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Abstract

Binary search trees are one of the most fundamental data structures. While
the height of such a tree may be linear in the worst case, the average height
with respect to the uniform distribution is only logarithmic. The exact value
is one of the best studied problems in average-case complexity.

We investigate what happens in between by analysing the smoothed height
of binary search trees: Randomly perturb a given (adversarial) sequence and
then take the expected height of the binary search tree generated by the
resulting sequence. As perturbation models, we consider partial permutations,
partial alterations, and partial deletions.

On the one hand, we prove tight lower and upper bounds of roughly Θ(
√

n)
for the expected height of binary search trees under partial permutations
and partial alterations. This means that worst-case instances are rare and
disappear under slight perturbations. On the other hand, we examine how
much a perturbation can increase the height of a binary search tree, i.e. how
much worse well balanced instances can become.

Keywords: Smoothed Analysis, Binary Search Trees, Discrete Perturba-
tions, Permutations.

ACM Computing Classification: E.1 [Data Structures]: Trees; F.2.2
[Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms
and Problems—sorting and searching; G.2.2 [Discrete Mathematics] Combi-
natorics—permutations and combinations.

1 Introduction

To explain the discrepancy between average-case and worst-case behaviour of the
simplex algorithm, Spielman and Teng introduced the notion of smoothed analy-
sis [29, 32]. Smoothed analysis interpolates between average-case and worst-case
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analysis: Instead of taking the worst-case instance or, as in average-case analysis,
choosing an instance completely at random, we analyse the complexity of (worst-
case) objects subject to slight random perturbations, i.e. the expected complexity
in a small neighbourhood of (worst-case) instances.

Smoothed analysis takes into account that on the one hand a typical instance is
not necessarily a random instance and that on the other hand worst-case instances
are often artificial and rarely occur in practice.

Let C be some complexity measure. The worst-case complexity is maxx C(x),
and the average-case complexity is Ex∼∆C(x), where E denotes expectation with
respect to a probability distribution ∆ (typically the uniform distribution). The
smoothed complexity is defined as maxx Ey∼∆(x,p)C(y). Here, x is chosen by an ad-
versary and y is randomly chosen according to some probability distribution ∆(x, p)
that depends on x and a parameter p. The distribution ∆(x, p) should favour in-
stances in the vicinity of x. This means that ∆(x, p) should put almost all weight on
the neighbourhood of x, where “neighbourhood” has to be defined appropriately de-
pending on the problem considered. The smoothing parameter p denotes how strong
x is perturbed, i.e. we can view it as a parameter for the size of the neighbourhood
of x. Intuitively, for p = 0, smoothed complexity becomes worst-case complexity,
while for large p, smoothed complexity becomes average-case complexity.

For continuous problems, Gaussian perturbations seem to be a natural pertur-
bation model: they are concentrated around their mean, and the probability that
a perturbed number deviates from its unperturbed counterpart by distance d de-
creases exponentially in d. Thus, such probability distributions favour instances in
the neighbourhood of the adversarial instance. The smoothed complexity of contin-
uous problems seems to be well understood. There are, however, only few results
about smoothed analysis of discrete problems. For such problems, even the term
“neighbourhood” is often not well defined. Thus, special care is needed when defin-
ing perturbation models for discrete problems. Perturbation models should reflect
“natural” perturbations, and the probability distribution for an instance x should be
concentrated around x, particularly for small values of the smoothing parameter p.

Here, we will conduct a smoothed analysis of an ordering problem, namely the
smoothed height of binary search trees. Binary search trees are one of the most
fundamental data structures and, as such, building blocks for many advanced data
structures. The main criteria of the “quality” of a binary search tree is its height,
i.e. the length of the longest path from the root to a leaf. Unfortunately, the height
is equal to the number of elements in the worst case, i.e. for totally unbalanced
trees generated by an ordered sequence of elements. On the other hand, if a binary
search tree is chosen at random, then the expected height is only logarithmic in the
number of elements (more details will be discussed in Section 1.1). Thus, there is a
huge discrepancy between the worst-case and the average-case behaviour of binary
search trees.

We analyse what happens in between: An adversarial sequence will be perturbed
randomly and then the height of the binary search tree generated by the sequence
thus obtained is measured. Thus, our instances are neither adversarial nor com-
pletely random. As perturbation models, we consider partial permutations, partial
alterations, and partial deletions. For all three, we show tight lower and upper
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bounds. As a by-product, we obtain tight bounds for the smoothed number of
left-to-right maxima, which is the number of new maxima seen when scanning a
sequence from the left to the right, thus improving a result by Banderier et al. [4].

In smoothed analysis one analyses how fragile worst-case instances are. We
suggest examining also the dual property: Given a good (or best-case) instance,
how much can the complexity increase by slightly perturbing the instance? In other
words, how stable are best-case instances under perturbations? For binary search
trees, we show that there are best-case instances that indeed are not stable, i.e.
there are sequences that yield trees of logarithmic height, but slightly perturbing
the sequences yields trees of polynomial height.

1.1 Existing Results

Since we are concerned with smoothed analysis and binary search trees, we briefly
review both areas.

Smoothed Analysis. Santha and Vazirani introduced the semi-random model,
in which an adversary adaptively chooses a sequence of bits, each of which is cor-
rupted independently with some fixed probability [26]. They showed how to obtain
sequences of quasi-random bits from such semi-random sources. Their work inspired
research on semi-random graphs [7, 16], which can be viewed as a forerunner of the
smoothed analysis of discrete problems.

Spielman and Teng introduced smoothed analysis as a hybrid of average-case
and worst-case complexity [29, 32]. They showed that the simplex algorithm for
linear programming with the shadow vertex pivot rule has polynomial smoothed
complexity. This means that the running time of the algorithm is expected to be
polynomial in terms of the input size and the variance of the Gaussian perturbation.
Since then, smoothed analysis has been applied to a variety of fields [28], for instance
several variants of linear programming [8,31], online and other algorithms [5,17,27],
discrete optimisation [6,25], property testing [30], computational geometry [11], and
properties of moving objects [10].

Banderier, Beier, and Mehlhorn [4] applied the concept of smoothed analysis to
ordering problems. In particular, they analysed the number of left-to-right max-
ima of a sequence. Here the worst case is the sequence 1, 2, . . . , n, which yields
n left-to-right maxima. On average we expect

∑n
i=1 1/i ≈ ln n left-to-right max-

ima. Banderier et al. used the perturbation model of partial permutations, where
each element of the sequence is independently selected with a given probability of
p ∈ [0, 1] and then a random permutation on the selected elements is performed (see
Section 3.1 for a precise definition).

Banderier et al. proved that the number of left-to-right maxima under partial
permutations is O(

√

(n/p) log n) in expectation for 0 < p < 1. Furthermore, they

showed a lower bound of Ω(
√

n/p) for 0 < p ≤ 1/2.

Binary Search Trees. Given a sequence σ = (σ1, σ2, . . . , σn) of n distinct el-
ements from any ordered set, we obtain a binary search tree T (σ) by iteratively
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inserting the elements σ1, σ2, . . . , σn into the initially empty tree (this is formally
described in Section 2.2).

The study of binary search trees is one of the most fundamental problems in
computer science since they are the building blocks for a large variety of data struc-
tures (see for instance Aho et al. [1,2] and Knuth [18]). Beyond being an important
data structure, binary search trees play a central role in the analysis of algorithms.
For instance, the height of T (σ) is equal to the number of levels of recursion required
by Quicksort when sorting σ if the first element is always chosen as the pivot (see
for instance Cormen et al. [9]).

The worst-case height of a binary search tree is obviously n: just take σ =
(1, 2, . . . , n). (We define the length of a path as the number of vertices.) The ex-
pected height of the binary search tree obtained from a random permutation (with
all permutations being equally likely) has been the subject of a considerable amount
of research in the past. We briefly review some results. Let the random variable
H(n) denote the height of a binary search tree obtained from a random permuta-
tion of n elements. Robson [21] proved that EH(n) ≈ c ln(n) + o(ln(n)) for some
c ∈ [3.63, 4.3112] and observed that H(n) does not vary much from experiment to

experiment [22]. Pittel [19] proved the existence of a γ > 0 with γ = limn→∞
EH(n)
ln(n)

.

Devroye [12] then proved that limn→∞
EH(n)
ln(n)

= α with α ≈ 4.31107 being the larger

root of α ln(2e/α) = 1. The variance of H(n) was shown to be O((llog n)2) by De-
vroye and Reed [13] and by Drmota [14]. Robson [23] proved that the expectation
of the absolute value of the difference between the height of two random trees is
constant. Thus, the height of random trees is concentrated around the mean. A
climax was the result discovered independently by Drmota [15] and Reed [20] that
the variance of H(n) is actually O(1). Furthermore, Reed [20] proved that the ex-
pectation of H(n) is α ln n + β ln(ln n) + O(1) with β = 3

2 ln(α/2)
≈ 1.953. Finally,

Robson [24] proved strong upper bounds on the probability of large deviations from
the median. His results suggest that all moments of H(n) are bounded from above
by a constant.

Although the worst-case and average-case height of binary search trees are very
well understood, nothing is known in between, i.e. when the sequences are not
completely random, but the randomness is limited.

1.2 New Results

We will consider the height of binary search trees subject to slight random pertur-
bations (smoothed height), i.e. the expected height under limited randomness. The
height of a binary search tree obtained from a sequence of elements depends only on
the ordering of the elements. Therefore, one should use a perturbation model that
slightly perturbs the order of the elements of the sequence.

Perturbation Models. We consider three perturbation models (formally defined
in Section 3).

Partial permutations, introduced by Banderier et al. [4], rearrange some elements,
i.e. they randomly permute a small subset of the elements of the sequence.

The other two perturbation models are new.
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Partial alterations do not move elements, but replace some elements by new
elements chosen at random. Thus, they change the rank of the elements.

