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Abstract

Binary search trees are one of the most fundamental data structures. While
the height of such a tree may be linear in the worst case, the average height
with respect to the uniform distribution is only logarithmic. The exact value
is one of the best studied problems in average-case complexity.

We investigate what happens in between by analysing the smoothed height
of binary search trees: Randomly perturb a given (adversarial) sequence and
then take the expected height of the binary search tree generated by the
resulting sequence. As perturbation models, we consider partial permutations,
partial alterations, and partial deletions.

On the one hand, we prove tight lower and upper bounds of roughly
Θ((1− p) ·

√

n/p) for the expected height of binary search trees under partial
permutations and partial alterations, where n is the number of elements and
p is the smoothing parameter. This means that worst-case instances are rare
and disappear under slight perturbations. On the other hand, we examine
how much a perturbation can increase the height of a binary search tree, i.e.
how much worse well balanced instances can become.

Keywords: Smoothed Analysis, Binary Search Trees, Discrete Perturba-
tions, Permutations.

1 Introduction

To explain the discrepancy between average-case and worst-case behaviour of the
simplex algorithm, Spielman and Teng introduced the notion of smoothed analy-
sis [34]. Smoothed analysis interpolates between average-case and worst-case analy-
sis: Instead of taking the worst-case instance or, as in average-case analysis, choosing
an instance completely at random, we analyse the complexity of (worst-case) ob-
jects subject to slight random perturbations, i.e. the expected complexity in a small
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neighbourhood of (worst-case) instances. Smoothed analysis takes into account that
on the one hand typical instances are not necessarily random instances and that on
the other hand worst-case instances are often artificial and rarely occur in practice.

Let C be some complexity measure. The worst-case complexity is maxx C(x),
and the average-case complexity is Ex∼∆C(x), where E denotes expectation with
respect to a probability distribution ∆. The smoothed complexity is defined as
maxx Ey∼∆(x,p)C(y). Here, x is chosen by an adversary and y is randomly chosen
according to some probability distribution ∆(x, p) that depends on the adversarial
instance x and a smoothing parameter p. The distribution ∆(x, p) should favour in-
stances in the vicinity of x. This means that ∆(x, p) should put almost all weight on
the neighbourhood of x, where “neighbourhood” has to be defined appropriately de-
pending on the problem considered. The smoothing parameter p denotes how strong
x is perturbed, i.e. we can view it as a parameter for the size of the neighbourhood
of x. Intuitively, for p = 0, smoothed complexity becomes worst-case complexity,
while for large p, smoothed complexity becomes average-case complexity.

For continuous problems, Gaussian perturbations seem to be a natural pertur-
bation model: they are concentrated around their mean, and the probability that
a perturbed number deviates from its unperturbed counterpart by distance d de-
creases exponentially in d. Thus, such probability distributions favour instances in
the neighbourhood of the adversarial instance. There are, however, only few results
about smoothed analysis of discrete problems. For such problems, even the term
“neighbourhood” is often not well defined. Thus, special care is needed when defin-
ing perturbation models for discrete problems. Perturbation models should reflect
“natural” perturbations, and the probability distribution for an instance x should be
concentrated around x, particularly for small values of the smoothing parameter p.

Here, we will conduct a smoothed analysis of an ordering problem, namely the
smoothed height of binary search trees. Binary search trees are one of the most
fundamental data structures and, as such, building blocks for many advanced data
structures. The main criteria of the “quality” of a binary search tree is its height,
i.e. the length of the longest path from the root to a leaf. Unfortunately, the height
is equal to the number of elements in the worst case, i.e. for totally unbalanced trees
generated by an ordered sequence of elements. On the other hand, if a binary search
tree is chosen at random, then the expected height is only logarithmic in the number
of elements (more details will be discussed in Section 1.1.2). Thus, there is a huge
discrepancy between the worst-case and the average-case behaviour of binary search
trees.

We analyse what happens in between: An adversarial sequence will be perturbed
randomly and then the height of the binary search tree generated by the perturbed
sequence is measured. Thus, our instances are neither adversarial nor completely
random. As perturbation models, we consider partial permutations, partial alter-
ations, and partial deletions. For all three, we show tight lower and upper bounds.
As a by-product, we obtain tight bounds for the smoothed number of left-to-right
maxima, which is the number of new maxima seen when scanning a sequence from
the left to the right, thus improving a result by Banderier et al. [3].

In smoothed analysis one analyses how fragile worst-case instances are. We
suggest examining also the dual property: Given a good (or best-case) instance,
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how much can the complexity increase by slightly perturbing the instance? In other
words, how stable are best-case instances under perturbations? For binary search
trees, we show that there are best-case instances that indeed are not stable, i.e.
there are sequences that yield trees of logarithmic height, but slightly perturbing
the sequences yields trees of polynomial height.

1.1 Existing Results

Since we are concerned with smoothed analysis and binary search trees, we briefly
review both areas.

1.1.1 Smoothed Analysis

Santha and Vazirani introduced the semi-random model, in which an adversary
adaptively chooses a sequence of bits, each of which is corrupted independently with
some fixed probability [28]. They showed how to obtain sequences of quasi-random
bits from such semi-random sources. Their work inspired research on semi-random
graphs [7, 17], which can be viewed as a forerunner of the smoothed analysis of
discrete problems.

Spielman and Teng introduced smoothed analysis as a hybrid of average-case
and worst-case complexity [34]. They showed that the simplex algorithm for linear
programming with the shadow vertex pivot rule has polynomial smoothed complex-
ity. This means that the running time of the algorithm is expected to be polynomial
in terms of the input size and the variance of the Gaussian perturbation. Since then,
smoothed analysis has been applied to a variety of fields [31], for instance several
variants of linear programming [8, 12, 33], online and other algorithms [5, 18, 29],
discrete optimisation [6, 27], and other topics [4, 10, 11, 32].

Banderier, Beier, and Mehlhorn [3] applied the concept of smoothed analysis to
ordering problems. In particular, they analysed the number of left-to-right maxima
of a sequence. Here the worst case is the sequence 1, 2, . . . , n, which yields n left-
to-right maxima. On average, we expect

∑n
i=1 1/i ≈ ln n left-to-right maxima.

Banderier et al. used the perturbation model of partial permutations, where each
element of the sequence is independently selected with a given probability of p ∈
[0, 1] and then a random permutation on the selected elements is performed (see
Section 3.1 for a precise definition). Banderier et al. proved that the number of left-
to-right maxima under partial permutations is O(

√

(n/p) log n) in expectation for

0 < p < 1. Furthermore, they showed a lower bound of Ω(
√

n/p) for 0 < p ≤ 1/2.

1.1.2 Binary Search Trees

Given a sequence σ = (σ1, σ2, . . . , σn) of n distinct elements from any ordered set, we
obtain a binary search tree T (σ) by iteratively inserting the elements σ1, σ2, . . . , σn

into the initially empty tree (this is formally described in Section 2.2).
The study of binary search trees is one of the most fundamental problems in

computer science since they are the building blocks for a large variety of data struc-
tures (see for instance Aho et al. [1,2] and Knuth [19]). Beyond being an important
data structure, binary search trees play a central role in the analysis of algorithms.
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For instance, the height of T (σ) is equal to the number of levels of recursion required
by Quicksort when sorting σ if the first element is always chosen as the pivot (see
for instance Cormen et al. [9]). Somehow related to the smoothed analysis of binary
search trees is Seidel and Aragon’s analysis of a randomised strategy for balancing
binary search trees [30]: Their strategy remains efficient even if only a few random
bits are available.

The worst-case height of a binary search tree is obviously n: just take σ =
(1, 2, . . . , n). (We define the length of a path as the number of vertices.) The
expected height of the binary search tree obtained from a random permutation
(with all permutations being equally likely) has been the subject of a considerable
amount of research in the past. Let the random variable H(n) denote the height of a
binary search tree obtained from a random permutation of n elements. Robson [23]
proved that EH(n) ≈ c ln(n) + o(ln(n)) for some c ∈ [3.63, 4.3112] and observed
that H(n) does not vary much from experiment to experiment [24]. Pittel [21]

proved the existence of an α with α = limn→∞
EH(n)
ln(n)

. Devroye [13] then proved that

α ≈ 4.31107 is the larger root of α ln(2e/α) = 1. The variance of H(n) was shown to
be O((log log n)2) by Devroye and Reed [14] and by Drmota [15]. Robson [25] proved
that the expectation of the absolute value of the difference between the height of
two random trees is constant. Thus, the height of random trees is concentrated
around the mean. Drmota [16] and Reed [22] discovered that the variance of H(n)
is actually O(1). Furthermore, Reed [22] proved that the expectation of H(n) is
α ln n + β ln(ln n) + O(1) with β = 3

2 ln(α/2)
≈ 1.953. Finally, Robson [26] proved

strong upper bounds on the probability of large deviations from the median. His
results suggest that all moments of H(n) are bounded from above by a constant.

Although the worst-case and average-case height of binary search trees are very
well understood, nothing is known in between, i.e. when the sequences are not
completely random, but the randomness is limited.

1.2 New Results

We will consider the height of binary search trees subject to slight random pertur-
bations (smoothed height), i.e. the expected height under limited randomness.

1.2.1 Perturbation Models

The height of a binary search tree obtained from a sequence of elements depends only
on the ordering of the elements. Therefore, we use perturbation models that slightly
perturb the order of the elements of the sequence. We consider three perturbation
models (formally defined in Section 3).

Partial permutations, introduced by Banderier et al. [3], rearrange some elements,
i.e. they randomly permute a small subset of the elements.

