n
sort) ≥ 0.8 · (1 − p) ·

√

n/p .

Proof. The proof is almost equal to the proof of Theorem 6.3. The only difference
is that we have to use Lemma 5.5 instead of Lemma 5.2.

25

7 Comparing Partial Deletions with Permuta-

tions and Alterations

In this section, we justify the consideration of partial deletions. Partial deletions
turn out to be the worst of the three models: Trees are usually expected to be
higher under partial deletions than under partial permutations or alterations,
although containing less elements. Thus, the expected height under partial dele-
tions yields upper bounds (up to an additional O(log n) term) for the expected
height under partial permutations and alterations. On the other hand, we prove
that lower bounds for the expected height under partial deletions yield slightly
weaker lower bounds for permutations and alterations. The main advantage of
partial deletions over partial permutations and partial alterations is that partial
deletions are much easier to analyse.

For the sake of completeness, we start by providing matching upper and lower
bounds for the height of binary search trees under partial deletions.

Proposition 7.1. For all p ∈ [0, 1], n ∈ N, and sequences σ of length n, we have

height-delp(σ) ≤ (1 − p) · n .

Moreover,
height-delp(σ

n
sort) = (1 − p) · n .

Proof. Let σ′ be the sequence obtained from σ via p-partial deletion. Then σ ′

consists of (1 − p) · n elements in expectation. The number of elements is an
upper bound for the number of left-to-right maxima.

The second proposition holds obviously.

The following lemma is an immediate consequence of Lemmas 4.4, 4.5, and 4.7,
we therefore omit its proof.

Lemma 7.2. For all sequences σ of length n and p ∈ [0, 1],

height-permp(σ) ≤ height-delp(σ) + O(log n) and
ltrm-permp(σ) ≤ ltrm-delp(σ) + O(logn) .

If σ is a permutation of [n − 1
2
], then

height-alterp(σ) ≤ height-delp(σ) + O(log n) and
ltrm-alterp(σ) ≤ ltrm-delp(σ) + O(log n) .

Thus, we can bound the expected height under partial permutations or alter-
ations from above by the expected height under partial deletions. The reverse
is not true (Theorems 6.1 and 6.4 and Proposition 7.1). But we can bound
the expected height under partial deletions by the expected height under partial
permutations or alterations by padding the sequences considered.

26

Lemma 7.3. Let p ∈ (0, 1) be fixed and let σ be a sequence of length n with
height(σ) = d and height-delp(σ) = d′. Then there exists a sequence σ̃ of length
O(n2) with height(σ̃) = d + O(log n) and height-permp(σ̃) ∈ Ω(d′).

Proof. Without loss of generality, we assume that σ is a permutation of [n].
The idea is to attach a tail of sufficiently many elements greater than n to the
sequence such that all marked elements that are greater than or equal to n will
be permuted to this tail. Thus, the overall structure of the remaining elements
from [n] will be as via partial deletions.

Choose K = n2p and construct σ̃ from σ as follows: the first n items of σ̃ are
just σ, which we call the head of σ̃. The last K − n items of σ̃, which we call
the tail of σ̃, are numbers greater than n such that these numbers build a tree
of height O(log(K − n)) = O(log n). With constant probability (see the proof of
Lemma 5.2), say c, all elements marked in the head are permuted into the tail.

Consider the tree obtained from the first n elements after partial permutation
under the restriction that all marked head elements are now in the tail. This
tree merely equals the tree obtained via partial deletion from σ, when the same
elements are marked. The only difference are some elements greater than n,
which only elongate the right-most path. Thus, height-permp(σ̃) is at least cd′,
which proves the lemma.

The following is the analogue of the above lemma for partial alterations. Since
its proof is similar to the proof of the previous lemma (the mere difference is that
we have to use the proof of Lemma 5.5 instead of Lemma 5.2), we omit it.

Lemma 7.4. Let p ∈ (0, 1) be fixed and σ be a sequence of length n with elements
of [n− 1

2
]. Let height(σ) = d and height-delp(σ) = d′. Then there exists a sequence

σ̃ of length O(n2) with height(σ̃) = d + O(log n) and height-alterp(σ̃) ≥ Ω(d′).