Partial deletions remove some of the elements of the sequence without replace-
ment, i.e. they shorten the input. This model turns out to be useful for analysing
the other two models.

Lower and Upper Bounds. We prove matching lower and upper bounds for
the expected height of binary search trees under all three perturbation models (Sec-
tion 6). More precisely: For all p ∈ (0, 1) and all sequences of length n, the expec-
tation of the height of a binary search tree obtained via p-partial permutation is at
most 6.7 · (1 − p) ·

√

n/p for sufficiently large n.
On the other hand, the expected height of a binary search tree obtained from

the sorted sequence via p-partial permutation is at least 0.8 · (1 − p) ·
√

n/p. This
lower bound matches the upper bound up to a constant factor.

For the number of left-to-right maxima under partial permutations, we are able
to prove an even better upper bound of 3.6 · (1 − p) ·

√

n/p for all sufficiently large

n and a lower bound of 0.4 · (1 − p) ·
√

n/p (Section 5).
All these bounds hold for partial alterations as well.
Thus, under limited randomness, the behaviour of binary search trees differs

markedly from both the worst case and the average case.
For partial deletions, we obtain (1 − p) · n both as lower and upper bound.

Smoothed Analysis and Stability. In smoothed analysis one analyses how frag-
ile worst case instances are. We suggest examining also the dual property: Given a
good (or best-case) instance, how much can the complexity increase if the instance
is perturbed slightly? In other words, how stable are best-case instances under
perturbations?

The lower and upper bound for partial deletions are straightforward. The main
reason for considering partial deletions is that we can bound the expected height
under partial alterations and permutations by the expected height under partial
deletions (Section 7). The converse holds as well, we only have to blow up the
sequences quadratically.

We exploit this when considering the stability of the perturbation models in
Section 8: We prove that partial deletions and, thus, partial permutations and
partial alterations as well are quite unstable, i.e. they can cause best-case instances
to become much worse. More precisely: There are sequences of length n that yield
trees of height O(logn), but the expected height of the tree obtained after smoothing
is nΩ(1).

2 Preliminaries

2.1 Notation

We denote by log and ln the logarithm to base 2 and e, respectively, while exp denotes
the exponential function to base e. We abbreviate the twice iterated logarithm
log ◦ log by llog. For any n ∈ N, let [n] = {1, 2, . . . , n} and [n− 1

2
] = {1

2
, 3

2
, . . . , n− 1

2
}.
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Figure 1: The binary search tree T (σ) obtained from σ = (1, 2, 3, 5, 7, 4, 6, 8). We
have height(σ) = 6.

Let σ = (σ1, . . . , σn) ∈ Sn for some ordered set S. We call σ a sequence.
Usually, we assume that all elements of σ are distinct, i.e. σi 6= σj for all i 6= j. The
length of σ is n. In most cases, σ will simply be a permutation of [n]. We denote
the sorted sequence (1, 2, . . . , n) by σn

sort. When considering partial alterations, we
define σn

sort = (0.5, 1.5, . . . , n − 0.5) instead (this will be clear from the context).
Let τ = (τ1, . . . , τt). We call τ a subsequence of σ if there are indexes i1 <

i2 < . . . < it with τj = σij for all j ∈ [t]. Let µ = {i1, . . . , it} ⊆ [n]. Then
σµ = (σi1 , . . . , σit) denotes the subsequence consisting of all elements of σ at positions
in µ. For instance, σ[k] denotes the prefix of length k of σ. In an abuse of notation,
we sometimes use σµ to mean the set of elements at positions in µ, i.e. in this case
σµ = {σi | i ∈ µ}. Whether we consider σµ to be a sequence or a set will always be
clear from the context. For µ ⊆ [n], we define µ = [n] \ µ.

2.2 Binary Search Trees and Left-to-right Maxima

Let σ = (σ1, . . . , σn) be a sequence. We obtain a binary search tree T (σ) from
σ by iteratively inserting the elements σ1, σ2, . . . , σn into the initially empty tree as
follows:

• The root of T (σ) is the first element σ1 of σ.

• Let σ< = σ{i|σi<σ1} be σ restricted to elements smaller than σ1. The left
subtree of the root σ1 of T (σ) is obtained inductively from σ<.

Analogously, let σ> = σ{i|σi>σ1} be σ restricted to elements greater than σ1.
The right subtree of the root σ1 of T (σ) is obtained inductively from σ>.

Figure 1 shows an example. We denote the height of T (σ) by height(σ), i.e.
height(σ) is the number of nodes on the longest path from the root to a leaf.

The element σi is called a left-to-right maximum of σ if σi > σj for all
j ∈ [i − 1]. Let ltrm(σ) denote the number of left-to-right maxima of σ. We have
ltrm(σ) ≤ height(σ) since the number of left-to-right maxima of a sequence is equal
to the length of the right-most path in the tree T (σ).

2.3 Probability Theory

We denote probabilities by P and expectations by E. To bound large deviations
from the mean of binomially distributed random variables, we will frequently use
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Chernoff bounds [3, Corollary A.7]. Let p ∈ (0, 1) and let X1, X2, . . . , Xk be mutually
independent random variables with P(Xi = 1) = 1 − P(Xi = 0) = p and X =
∑k

i=1 Xi. Clearly, E(X) = pk. The probability that X deviates by more than a
from its expectation is bounded from above by

P(|X − pk| > a) < 2 · exp

(

−2a2

k

)

. (2.1)

We will frequently use the following lemma.

Lemma 2.1. Let k ∈ N, α > 1 and p ∈ [0, 1]. Assume that we have mutually
independent random variables X1, . . . , Xk as above. Then

P
(
(X > αpk) ∨ (X < α−1pk)

)
≤ 2 · exp

(
−2(1 − α−1)2p2k

)
.

Proof. Since α−1 ≥ 1−α−1 for all α ∈ R, we apply Formula 2.1 with a = (1−α−1)·pk
and obtain

P
(
(X > αpk) ∨ (X < α−1pk)

)
≤ P

(
|X − pk| > (1 − α−1)pk

)

< 2 · exp

(

−2(1 − α−1)p2k2

k

)

= 2 · exp
(
−2(1 − α−1)2p2k

)
.

3 Perturbation Models for Permutations

Since we deal with ordering problems, we need perturbation models that slightly
change a given permutation of elements. There seem to be two natural possibilities:
Either change the positions of some elements, or change the elements themselves.

Partial permutations implement the first option: A subset of the elements is
randomly chosen, and then these elements are randomly permuted.

The second possibility is realised by partial alterations. Again, a subset of the
elements is chosen randomly. These elements are then replaced by random elements.

The third model, partial deletions, also starts by randomly choosing a subset of
the elements. These elements are then removed without replacement.

For all three models, we obtain the random subset as follows. Let σ be a se-
quence of length n and p ∈ [0, 1] be a probability. Every element of σ is marked
independently of the others with probability p. More formally: The random variable
Mn

p is a random subset of [n] with P(i ∈ Mn
p ) = p for all i ∈ [n]. For any µ ⊆ [n]

we have P(Mn
p = µ) = p|µ| · (1 − p)|µ|.

Let µ ⊆ [n] be the set of marked positions. If i ∈ µ, then we say that position i
and element σi are marked. Thus, σµ is the sequence (or set) of all marked elements.

By height-perm
p
(σ), height-alter

p
(σ), and height-del

p
(σ) we denote the

expected height of the binary search tree T (σ′), where σ′ is the sequence σ′ ob-
tained from σ by performing a p-partial permutation, alteration, and deletion, re-
spectively (all three models will be defined formally in the following). Analogously,
by ltrm-perm

p
(σ), ltrm-alterp(σ), and ltrm-delp(σ) we denote the expected

number of left-to-right maxima of the sequence σ′ obtained from σ via p-partial
permutation, alteration, and deletion, respectively.
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Figure 2: An example of a partial permutation. (a) Top: The sequence σ =
(1, 2, 3, 5, 7, 4, 6, 8); Figure 1 shows T (σ). The first, fifth, sixth, and eighth ele-
ment is (randomly) marked, thus µ = Mn

p = {1, 5, 6, 8}. Bottom: The marked
elements are randomly permuted. The result is the sequence σ ′ = Π(σ, µ), in this
case σ′ = (4, 2, 3, 5, 7, 8, 6, 1). (b) T (σ′) with height(σ′) = 4.

3.1 Partial Permutations

The notion of p-partial permutations was introduced by Banderier et al. [4].
Given a random subset Mn

p of [n], the elements at positions in Mn
p are permuted

according to a permutation drawn uniformly at random: Let σ = (σ1, . . . , σn) and
µ ⊆ [n]. Then the sequence σ′ = Π(σ, µ) is a random variable with the following
properties:

• Π chooses a permutation π of µ uniformly at random and

• sets σ′
π(i) = σi for all i ∈ µ and σ′

i = σi for all i /∈ µ.

Example 3.1. Figure 2 shows an example.

By varying p, we can interpolate between the average and the worst case: for
p = 0, no element is marked and σ′ = σ, while for p = 1, all elements are marked
and σ′ is a random permutation of the elements of σ with all permutations being
equally likely.

Let us show that partial permutations are indeed a suitable perturbation model
by proving that the distribution of Π(σ, Mn

p ) favours sequences close to σ. To do
this, we have to introduce a metric on sequences. Let σ and τ be two sequences of
length n. Without loss of generality, we assume that both are permutations of [n].
Otherwise, we replace the jth smallest element of either sequence by j for j ∈ [n].
We define the distance d(σ, τ) between σ and τ as d(σ, τ) = |{i | σi 6= τi}|, thus d
is a metric. Note that d(σ, τ) = 1 is impossible since there are no two permutations
that differ in exactly one position.