The other two perturbation models are new. Partial alterations do not move
elements, but replace some elements by new elements chosen at random. Thus, they
change the rank of the elements. Partial deletions remove some of the elements of
the sequence without replacement, i.e. they shorten the input. This model turns
out to be useful for analysing the other two models.
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1.2.2 Lower and Upper Bounds

We prove matching lower and upper bounds for the expected height of binary search
trees under all three perturbation models (Section 6). More precisely: For all
smoothing parameters p with p ≤ 1−ε and p ≥ nε−1, for an arbitrary but fixed ε > 0,
and all sequences of length n, the expectation of the height of a binary search tree
obtained via p-partial permutation is at most 6.7 · (1− p) ·

√

n/p for all sufficiently
large n. In particular, the bounds hold for all constant values of p ∈ (0, 1). On the
other hand, the expected height of a binary search tree obtained from the sorted
sequence via p-partial permutation is at least 0.8 · (1 − p) ·

√

n/p, which matches
the upper bound up to a constant factor.

For the number of left-to-right maxima under partial permutations, we are able
to prove an even better upper bound of 3.6 · (1 − p) ·

√

n/p for all sufficiently large

n and a lower bound of 0.6 · (1 − p) ·
√

n/p (Section 5).
All these bounds hold for partial alterations as well.
Thus, under limited randomness, the behaviour of binary search trees differs

significantly from both the worst case and the average case.

1.2.3 Smoothed Analysis and Stability

In smoothed analysis one analyses how fragile worst case instances are. We suggest
examining also the dual property: Given a good (or best-case) instance, how much
can the complexity increase if the instance is perturbed slightly? In other words,
how stable are best-case instances under perturbations?

The lower and upper bound for partial deletions are straightforward. The main
reason for considering partial deletions is that we can bound the expected height
under partial alterations and permutations by the expected height under partial
deletions (Section 7). The converse holds as well, we only have to blow up the
sequences quadratically.

We exploit this when considering the stability of the perturbation models in
Section 8: We prove that partial deletions and, thus, partial permutations and
partial alterations as well are quite unstable, i.e. they can cause best-case instances
to become much worse. More precisely: There are sequences of length n that yield
trees of height O(logn), but the expected height of the tree obtained after smoothing
is nΩ(1).

2 Preliminaries

2.1 Notation

We denote by log and ln the logarithm to base 2 and e, respectively, while exp
denotes the exponential function to base e. For n ∈ N, let [n] = {1, 2, . . . , n}.

Let σ = (σ1, . . . , σn) ∈ Sn for some ordered set S. We call σ a sequence.
Usually, we assume that all elements of σ are distinct, i.e. σi 6= σj for all i 6= j. The
length of σ is n. In most cases, σ will simply be a permutation of [n]. We denote
the sorted sequence (1, 2, . . . , n) by σn

sort.
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Figure 1: T (σ) obtained from σ = (1, 2, 3, 5, 7, 4, 6, 8). We have height(σ) = 6.

Let τ = (τ1, . . . , τt). We call τ a subsequence of σ if there are indexes i1 <
i2 < . . . < it with τj = σij for all j ∈ [t]. Let µ = {i1, . . . , it} ⊆ [n]. Then
σµ = (σi1 , . . . , σit) denotes the subsequence consisting of all elements of σ at positions
in µ. For instance, σ[k] denotes the prefix of length k of σ. When it is clear from
the context, we sometimes use σµ to mean the set of elements at positions in µ, i.e.
in this case σµ = {σi | i ∈ µ}. For µ ⊆ [n], we define µ = [n] \ µ.

2.2 Binary Search Trees and Left-to-right Maxima

Let σ = (σ1, . . . , σn) be a sequence. We obtain a binary search tree T (σ) from
σ by iteratively inserting the elements σ1, σ2, . . . , σn into the initially empty tree as
follows:

• The root of T (σ) is the first element σ1 of σ.

• Let σ< = σ{i|σi<σ1} be σ restricted to elements smaller than σ1. The left
subtree of the root σ1 of T (σ) is obtained inductively from σ<.

Analogously, let σ> = σ{i|σi>σ1} be σ restricted to elements greater than σ1.
The right subtree of σ1 of T (σ) is obtained inductively from σ>.

Figure 1 shows an example. We denote the height of T (σ) by height(σ), i.e.
height(σ) is the number of nodes on the longest path from the root to a leaf.

The element σi is called a left-to-right maximum of σ if σi > σj for all
j ∈ [i − 1]. Let ltrm(σ) denote the number of left-to-right maxima of σ. We have
ltrm(σ) ≤ height(σ) since the number of left-to-right maxima of a sequence is equal
to the length of the right-most path in the tree T (σ).

2.3 Probability Theory

We denote probabilities by P and expectations by E. To bound large deviations
from the mean of binomially distributed random variables, we will frequently use
Chernoff bounds [35, Chapter B]. Let p ∈ [0, 1], and let X1, X2, . . . , Xk be mutually
independent random variables with P(Xi = 1) = 1 − P(Xi = 0) = p and X =
∑k

i=1 Xi. Clearly, E(X) = pk. The probability that X is δpk smaller or larger than
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its expectation is bounded from above by

P
(
X < (1 − δ) · pk

)
< exp

(
−pkδ2

2

)
and

P
(
X > (1 + δ) · pk

)
< exp

(
−pkδ2

4

)
,

respectively. The first inequality holds for δ ∈ (0, 1] while the second one holds
for δ ∈ (0, 2e − 1]. The following lemma follows immediately from the inequalities
above.

Lemma 1. Let k ∈ N, α ∈ (1, 2), and p ∈ [0, 1]. Let X1, . . . , Xk be mutually
independent random variables as above. Then

P
(
(X > αpk) ∨ (X < α−1pk)

)
≤ 2 · exp

(
−pk · (1 − 1

α
)2

4

)
.

We will frequently use the following lemma to bound deviations from the means.
We will need the cases k ∈ O(

√

n/p · polylog(n)) ∩Ω(
√

n/p/ polylog(n)) as well as

k = n, which are covered since k ≥ n−ε/8 ·
√

n/p and p ≥ nε−1.

Lemma 2. Fix ε > 0. Let n ∈ N, p ≥ nε−1, k ≥ n−ε/8 ·
√

n/p, and α = 1 + n−ε/8.
Let X be as in Lemma 1. Then

P
(
(X > αpk) ∨ (X < α−1pk)

)
≤ 2 · exp

(
−nε/8/16

)
.

Proof. We have 1 − 1
α

= n−ε/8

1+n−ε/8 ≥ n−ε/8

2
. By Lemma 1, we obtain

P
(
(X > αpk) ∨ (X < α−1pk)

)
≤ 2 · exp

(
−pk · (1 − 1

α
)2

4

)

≤ 2 · exp
(
−n−ε/8 · √np · n−ε/4

16

)
≤ 2 · exp

(
−nε/8

16

)
.

3 Perturbation Models for Permutations

Since we deal with ordering problems, we need perturbation models that slightly
change a given permutation of elements. There seem to be two natural possibilities:
Either change the positions of some elements, or change the elements themselves.

Partial permutations implement the first option: A subset of the elements is
randomly chosen, and then these elements are randomly permuted. The second
possibility is realised by partial alterations. Again, a subset of the elements is
chosen randomly. These elements are then replaced by random elements. The third
model, partial deletions, also starts by randomly choosing a subset of the elements.
These elements are then removed without replacement.

For all three models, we obtain the random subset as follows. Let σ be a se-
quence of length n and p ∈ [0, 1] be a probability. Every element of σ is marked
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Figure 2: A partial permutation. (a) Top: The sequence σ = (1, 2, 3, 5, 7, 4, 6, 8)
with µ = Mn

p = {1, 5, 6, 8}; Figure 1 shows T (σ). Bottom: The marked elements
are randomly permuted. The result is σ′ = Π(σ, µ) = (4, 2, 3, 5, 7, 8, 6, 1). (b) T (σ′)
with height(σ′) = 4.

independently of the others with probability p. More formally: Mn
p is a random

subset of [n] with P(i ∈ Mn
p ) = p for all i ∈ [n]. For any µ ⊆ [n] we have

P(Mn
p = µ) = p|µ| · (1 − p)|µ|.

Let µ ⊆ [n] be the set of marked positions. If i ∈ µ, then we say that position i
and element σi are marked. Thus, σµ is the sequence (or set) of all marked elements.

In the following, σ is always a permutation of [n].
We denote by height-perm

p
(σ), height-alter

p
(σ), and height-del

p
(σ) the

random variable of the height of the tree T (σ′), where σ′ is obtained from σ by p-
partial permutation, alteration, and deletion, respectively (all three models will be
defined formally in the following). Analogously, ltrm-perm

p
(σ), ltrm-alterp(σ),

and ltrm-delp(σ) denote the random variables of the number of left-to-right max-
ima of the sequence σ′ obtained from σ via p-partial permutation, alteration, and
deletion, respectively.

3.1 Partial Permutations

The notion of p-partial permutations was introduced by Banderier et al. [3].
Given a random subset Mn

p of [n], the elements at positions in Mn
p are permuted

according to a permutation drawn uniformly at random: Let σ = (σ1, . . . , σn) and
µ ⊆ [n]. Then the sequence σ′ = Π(σ, µ) is a random sequence with the following
properties:

• Π chooses a permutation π of µ uniformly at random and

• sets σ′
π(i) = σi for all i ∈ µ and σ′

i = σi for all i /∈ µ.

Figure 2 illustrates partial permutations.
By varying p, we can interpolate between the average and the worst case: for

p = 0, no element is marked and σ′ = σ, while for p = 1, all elements are marked
and σ′ is a random permutation of the elements of σ with all permutations being
equally likely.

Let us show that partial permutations are indeed a suitable perturbation model
by proving that the distribution of Π(σ, Mn

p ) favours sequences close to σ. To do this,
we have to introduce a metric on sequences. Let σ and τ be two sequences of length
n. We define the distance d(σ, τ) between σ and τ as d(σ, τ) = |{i | σi 6= τi}|, thus d
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is a metric. Note that d(σ, τ) = 1 is impossible since there are no two permutations
that differ in exactly one position.

The distribution of Π(σ, Mn
p ) is symmetric around σ with respect to d, i.e. the

probability that Π(σ, Mn
p ) = τ depends only on d(σ, τ).