8 The (In-)Stability of Perturbations

Having shown that worst case instances become much better by smoothing, we
now provide a family of best case instances for which smoothing results in an
exponential increase in height.

We consider the following family of sequence:

• σ(1) = (1).

• σ(k+1) = (2k, σ(k), 2k +σ(k)), where c+σ = (c+σ1, . . . , c+σn) for a sequence
σ of length n.

For instance, σ(2) = (2, 1, 3) and σ(3) = (4, 2, 1, 3, 6, 5, 7). Let n = 2k − 1. Then
σ(k) contains the numbers 1, 2, . . . , n, and we have height(σ(k)) = ltrm(σ(k)) =
k ∈ Θ(log n).

27

2k+1

3 · 2k2k

T (σ(k)) T (2k+σ
(k)) T (2·2k+σ

(k)) T (3·2k+σ
(k))

(a) T (σ(k+2)).

2k

T (2k+σ
(k))T (σ(k))

3 · 2k

T (2·2k+σ
(k)) T (3·2k+σ

(k))

(b) Removing the root 2k+1 roughly dou-
bles the height.

T (σ(k))

T (2k+σ
(k))

T (2·2k+σ
(k))

T (3·2k+σ
(k))

(c) Removing further the roots 2k

and 3 ·2k of T (σ(k+1)) and T (2k+1 +
σ(k+1)), respectively, quadruplicates
the height.

Figure 4: Removing root elements increases the height and the number of left-
to-right maxima.

Let us estimate the expected number of left-to-right maxima after partial
deletion, bounding the expected height of the binary search tree from below.
Deleting the first element of σ(k) roughly doubles the number of left-to-right
maxima in the resulting sequence. This is the basic idea behind the following
theorem and illustrated in Figure 4.

Theorem 8.1. Let p ∈ (0, 1). Then for all k ∈ N,

ltrm-delp(σ
(k)) =

1 − p

p
· ((1 + p)k − 1) .

Proof. Let `(k) = ltrm-delp(σ
(k)) for short. The root 2k−1 is deleted with proba-

bility p. Then the expected number of left-to-right maxima is just the expectation
for the left subtree plus the expectation for the right subtree since all elements
in the left subtree are smaller and occur earlier than all elements in the right
subtree. Both expectations are `(k − 1). If the root is not deleted, we expect
1 + `(k − 1) left-to-right maxima: One is the root and `(k − 1) are expected in

28

the right subtree. We do not get any new maximum from the left subtree since
all elements in the left subtree are smaller than the root. We have `(1) = 1 − p
since with probability p, the single element will be deleted. Overall, we have

`(k) = 2p · `(k − 1) + (1 − p) · (1 + `(k − 1))

= (1 + p) · `(k − 1) + (1 − p) = (1 − p) ·
k−1∑

i=0

(1 + p)i

=
1 − p

p
· ((1 + p)k − 1) .

Since the number of left-to-right maxima of a sequence is a lower bound for
the height of the binary search tree obtained from the same sequence, we get the
following result.

Corollary 8.2. For all p ∈ (0, 1) and all k ∈ N,

height-delp(σ
(k)) ≥ 1 − p

p
· ((1 + p)k+1 − 1) .

We conclude that there are some best case instances that are quite fragile
under partial deletions: From logarithmic height they “jump” to height Ω(nε),
for constant ε > 0, via smoothing. Thus, the height increases exponentially.

We can transfer this result to partial permutations and partial alterations due
to Lemmas 7.3 and 7.4. Therefore, we consider sequences σ̃(k) which are obtained
from σ(k) as described in the proof of Lemma 7.3.

Corollary 8.3. For any fixed p ∈ (0, 1), we have

height(σ̃(k)) ∈ O(log n) ,
height-permp(σ̃

(k)) ∈ Ω
(
nε
)

, and
height-alterp(σ̃

(k)) ∈ Ω
(
nε
)

for some fixed ε > 0.