The distribution of Π(σ, Mn
p ) is symmetric around σ with respect to d, i.e. the

probability that Π(σ, Mn
p ) = τ for some fixed τ depends only on d(σ, τ).

Lemma 3.2. Let p ∈ (0, 1), and let σ and τ be permutations of [n] with d = d(σ, τ).
Then

P
(
Π(σ, Mn

p ) = τ
)

=
n−d∑

k=0

pk+d · (1 − p)n−d−k ·
(

n − d

k

)

· 1

(k + d)!
.
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Proof. All d positions where σ and τ differ must be marked. This happens with
probability pd. The probability that k of the remaining positions are marked is
(

n−d
k

)
· pk · (1− p)n−d−k. Thus, the probability that k + d positions are marked, d of

which are positions where σ and τ differ, is
(

n−d
k

)
· pk+d · (1 − p)n−d−k.

If k+d positions are marked overall, the probability that the “right” permutation
is chosen is 1/(k + d)!.

Let Pd =
∑n−d

k=0 pk+d·(1−p)n−d−k ·
(

n−d
k

)
· 1
(k+d)!

be the probability that Π(σ, Mn
p ) =

τ for a fixed sequence τ with distance d to σ. Then Pd tends exponentially to
zero with increasing d. Thus, the distribution of Π(σ, Mn

p ) is highly concentrated
around σ.

Lemma 3.3. Let p ∈ (0, 1). There exists a positive constant c < 1 such that for all
sufficiently large n, we have P2 ≤ c · P0 and Pd+1 ≤ c · Pd for all d with 2 ≤ d < n.

Proof. By omitting the last summand, we obtain

Pd ≥
n−d−1∑

k=0

pk+d · (1 − p)n−d−k ·
(

n − d

k

)

· 1

(k + d)!
.

Thus,

Pd+1

Pd
≤

∑n−d−1
k=0 pk+d+1 · (1 − p)n−(d+1)−k ·

(
n−(d+1)

k

)
· 1

(k+d+1)!
∑n−d−1

k=0 pk+d · (1 − p)n−d−k ·
(

n−d
k

)
· 1

(k+d)!

≤ max
0≤k≤n−d−1

(
pk+d+1 · (1 − p)n−d−1−k ·

(
n−d−1

k

)
· 1

(k+d+1)!

pk+d · (1 − p)n−d−k ·
(

n−d
k

)
· 1

(k+d)!

)

≤ p

1 − p
· max

0≤k≤n−d−1

(
n − d − k

(n − d) · (k + d + 1)

)

≤ p

1 − p
· 1

d + 1
.

The second inequality holds because
∑

i∈I ai/
∑

i∈I bi ≤ maxi∈I ai/bi for any set I
and nonnegative numbers ai and bi (i ∈ I). This proves the lemma for all d with
d + 1 > 1−p

p
.

What remains is to consider d ≤ 1−p
p

− 1 = 1
p
− 2. Fix α > 1 arbitrarily with

αp < 1. Then Pd+1 =
∑n−d−1

k=0 pk+d+1 · (1− p)n−d−1−k ·
(

n−d−1
k

)
· 1

(k+d+1)!
is dominated

by the summands with k < αpn as follows: Let

P
′
d+1 =

∑

0≤k<αpn

pk+d+1 · (1 − p)n−d−1−k ·
(

n − d − 1

k

)

· 1

(k + d + 1)!
,

then Pd+1 ≤ (1 − o(1)) · P
′
d+1. Furthermore, we define

P
′
d =

∑

0≤k<αpn

pk+1+d · (1 − p)n−d−k−1 ·
(

n − d

k + 1

)

· 1

(k + 1 + d)!
≤ Pd .
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Now we have
Pd+1

Pd
≤ (1 − o(1)) · P

′

d+1

P′

d
and

P
′
d+1

P′
d

≤ max
0≤k<αpn

(
pk+d+1 · (1 − p)n−d−1−k ·

(
n−d−1

k

)
· 1

(k+d+1)!

pk+1+d · (1 − p)n−d−k−1 ·
(

n−d
k+1

)
· 1

(k+1+d)!

)

≤ max
0≤k<αpn

(
k + 1

n − d

)

=
αpn

n − d
≤ αp + o(1)

for sufficiently large n. The last inequality holds because d ≤ 1
p
− 2 ∈ O(1). Thus,

there exists a c < 1 with Pd+1/Pd ≤ αp + o(1) ≤ c for sufficiently large n. Finally,
the proof above yields P2/P0 = P2·P1

P1·P0
≤ c2 ≤ c < 1, which completes the proof.

3.2 Partial Alterations

Let us now introduce p-partial alterations. For this perturbation model, we
restrict the sequences of length n to be permutations of [n − 1

2
] = {1

2
, 3

2
, . . . , n− 1

2
}.

Every element at a position in Mn
p is replaced by a real number drawn uniformly

and independently at random from [0, n) to obtain a sequence σ ′. All elements in
σ′ are distinct with probability one.

Instead of considering permutations of [n − 1
2
], we could also consider permuta-

tions of [n] and draw the random values from [ 1
2
, n + 1

2
). This would not change the

results. Another possibility would be to consider permutations of [n] and draw the
random values from [0, n + 1). This would not change the results by much either.
However, for technical reasons, we consider partial alterations as introduced above.

Example 3.4. Let σ = (0.5, 1.5, 2.5, 4.5, 6.5, 3.5, 5.5, 7.5) (which is the sequence
of Example 3.1 with 0.5 subtracted from each element) and µ = {1, 5, 6, 8}. By
replacing the marked elements with random numbers, we may obtain the sequence
(3.96..., 1.5, 2.5, 4.5, 7.22..., 7.95..., 5.5, 0.67...).

Like partial permutations, partial alterations interpolate between the worst case
(p = 0) and the average case (p = 1). Partial alterations are somewhat easier to
analyse: The majority of results on the average-case height of binary search trees
is actually not obtained by considering random permutations. Instead, the binary
search trees are grown from a sequence of n random variables that are uniformly
and independently drawn from [0, 1). This corresponds to partial alterations for
p = 1. There is no difference between partial permutations and partial alterations
for p = 1. This appears to hold for all p in the sense that the lower and upper
bounds obtained for partial permutations and partial alterations are equal for all p.

The metric introduced above for partial permutations does not yield meaningful
results for alterations: replacing a single element can change the rank of all elements.
One possible metric is the edit distance: The distance of σ and τ is the minimum
number of insertions, deletions, and substitutions by which we obtain a sequence σ ′

from σ with σ′
i < σ′

j if and only if τi < τj for all i and j.

3.3 Partial Deletions

As the third perturbation model, we introduce p-partial deletions: Again, we
have a random marking Mn

p as in Section 3.1. Then we delete all marked elements

10



to obtain the sequence σMn
p
.

Example 3.5. The sequence σ and the marking µ as in Example 3.1 yield the
sequence (2, 3, 5, 6).

Partial deletions do not really perturb a sequence: any ordered sequence remains
ordered even if elements are deleted. The main reason for considering partial dele-
tions is that they are easy to analyse when considering the stability of perturbation
models (Section 8). The results obtained for partial deletions then carry over to
partial permutations and partial alterations since the expected heights with respect
to these three models are closely related (Section 7).

4 Basic Properties

In this section, we state some basic properties of binary search trees (Section 4.1),
partial permutations (Section 4.2), and partial alterations (Section 4.3) that we will
exploit in subsequent sections.

4.1 Properties of Binary Search Trees

We start by introducing a new measure for the height of binary search trees. Let
µ ⊆ [n] and let σ be a sequence of length n. The µ-restricted height of T (σ),
denoted by height(σ, µ), is the maximum number of elements of σµ on a root-to-leaf
path in T (σ).

Lemma 4.1. For all sequences σ of length n and µ ⊆ [n],

height(σ) ≤ height(σ, µ) + height(σ, µ) and
height(σ, µ) ≤ height(σµ) .

Proof. Consider any path of maximum length from the root to a leaf in T (σ). This
path consists of at most height(σ, µ) elements of σµ and at most height(σ, µ) elements
of σµ, which proves the first part.

For the second part, let a and b be elements of σµ that do not lie on the same path
from the root to a leaf in T (σµ). Assume that a < b. Then there exists a c prior to a
and b in σµ with a < c < b. Thus, a and b do not lie on the same root-to-leaf path in
the tree T (σ) either. Now consider any root-to-leaf path of T (σ) with height(σ, µ)
elements of σµ. Then all these elements from lie on the same root-to-leaf path in
T (σµ), which proves the second part of the lemma.

Of course we have height(σ, µ) ≤ height(σ) for all σ and µ. But height(σµ) ≤
height(σ), which would imply height-delp(σ) ≤ height(σ), does not hold in gen-
eral: Consider σ = (c, a, b, d, e) (we use letters and their alphabetical ordering in-
stead of numbers for readability) and µ = {2, 3, 4, 5}, then σµ = (a, b, d, e). Thus,
height(σ) = 3 and height(σµ) = 4. This will be investigated further in Section 8,
when we consider the stability of the perturbation models.

To bound the smoothed height from above, we will use the following lemma,
which is an immediate consequence of Lemma 4.1.

11



Lemma 4.2. For all sequences σ of length n and µ ⊆ [n], we have

height(σ) ≤ height(σµ) + height(σ, µ) .

Proof. We have height(σ) ≤ height(σ, µ) + height(σ, µ) ≤ height(σµ) + height(σ, µ)
according to Lemma 4.1.

We can state equivalent lemmas for left-to-right maxima. Let σ be a sequence
of length n and µ ⊆ [n]. Then ltrm(σ, µ) denotes the µ-restricted number of
left-to-right maxima of σ, i.e. the number of elements σi such that i ∈ µ and σi

is a left-to-right maximum of σ. We omit the proof of the following lemma since it
is almost identical to the proofs of the lemmas above.