Lemma 3. Let p ∈ (0, 1), and let σ and τ be permutations of [n] with d = d(σ, τ).
Then

P
(
Π(σ, Mn

p ) = τ
)

=

n−d∑

k=0

pk+d · (1 − p)n−d−k ·
(

n − d

k

)

· 1

(k + d)!
.

Proof. All d positions where σ and τ differ must be marked. This happens with
probability pd. The probability that k of the remaining positions are marked is
(

n−d
k

)
· pk · (1− p)n−d−k. Thus, the probability that k + d positions are marked, d of

which are positions where σ and τ differ, is
(

n−d
k

)
· pk+d · (1− p)n−d−k. There is only

one permutation that maps σ to τ , which is chosen with probability 1
(k+d)!

.

Let Pd =
∑n−d

k=0 pk+d·(1−p)n−d−k ·
(

n−d
k

)
· 1
(k+d)!

be the probability that Π(σ, Mn
p ) =

τ for a fixed sequence τ with distance d to σ. Then Pd tends exponentially to
zero with increasing d. Thus, the distribution of Π(σ, Mn

p ) is highly concentrated
around σ.

Lemma 4. Let p ∈ (0, 1) be fixed. There exists a positive constant c < 1 such that
for all sufficiently large n, we have P2 ≤ c · P0 and Pd+1 ≤ c · Pd for all d with
2 ≤ d < n.

Proof. By omitting the last summand, we obtain

Pd ≥
n−d−1∑

k=0

pk+d · (1 − p)n−d−k ·
(

n − d

k

)

· 1

(k + d)!
.

Thus,

Pd+1

Pd

≤
∑n−d−1

k=0 pk+d+1 · (1 − p)n−(d+1)−k ·
(

n−(d+1)
k

)
· 1

(k+d+1)!
∑n−d−1

k=0 pk+d · (1 − p)n−d−k ·
(

n−d
k

)
· 1

(k+d)!

≤ max
0≤k≤n−d−1

(
pk+d+1 · (1 − p)n−d−1−k ·

(
n−d−1

k

)
· 1

(k+d+1)!

pk+d · (1 − p)n−d−k ·
(

n−d
k

)
· 1

(k+d)!

)

≤ p

1 − p
· max

0≤k≤n−d−1

(
n − d − k

(n − d) · (k + d + 1)

)

≤ p

1 − p
· 1

d + 1
.

The second inequality holds because
∑

i∈I ai/
∑

i∈I bi ≤ maxi∈I ai/bi for any set I
and nonnegative numbers ai and bi (i ∈ I). This proves the lemma for all d with
d + 1 > p

1−p
.

What remains to be considered is d ≤ p
1−p

−1. Fix β > 1 arbitrarily with βp < 1.

Then Pd+1 =
∑n−d−1

k=0 pk+d+1 · (1 − p)n−d−1−k ·
(

n−d−1
k

)
· 1

(k+d+1)!
is dominated by the
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summands with k < βpn: According to Chernoff bounds, we have

∑

0≤k≤n−d−1

pk+d+1 · (1 − p)n−d−k−1 ·
(

n − d − 1

k

)

≤ (1 + o(1)) ·
∑

0≤k<βpn

pk+d+1 · (1 − p)n−d−k−1 ·
(

n − d − 1

k

)

.

The additional factor of 1
(k+d+1)!

in each summand of Pd+1 and P
′
d+1 strengthens the

dominance of the terms for k < βpn since 1
(k+d)!

is monotonically decreasing in k.

Overall, we have Pd+1 ≤ (1 + o(1)) · P′
d+1.

Furthermore, we define

P
′
d =

∑

0≤k<βpn

pk+1+d · (1 − p)n−d−k−1 ·
(

n − d

k + 1

)

· 1

(k + 1 + d)!
≤ Pd .

Now we have
Pd+1

Pd
≤ (1 + o(1)) · P

′
d+1

Pd
≤ (1 + o(1)) · P

′
d+1

P′
d

and

P
′
d+1

P′
d

≤ max
0≤k<βpn

(
pk+d+1 · (1 − p)n−d−1−k ·

(
n−d−1

k

)
· 1

(k+d+1)!

pk+1+d · (1 − p)n−d−k−1 ·
(

n−d
k+1

)
· 1

(k+1+d)!

)

≤ max
0≤k<βpn

(
k + 1

n − d

)

=
βpn

n − d
≤ βp + o(1)

for sufficiently large n. The last inequality holds because d ≤ p
1−p

−1 ∈ O(1). Thus,

there exists a c < 1 with Pd+1/Pd ≤ βp + o(1) ≤ c for sufficiently large n. Finally,
the proof above yields P2/P0 = P2·P1

P1·P0
≤ c2 ≤ c < 1.

3.2 Partial Alterations

Let us now introduce p-partial alterations. Every element at a position in Mn
p

is replaced by a real number drawn uniformly and independently at random from
[1
2
, n + 1

2
) to obtain a sequence σ′. All elements in σ′ are distinct with probability

one. (We could also draw the random numbers from [0, n + 1). The results would
be the same though more technical.)

Like partial permutations, partial alterations interpolate between the worst case
(p = 0) and the average case (p = 1). Partial alterations are somewhat easier to
analyse: The majority of results on the average-case height of binary search trees
is actually not obtained by considering random permutations (cf. e.g. [13, 14, 22]).
Instead, the binary search trees are grown from a sequence of n random variables
that are uniformly and independently drawn from [0, 1). This corresponds to partial
alterations for p = 1. There is no difference between partial permutations and partial
alterations for p = 1. This appears to hold for all p in the sense that the lower and
upper bounds obtained for partial permutations and partial alterations are equal for
all p (see Conjecture 32).
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3.3 Partial Deletions

As the third perturbation model, we introduce p-partial deletions: Again, we
have a random marking Mn

p as in Section 3.1. Then we delete all marked elements
to obtain the sequence σMn

p
.

Partial deletions do not really perturb a sequence: any ordered sequence remains
ordered even if elements are deleted. The main reason for considering partial dele-
tions is that they are easy to analyse when considering the stability of perturbation
models (Section 8). The results for partial deletions then carry over to partial per-
mutations and alterations since the expected heights with respect to these three
models are closely related (Section 7).

4 Basic Properties

4.1 Properties of Binary Search Trees

We start by introducing a new measure for the height of binary search trees. Let
µ ⊆ [n] and let σ be a sequence of length n. The µ-restricted height of T (σ),
denoted by height(σ, µ), is the maximum number of elements of σµ on a root-to-leaf
path in T (σ).

Lemma 5. For all sequences σ of length n and µ ⊆ [n],

height(σ) ≤ height(σ, µ) + height(σ, µ) and
height(σ, µ) ≤ height(σµ) .

Proof. Consider any path of maximum length from the root to a leaf in T (σ). This
path consists of at most height(σ, µ) elements of σµ and at most height(σ, µ) elements
of σµ, which proves the first part.

For the second part, let a and b be elements of σµ that do not lie on the same
root-to-leaf path in T (σµ). Assume that a < b. Then there exists a c prior to a and
b in σµ with a < c < b. Thus, a and b do not lie on the same root-to-leaf path in
the tree T (σ) either, which implies the lemma.

Of course we have height(σ, µ) ≤ height(σ) for all σ and µ. But height(σµ) ≤
height(σ), which would imply height-delp(σ) ≤ height(σ), does not hold in general.
This will be investigated further in Section 8, when we consider the stability of the
perturbation models.

To bound the smoothed height from above, we will use the following lemma,
which is an immediate consequence of Lemma 5.

Lemma 6. For all sequences σ of length n and µ ⊆ [n], we have

height(σ) ≤ height(σµ) + height(σ, µ) .

Proof. We have height(σ) ≤ height(σ, µ) + height(σ, µ) ≤ height(σµ) + height(σ, µ)
according to Lemma 5.

11



We can state equivalent lemmas for left-to-right maxima. Let σ be a sequence
of length n and µ ⊆ [n]. Then ltrm(σ, µ) denotes the µ-restricted number of
left-to-right maxima of σ, i.e. the number of elements σi such that i ∈ µ and σi

is a left-to-right maximum of σ. We omit the proof of the following lemma since it
is almost identical to the proofs of the lemmas above.

Lemma 7. Let σ be a sequence of length n and µ ⊆ [n]. Then

ltrm(σ) ≤ ltrm(σ, µ) + ltrm(σ, µ) ,
ltrm(σ, µ) ≤ ltrm(σµ) , and
ltrm(σ) ≤ ltrm(σµ) + ltrm(σ, µ) .

4.2 Properties of the Perturbation Models

Let us now prove some properties of partial permutations and partial alterations.
The lemmas proved in this section are crucial for estimating the smoothed height
and the smoothed number of left-to-right maxima under these models.

The following lemma states that the expected height under partial permutations
and alterations depends merely on the elements that are left unmarked. The marked
elements contribute at most O(log n) to the height. Thus, when estimating the
expected height in the subsequent sections, we can restrict ourselves to considering
the elements that are left unmarked.

Lemma 8. Let σ be a sequence of length n and let p ∈ (0, 1). Let µ ⊆ [n] be a
random set of marked positions and σ′ be the random sequence obtained from σ via
p-partial permutation or p-partial alteration. Then

E(height(σ′)) ≤ E (height(σ′, µ)) + O(log n) .

Note that E(height(σ′)) = E(height-permp(σ)) in case of partial permutations
and E(height(σ′)) = E(height-alterp(σ)) in case of partial alterations.

Proof. In case of partial permutations, the elements of σµ are randomly permuted,
while in case of partial alterations, they are drawn independently at random. In
either case, E(height(σ′

µ)) ∈ O(log n). The lemma follows from Lemma 6.

Again we obtain an equivalent lemma for left-to-right maxima.

Lemma 9. Under the assumptions of Lemma 8, we have

E(ltrm-permp(σ)) ≤ E (ltrm(σ′, µ)) + O(log n) and
E(ltrm-alterp(σ)) ≤ E (ltrm(σ′, µ)) + O(log n) .