For the sake of completeness, let us mention that the number of left-to-right-
maxima is, at least asymptotically for any fixed p, as fragile as possible: There
are sequences with one left-to-right maximum for which the expected number
of left-to-right maxima after partial permutation is Ω(

√
n). The same holds for

partial alterations. For partial deletions, the number can jump from 1 to Ω(n).
The proofs are straight-forward: take an adversarial sequence of length n− 1 for
proving lower bounds for the expected number of left-to-right maxima under any
of these perturbation models and add an n at the front of the sequence. With
constant probability, this n will be marked and moved behind the first Θ(

√

n/p)
elements in case of partial permutations. For the other two models, the proof is
similar.

29

9 Conclusions

We have analysed the height of binary search trees obtained from perturbed
sequences and obtained asymptotically tight lower and upper bounds of roughly√

n for the height under partial permutations and alterations. This stands in
contrast to both the worst case and the average case height of n and Θ(log n),
respectively. Thus, the height of binary search trees under limited randomness
differs significantly from both the average and the worst case. One direction for
future work is of course improving the constants of the bounds.

Interestingly, the sorted sequence σn
sort turns out to be a worst case for the

smoothed height of binary search trees in the sense that the lower bounds are ob-
tained for σn

sort (Theorems 6.3 and 6.5). This contrasts the fact that the expected
number of left-to-right maxima of σn

sort under p-partial permutations is roughly
O(log n) [4]. We believe that for the height of binary search trees, σn

sort is indeed
a worst case.

Conjecture 9.1. For all p ∈ [0, 1], all n ∈ N, and every sequence σ of length n,

height-permp(σ) ≤ height-permp(σ
n
sort) and

height-alterp(σ) ≤ height-alterp(σ
n
sort) .

We have performed experiments to estimate the constants in the bounds for
the height of binary search trees. For all n ∈ {20 000, 40 000, . . . , 500 000} and p ∈
{0.1, 0.25}, we have performed 5 000 partial permutations of σn

sort. Furthermore,
we did the same for n ∈ {100 000, 500 000} and p ∈ {0.05, 0.10, . . . , 0.95}. (See
Appendix A for more details.) The results lead to the following conjecture.
Proving this conjecture would immediately improve our lower bound. Provided
that Conjecture 9.1 holds, this would also yield an improved upper bound for the
height of binary search trees under partial permutations.

Conjecture 9.2. For p ∈ (0, 1) and sufficiently large n,

height-permp(σ
n
sort) = (γ + o(1)) · (1 − p) ·

√

n/p

for some constant γ ≈ 1.8.

Throughout this work, the bounds obtained for partial permutations and par-
tial alterations are equal. Moreover, the proofs used for obtaining these bounds
are almost identical. We suspect that this always holds for binary search trees.

Conjecture 9.3. For all p ∈ [0, 1] and σ,

height-permp(σ) ≈ height-alterp(σ) .

30

Beyond partial permutations and alterations, one could consider other per-
turbation models for sequences. From a more abstract point of view, a future
research direction is to characterise the properties of perturbation models that
lead to upper or lower bounds that are asymptotically different from the average
or worst case.

Apart from lower and upper bounds, we have examined the stability of per-
turbations, i.e. how much higher a tree can become if the underlying sequence is
perturbed. It turns out that all three perturbation models are unstable.

Finally, we are interested in generalising these results to other problems based
on permutations, like sorting algorithms (Quicksort under partial permutations
has already been investigated by Banderier et al. [4]), routing algorithms, and
other data structures. Hopefully, this will shed some light on the discrepancy
between worst case and average case behaviour of these algorithms.

Acknowledgements

We thank Jan Arpe for valuable discussions and comments.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures
and Algorithms. Addison-Wesley, 1983.

[3] Noga Alon, Joel H. Spencer, and Paul Erdős. The Probabilistic Method. John
Wiley & Sons, 1992.

[4] Cyril Banderier, René Beier, and Kurt Mehlhorn. Smoothed analysis of three
combinatorial problems. In Branislav Rovan and Peter Vojtás, editors, Proc.
of the 28th Int. Symp. on Mathematical Foundations of Computer Science
(MFCS), volume 2747 of Lecture Notes in Computer Science, pages 198–207.
Springer, 2003.