Lemma 4.3. Let σ be a sequence of length n and µ ⊆ [n]. Then

ltrm(σ) ≤ ltrm(σ, µ) + ltrm(σ, µ) ,
ltrm(σ, µ) ≤ ltrm(σµ) , and
ltrm(σ) ≤ ltrm(σµ) + ltrm(σ, µ) .

4.2 Properties of Partial Permutations

Let us now prove some properties of partial permutations. The three lemmas proved
in this section are crucial for estimating the smoothed height and the smoothed
number of left-to-right maxima under partial permutations. In the next section,
we will prove counterparts of these lemmas for partial alterations that will play a
similar role in estimating the height under partial alterations.

We start by proving that the expected height under partial permutations depends
merely on the elements that are left unmarked. The marked elements contribute
at most O(log n) to the height. Thus, when estimating the expected height in the
subsequent sections, we can restrict ourselves to considering the elements that are
left unmarked.

Lemma 4.4. Let σ be a sequence of length n and let p ∈ (0, 1). Let µ ⊆ [n] be a
random set of marked positions and σ′ = Π(σ, µ) be the random sequence obtained
from σ via p-partial permutation. Then

height-permp(σ) = E(height(σ′)) ≤ E (height(σ′, µ)) + O(log n) .

Proof. We have height(σµ) ∈ O(log n) since the elements at positions in µ are ran-
domly permuted. Then the lemma follows from Lemma 4.2.

And again we obtain an equivalent lemma for left-to-right maxima.

Lemma 4.5. Under the assumptions of Lemma 4.4, we have

ltrm-permp(σ) ≤ E (ltrm(σ′, µ)) + O(log n) .

The following lemma gives an upper bound for the probability that no element
in a fixed set of elements is permuted to a position in a fixed set of positions.
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Lemma 4.6. Let p ∈ (0, 1), α > 1, let n ∈ N be sufficiently large, and let σ be a
sequence of length n with elements from [n]. Let σ ′ = Π(σ, Mn

p ).

Let ` = a
√

n/p and k = b
√

n/p with a, b ∈ Ω((polylog n)−1)∩O(polylog n). Let
A = σ′

[`] be the set of the first ` elements of σ′, and let B ⊆ [n] be any subset with

|B| = k.
Then P(A ∩ B = ∅) ≤ exp(−ab/α).

Proof. We choose β with 1 < β3 < α arbitrarily. According to Lemma 2.1, the
probability P that

• |Mn
p ∩ [`]| < β−1p`, i.e. that too few of the first ` positions are marked,

• |σMn
p
∩ B| < β−1pk, i.e. that too few of the elements of B are marked, or

• |Mn
p | > βpn, i.e. that too many positions are marked overall

is O(exp(−nε)) for an appropriately chosen ε > 0 by Lemma 2.1. This holds because
a, b ∈ Ω((polylog n)−1).

From now on, we assume that at least β−1p` of the first ` positions of σ are
marked, at least β−1pk elements in B are marked, and at most βpn positions are
marked overall. The probability that then no element from B is in A is at most

(
βpn − β−1p`

βpn

)β−1pk

=

(

1 − `

β2n

)β−1pk

=





(

1 − `

β2n

) β2n
`





`
β2n

·β−1pk

≤ exp

(

− `

β2n
· β−1pk

)

= exp

(

−ab

β3

)

.

Overall, P(A ∩ B = ∅) ≤ exp(−ab/β3) + P ≤ exp(−ab/α) for sufficiently large n
since a, b ∈ O(polylog n).

4.3 Properties of Partial Alterations

Partial alterations possess roughly the same properties as partial permutations. We
state the lemmas and restrict ourselves to pointing out the differences in the proofs.

Lemma 4.7. Let σ be a sequence of length n with elements from [n − 1
2
] and let

p ∈ (0, 1). Let σ′ be the random sequence obtained from σ via p-partial alteration
and µ be the random set of marked positions. Then

height-alterp(σ) ≤ E(height(σ′, µ)) + O(log n) and
ltrm-alterp(σ) ≤ E(ltrm(σ′, µ)) + O(log n) .

The following lemma is the counterpart of Lemma 4.6.

Lemma 4.8. Let p ∈ (0, 1), α > 1, let n ∈ N be sufficiently large, and let σ be a
sequence with elements from [n − 1

2
]. Let σ′ be the random sequence obtained from

σ by performing a p-partial alteration.
Let ` = a

√

n/p and k = b
√

n/p with a, b ∈ Ω((polylog n)−1)∩O(polylog n). Let
A = σ′

[`] and B = [x, x + k) ⊆ [0, n) for some x.

Then P(A ∩ B = ∅) ≤ exp(−ab/α).
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Proof. The proof is similar to the proof of Lemma 4.6. Choose β arbitrarily with
1 < β < α. Assume that at least β−1p` of the first ` positions of σ are marked.
Then the probability that no element in A assumes a value in B is at most

(
n − k

n

)β−1p`

=

((

1 − k

n

)n
k

)ab/β

≤ exp(−ab/β) .

The remainder of the proof proceeds as in the proof of Lemma 4.6.

5 Tight Bounds for the Number of Left-To-Right

Maxima

5.1 Partial Permutations

Theorem 5.1. Let p ∈ (0, 1). Then for all sufficiently large n and for all sequences
σ of length n,

ltrm-permp(σ) ≤ 3.6 · (1 − p) ·
√

n/p .

Proof. The main idea for proving this theorem is to estimate the probability that
one of the k largest elements of σ is among the first k elements, which would bound
the number of left-to-right maxima by 2k.

According to Lemma 4.5, it suffices to show

E(ltrm(σ′, µ)) ≤ C · (1 − p) ·
√

n/p

for some C < 3.6, where µ ⊆ [n] is the random set of marked positions and
σ′ is the sequence obtained by randomly permuting the elements of σµ. Then

ltrm-permp(σ) ≤ C(1− p)
√

n/p + O(log n) ≤ 3.6(1− p)
√

n/p. We assume without
loss of generality that σ is a permutation of [n].

Let Kc = c
√

n/p for c ∈ [log n]. In this and the following proofs, we assume that
Kc is a natural number for the sake of readability. If Kc is not a natural number,
then we can replace Kc by dKce. The proofs remain valid.

Choose α with 1 < α < 1.001. Let P denote the probability that less than
α−1pKc of the first Kc positions are marked or that less than α−1pKc of the Kc

largest elements are marked for some c ∈ [log n] or that more than αpn elements are
marked overall. Then, by Lemma 2.1, P tends exponentially to zero as n increases.

From now on, we assume that for all c ∈ [log n], at least α−1pKc of the first
Kc positions and of the Kc largest elements are marked. Furthermore, we assume
that at most αpn positions are marked overall. In this case, we say that the par-
tial permutation is partially successful. If a partial permutation is not partially
successful, we bound the number of left-to-right maxima by n.

We call σ′ c-successful for c ∈ [log n] if one of the Kc largest elements n, n −
1, . . . , n − Kc + 1 is among the first Kc elements in σ′.

Assume that σ′ is c-successful and that m ∈ {n−Kc+1, . . . , n} is among the first
Kc elements of σ′. The only unmarked elements that can contribute to ltrm(σ ′, µ)
are those that are among the first Kc positions and those that are larger than m.
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All other unmarked elements are smaller than m and located behind m in σ ′, thus
they are no left-to-right maxima. The expected number of unmarked elements larger
than n − Kc plus the expected number of unmarked positions among the first Kc

positions is at most 2 · (1 − p) · Kc = Qc. Hence, we have E(ltrm(σ′, µ)) ≤ Qc if σ′

is c-successful.
Let c ∈ [log n]. The probability that a partially successful partial permutation is

not c-successful is at most exp(−c2/α) according to Lemma 4.6. In particular, the
probability that σ′ is not (log n)-successful is at most P ′ = exp(−(log n)2/α). If σ′

is not (log n)-successful, we bound the number of left-to-right maxima by n.
If we restrict ourselves to partially successful partial permutations, we have

P(ltrm-permp(σ) > Qc) ≤ exp(−c2/α) .

Hence, we can bound ltrm(σ′, µ) from above by

log n
∑

c=0

Qc+1 · P(σ′ is not c-successful but (c + 1)-successful)
︸ ︷︷ ︸

≤P(σ′ is not c-successful)

+n · (P + P ′)

≤ 2 · (1 − p) ·
√

n/p ·
∑

c∈N

(c + 1) · e− c2

α

︸ ︷︷ ︸

< 1.8 for α < 1.001

+n · (P + P ′)

≤ C · (1 − p) ·
√

n/p

for some C < 3.6, which proves the theorem.

The following lemma is an improvement of the lower bound proof for the number
of left-to-right maxima under partial permutations presented by Banderier et al. [4].
We obtain a lower bound with a much larger constant that holds for all p ∈ (0, 1);
the lower bound provided by Banderier et al. holds only for p ≤ 1/2.

Lemma 5.2. Let p ∈ (0, 1), α > 1, and c > 0. Then for all sufficiently large n,
there exist sequences σ of length n with

ltrm-permp(σ) ≥ exp(−c2α) · c · (1 − p) ·
√

n/p .

Proof. Let Kc = c ·
√

n/p and let σ = (n−Kc +1, n−Kc +2, . . . , n, 1, 2, . . . , n−Kc).
We start with a sketch of the proof: The probability that none of the first Kc

elements is moved further to the front is bounded from below by exp(−c2α) for any
fixed α > 1. In such a case, all unmarked elements among the first Kc elements are
left-to-right maxima, and there are (1 − p) · Kc such elements in expectation.