The following lemma gives an upper bound for the probability that no element
in a fixed set of elements is among the first elements of the perturbed sequence.

Lemma 10. Fix ε > 0, and let α = 1 + n−ε/8. Let p = p(n) be the smoothing
parameter with p ≥ nε−1 and p ≤ 1 − ε. Let σ be a sequence of length n, and let σ′

be the random sequence obtained from σ by performing a p-partial permutation or a
p-partial alteration.
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Let k, ` ∈ N with k, ` ≥ n−ε/8 ·
√

n/p. Let A = [x− 1
2
, x + k − 1

2
) ⊆ [1

2
, n + 1

2
) for

some x ∈ [n].
Then

P
(
σ′

[`] ∩ A = ∅
)
≤ exp

(
− k`p

α3n

)
+ 6 · exp

(
−nε/8

16

)
.

In case of partial permutations, we can also choose A = {x, x+1, . . . , x+k−1}.

Proof. According to Lemma 2, the probability that |Mn
p ∩ [`]| < α−1p`, i.e. that too

few of the first ` positions are marked, is bounded from above by 2 · exp(−nε/8/16).
In case of partial permutations, we also need to bound the probability of |σMn

p
∩A| <

α−1pk, i.e. that too few of the elements of A are marked, and of |Mn
p | > αpn, i.e. that

too many positions are marked overall. According to Lemma 2, both are bounded
from above by 2 · exp(−nε/8/16). Overall, the probability that any of these three
events happens is at most 6 · exp(−nε/8/16).

From now on, we assume that at least α−1p` of the first ` positions of σ are
marked, at least α−1pk elements in A are marked, and at most αpn positions are
marked overall.

The probability that a marked of the first ` elements of σ′ does not assume a value
in A is bounded from above by αpn−α−1pk

αpn
= 1− k

α2n
in case of partial permutations.

In case of partial alterations, the probability is n−k
n

≤ 1− k
α2n

. Thus, the probability
that none of the first elements, at least α−1p` of which are marked, assumes a value
in A is bounded from above by

(

1 − k

α2n

) p`
α

=





(

1 − k

α2n

)α2n
k





k`p

α3n

≤ exp

(

− k`p

α3n

)

.

Overall, the probability that none of the elements of A is among the first elements
of σ′ is bounded from above by exp

(
− k`p

α3n

)
+ 6 · exp(−nε/8/16) as claimed.

In the proofs in the subsequent sections, we will exploit Lemma 10 only for
k ∈ O(

√

n/p · polylog(n)) ∩Ω(
√

n/p/ polylog(n)). For such values of k, we can get
rid of the term 6 · exp(−nε/8/16) for sufficiently large values of n.

Lemma 11. Fix ε > 0, β > 1, and c ∈ N. Let p = p(n) with p ≥ nε−1 and p ≤ 1−ε.
Let ` = `(n) = a ·

√

n/p and k = k(n) = b ·
√

n/p for (log n)−c ≤ a, b ≤ (log n)c.
Let A be as in Lemma 10.

Then P(σ′
[`] ∩ A = ∅) ≤ exp(−ab/β) for all sufficiently large n.

Proof. We have k` = abn
p

. Thus, P(σ′
[`] ∩A = ∅) ≤ exp(−ab/α3) + 6 · exp(−nε/8/16)

by Lemma 10.
For sufficiently large n, we have β > α. Furthermore, 6 ·exp(−nε/8/16) decreases

faster than exp(−ab/α3) since a, b ≤ (log n)c. Thus, for sufficiently large n, we have
exp(−ab/α3) + 6 · exp(−nε/8/16) ≤ exp(−ab/β).
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5 Tight Bounds for Left-to-right Maxima

5.1 Partial Permutations

Theorem 12. Fix ε > 0. Let p = p(n) with nε−1 ≤ p ≤ 1 − ε. Then for all
sufficiently large n and for all sequences σ of length n,

E
(
ltrm-permp(σ)

)
≤ 3.6 · (1 − p) ·

√

n/p .

Proof. The basic idea for proving this theorem is to estimate the probability that
one of the k largest elements of σ is among the first k elements, which would bound
the number of left-to-right maxima by 2k. We get the additional factor of (1 − p)
since only unmarked elements have to be taken into account.

We will show an upper bound for E(ltrm(σ′, µ)). Then we obtain an upper bound
for the number of left-to-right maxima by adding O(log n) according to Lemma 8.

Let σ be a permutation of [n]. Let Kc = dc
√

n/pe for c ∈ [log n]. Let α =
1 + n−ε/8 and fix β with 1 < β < 1.001. We have α < β for all sufficiently large n.

We call a partial permutation partially successful if at least α−1pKc of the
first Kc positions and of the Kc largest elements are marked for all c ∈ [log n] and
at most αpn positions are marked overall. According to Lemma 2, the probability
that a partial permutation is not partially successful is at most P = (2 + 4 · log n) ·
exp(−nε/8/16). If a partial permutation is not partially successful, we bound the
number of left-to-right maxima by n.

We call σ′ c-successful for c ∈ [log n] if the corresponding partial permutation
is partially successful and one of the Kc largest elements n, n − 1, . . . , n −Kc + 1 is
among the first Kc elements in σ′.

Assume that σ′ is c-successful and that m ∈ {n−Kc+1, . . . , n} is among the first
Kc elements of σ′. The only unmarked elements that can contribute to ltrm(σ′, µ)
are those that are among the first Kc positions and those that are larger than m.
All other unmarked elements are smaller than m and located behind m in σ′, thus
they are no left-to-right maxima. The expected number of unmarked elements larger
than n − Kc plus the expected number of unmarked positions among the first Kc

positions is at most

2 ·
(
1 − p

α

)
· Kc ≤ 2 ·

(
1 − p + p · n−ε/8

2

)
· (c
√

n/p + 1) = Qc . (1)

Hence, ltrm(σ′, µ) ≤ Qc if σ′ is c-successful.
Let c ∈ [log n]. The probability that a partially successful partial permuta-

tion is not c-successful is at most exp(−c2/β) for sufficiently large n according to
Lemma 11. In particular, the probability that σ′ is not (log n)-successful is at most
P ′ = exp(−(log n)2/β). If σ′ is not (log n)-successful, we bound the number of
left-to-right maxima by n.

If we restrict ourselves to partially successful partial permutations, we have
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P(ltrm(σ′, µ) > Qc) ≤ exp(−c2/β). Hence, we can bound ltrm(σ′, µ) from above by

log n−1
∑

c=0

Qc+1 · P(no c-success but (c + 1)-success)
︸ ︷︷ ︸

≤P(σ′ is not c-successful)

+n · (P + P ′)

≤ 2 · (1 − p) ·
√

n/p ·
∑

c∈N

(c + 1) · e− c2

β

︸ ︷︷ ︸

< 1.8 for β < 1.001

+ log n · (1 − p + p
n−ε/8

2
) +

∑

c∈[log n]

pc
√

n/p · n−ε/8

2
︸ ︷︷ ︸

∈O((log n)2·√pn·n−ε/8); these terms are due to Inequality (1)

+n · (P + P ′)

≤ C · (1 − p) ·
√

n/p

for some C < 3.6 and all sufficiently large n. Thus, according to Lemma 8, we have
E(ltrm-permp(σ)) ≤ C · (1 − p) ·

√

n/p + O(logn), which proves the theorem.

The following lemma is an improvement of the lower bound proof for the number
of left-to-right maxima under partial permutations presented by Banderier et al. [3].
We obtain a lower bound with a much larger constant that holds in particular for
all constant p ∈ (0, 1); the lower bound provided by Banderier et al. holds only for
p ≤ 1/2.

Lemma 13. Fix ε > 0, β > 1, and c > 0. Let p = p(n) with p ≥ nε−1 and p ≤ 1−ε.
Then for all sufficiently large n, there exist a sequence σ of length n with

P
(
ltrm-permp(σ) ≥ c2 · (1 − p) ·

√

n/p
)
≥ exp(−c2β) .

Proof. Fix c′ > c and β ′ with 1 < β ′ < β such that c′2β ′ < c2β. Thus, exp(−c′2β ′) >
exp(−c2β).

Let Kc′ = bc′ ·
√

n/pc, and let σ = (n−Kc′+1, n−Kc′+2, . . . , n, 1, 2, . . . , n−Kc′).
We start by a sketch of the proof: The probability that none of the first Kc′ elements
is moved further to the front is bounded from below roughly by exp(−c′2β ′). In such
a case, all unmarked elements among the first Kc′ elements are left-to-right maxima,
and there are roughly (1 − p) · Kc′ such elements.

Let again α = 1 + n−ε/8. Let P be probability that more than αc′
√

np of the
first Kc′ elements are marked or that less than α−1pn of all elements are marked.
We have P ≤ 4 · exp(−nε/8/16) according to Lemma 2.

Let µ be the set of marked positions and let µc′ = µ∩ [Kc′] = {i1, . . . , ix} be the
set of marked positions among the first Kc′ positions with i1 < i2 < . . . < ix. Let
y = |µ| be the number of all marked positions. Let π be a random permutation of
µ. We say that π is successful if π(i) > i for all i ∈ µc. Thus, under a successful
permutation, all marked elements in {n − Kc + 1, . . . , n} are moved further to the
back.

If π is successful, then all Kc′ − x unmarked elements in {n − Kc′ + 1, . . . , n}
are left-to-right maxima. Let us bound the probability from below that the random
permutation π of µ is successful for a given µ: For ix, y−x positions are allowed and
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x positions are not allowed; for ix−1, y − x positions are allowed (all in µ \ µc plus
one for position ix minus one for position π(ix)) and x−1 positions are not allowed;
. . . ; for i1, y − x positions are allowed and one position is not allowed. Thus, the
probability that π is successful is at least

(
y − x

y

)x

=
((

1 − x

y

) y
x

︸ ︷︷ ︸

≥e−1·(1−x
y
)

)x2

y ≥ exp

((

ln

(

1 − x

y

)

− 1

)

· x2

y

)

,

Provided that x ≤ αc′
√

np and y ≥ α−1pn, we obtain a probability that the random
permutation is successful of at least

exp

((

ln

(

1 − αc′
√

np

α−1pn

)

− 1

)

· α2p2(c′
√

n/p)2

α−1pn

)

≥ exp

((

ln

(

1 − α2c′√
pn

)

− 1

)

· α3c′2
)

= Q · exp(−α3c′2)

for Q =
(
1 − α2c′√

pn

)α3c′2
, which tends to one as n increases.