[5] Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, Guido
Schäfer, and Tjark Vredeveld. Average case and smoothed competitive anal-
ysis of the multi-level feedback algorithm. In Proc. of the 44th Ann. IEEE
Symp. on Foundations of Computer Science (FOCS), pages 462–471. IEEE
Computer Society, 2003.

[6] René Beier and Berthold Vöcking. Typical properties of winners and losers
in discrete optimization. In Proc. of the 36th Ann. ACM Symp. on Theory
of Computing (STOC), pages 343–352. ACM Press, 2004.

31

[7] Avrim Blum and Joel Spencer. Coloring random and semi-random k-
colorable graphs. Journal of Algorithms, 19(2):204–234, 1995.

[8] Avrim L. Blum and John D. Dunagan. Smoothed analysis of the perceptron
algorithm for linear programming. In Proc. of the 13th Ann. ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 905–914. SIAM, 2002.

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, 2nd edition, 2001.

[10] Valentina Damerow, Friedhelm Meyer auf der Heide, Harald Räcke, Chris-
tian Scheideler, and Christian Sohler. Smoothed motion complexity. In
Giuseppe Di Battista and Uri Zwick, editors, Proc. of the 11th Ann. Euro-
pean Symp. on Algorithms (ESA), volume 2832 of Lecture Notes in Computer
Science, pages 161–171. Springer, 2003.

[11] Valentina Damerow and Christian Sohler. Extreme points under random
noise. In Susanne Albers and Tomasz Radzik, editors, Proc. of the 12th
Ann. European Symp. on Algorithms (ESA), volume 3221 of Lecture Notes
in Computer Science, pages 264–274. Springer, 2004.

[12] Luc Devroye. A note on the height of binary search trees. Journal of the
ACM, 33(3):489–498, 1986.

[13] Luc Devroye and Bruce Reed. On the variance of the height of random
binary search trees. SIAM Journal on Computing, 24(6):1157–1162, 1995.

[14] Michael Drmota. An analytic approach to the height of binary search trees.
Algorithmica, 29(1–2):89–119, 2001.

[15] Michael Drmota. An analytic approach to the height of binary search trees
II. Journal of the ACM, 50(3):333–374, 2003.

[16] Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. Jour-
nal of Computer and System Sciences, 63(4):639–671, 2001.

[17] Abraham D. Flaxman and Alan M. Frieze. The diameter of randomly per-
turbed digraphs and some applications. In Klaus Jansen, Sanjeev Khanna,
José D. P. Rolim, and Dana Ron, editors, Proc. of the 8th Int. Workshop
on Randomization and Computation (RANDOM), volume 3122 of Lecture
Notes in Computer Science, pages 345–356. Springer, 2004.

[18] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley, 2nd edition, 1998.

[19] Boris Pittel. On growing random binary trees. Journal of Mathematical
Analysis and Applications, 103(2):461–480, 1984.

32

[20] Bruce Reed. The height of a random binary search tree. Journal of the
ACM, 50(3):306–332, 2003.

[21] John Michael Robson. The height of binary search trees. The Australian
Computer Journal, 11(4):151–153, 1979.

[22] John Michael Robson. The asymptotic behaviour of the height of binary
search trees. Technical Report TR-CS-81-15, The Australian National Uni-
versity, Department of Computer Science, Canberra, 1981.

[23] John Michael Robson. On the concentration of the height of binary search
trees. In Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-
Spaccamela, editors, Proc. of the 24th Int. Coll. on Automata, Languages
and Programming (ICALP), volume 1256 of Lecture Notes in Computer Sci-
ence, pages 441–448. Springer, 1997.

[24] John Michael Robson. Constant bounds on the moments of the height of
binary search trees. Theoretical Computer Science, 276(1–2):435–444, 2002.

[25] Heiko Röglin and Berthold Vöcking. Smoothed analysis of integer program-
ming. In Michael Jünger and Volker Kaibel, editors, Proc. of the 11th Int.
Conf. on Integer Programming and Combinatorial Optimization (IPCO),
volume 3509 of Lecture Notes in Computer Science, pages 276–290. Springer,
2005.