Choose β arbitrarily with 1 < β3 < α. Let P denote the probability that more
than βpKc of the first Kc elements or less than β−1pn of the remaining n − Kc

elements are selected. P tends exponentially to zero as n increases (Lemma 2.1).
Let µ be the set of marked positions and let µc = µ ∩ [Kc] be the set of marked

positions among the first Kc positions, µc = {i1, . . . , ix} with i1 < i2 < . . . < ix,
where x = |µc| is the number of such positions. Let y = |µ \ µc| be the number
of remaining positions. Let f be a random permutation of µ. We say that f is
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successful if f(i) > i for all i ∈ µc. Thus, under a successful permutation, all
marked elements in {n − Kc + 1, . . . , n} are moved further to the back.

If f is successful, then all Kc − x unmarked elements in {n − Kc + 1, . . . , n}
are left-to-right maxima. Provided that at most βpKc of the first Kc elements are
marked, i.e. x ≤ βpKc, the expectation of Kc − x is at least (1 − p) · Kc.

Let us bound the probability from below that the random permutation f of µ
is successful for a given µ: For ix, y positions are allowed and x positions are not
allowed; for ix−1, y positions are allowed (all in µ \µc plus one for position ix minus
one for position f(ix)) and x − 1 positions are not allowed; . . . ; for i1, y positions
are allowed and one position is not allowed. Thus, the probability that the random
permutation is successful is at least
(

y

y + x

)x

=
((

1 − x

y + x

) y+x
x

︸ ︷︷ ︸

≥e−1·(1− x
y+x

)

) x2

y+x ≥ exp

((

ln

(

1 − x

y + x

)

− 1

)

· x2

y + x

)

.

Provided that x ≤ βpKc and x + y ≥ y ≥ β−1pn, we obtain a probability that the
random permutation is successful of at least

exp

((

ln

(

1 − βpKc

β−1pn

)

− 1

)

· β2p2K2
c

β−1pn

)

= exp

((

ln

(

1 − β2c√
pn

)

− 1

)

· β3c2

)

= Q · exp(−β3c2)

for Q =
(
1 − β2c√

pn

)β3c2
, which tends to one as n increases. Thus, with a probability

of at least (1 − P ) · Q · exp(−β3c2), all unmarked elements of {Kc + 1, . . . , n} are
left-to-right maxima. Furthermore, we have (1 − P ) · Q · exp(−β3c2) ≥ exp(−c2α)
for sufficiently large n. Since the expectation of the number of unmarked elements
among the first Kc elements is at least (1 − p) · Kc, the lemma is proved.

The term exp(−c2α) · c assumes its maximum for c = 1/
√

2α. Thus, we obtain
the strongest lower bound from Lemma 5.2 by choosing α close to 1 and c = 1/

√
2α.

This yields the following theorem.

Theorem 5.3. For all p ∈ (0, 1) and all sufficiently large n, there exists a sequence
σ of length n with

ltrm-permp(σ) ≥ 0.4 · (1 − p) ·
√

n/p .

Theorem 5.3 also yields the same lower bound for height-permp(σ) since the
number of left-to-right maxima of a sequence is a lower bound for the height of the
binary search tree obtained from that sequence. We can, however, prove a stronger
lower bound for the smoothed height of binary search trees (Theorem 6.5).

A consequence of Lemma 5.2 is that there is no constant c such that the number
of left-to-right maxima is at most c · (1 − p) ·

√

n/p with high probability, i.e. with
a probability of at least 1 − n−Ω(1). Thus, the bounds proved for the expected
tree height or the number of left-to-right maxima cannot be generalised to bounds
that hold with high probability. A bound for the tree height that holds with high
probability can be obtained from Lemma 4.6, as we will show in Theorem 6.3.
Clearly, this bound holds for the number of left-to-right maxima as well.
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5.2 Partial Alterations

We obtain the same upper bound for the expected number of left-to-right maxima
under partial alterations.

Theorem 5.4. Let p ∈ (0, 1). Then for all sufficiently large n and for all sequences
σ of length n (where σ is a permutation of [n − 1

2
]), we have

ltrm-alterp(σ) ≤ 3.6 · (1 − p) ·
√

n/p .

Proof. The main difference between the proof of this theorem and the proof of
Theorem 5.1 is that we have to use Lemma 4.8 instead of Lemma 4.6.

The sequence σ′ obtained from σ via p-partial alteration is called c-successful
if at least one of the first Kc elements of σ′ lies in the interval [n − Kc, n). The
remainder of the proof proceeds in the same way as the proof of Theorem 5.1.

Let us now prove the counterpart for partial alterations of Lemma 5.2.

Lemma 5.5. Let p ∈ (0, 1), α > 1, and c > 0. Then for all sufficiently large n,
there exist sequences σ of length n with

ltrm-alterp(σ) ≥ exp(−c2α) · c · (1 − p) ·
√

n/p .

Proof. Let Kc = c ·
√

n/p. Let σ = (n−Kc + 1
2
, n−Kc + 3

2
, . . . , n− 1

2
, 1

2
, 3

2
, . . . , n−

Kc − 1
2
). Choose β arbitrarily with 1 < β < α. Let P denote the probability that

more than βpKc of the first Kc positions are marked. By Lemma 2.1, P tends
exponentially to zero as n increases.

Let µc be the set of marked positions among the first Kc positions. Let x = |µc|
and µc = {i1, . . . , ix} with i1 < i2 < . . . < ix. We have σij = n − Kc + ij − 1

2
for all

j ∈ [x]. Let σ′ be the sequence obtained from σ by replacing all marked elements
with random numbers from [0, n). We say that σ′ is successful if σ′

ij
≤ n − Kc for

all j ∈ [x]. If σ′ is successful, then all Kc − x unmarked elements among the first
Kc elements of σ are left-to-right maxima.

The probability that σ′ is successful is at least
(

n − Kc

n

)x

=
((

1 − Kc

n

) n
Kc

︸ ︷︷ ︸

≥e−1·(1−Kc
n

)

)xKc
n ≥ exp

((

ln

(

1 − Kc

n

)

− 1

)

· xKc

n

)

.

Provided that x ≤ βpKc, we obtain a probability that σ′ is successful of at least

exp

((

ln

(

1 − βpKc

n

)

− 1

)

· βpK2
c

n

)

= exp

((

ln

(

1 − βc√
pn

)

− 1

)

· βc2

)

= Q · exp(−βc2)

for Q =
(
1− βc√

pn

)βc2
, which tends to one as n increases. Thus, with a probability of

at least (1− P ) ·Q · exp(−βc2), all unmarked elements among the first Kc elements
are left-to-right maxima. The expected number of unmarked elements among the
first Kc elements is at least (1 − p) · Kc. Furthermore, for sufficiently large n, we
have (1 − P ) · Q · exp(−βc2) ≥ exp(−αc2), which proves the lemma.
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From the above lemma, we obtain the same lower bound for the number of left-
to-right maxima as for partial permutations, again by choosing α close to 1 and
c = 1/

√
2α.

Theorem 5.6. For all p ∈ (0, 1) and all sufficiently large n, there exists a sequence
σ of length n with

ltrm-alterp(σ) ≥ 0.4 · (1 − p) ·
√

n/p .

As for partial permutations, a consequence of Lemma 5.5 is that we cannot
achieve a bound of O((1 − p) ·

√

n/p) that holds with high probability for the
number of left-to-right maxima or the height of binary search trees, but we can show
that the height after p-partial alteration is O(

√

(n/p) · log n) with high probability
(Theorem 6.7).

6 Tight Bounds for the Height of Binary Search

Trees

6.1 Partial Permutations

Let us now prove one of the main results of this work, namely an upper bound for
the expected height of binary search trees obtained from sequences under partial
permutations.

Theorem 6.1. Let p ∈ (0, 1). Then for all sufficiently large n and all sequences σ
of length n, we have

height-permp(σ) ≤ 6.7 · (1 − p) ·
√

n/p .

Proof. The idea is to divide the sequence into blocks B1, B2, . . ., where Bd is of size
cd2
√

n/p for some c > 0. Each block Bd is further divided into d4 parts A1
d, . . . , A

d4

d ,

each consisting of cd−2
√

n/p elements. Assume that on every root-to-leaf path in
the tree obtained from the perturbed sequence, there are elements of at most two
such Ai

d for every d. Then the height can be bounded from above by

∞∑

d=1

2 · cd−2
√

n/p
︸ ︷︷ ︸

size of an Ai
d

= (cπ2/3)
√

n/p .

The probability for such an event is roughly O
(
exp(−c2)2/

(
1 − exp(−c2)

))
. We

obtain the upper bound claimed in the theorem mainly by carefully applying this
bound and by exploiting the fact that only a fraction of (1 − p) of the elements are
unmarked. Marked elements contribute at most O(log n) to the expected height of
the tree.

According to Lemma 4.4, it suffices to show

E(height(σ′, µ)) ≤ C · (1 − p) ·
√

n/p
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for some fixed C < 6.7, where µ ⊆ [n] is the random set of marked positions and σ ′

is the sequence obtained by randomly permuting the elements of σµ. Then

height-permp(σ) ≤ C · (1 − p) ·
√

n/p + O(log n) ≤ 6.7 · (1 − p) ·
√

n/p

for sufficiently large n.
Choose α arbitrarily with 1 < α < 1.01. Without loss of generality, we assume

that σ is a permutation of [n].
We define

D(d) =

d−1∑

i=1

i2 =
1

3
·
(
d − 1

)
·
(
d − 1

2

)
· d .

Then D(d) ≥ d3/8 for d ≥ 2.
Let c ∈ [log n] and Kc = c ·

√

n/p. We divide a prefix of the sequence σ into
blocks B1, B2, . . . , B(log n)2 . The block Bd consists of d2Kc elements: B1 contains the
elements of σ at the first Kc positions, B2 contains the elements of σ at the next
4Kc positions, and so on. Thus,

Bd = σ[D(d+1)·Kc] \ σ[D(d)·Kc] .