Thus, with a probability of at least (1 − P ) · Q · exp(−α3c′2), all unmarked
elements of {Kc′ + 1, . . . , n} are left-to-right maxima. Furthermore, we have (1 −
P ) · Q · exp(−α3c′2) ≥ exp(−c2β) for sufficiently large n since (1 − P ) · Q tends to
1, α3 < β, and c2β > c′2β ′2.

The number of unmarked elements of {Kc′ + 1, . . . , n} is at least (1 − p/α)Kc′,
which is bounded from below by (1− p) · c ·

√

n/p for large enough n since α tends
to 1 and c < c′.

A consequence of Lemma 13 is that exp(−c2α) · c · (1 − p) ·
√

n/p for c > 0 is a
lower bound for the number of left-to-right maxima. The term exp(−c2α)·c assumes
its maximum for c = 1/

√
2α. By choosing α close to 1 and c = 1/

√
2α, we obtain a

lower bound of 0.4 · (1− p) ·
√

n/p for the expected number of left-to-right maxima
under p-partial permutations. We can improve the lower bound by a more careful
analysis.

Theorem 14. Fix ε > 0. Let p = p(n) ∈ (0, 1) with nε−1 ≤ p ≤ 1 − ε. For all
sufficiently large n, there exists a sequence σ of length n with

E
(
ltrm-permp(σ)

)
≥ 0.6 · (1 − p) ·

√

n/p .

Proof. We use the same notation as in the proof of Lemma 13. The key observation
for improving the lower bound is the following: If none of the marked of the largest
Kc elements is among the first γKc elements of σ′ for γ ∈ [0, 1], then we have
γ · (1 − p) · Kc left-to-right maxima in expectation. The probability for this is at
least exp(−c2γ/β) for any fixed β > 1 and sufficiently large n.

We consider γ at discrete values in [0, 1]. Then the expected number of left-to-
right maxima after performing a p-partial permutation is at least

∑

γ∈C

0.01 · (1 − p) · Kc · exp
(
−c2 · γ

β

)
.

Setting c = 1.12 and β sufficiently close to 1 completes the proof.
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Theorem 14 also yields the same lower bound for the tree height since the number
of left-to-right maxima of a sequence is a lower bound for the height of the binary
search tree obtained from that sequence. We can, however, prove a stronger lower
bound for the height of binary search trees (Theorem 22).

Another consequence of Lemma 13 is that there is no constant c such that the
number of left-to-right maxima is at most c ·(1−p) ·

√

n/p with high probability, i.e.
with a probability of at least 1 − n−Ω(1). Thus, the bounds proved for the expected
tree height or the number of left-to-right maxima cannot be generalised to bounds
that hold with high probability. A bound for the tree height that holds with high
probability can be obtained from Lemma 11, as we will show in Theorem 20. Clearly,
this bound holds for the number of left-to-right maxima as well.

5.2 Partial Alterations

We obtain the same upper bound for the expected number of left-to-right maxima
under partial alterations.

Theorem 15. Fix ε > 0. Let p = p(n) ∈ (0, 1) with nε−1 ≤ p ≤ 1 − ε. Then for all
sufficiently large n and for all sequences σ of length n,

E
(
ltrm-alterp(σ)

)
≤ 3.6 · (1 − p) ·

√

n/p .

Proof. The proof is similar to the proof of Theorem 12. The sequence σ′ obtained
from σ via p-partial alteration is called c-successful if at least one of the first Kc

elements of σ′ assumes a value in the interval [n − Kc + 1
2
, n + 1

2
). If this happens,

we can bound ltrm(σ′, µ) by
(
1 − p

α

)
· 2Kc. The probability that we do not have

c-success is at most exp(−c2/β) by Lemma 11. The remainder of the proof proceeds
in the same way as the proof of Theorem 12.

Let us now prove the counterpart for partial alterations of Lemma 13.

Lemma 16. Fix ε > 0, β > 1, and c > 0. Let p = p(n) with p ≥ nε−1 and p ≤ 1−ε.
Then for all sufficiently large n, there exist a sequence σ of length n with

P
(
ltrm-alterp(σ) ≥ c2 · (1 − p) ·

√

n/p
)
≥ exp(−c2β) .

Proof. We choose c′ and β ′ as in the proof of Lemma 13. Let again Kc′ = bc′ ·
√

n/pc
and σ = (n − Kc + 1, n − Kc + 2, . . . , n, 1, 2, . . . , n − Kc). Let α = 1 + n−ε/8, and
let P ≤ 2 · exp(−nε/8/16) be probability that more than αc′

√
np of the first Kc′

elements are marked (see Lemma 2).
Let µc′ be the set of marked positions among the first Kc positions, x = |µc′| its

cardinality, and µc′ = {i1, . . . , ix}. We say that σ′ is successful if σ′
ij
≤ n−c′·

√

n/p+1
2

for all j ∈ [x]. If σ′ is successful, then all unmarked elements among the first Kc′

elements if σ′ are left-to-right maxima.
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The probability that σ′ is successful is at least

(

n − c′ ·
√

n/p

n

)x

=
((

1 − c′√
np

)
√

np

c′

︸ ︷︷ ︸

≥e−1·(1− c′√
np

)

) xc′√
np

≥ exp

((

ln

(

1 − c′√
np

)

− 1

)

· xc′√
np

)

= Q · exp

(

− xc′√
np

)

for Q =
(
1 − c′√

np

) xc′√
np . Provided that x ≤ αc′

√
np, Q tends to 1, and we obtain a

lower bound for the probability that σ′ is successful of Q · exp(c′2α). Thus, with a
probability of at least (1 − P ) · Q · exp(−α3c′2), all unmarked elements of {Kc′ +
1, . . . , n} are left-to-right maxima.

The proofs that Q · (1 − P ) · exp(c′2α) ≥ exp(−c2β) and that the number of
unmarked elements of {Kc′ + 1, . . . , n} is at least (1− p) · c ·

√

n/p for large enough
n follow the same lines as in the proof of Lemma 13.

From the above lemma, we obtain 0.4 · (1 − p) ·
√

n/p as a lower bound for the
number of left-to-right maxima. As for partial permutations, this bound is obtained
by choosing α close to 1 and c = 1/

√
2α. Again, we can improve the constant in

the lower bound. The proof is almost identical to the proof of Theorem 14.

Theorem 17. For all p ∈ (0, 1) and all sufficiently large n, there exists a sequence
σ of length n with

ltrm-alterp(σ) ≥ 0.6 · (1 − p) ·
√

n/p .

As for partial permutations, a consequence of Lemma 16 is that we cannot achieve
a bound of O((1−p) ·

√

n/p) that holds with high probability for the number of left-
to-right maxima or the height of binary search trees, but we can show that the height
after p-partial alteration is O(

√

(n/p) · log n) with high probability (Theorem 24).

6 Tight Bounds for Binary Search Trees

6.1 Partial Permutations

Let us now prove one of the main results of this work, namely an upper bound for
the expected height of binary search trees obtained from sequences under partial
permutations.

Theorem 18. Let p ∈ (0, 1). Then for all sufficiently large n and all sequences σ
of length n, we have

E
(
height-permp(σ)

)
≤ 6.7 · (1 − p) ·

√

n/p .

Proof. The idea is to divide the sequence into blocks B1, B2, . . ., where Bd is of size
cd2
√

n/p for some c > 0. Each block Bd is further divided into d4 parts A1
d, . . . , A

d4

d ,

each consisting of cd−2
√

n/p elements. If on every root-to-leaf path in the tree
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obtained from the perturbed sequence, there are elements of at most two such Ai
d

for every d, then the height is at most

∞∑

d=1

2 · cd−2
√

n/p
︸ ︷︷ ︸

size of an Ai
d

= (cπ2/3) ·
√

n/p .

The probability that this does not happen decreases exponentially in c, which will
be shown later on. We obtain the upper bound claimed in the theorem mainly
by carefully applying this bound and by exploiting the fact that only a fraction of
(1−p) of the elements are unmarked. Marked elements contribute at most O(log n)
to the expected height of the tree according to Lemma 8. Thus, it suffices to show

E(height(σ′, µ)) ≤ C · (1 − p) ·
√

n/p

for some fixed C < 6.7, where µ ⊆ [n] is the random set of marked positions and σ′

is the sequence obtained by randomly permuting the elements of σµ. Then, for all
sufficiently large n,

height-permp(σ) ≤ C · (1 − p) ·
√

n/p + O(logn) ≤ 6.7 · (1 − p) ·
√

n/p .

Choose β arbitrarily with 1 < β < 1.01. Let

D(d) =

d−1∑

i=1

i2 =
(d − 1) · (d − 1/2) · d

3
.

Then D(d) ≥ d3/8 for d ≥ 2.
Let c ∈ [log n] and Kc = c ·

√

n/p. We divide a prefix of the sequence σ into
blocks B1, B2, . . . , B(log n)2 . The block Bd consists of d2Kc elements (we deal with
the case the Kc is not integral in a moment): B1 contains the elements of σ at the
first Kc positions, B2 contains the elements of σ at the next 4Kc positions, and so

on. Let B =
⋃(log n)2

d=1 Bd be the set of elements that are contained in any Bd. Let
d′ = (log n)2+1 and D′ = D(d′) ≥ (log n)6/8. We have |B| = D′·Kc ≥ 1

8
·(log n)6·Kc.