[26] Miklos Santha and Umesh V. Vazirani. Generating quasi-random sequences
from semi-random sources. Journal of Computer and System Sciences,
33(1):75–87, 1986.

[27] Guido Schäfer and Naveen Sivadasan. Topology matters: Smoothed com-
petitiveness of metrical task systems. In Volker Diekert and Michel Habib,
editors, Proc. of the 22th Int. Symp. on Theoretical Aspects of Computer Sci-
ence (STACS), volume 2996 of Lecture Notes in Computer Science, pages
489–500. Springer, 2004.

[28] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms:
Why the simplex algorithm usually takes polynomial time. In Proc. of the
33rd Ann. ACM Symp. on Theory of Computing (STOC), pages 296–305.
ACM Press, 2001.

[29] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis: Motiva-
tion and discrete models. In Frank Dehne, Jörg-Rüdiger Sack, and Michiel
Smid, editors, Proc. of the 8th Workshop on Algorithms and Data Struc-
tures (WADS), volume 2748 of Lecture Notes in Computer Science, pages
256–270. Springer, 2003.

33

[30] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of termination
of linear programming algorithms. Mathematical Programming, Series B,
97(1–2):375–404, 2003.

[31] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms:
Why the simplex algorithm usually takes polynomial time. Journal of the
ACM, 51(3):385–463, 2004.

A Experimental Results

For n ∈ {20 000, 40 000, . . . , 500 000} and p ∈ {0.1, 0.25}, we have randomly
performed 5 000 p-partial permutations on σn

sort. Then we have estimated the
expected height height-permp(σ

n
sort) as the average height of the trees generated

by the sequences thus obtained. Figure 5 shows the results compared to 1.8 · (1−
p) ·

√

n/p.
We have performed the same experiment for n ∈ {100 000, 500 000} and p ∈

{0.05, 0.10, . . . , 0.95}. Figure 6 shows the results, again compared to 1.8 · (1−p) ·
√

n/p.
These experiments lead us to Conjecture 9.2.

34

0

500

1000

1500

2000

2500

3000

3500

4000

1 · 105 2 · 105 3 · 105 4 · 105 5 · 105

h
ei

gh
t-

p
er

m
0
.
1
(σ

n s
o
r
t
)

n

Estimate
×

×

×

×

×
×
×
×
×
×
×
×
×
×
×
×
××

×
××

×
××

×

×

1.8 · (1 − 0.1) ·
√

n/0.1

(a) p = 0.1.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 · 105 2 · 105 3 · 105 4 · 105 5 · 105

h
ei

gh
t-

p
er

m
0
.
2
5
(σ

n s
o
r
t
)

n

Estimate
×

×

×

×

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
××

××

×

1.8 · (1 − 0.25) ·
√

n/0.25

(b) p = 0.25.

Figure 5: Experimental data for n ∈ {20 000, 40 000, . . . , 500 000} and p ∈
{0.1, 0.25} compared to 1.8 · (1 − p) ·

√

n/p.

35

0

500

1000

1500

2000

2500

3000

3500

0 0.2 0.4 0.6 0.8 1

h
ei

gh
t-

p
er

m
p
(σ

1
0
0

0
0
0

s
o
r
t

)

p

Estimate

×

×

×

×

×
×

×
×

× ×
× × × × × × × × ×

×

1.8 · (1 − p) ·
√

100 000/p

(a) n = 100 000.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.2 0.4 0.6 0.8 1

h
ei

gh
t-

p
er

m
p
(σ

5
0
0

0
0
0

s
o
r
t

)

p

Estimate

×

×

×

×
×

×
×

×
×

× × × × × × × × × ×

×

1.8 · (1 − p) ·
√

500 000/p

(b) n = 500 000.

Figure 6: Experimental data, in dependence of p, for p ∈ {0.05, 0.10, . . . , 0.95}
and n ∈ {100 000, 500 000} compared to 1.8 · (1 − p) ·

√

n/p.

36 ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