Let B =
⋃(log n)2

d=1 Bd be the set of elements that are contained in any Bd. Let
d′ = (log n)2+1 and D′ = D(d′) ≥ (log n)6/8. We have |B| = D′·Kc ≥ 1

8
·(log n)6·Kc.

Every block Bd is further divided into d4 subsets A1
d, . . . , A

d4

d of elements as
follows: A1

d contains the Kc/d
2 smallest elements of Bd, A2

d contains the Kc/d
2 next

smallest elements of Bd, . . . , and Ad4

d contains the Kc/d
2 largest elements of Bd.

Figure 3(a) illustrates the division of σ into blocks B1, B2, . . . , B(log n)2 and subsets
Ai

d for d ∈ [(log n)2] and i ∈ [d2].
Finally, we divide [n] into log n · √np subsets C1, . . . , Clog n·√np with

Cj =

{√

n/p

log n
· (j − 1) + 1, . . . ,

√

n/p

log n
· j
}

.

Thus, C1 contains the (log n)−1 ·
√

n/p smallest numbers of [n], C2 contains the

(log n)−1 ·
√

n/p next smallest numbers of [n], . . . , and Clog n·√np contains the

(log n)−1 ·
√

n/p largest elements of [n].
Let η = 1 + n−1/6. Then

η−1 =
1

1 + n−1/6
= 1 − n−1/6

1 + n−1/6
≥ 1 − n−1/6 . (6.1)

We call a set of k positions or elements partially successful in µ and σ ′ if at
least η−1pk and at most ηpk elements of this set are marked. We say that µ and σ ′

are partially successful if the following properties are fulfilled:

• for all c ∈ [log n], d ∈ [(log n)2], and i ∈ [d4], Ai
d is partially successful in µ

and σ′, and

• for all j ∈ [log n
√

np], Cj is partially successful in µ and σ′.
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B3B2B1 B4

︸ ︷︷ ︸

B4 is divided into A1

4
, A2

4
, . . .

D(4) · Kc elements preceding B4

︷ ︸︸ ︷
the 42

· Kc elements of B4

︷ ︸︸ ︷

A
4
4A

1
4A

3
4A

1
4A

2
4A

5
4A

4
4A

4
4 A

3
4A

2
4

(a) Dividing the first D′ · Kc elements of σ into blocks B1, . . . , B(log n)2 . The subset
A1

4 contains the Kc/4 smallest elements of B4, . . . , and A16
4 contains the Kc/4 largest

elements of B4. (For readability, B4 is divided into only five subsets in the illustration.)

︸ ︷︷ ︸

the first D(4) · Kc positions of σ
′

︸ ︷︷ ︸

the location of B4 in σ

B4

︷ ︸︸ ︷

A
4
4A

1
4A

3
4A

1
4A

2
4A

5
4A

4
4A

4
4 A

3
4A

2
4

(b) A subset Ai
4 is c-successful if at least one element of Ai

4 is among the first D(4) ·Kc

elements of σ′. The block B4 is c-successful if all Ai
4 are c-successful.

Figure 3: The division of σ into blocks and subsets (shown here for B4).

There are only polynomially many sets of elements that must be partially successful,
and every such set is of cardinality Ω

(√

n/p/ polylog n
)
. Hence, there exists some

ε > 0 such that the probability that µ and σ are partially successful is O(exp(−nε))
according to Lemma 2.1. Let P denote this probability. If µ and σ ′ are not partially
successful, we bound the height of T (σ′) by n.

From now on, we assume that µ and σ′ are partially successful. When speaking
about partial success, we occasionally do not mention σ ′ or µ.

We call a subset Ai
d c-successful if at least one element of Ai

d is permuted to
one of the D(d) · c ·

√

n/p positions that precede Bd. Thus, for all d ∈ [(log n)2],
d ≥ 2, and i ∈ [d4], we have

P(Ai
d is not successful) ≤ exp(−d−2cD(d)cα−1)

≤ exp(−c2d/(8α))

according to Lemma 4.6: There are d−2c
√

n/p elements in Ai
d and D(d)c

√

n/p
positions that precede Bd.

We call a block Bd (for d ≥ 2) c-successful if all subsets A1
d, . . . , A

d4

d of Bd are c-
successful. The probability that Bd is not c-successful is at most d4 ·exp(−c2d/(8α))
since there are d4 subsets A1

d, . . . , A
d4

d of Bd. Figure 3 illustrates c-success.
A subset Cj is called c-successful if at least one element of Cj is among the first

D′c
√

n/p positions of σ′. The probability that a fixed Cj is not c-successful is at

most exp(− cD′

α log n
) ≤ exp(− c(log n)5

8α
). The probability that any Cj is not c-successful
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is bounded from above by

log n · √np · exp

(

−c(log n)5

8α

)

≤ d′4 · exp

(

−c2d′

8α

)

(6.2)

for sufficiently large n.
Finally, we say that σ′ is c-successful if

• all blocks B1, B2, . . . , B(log n)2 are c-successful and

• all subsets C1, . . . , Clog n
√

np are c-successful.

Let c ≥ 5. The probability that σ′ is not c-successful is at most

∑

2≤d≤(log n)2

d4 · exp
(
−c2d/(8α)

)
+ P(some Cj is not c-successful)

≤
∑

2≤d≤(log n)2+1

d4 · exp
(
−c2d/(8α)

)
≤
∑

d≥2

(
exp
(
−c2/(16α)

))d

=
exp
(
−c2/(16α)

)2

1 − exp
(
−c2/(16α)

) = E(c, α) . (6.3)

The first inequality holds due to Formula 6.2, the second inequality holds since
c ≥ 5. If σ′ is not (log n)-successful, which happens with a probability of at most
E(log n, α) ≤ exp(−(log n)2/(16α)), we bound the height of T (σ′) by n.

Let Qc =
(
c · π2

3
+ 2

log n

)
· (1 − η−1p) ·

√

n/p.

Lemma 6.2. If σ′ is c-successful, then height(σ′, µ) ≤ Qc.

Proof. Consider the way in which T (σ′) is built iteratively from σ′. Let d ≥ 2. After
inserting the first D(d) · Kc elements, the partial tree T̃ grown so far contains at
least one element of Ai

d for every i ∈ [d4]. Except for elements of T̃ , there cannot be
elements from both Bj− and Bj+ for j− < i < j+ that lie on the same root-to-leaf

path of T (σ′): Let x ∈ Bi be part of T̃ , then all elements of Bj− that are not part

of T̃ are to the left of x in T (σ′), while all elements of Bj+ that are not part of T̃
are to the right of x in T (σ′).

It follows that except for elements of T̃ , only elements of two consecutive parts
Ai

d and Ai+1
d can lie on the same root-to-leaf path of T (σ′). For every i, there are at

most 2 · d−2 · Kc such elements.
For every d and i, there are at most (1 − η−1p) · d−2 · Kc unmarked elements in

Ai
d since σ′ is partially successful. Thus for every d, at most 2 · (1− η−1p) · d−2 ·Kc

unmarked elements of Bd are on the same root-to-leaf path in T (σ′).
Let B = [n] \ B be the set of elements of σ that are not contained in any Ai

d.
There cannot be unmarked elements from both Ck−∩B and Ck+∩B for k− < j < k+

on the same root-to-leaf path in σ′ since there is at least one element of Cj among

the first D′ ·Kc elements of σ′. Thus, there are at most 2 ·(1−η−1p) ·
√

n/p

log n
unmarked

elements of B on the same root-to-leaf path in T (σ′).
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The maximum number of unmarked elements on any root-to-leaf path in T (σ ′)
is thus at most

∑

1≤d≤(log n)2

2 · (1 − η−1p) · cd−2 ·
√

n/p + 2 · (1 − η−1p) · (log n)−1 ·
√

n/p

≤
(

2c ·
∑

d≥1

d−2 + 2/ log n

)

· (1 − η−1p) ·
√

n/p = Qc .

According to Lemma 6.2 and Formula 6.3, we have P (height(σ ′, µ) > Qc) ≤
E(c, α) for 5 ≤ c ≤ log n. Hence, we can bound the expectation of height(σ ′, µ)
from above by

Q5 +
∑

5≤c≤log n

Qc+1 · P(σ′ is not c-successful but (c + 1)-successful)
︸ ︷︷ ︸

≤P(σ′ is not c-successful)

+ n · (P + E(log n, α))
︸ ︷︷ ︸

=X

≤ (1 − η−1p)
︸ ︷︷ ︸

≤(1−p)+n−1/6p

·
√

n/p ·
(

5 +
∞∑

c=5

(
π2

3
(c + 1) +

2

log n

)

· E(c, α)

)

︸ ︷︷ ︸

=Y ∈O(1)

+X

≤ (1 − p) ·
√

n/p
︸ ︷︷ ︸

=Z

·Y + n2/6 · √p · Y + X
︸ ︷︷ ︸

∈o(Z)

= Z ·
(
5 +

π2

3
·

< 0.5 for α < 1.01
︷ ︸︸ ︷
∑

c≥5

(c + 1) · E(c, α)

︸ ︷︷ ︸

= C < 6.7 for α < 1.01

)
+ o(Z) ≤ C · (1 − p) ·

√

n/p

for sufficiently large n and α < 1.01. The second inequality holds due to Formula 6.1.
The equality holds because Z ·∑∞

c=5
2E(c,α)

log n
∈ o(Z). This completes the proof.

An upper bound for the height of binary search trees under partial permutation
and partial alteration that holds with high probability can be obtained by applying
Lemmas 4.6.

Theorem 6.3. Let p ∈ (0, 1), α > 1, c > 0, and let n ∈ N be sufficiently large. Let
σ be a sequence of length n and let σ′ be the sequence obtained from σ by performing
a p-partial permutation. Then

P

(

height(σ′) > c ·
√

(n/p) · log n
)

≤ n−(c/3)2/α+0.5 .