Every block Bd is further divided into d4 subsets A1
d, . . . , A

d4

d of elements as
follows: A1

d contains the Kc/d
2 smallest elements of Bd, A2

d contains the Kc/d
2 next

smallest elements of Bd, . . . , and Ad4

d contains the Kc/d
2 largest elements of Bd.

Figure 3(a) illustrates the division of σ into blocks B1, B2, . . . , B(log n)2 and subsets
Ai

d for d ∈ [(log n)2] and i ∈ [d2].

Finally, we divide [n] into log n ·√np subsets C1, . . . , Clog n·√np with Cj =
{
√

n/p

log n
·

(j−1)+1, . . . ,

√
n/p

log n
·j
}
. Thus, C1 contains the (log n)−1 ·

√

n/p smallest numbers of

[n], C2 contains the (log n)−1 ·
√

n/p next smallest numbers of [n], . . . , and Clog n·√np

contains the (log n)−1 ·
√

n/p largest elements of [n].

If Kc, the sizes Kc/d
2 of the subsets Ai

d, or the size
√

n/p/ log n of the subsets

Cj are not integral, we have to replace them by dKce, dKc/d
2e, and d

√

n/p/ log ne,
respectively. We allow an overlap of one of two subsets Ai

d and Ai+1
d as well as

of two subsets Cj and Cj+1. Augmenting the sizes of the subsets only increases
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the success probabilities in the following (though only marginally). Since there are
only poly-logarithmically many subsets Ai

d, this would increase the tree height only
by an additional O(polylog n). Furthermore, every root-to-leaf path contains only
elements of at most two sets Cj . Thus, replacing

√

n/p/ log n by d
√

n/p/ log ne
would increase the tree height by at most two. The overall increase due to rounding
up is O(polylog n), which is negligible.

Let again α = 1 + n−ε/8. We call a set of k positions or elements partially
successful in µ and σ′ if at least α−1pk and at most αpk positions or elements of
this set are marked. We say that µ and σ′ are partially successful if the following
properties are fulfilled:

• for all c ∈ [log n], d ∈ [(log n)2], and i ∈ [d4], Ai
d is partially successful in µ

and σ′, and

• for all j ∈ [log n
√

np], Cj is partially successful in µ and σ′.

The probability that one particular of these sets is not partially successful is at most
exp(−nε/8/16) according to Lemma 2. Since the number of such sets is polynomially
bounded in n, the probability P that at least one of these sets is not partially
successful is bounded from above by exp(−nε/8/32) for all sufficiently large n.

If µ and σ′ are not partially successful, we bound the height of T (σ′) by n.
From now on, we consider the case that µ and σ′ are partially successful. When

speaking about partial success, we occasionally do not mention σ′ or µ.
We call a subset Ai

d c-successful if at least one element of Ai
d is permuted to

one of the D(d) · c ·
√

n/p positions that precede Bd. Thus, for all d ∈ [(log n)2],
d ≥ 2, and i ∈ [d4], we have

P(Ai
d is not successful) ≤ exp(−d−2cD(d)cβ−1) ≤ exp

(
−c2d

8β

)
(2)

according to Lemma 11: There are d−2c
√

n/p elements in Ai
d, D(d)c

√

n/p positions
that precede Bd, and D(d) ≥ d3/8.

We call a block Bd (for d ≥ 2) c-successful if all subsets A1
d, . . . , A

d4

d of Bd are c-
successful. The probability that Bd is not c-successful is at most d4 ·exp(−c2d/(8β))
according to Inequality (2) since there are d4 subsets of Bd. Figure 3 illustrates
c-success.

A subset Cj is called c-successful if at least one element of Cj is among the first

D′c
√

n/p positions of σ′. The probability that a fixed Cj is not c-successful is at

most exp(− cD′

β log n
) ≤ exp(− c(log n)5

8β
). The probability that any Cj is not c-successful

is bounded from above by

log n · √np · exp
(
−c(log n)5

8β

)
≤ d′4 · exp

(
−c2d′

8β

)
(3)

for all sufficiently large n. Although the upper bound of d′4 · exp(−c2d′/(8β)) is not
tight, it suffices for the calculations below.

Finally, we say that σ′ is c-successful if all blocks B1, B2, . . . , B(log n)2 are c-
successful and all subsets C1, . . . , Clog n

√
np are c-successful.
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B3B2B1 B4

︸ ︷︷ ︸

B4 is divided into A1
4, A2

4, . . .

D(4) · Kc elements preceding B4

︷ ︸︸ ︷
the 42 · Kc elements of B4

︷ ︸︸ ︷

A4
4A1

4A3
4A1

4A2
4A5

4A4
4A4

4 A3
4A2

4

(a) Dividing the first D′ · Kc elements of σ into blocks B1, . . . , B(log n)2 .
The subset A1

4 contains the Kc/4 smallest elements of B4, . . . , and A16
4

contains the Kc/4 largest elements of B4. (For readability, B4 is divided
into only five subsets in the illustration.)

︸ ︷︷ ︸

the first D(4) · Kc positions of σ′
︸ ︷︷ ︸

the location of B4 in σ

B4
︷ ︸︸ ︷

A4
4A1

4A3
4A1

4A2
4A5

4A4
4A4

4 A3
4A2

4

(b) A subset Ai
4 is c-successful if at least one element of Ai

4 is among the
first D(4) · Kc elements of σ′. The block B4 is c-successful if all Ai

4 are
c-successful.

Figure 3: The division of σ into blocks and subsets (shown here for B4).

Let c ≥ 5. The probability that σ′ is not c-successful is at most

∑

2≤d≤(log n)2

d4 · exp
(
−c2d/(8β)

)
+ P(some Cj is not c-successful)

≤
∑

2≤d≤(log n)2+1

d4 · exp
(
−c2d/(8β)

)
≤
∑

d≥2

(
exp
(
−c2/(16β)

))d

=
exp
(
−c2/(16β)

)2

1 − exp
(
−c2/(16β)

) = E(c, β) . (4)

The first inequality holds due to Inequality (3), the second inequality holds since
c ≥ 5. If σ′ is not (log n)-successful, which happens with a probability of at most
E(log n, β), we bound the height of T (σ′) by n.

Let Qc =
(
c · π2

3
+ 2

log n

)
· (1 − α−1p) ·

√

n/p.

Lemma 19. If σ′ is c-successful, then height(σ′, µ) ≤ Qc.

Proof. Consider the way in which T (σ′) is built iteratively from σ′. Let d ≥ 2. After
inserting the first D(d) · Kc elements, the partial tree T̃ grown so far contains at
least one element of Ai

d for every i ∈ [d4]. Except for elements of T̃ , there cannot be

elements from both Aj−

d and Aj+

d for j− < i < j+ that lie on the same root-to-leaf
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path of T (σ′): Let x ∈ Ai
d be part of T̃ , then all elements of Aj−

d that are not part

of T̃ are to the left of x in T (σ′), while all elements of Aj+

d that are not part of T̃
are to the right of x in T (σ′). Thus, except for elements of T̃ , only elements of two
consecutive subsets Ai

d and Ai+1
d can lie on the same root-to-leaf path of T (σ′). For

every i, there are at most 2 · d−2 · Kc such elements.
For every d and i, there are at most (1 − α−1p) · d−2 · Kc unmarked elements in

Ai
d since σ′ is partially successful. Thus for every d, at most 2 · (1− α−1p) · d−2 ·Kc

unmarked elements of Bd are on the same root-to-leaf path in T (σ′).
Let B = [n] \ B be the set of elements of σ that are not contained in any Ai

d.
There cannot be unmarked elements from both Ck−∩B and Ck+∩B for k− < j < k+

on the same root-to-leaf path in σ′ since there is at least one element of Cj among the

first D′ · Kc elements of σ′. Thus, there are at most 2 · (1 − α−1p) ·
√

n/p

log n
unmarked

elements of B on the same root-to-leaf path in T (σ′). The maximum number of
unmarked elements on any root-to-leaf path in T (σ′) is thus at most

(log n)2
∑

d=1

2 · (1 − α−1p) · cd−2 ·
√

n/p + 2 · (1 − α−1p) · (log n)−1 ·
√

n/p

≤
(
2c ·

∑

d≥1

d−2 + 2/ logn
)
· (1 − α−1p) ·

√

n/p = Qc .

According to Lemma 19 and Formula (4), we have P (height(σ′, µ) > Qc) ≤
E(c, α) for 5 ≤ c ≤ log n in case of partial success. Hence, we can bound the
expectation of height(σ′, µ) from above by

Q5 +
∑

5≤c≤log n

Qc+1 · P(σ′ is not c-successful but (c + 1)-successful)
︸ ︷︷ ︸

≤P(σ′ is not c-successful)

+ n · (P + E(log n, β))
︸ ︷︷ ︸

=X

≤ (1 − α−1p)
︸ ︷︷ ︸

≤(1−p)+n−ε/8p

·
√

n/p ·
(

5 +

∞∑

c=5

(
π2

3
(c + 1) +

2

log n

)

· E(c, β)

)

︸ ︷︷ ︸

=Y ∈O(1)

+X

≤ (1 − p) ·
√

n/p
︸ ︷︷ ︸

=Z

·Y + n
1

2
− ε

8 · √p · Y + X
︸ ︷︷ ︸

∈o(Z)

= Z ·
(
5 +

π2

3
·

< 0.5 for β < 1.01
︷ ︸︸ ︷
∑

c≥5

(c + 1) · E(c, β)

︸ ︷︷ ︸

< C for some C < 6.7 and β < 1.01

)
+ o(Z) ≤ C · (1 − p) ·

√

n/p

for all sufficiently large n and β < 1.01. The second inequality holds since α−1 ≥
1−n−ε/8. The equality holds because Z ·∑∞

c=5
2E(c,β)
log n

∈ O(Z/ logn) ⊆ o(Z). Finally,
∑

c≥5(c + 1) ·E(c, β) < 0.5 for β < 1.01 can be be shown by adding up the first few
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terms and bounding the terms for larger c by a geometric series. This completes the
proof.

An upper bound for the height of binary search trees under partial permutation
and partial alteration that holds with high probability can be obtained by applying
Lemma 11.

Theorem 20. Fix ε > 0 and β > 1. Let p = p(n) ∈ (0, 1) with nε−1 ≤ p ≤ 1 − ε,
c > 0, and let n ∈ N be sufficiently large. Let σ be a sequence of length n, and let
c > 0. Then

P

(

height-permp(σ) > c ·
√

(n/p) · ln n
)

≤ n−(c/3)2/β+0.5 .

Proof. Fix c̃ < c/3 and β ′ < β such that and c̃2/β ′ > (c/3)2/β. Let Kc̃ = dc̃ ·
√

(n/p) · ln ne, which is bounded from above by c/3 ·
√

(n/p) · ln n for sufficiently
large n. Let B1 be the set of the Kc̃ smallest elements of σ, let B2 be the set of
the Kc̃ next smallest elements of σ, . . . , and let Bn/Kc̃

be the set of the Kc̃ largest
elements of σ. (In case that Kc̃ is not integral, the sets B1, . . . , Bn/Kc̃

are allowed to
overlap by one element.) In the following, let σ′ be the random sequence obtained
from σ by a p-partial permutation.

Lemma 21. Assume that for every i, at least one element of Bi is among the first
Kc̃ elements of σ′. Then height(σ′) ≤ c ·

√

(n/p) · ln n.

Proof. Consider the way in which T (σ′) is built iteratively from σ′. After inserting
the first Kc̃ elements, the partial tree T̃ grown so far has a height of at most Kc̃.
The tree T̃ contains at least one element of every Bi. Except for elements of T̃ ,
there cannot be elements from both Bj− and Bj+ for j− < i < j+ that lie on the

same root-to-leaf path of T (σ′): Let x ∈ Bi be part of T̃ , then all elements of Bj−

that are not part of T̃ are to the left of x in T (σ′), while all elements of Bj+ that

are not part of T̃ are to the right of x in T (σ′).
It follows that except for elements of T̃ , only elements of two consecutive blocks

Bi and Bi+1 can lie on the same root-to-leaf path of T (σ′). For every i, there are at
most 2 ·Kc̃ such elements, yielding a height of at most 2 ·Kc̃. Together with the first
Kc̃ elements, which build T̃ , we obtain height(σ′) ≤ 3 · Kc̃ ≤ c ·

√

(n/p) · ln n.

What remains to be estimated is the probability that there is an i such that no
element of Bi is among the first Kc̃ elements. For every i, the probability that no
element of Bi is among the first Kc̃ elements in σ′ is at most exp(−(c̃2/β ′) · ln n) =
n−c̃2/β′

by Lemma 11. Thus, the probability that there is any Bi such that no
element of Bi is among the first Kc̃ elements of σ′ is at most

(n/Kc̃) · n−c̃2/β′ ≤ c̃−1 ·
√

p/ lnn · n−c̃2/β′+0.5 ≤ n−(c/3)2/β+0.5

for all sufficiently large n.

From Theorem 20, we immediately obtain that the probability that the height
is greater than 3.7 ·

√

(n/p) · ln n is at most 1/n.
As a counterpart to Theorem 18, we prove the following lower bound. Interest-

ingly, the lower bound is obtained for the sorted sequence, which is not the worst
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case for the expected number of left-to-right maxima under partial permutation;
the expected number of left-to-right maxima of the sequence obtained by partially
permuting the sorted sequence is only logarithmic [3].

Theorem 22. Fix ε > 0. Let p = p(n) with p ≥ nε−1 and p ≤ 1 − ε. Then, for all
sufficiently large n ∈ N,

E
(
height-permp(σ

n
sort)

)
≥ 0.8 · (1 − p) ·

√

n/p .

Proof. The proof is similar to the proof of Lemma 13, except that we consider the
sorted sequence. Fix β < 1.01, c′ > c and β ′ with 1 < β ′ < β such that c′2β ′ < c2β.
Let again Kc′ = bc′ ·

√

n/pc and α = 1 + nε/8.
Let σ′ be the sequence obtained from σn

sort via p-partial permutation. We say
that σ′ is c′-successful if at least (p/α)Kc′ of the first Kc′ elements are marked and
all of these elements are permuted further to the back. According to the proof of
Lemma 13, we have

P(σ′ is c′-successful) ≥ exp(−c′2β ′) ≥ exp(−c2β)

for sufficiently large n. If σ′ is c-successful, then height(σ′) is at least the number
of unmarked elements among the first Kc′ elements. There are (1 − p/α)Kc′ such
unmarked elements, which can be bounded from below by (1−p)Kc for all sufficiently
large n. Thus, we obtain

P
(
height(σ′) ≥ (1 − p)Kc

)
≥ exp(−c2β)

for all sufficiently large n. We compute a lower bound for the expected height of
T (σ′) by considering c-success at discrete points in C = {0.1, 0.2, . . . , 9.9, 10}. To
use more values for c does not make much sense since the changes in the result are
negligible. Let Q = (1 − p) ·

√

n/p. We obtain

E(height(σ′)) ≥ Q ·
∑

c∈C

c · P
(
cQ ≤ height(σ′) < (c + 0.1) · Q

)

≥ Q ·
∑

c∈C

0.1 · P(height(σ′) ≥ cQ)

≥ Q ·
∑

c∈C

0.1 · exp(−c2β)

︸ ︷︷ ︸

≥ 0.8 for β < 1.01

≥ 0.8 · Q

for sufficiently large n and β < 1.01.

6.2 Partial Alterations

As for the number of left-to-right maxima, we obtain the same upper bound for the
height of binary search trees under partial alterations. The following theorem is
obtained via a proof similar to the proof of Theorem 18.

Theorem 23. Fix ε > 0. Let p = p(n) with p ≥ nε−1 and p ≤ 1 − ε. Then for all
sufficiently large n and all sequences σ of length n,

height-alterp(σ) ≤ 6.7 · (1 − p) ·
√

n/p .
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Proof. The blocks Bd and Cj and the subsets Ai
d are defined in the same way. Now,

for each subset Ai
d, we have numbers ai

d = min Ai
d − 1

2
and bi

d = maxAi
d + 1

2
. We

say that Ai
d is c-successful if at least one of the first D(d) · c ·

√

n/p elements is
from the interval [ai

d, b
i
d). The term c-successful for blocks Bd is defined in the same

way as in the previous proof. For subsets Cj, the term c-successful is defined just
as for Ad

i . The remainder of the proof proceeds along the same lines as the proof of
Theorem 18.

We also get the same bound for the height of binary search trees under partial
alterations that holds with high probability.

Theorem 24. Fix ε > 0 and β > 1. Let p = p(n) ∈ (0, 1) with nε−1 ≤ p ≤ 1 − ε,
c > 0, and let n ∈ N be sufficiently large. Let σ be a sequence of length n, and let
c > 0. Then

P

(

height-alterp(σ) > c ·
√

(n/p) · ln n
)

≤ n−(c/3)2/β+0.5 .

Proof. There are basically two differences to the proof of Theorem 20. First, we
have to estimate the probability that for every i, at least one of the first Kc̃ elements
assumes a value in the interval [(i−1)·Kc̃, i·Kc̃]. Second, we have to take the marked
elements into account: It might happen that many of the marked elements assume
values in the same interval [(i−1)·Kc, i·Kc] for a certain i. Then we cannot argue as
in Lemma 19. However, the probability that height of a tree grown from a random
permutation is larger than δ · log n is at most nδ·ln(2e/δ)−1 [13, Lemma 3.1]. We plug
in δ = ln n. Thus, using very coarse estimations, the probability that the height of a
tree grown from a random permutation of n elements exceeds O((logn)2) is bounded
from above by n− ln n for all sufficiently large n. In particular, the probability that
the marked elements contribute more than O((log n)2) to the tree height is at most
n− lnn.

Fix again c̃ < c/3 and β ′ < β such that c̃2/β ′ > (c/3)2/β. Let again Kc̃ =
dc̃ ·
√

(n/p) · ln ne. Let σ′ be the sequence obtained from σ by performing a p-partial
alteration. For every i, the probability that no element of the first Kc̃ elements
of σ′ assumes a value in the interval [(i − 1) · Kc̃, i · Kc̃] is at most n−c̃2/β′

by
Lemma 11. Thus, the probability that there is any such i is at most n−c̃2/β′+0.5 for
all sufficiently all large n. Furthermore, the probability that the unmarked elements
contribute more than O((log n)2) to the height is at most n− lnn for sufficiently large
n. Thus, for all sufficiently large n, the probability that the tree height exceeds
3Kc̃ + O((log n)2) is at most n−c̃2/β′+0.5 + n− lnn ≤ n−(c/3)2/β+0.5.

We obtain the same lower bound for the height of binary search trees under
partial alterations. Again, the lower bound is obtained for the sorted sequence. The
proof is almost identical to the proof of Theorem 22. The only difference is that we
have to use the proof of Lemma 16 instead of Lemma 13.

Theorem 25. For all p ∈ (0, 1) and all sufficiently large n ∈ N,

height-alterp(σ
n
sort) ≥ 0.8 · (1 − p) ·

√

n/p .
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7 Comparing Partial Deletions with Partial Per-

mutations and Alterations

For the sake of completeness, let us mention tight bounds for the tree height and
the number of left-to-right maxima under partial deletions: For all sequences σ of
length n, we have height-delp(σ) ≤ (1− p) ·n and ltrm-delp(σ) ≤ (1− p) ·n. On the
other hand, height-delp(σ

n
sort) = ltrm-delp(σ

n
sort) = (1 − p) · n.

Partial deletions turn out to be the worst of the three models: Trees are usually
expected to be higher under partial deletions than under partial permutations or
alterations, even though they contain fewer elements. The expected height under
partial deletions yields upper bounds (up to an additional O(logn)) for the expected
height under partial permutations and alterations. Furthermore, we prove that lower
bounds for the expected height under partial deletions yield slightly weaker lower
bounds for permutations and alterations. The main advantage of partial deletions
over partial permutations and partial alterations is that partial deletions are much
easier to analyse.