Proof. Let c̃ = c/3. Let Kc̃ = c̃ ·
√

(n/p) · log n. Let B1 be the set of the Kc̃ smallest
elements of σ, let B2 be the set of the Kc̃ next smallest elements of σ, . . . , and let
Bn/Kc̃

be the set of the Kc̃ largest elements of σ.
If at least one element of every Bi is among the first Kc̃ elements of σ′, then we

can bound the height of T (σ′) as follows.
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Lemma 6.4. Assume that for every i, at least one element of Bi is among the first
Kc̃ elements of σ′.

Then height(σ′) ≤ c ·
√

(n/p) · log n.

Proof. Consider the way in which T (σ′) is built iteratively from σ′. After inserting
the first Kc̃ elements, the partial tree T̃ grown so far has a height of at most Kc̃.
The tree T̃ contains at least one element of every Bi. Except for elements of T̃ ,
there cannot be elements from both Bj− and Bj+ for j− < i < j+ that lie on the

same root-to-leaf path of T (σ′): Let x ∈ Bi be part of T̃ , then all elements of Bj−

that are not part of T̃ are to the left of x in T (σ′), while all elements of Bj+ that

are not part of T̃ are to the right of x in T (σ′).
It follows that except for elements of T̃ , only elements of two consecutive blocks

Bi and Bi+1 can lie on the same root-to-leaf path of T (σ′). For every i, there are at
most 2 ·Kc̃ such elements, yielding a height of at most 2 ·Kc̃. Together with the first
Kc̃ elements, which build T̃ , we obtain height(σ′) ≤ 3 · Kc̃ = c ·

√

(n/p) · log n.

What remains is to estimate the probability that there is an i such that no
element of Bi is among the first Kc̃ elements. For every i, the probability that no
element of Bi is among the first Kc̃ elements in σ′ is at most exp(−(c̃2/α) · log n) =
n−c̃2/α by Lemma 4.6. Thus, the probability that there is any Bi such that no
element of Bi is among the first Kc̃ elements of σ′ is at most

(n/Kc̃) · n−c̃2/α = c̃−1 ·
√

p/ log n · n−c̃2/α+0.5 ≤ n−c̃2/α+0.5

for sufficiently large n, which completes the proof.

From the previous theorem, we immediately obtain that the probability that the
height is greater than 3.7 ·

√

(n/p) · log n is at most 1/n.
As a counterpart to Theorem 6.1, we prove the following lower bound. Interest-

ingly, the lower bound is obtained for the sorted sequence, which is not the worst
case for the expected number of left-to-right maxima under partial permutation;
the expected number of left-to-right maxima of the sequence obtained by partially
permuting the sorted sequence is only logarithmic [4].

Theorem 6.5. For all p ∈ (0, 1) and all sufficiently large n ∈ N, we have

height-permp(σ
n
sort) ≥ 0.8 · (1 − p) ·

√

n/p .

Proof. The proof is similar to the proof of Lemma 5.2, except that we consider the
sorted sequence.

Let again Kc = c ·
√

n/p for c > 0. Let σ′ be the sequence obtained from σn
sort

via p-partial permutation. We say that σ′ is c-successful if all marked elements
among the first Kc elements of σn

sort are permuted further to the back. According to
the proof of Lemma 5.2, we have

P(σ′ is c-successful) ≥ exp(−c2α)

for arbitrarily chosen α > 1 and sufficiently large n. If σ ′ is c-successful, then
height(σ′) is at least the number of unmarked elements among the first Kc elements.
Let Q = (1 − p) ·

√

n/p for short. Analogously to Lemma 5.2, we obtain

P (height(σ′) ≥ cQ) ≥ exp(−c2α)
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for sufficiently large n. We compute a lower bound for the expected height of T (σ ′)
by considering c-success for all c ∈ {0.1, 0.2, . . . , 9.9, 10} = C. To use more values
for c does not make much sense since the changes in the result are negligible. We
obtain

E(height(σ′)) ≥ Q ·
∑

c∈C

c · P(cQ ≤ height(σ′) < (c + 0.1) · Q)

≥ Q ·
∑

c∈C

0.1 · P(height(σ′) ≥ cQ)

≥ Q ·
∑

c∈C

0.1 · exp(−c2α)

︸ ︷︷ ︸

≥ 0.8 for α < 1.01

≥ 0.8 · Q

for sufficiently large n and α < 1.01, which proves the theorem.

6.2 Partial Alterations

As for the number of left-to-right maxima, we obtain the same upper bound for the
height of binary search trees under partial alterations. The following theorem is
obtained via a proof similar to the proof of Theorem 6.1.

Theorem 6.6. Let p ∈ (0, 1). Then for all sufficiently large n and all sequences σ
of length n (where σ is a permutation of [n − 1

2
]),

height-alterp(σ) ≤ 6.7 · (1 − p) ·
√

n/p .

Proof. The main difference between the proof of this theorem and the proof of
Theorem 6.1 is that we have to use Lemma 4.8 instead of Lemma 4.6. The blocks
Bd and Cj and the subsets Ai

d are defined in the same way. Now for each subset Ad
i

we have numbers ai
d = bmin Ad

i c and bi
d = dmax Ad

i e. We say that Ad
i is c-successful

if at least one of the first D(d) · c ·
√

n/p elements is from the interval [ai
d, b

i
d). The

term c-successful for blocks Bd is defined in the same way as in the previous proof.
For subsets Cj, the term c-successful is defined just as for Ad

i . The remainder of the
proof proceeds along the same lines as the proof of Theorem 6.1.

We also get the same bound for the height of binary search trees under partial
alterations that holds with high probability.

Theorem 6.7. Let p ∈ (0, 1), α > 1, c > 0, and let n ∈ N be sufficiently large. Let
σ be a sequence of length n with elements from [n − 1

2
] and let σ′ be the sequence

obtained from σ by performing a p-partial alteration. Then

P

(

height(σ′) > c ·
√

(n/p) · log n
)

≤ n−(c/3)2/α+0.5 .

Proof. The proof is almost identical to the proof of Theorem 6.3; the two main
differences are that we have to use Lemma 4.8, and that we have to estimate the
probability that for every i, at least one of the first Kc elements is in the interval
[(i − 1) · Kc, i · Kc).
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Again, we immediately obtain that the probability that the height is larger than
3.7 ·

√

(n/p) · log n is at most 1/n.
We obtain the same lower bound for the height of binary search trees under

partial alterations. Again, the lower bound is obtained for the sorted sequence.

Theorem 6.8. For all p ∈ (0, 1) and all sufficiently large n ∈ N,

height-alterp(σ
n
sort) ≥ 0.8 · (1 − p) ·

√

n/p .

Proof. The proof is almost identical to the proof of Theorem 6.5. The only difference
is that we have to use Lemma 5.5 instead of Lemma 5.2.

7 Comparing Partial Deletions with Partial Per-

mutations and Alterations

Partial deletions turn out to be the worst of the three models: Trees are usually
expected to be higher under partial deletions than under partial permutations or
alterations, even though they contain fewer elements. The expected height under
partial deletions yields upper bounds (up to an additional O(logn) term) for the
expected height under partial permutations and alterations. Furthermore, we prove
that lower bounds for the expected height under partial deletions yield slightly
weaker lower bounds for permutations and alterations. The main advantage of
partial deletions over partial permutations and partial alterations is that partial
deletions are much easier to analyse.

For the sake of completeness, we start by providing matching upper and lower
bounds for the height of binary search trees under partial deletions.

Theorem 7.1. For all p ∈ [0, 1], n ∈ N, and sequences σ of length n,

height-delp(σ) ≤ (1 − p) · n .

Moreover,
height-delp(σ

n
sort) = (1 − p) · n .

Proof. Let σ′ be the sequence obtained from σ via p-partial deletion. Then σ ′

consists of (1 − p) · n elements in expectation. The number of elements is an upper
bound for the number of left-to-right maxima.

The second claim holds obviously.

The following lemma is an immediate consequence of Lemmas 4.4, 4.5, and 4.7,
we therefore omit its proof.

Lemma 7.2. For all sequences σ of length n and p ∈ [0, 1],

height-permp(σ) ≤ height-delp(σ) + O(log n) and
ltrm-permp(σ) ≤ ltrm-delp(σ) + O(log n) .

If σ is a permutation of [n − 1
2
], then

height-alterp(σ) ≤ height-delp(σ) + O(log n) and
ltrm-alterp(σ) ≤ ltrm-delp(σ) + O(logn) .
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Thus, we can bound the expected height under partial permutations or alter-
ations from above by the expected height under partial deletions. The converse is
not true; this follows from the upper bounds for the height of binary search trees
unter partial permutations and partial alterations (Theorems 6.1 and 6.6) and the
lower bound under partial deletions (Theorem 7.1). But we can bound the expected
height under partial deletions by the expected height under partial permutations or
alterations by padding the sequences considered.

Lemma 7.3. Let p ∈ (0, 1) be fixed and let σ be a sequence of length n with
height(σ) = d and height-delp(σ) = d′.

Then there exists a sequence σ̃ of length O(n2) with height(σ̃) = d + O(log n)
and height-permp(σ̃) ∈ Ω(d′).

Proof. Without loss of generality, we assume that σ is a permutation of [n]. The
idea is to attach a tail of sufficiently many elements greater than n to the sequence
such that all marked elements that are greater than or equal to n will be permuted
to this tail. Thus, the overall structure of the remaining elements from [n] will be
as if a partial deletion has been carried out.

Choose K = n2p and construct σ̃ from σ as follows: the first n items of σ̃ are
just σ; we call this the head of σ̃. The last K − n items of σ̃, which we call the
tail of σ̃, are numbers greater than n such that these numbers build a tree of height
O(log(K − n)) = O(log n). With a constant probability, say, c, all elements marked
in the head are permuted into the tail (see the proof of Lemma 5.2).

Consider the tree obtained from the first n elements after partial permutation
under the assumption that all marked head elements are now in the tail. This
tree is almost identical to the tree obtained from σ via partial deletion when the
same elements are marked. The only difference is that the tree contains some ele-
ments greater than n, which only increase the length of the right-most path. Thus,
height-permp(σ̃) is at least cd′, which proves the lemma.

The following is the analogue of the above lemma for partial alterations. Since
its proof is similar to the proof of the previous lemma (the only difference is that
we have to use the proof of Lemma 5.5 instead of Lemma 5.2), we omit it.

Lemma 7.4. Let p ∈ (0, 1) be fixed and let σ be a sequence of length n with elements
from [n − 1

2
]. Let d = height(σ) and d′ = height-delp(σ).

Then there exists a sequence σ̃ of length O(n2) with height(σ̃) = d + O(log n)
and height-alterp(σ̃) ∈ Ω(d′).

8 The (In-)Stability of Perturbations

Having shown that worst-case instances become much better when smoothed, we
now provide a family of best-case instances for which smoothing results in an expo-
nential increase in height.

We consider the following family of sequences:

• σ(1) = (1).
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2k+1

3 · 2k2k

T (σ(k)) T (2k+σ
(k)) T (2·2k+σ

(k)) T (3·2k+σ
(k))

(a) T (σ(k+2)).

2k

T (2k+σ
(k))T (σ(k))

3 · 2k

T (2·2k+σ
(k)) T (3·2k+σ

(k))

(b) Removing the root 2k+1 roughly doubles the
height.

T (σ(k))

T (2k+σ
(k))

T (2·2k+σ
(k))

T (3·2k+σ
(k))

(c) Additionally removing the roots 2k and
3·2k of T (σ(k+1)) and T (2k+1+σ(k+1)), re-
spectively, increases the height by a factor
of four.

Figure 4: Removing root elements increases the height and the number of left-to-
right maxima.

• σ(k+1) = (2k, σ(k), 2k + σ(k)), where c + σ = (c + σ1, . . . , c + σn) for a sequence
σ of length n.

For instance, σ(2) = (2, 1, 3) and σ(3) = (4, 2, 1, 3, 6, 5, 7). Let n = 2k − 1. Then
σ(k) contains the numbers 1, 2, . . . , n, and we have height(σ(k)) = ltrm(σ(k)) = k ∈
Θ(log n).

Let us estimate the expected number of left-to-right maxima after partial dele-
tion, thus obtaining a lower bound for the expected height of the binary search tree.
Deleting the first element of σ(k) roughly doubles the number of left-to-right maxima
in the resulting sequence. This is the basic idea behind the following theorem; the
idea is illustrated in Figure 4.

Theorem 8.1. Let p ∈ (0, 1). Then for all k ∈ N,

ltrm-delp(σ
(k)) =

1 − p

p
·
(
(1 + p)k − 1

)
.

Proof. Let `(k) = ltrm-delp(σ
(k)) for short. The root 2k−1 is deleted with proba-

bility p. Then the expected number of left-to-right maxima is just the expectation
for the left subtree plus the expectation for the right subtree since all elements in
the left subtree are smaller and occur earlier than all elements in the right subtree.
Both expectations are `(k − 1). If the root is not deleted, we expect 1 + `(k − 1)
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left-to-right maxima: One is the root and `(k− 1) are expected in the right subtree.
The left subtree does not contribute any other maxima since all elements in the left
subtree are smaller than the root. We have `(1) = 1 − p since the single element
will be deleted with probability p. Overall, we have

`(k) = p · 2 · `(k − 1) + (1 − p) · (1 + `(k − 1))

= (1 + p) · `(k − 1) + (1 − p) = (1 − p) ·
k−1∑

i=0

(1 + p)i

=
1 − p

p
·
(
(1 + p)k − 1

)
.

Corollary 8.2. For all p ∈ (0, 1) and all k ∈ N,

height-delp(σ
(k)) ≥ 1 − p

p
·
(
(1 + p)k − 1

)
.

We conclude that there are some best-case instances that are quite fragile under
partial deletions: From logarithmic height they “jump” via smoothing to a height of
Ω(nlog(1+p)). (We have 1−p

p
· ((1+p)k −1) ∈ Θ(nlog(1+p)).) Thus, the height increases

exponentially.
We can transfer this result to partial permutations and partial alterations due

to Lemmas 7.3 and 7.4. Therefore, we consider sequences σ̃(k) which are obtained
from σ(k) as described in the proof of Lemma 7.3.

Corollary 8.3. Let p ∈ (0, 1) be fixed. Then

height(σ̃(k)) ∈ O(logn) ,
height-permp(σ̃

(k)) ∈ Ω
(
nε
)

, and
height-alterp(σ̃

(k)) ∈ Ω
(
nε
)

for some fixed ε > 0.

For the sake of completeness, let us mention that the number of left-to-right-
maxima is maximally fragile, at least asymptotically for any fixed p: There are
sequences with one left-to-right maximum for which the expected number of left-
to-right maxima after partial permutation is Ω(

√
n). The same holds for partial

alterations. For partial deletions, the number can jump from 1 to Ω(n). The proofs
are straightforward: Take an adversarial sequence of length n − 1 for proving lower
bounds for the expected number of left-to-right maxima under any of these pertur-
bation models and add an n at the front of the sequence. For partial permutations,
this n will be marked and moved behind the first Θ(

√

n/p) elements with constant
probability. For the other two models, the proof is similar.

9 Conclusions

We have analysed the height of binary search trees obtained from perturbed se-
quences and obtained asymptotically tight lower and upper bounds of roughly
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Θ(
√

n) for the height under partial permutations and alterations. This stands in
contrast to both the worst-case and the average-case height of n and Θ(log n), re-
spectively. Thus, the height of binary search trees under limited randomness differs
significantly from both the average and the worst case. One direction for future
work is of course improving the constants of the bounds.

Interestingly, the sorted sequence σn
sort turns out to be the worst-case for the

smoothed height of binary search trees in the sense that the lower bounds are ob-
tained for σn

sort (Theorems 6.5 and 6.8). This is in contrast to the fact that the
expected number of left-to-right maxima of σn

sort under p-partial permutations is
roughly O(logn) [4]. We believe that for the height of binary search trees, σn

sort is
indeed the worst case.

Conjecture 9.1. For all p ∈ [0, 1], all n ∈ N, and every sequence σ of length n,

height-permp(σ) ≤ height-permp(σ
n
sort) and

height-alterp(σ) ≤ height-alterp(σ
n
sort) .

We performed experiments to estimate the constants in the bounds for the height
of binary search trees. For all n ∈ {20 000, 40 000, . . . , 500 000} and p ∈ {0.1, 0.25},
we performed 5 000 partial permutations of σn

sort. We did the same thing for n ∈
{100 000, 500 000} and p ∈ {0.05, 0.10, . . . , 0.95}. (See Appendix A for more de-
tails.) The results led to the following conjecture. Proving this conjecture would
immediately improve our lower bound. Provided that Conjecture 9.1 holds as well,
we would obtain an improved upper bound for the height of binary search trees
under partial permutations.

Conjecture 9.2. For p ∈ (0, 1) and sufficiently large n,

height-permp(σ
n
sort) = (γ + o(1)) · (1 − p) ·

√

n/p

for some constant γ ≈ 1.8.

Throughout this work, the bounds obtained for partial permutations and partial
alterations are equal. Moreover, the proofs used to obtain these bounds are almost
identical. We suspect that this is always true for binary search trees.

Conjecture 9.3. For all p ∈ [0, 1] and σ,

height-permp(σ) ≈ height-alterp(σ) .

In addition to partial permutations and alterations, one could consider other
perturbation models for sequences. From a more abstract point of view, a future
research direction would be to characterise the properties of perturbation models
that lead to upper or lower bounds that are asymptotically different from the average
or worst case.

Apart from lower and upper bounds, we have also examined the stability of
perturbations, i.e. how much higher a tree can become if the underlying sequence is
perturbed. It turns out that all three perturbation models are unstable.

Finally, we are interested in generalising these results to other problems based
on permutations, like sorting algorithms (Quicksort under partial permutations has
already been investigated by Banderier et al. [4]), routing algorithms, and other al-
gorithms and data structures. Hopefully, this will shed some light on the discrepancy
between the worst-case and average-case complexity of these problems.
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ming. In Michael Jünger and Volker Kaibel, editors, Proc. of the 11th Int.
Conf. on Integer Programming and Combinatorial Optimization (IPCO), vol-
ume 3509 of Lecture Notes in Computer Science, pages 276–290. Springer, 2005.

[26] Miklos Santha and Umesh V. Vazirani. Generating quasi-random sequences
from semi-random sources. Journal of Computer and System Sciences,
33(1):75–87, 1986.
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A Experimental Results

For n ∈ {20 000, 40 000, . . . , 500 000} and p ∈ {0.1, 0.25}, we have randomly per-
formed 5 000 p-partial permutations on σn

sort. We then have estimated the expected
height height-permp(σ

n
sort) as the average height of the trees generated by the se-

quences thus obtained. Figure 5 shows the results compared to 1.8 · (1− p) ·
√

n/p.
We have performed the same experiment for n ∈ {100 000, 500 000} and p ∈

{0.05, 0.10, . . . , 0.95}. Figure 6 shows the results, again compared to 1.8 · (1 − p) ·
√

n/p.
These experiments lead us to Conjecture 9.2.
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Figure 5: Experimental data for n ∈ {20 000, 40 000, . . . , 500 000} and p ∈ {0.1, 0.25}
compared to 1.8 · (1 − p) ·

√

n/p.
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Figure 6: Experimental data, in dependence of p, for p ∈ {0.05, 0.10, . . . , 0.95} and
n ∈ {100 000, 500 000} compared to 1.8 · (1 − p) ·

√

n/p.

34

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092