By Lemmas 8 and 9, the expected height and number of left-to-right maxima
under partial permutations or alterations can be bounded from above by their coun-
terpart under partial deletions. More precisely: For all sequences σ of length n and
for all p ∈ [0, 1],

E
(
height-permp(σ)

)
≤ E

(
height-delp(σ)

)
+ O(log n) ,

E
(
ltrm-permp(σ)

)
≤ E

(
ltrm-delp(σ)

)
+ O(log n) ,

E
(
height-alterp(σ)

)
≤ E

(
height-delp(σ)

)
+ O(log n) , and

E
(
ltrm-alterp(σ)

)
≤ E

(
ltrm-delp(σ)

)
+ O(log n) .

The converse is not true; this follows from the upper bounds for the height of
binary search trees under partial permutations and partial alterations (Theorems 18
and 23) and the lower bound under partial deletions. But we can find a bound for
the expected height under partial deletions by the expected height under partial
permutations or alterations by padding the sequences considered.

Lemma 26. Let p ∈ (0, 1) be fixed, and let σ be a sequence of length n with
height(σ) = d and E(height-delp(σ)) = d′.

Then there exists a sequence σ̃ of length O(n2) with height(σ̃) = d + O(log n),
E(height-permp(σ̃)) ∈ Ω(d′), and E(height-alterp(σ̃)) ∈ Ω(d′).

Proof. We assume that σ is a permutation of [n]. The idea is to attach a tail of
sufficiently many elements greater than n to the sequence such that all marked
elements that are greater than or equal to n will be permuted to this tail. Thus, the
overall structure of the remaining elements from [n] will be as if a partial deletion
has been carried out.

Choose K = n2p and construct σ̃ from σ as follows: the first n items of σ̃ are
just σ; we call this the head of σ̃. The last K − n items of σ̃, which we call the
tail of σ̃, are numbers greater than n such that these numbers build a tree of height
O(log(K − n)) = O(log n). With a constant probability, say, c, all elements marked
in the head are permuted into the tail (see the proof of Lemma 13).
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Consider the tree obtained from the first n elements after partial permutation
under the assumption that all marked head elements are now in the tail. This tree
is almost identical to the tree obtained from σ via partial deletion when the same
elements are marked. The difference is that the tree contains some elements greater
than n, which only increase the length of the right-most path. Thus, height-permp(σ̃)
is at least cd′, which proves the lemma.

The result for partial alterations follows in the same way. We only have to use
the proof of Lemma 16 instead of Lemma 13.

8 The (In-)Stability of Perturbations

Having shown that worst-case instances become much better when smoothed, we
now provide a family of best-case instances for which smoothing results in an expo-
nential increase in height.

We consider the following family of sequences:

• σ(1) = (1).

• σ(k+1) = (2k, σ(k), 2k + σ(k)), where c + σ = (c + σ1, . . . , c + σn) for a sequence
σ of length n.

For instance, σ(2) = (2, 1, 3) and σ(3) = (4, 2, 1, 3, 6, 5, 7). Let n = 2k − 1. Then
σ(k) contains the numbers 1, 2, . . . , n, and we have height(σ(k)) = ltrm(σ(k)) = k =
log(n + 1).

Let us estimate the expected number of left-to-right maxima after partial dele-
tion, thus obtaining a lower bound for the expected height of the binary search tree.
Deleting the first element of σ(k) roughly doubles the number of left-to-right maxima
in the resulting sequence. This is the basic idea behind the following theorem; the
idea is illustrated in Figure 4.

Theorem 27. Let p ∈ (0, 1). Then for all k ∈ N,

E
(
ltrm-delp(σ

(k))
)

=
1 − p

p
·
(
(1 + p)k − 1

)
.

Proof. Let `k = E(ltrm-delp(σ
(k))) for short. The root 2k−1 is deleted with proba-

bility p. Then the expected number of left-to-right maxima is just the expectation
for the left subtree plus the expectation for the right subtree since all elements in
the left subtree are smaller and occur earlier than all elements in the right subtree.
Both expectations are `k−1. If the root is not deleted, we expect 1+`k−1 left-to-right
maxima: One is the root and `k−1 are expected in the right subtree. The left sub-
tree does not contribute any other maxima since all elements in the left subtree are
smaller than the root. We have `1 = 1 − p since the single element will be deleted
with probability p. Overall,

`k = p · 2`k−1 + (1 − p) · (1 + `k−1)

= (1 + p) · `k−1 + (1 − p) = (1 − p) ·
k−1∑

i=0

(1 + p)i =
1 − p

p
·
(
(1 + p)k − 1

)
.
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2k+1

3 · 2k2k

T (σ(k)) T (2k+σ(k)) T (2·2k+σ(k)) T (3·2k+σ(k))

(a) T (σ(k+2)).

2k

T (2k+σ(k))T (σ(k))

3 · 2k

T (2·2k+σ(k)) T (3·2k+σ(k))

(b) Removing the root 2k+1 roughly dou-
bles the height.

T (σ(k))

T (2k+σ(k))

T (2·2k+σ(k))

T (3·2k+σ(k))

(c) Removing also the roots 2k of
T (σ(k+1)) and 3·2k of T (2k+1+σ(k+1))
increases the height by a factor of
four.

Figure 4: Removing root elements increases the height and the number of left-to-
right maxima.

Corollary 28. For all p ∈ (0, 1) and all k ∈ N,

E
(
height-delp(σ

(k))
)
≥ 1 − p

p
·
(
(1 + p)k − 1

)
.

We conclude that there are some best-case instances that are quite fragile under
partial deletions: From logarithmic height they “jump” via smoothing to a height of
Ω(nlog(1+p)). (We have 1−p

p
· ((1 + p)k − 1) ∈ Θ(nlog(1+p)) for fixed p ∈ (0, 1).) Thus,

the height increases exponentially.
We can transfer this result to partial permutations and partial alterations due

to Lemma 26. Therefore, we consider sequences σ̃(k), which are obtained from σ(k)

as described in the proof of Lemma 26.

Corollary 29. Let p ∈ (0, 1) be fixed. Then height(σ̃(k)) ∈ O(log n) and there exists
a constant ε > 0 with

E
(
height-permp(σ̃

(k))
)
∈ Ω(nε) and E

(
height-alterp(σ̃

(k))
)
∈ Ω(nε) .

For the sake of completeness, let us mention that the number of left-to-right-
maxima is maximally fragile, at least asymptotically for any fixed p: There are
sequences with one left-to-right maximum for which the expected number of left-
to-right maxima after partial permutation is Ω(

√
n). The same holds for partial

alterations. For partial deletions, the number can jump from 1 to Ω(n). The proofs
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are straightforward: Take an adversarial sequence of length n − 1 for proving lower
bounds for the expected number of left-to-right maxima under any of these pertur-
bation models and add an n at the front of the sequence. For partial permutations,
this n will be marked and moved behind the first Θ(

√

n/p) elements with constant
probability. For the other two models, the proof is similar.

9 Conclusions

We have analysed the height of binary search trees obtained from perturbed se-
quences and obtained asymptotically tight lower and upper bounds of roughly
Θ(

√
n) for the height under partial permutations and alterations. This stands in

contrast to both the worst-case and the average-case height of n and Θ(log n), re-
spectively. One direction for future work is of course improving the constants of the
bounds. Another direction is generalising the results to the case that p decreases
faster than nε−1.

Interestingly, the sorted sequence σn
sort turns out to be the worst-case for the

smoothed height of binary search trees in the sense that the lower bounds are ob-
tained for σn

sort (Theorems 22 and 25). This is in contrast to the fact that the
expected number of left-to-right maxima of σn

sort under p-partial permutations is
roughly O(logn) [3]. We believe that for the height of binary search trees, σn

sort is
indeed the worst case.

Conjecture 30. For all p ∈ [0, 1], all n ∈ N, and every sequence σ of length n,

E
(
height-permp(σ)

)
≤ E

(
height-permp(σ

n
sort)

)
and

E
(
height-alterp(σ)

)
≤ E

(
height-alterp(σ

n
sort)

)
.

We performed experiments to estimate the constants in the bounds for the height
of binary search trees. For all n ∈ {20 000, 40 000, . . . , 500 000} and p ∈ {0.1, 0.25},
we performed 5 000 partial permutations of σn

sort. We did the same thing for n ∈
{100 000, 500 000} and p ∈ {0.05, 0.10, . . . , 0.95}. The results led to the following
conjecture. Proving this conjecture would immediately improve our lower bound.
Provided that Conjecture 30 holds as well, we would also obtain an improved upper
bound for the height of binary search trees under partial permutations.

Conjecture 31. For p ∈ (0, 1) and some constant γ ≈ 1.8,

E
(
height-permp(σ

n
sort)

)
= (γ + o(1)) · (1 − p) ·

√

n/p .

Throughout this paper, the bounds obtained for partial permutations and partial
alterations are equal. Moreover, the proofs used to obtain these bounds are almost
identical. We suspect that this is always true for binary search trees.

Conjecture 32. For all p ∈ [0, 1] and σ,

E
(
height-permp(σ)

)
≈ E

(
height-alterp(σ)

)
.
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In addition to partial permutations and alterations, one could consider other
perturbation models for sequences. From a more abstract point of view, a future
research direction would be to characterise the properties of perturbation models
that lead to upper or lower bounds that are asymptotically different from the average
or worst case.

Apart from lower and upper bounds, we have also examined the stability of
perturbations, i.e. how much higher a tree can become if the underlying sequence is
perturbed. It turns out that all three perturbation models are unstable.

Finally, we are interested in generalising these results to other problems based
on permutations, like sorting algorithms (Quicksort under partial permutations has
already been investigated by Banderier et al. [3]), routing algorithms, and other al-
gorithms and data structures. Hopefully, this will shed some light on the discrepancy
between the worst-case and average-case complexity of these problems.
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