
A Tight Bound on the Refutation Clause Space

of Pebbling Contradictions over Binary Trees

Jakob Nordström

Royal Institute of Technology (KTH)

SE-100 44 Stockholm, Sweden

jakobn@kth.se

September 13, 2005

Abstract

The width of a resolution proof is the maximal number of literals in

any clause of the proof. The space of a proof is the maximal number of

memory cells used if the proof is only allowed to resolve on clauses kept in

memory. Both of these measures have previously been studied and related

to the refutation size of unsatisfiable CNF formulas. Also, the resolution

refutation space of a formula has been proven to be at least as large as the

refutation width. In ECCC Technical Report TR05-066, we proved that

space can be separated from width, answering an open question in several

previous papers. In these notes we sharpen this result to a tight bound

on the refutation space of pebbling contradictions over binary trees.

This is a strenghening of the analysis in Section 8 of [5]. We refer to [5] for
any non-standard notation or terminology used in these notes.

1 A Tight Bound on the Refutation Space of Peb
d
Th

In Section 7 of [5] we proved that Sp
(

Pebd
Th

` 0
)

= Sp
(

*Pebd
Th

`
∨d

l=1
zl

)

,

and that each resolution derivation π : *Pebd
Th

→
∨d

i=1
zi induces a legal L-peb-

bling L of Th such that maxC∈π

{

cost(L(C))
}

= Ω
(

cost(L)
)

. From Sections

5 and 6 of [5] we know that cost(L) = Ω
(

BW-Peb(T)
)

. The final component
needed to piece together the proof of our lower bound on the refutation space
of pebbling contradictions is to show that the number of pebbles in an induced
L-configuration L(C) and the number of of clauses in C are somehow connected.

We cannot expect a proof of this fact to work regardless of the pebbling
degree d. The induced L-pebbling in Section 7 of [5] makes no assumptions
about d, but we know that Sp

(

*Peb1

G ` z1

)

= Sp
(

Peb1

G ` 0
)

= O(1). If we look

at the resolution refutation π of Peb1

G in constant space sketched at the end
of Section 4 of [5], we see that the induced L-pebbling starts by placing white
pebbles on pred(z) and a black pebble on z, i.e., introducing z〈pred(z)〉, and
then pushes the white pebbles downwards by introducing v〈pred (v)〉 for all v

1

Electronic Colloquium on Computational Complexity, Comment 1 on Report No. 66 (2005)

ISSN 1433-8092

in reverse topological order and merging until it reaches z〈S〉 for S the source
vertices of G. Finally, the white pebbles s ∈ S are eliminated one by one by
introducing s〈∅〉 and merging. The reason that Peb1

G can be refuted in constant
space is that one single clause

∨

v∈V v1 ∨ z1 can induce an arbitrary number |V |
of white pebbles, or, phrasing it differently, that white pebbles are free for d = 1.

Below, we prove a lower bound
∣

∣C
∣

∣ ≥ N for N induced pebbles in Theo-
rem 1.12. As we just observed, we will need d ≥ 2 if some of these N pebbles
are white. Black pebbles are not free for d = 1, however, but instead of showing
a separate bound for them we assume d ≥ 2 and give a simple, unified proof for
N simultaneous black or white pebbles. We conclude the section by combining
the bound in Theorem 1.12 with previous theorems from [5] to obtain a tight
bound on the refutation clause space of pebbling contradictions over binary trees
in Theorem 1.13 and a separation of space and width in Corollary 1.14.

In the proofs, we will use the following definitions.

Definition 1.1. We say that a vertex v is represented positively in a clause C if
{

v1, . . . , vd

}

∩Lit(C) 6= ∅ and negatively if
{

v1, . . . , vd

}

∩Lit(C) 6= ∅, and that
C mentions v positively or negatively , respectively. This definition is extended
to sets of vertices and clauses by taking unions.

For a set of vertices U , we let Vars(U) =
{

u1, . . . , ud | u ∈ U
}

denote the set

of all variables representing vertices in U . For a set of clauses C, we use V
(

C
)

=
{

u ∈ U | Vars(u) ∩Vars(C) 6= ∅
}

to denote all vertices represented (positively

or negatively) in C, and we write C[U] =
{

C ∈ C | V
(

C
)

∩U 6= ∅
}

to denote
the subset of all clauses in C mentioning vertices in U .

Definition 1.2. For v a vertex in T and α a truth value assignment, v is said
to be true under α if α

(
∨d

i=1
vi

)

= 1 and false under α if α
(
∨d

i=1
vi

)

= 0. We
define

αv=ν
(

ui

)

=

{

α
(

ui

)

if u 6= v,

ν if u = v

and say that αv=0 flips v to false.

Definition 1.3. A restriction ρ is a partial truth value assignment. We repre-
sent a restriction as the set of literals ρ = {a1, . . . , am} set to true by ρ. For a
clause C, the ρ-restriction of C is

C|ρ =

{

1 if ρ∩Lit(C) 6= ∅,

C \ {a | a ∈ ρ} otherwise,

where 1 denotes the trivially true clause, and the ρ-restriction C|ρ of a set of
clauses C is the union of the ρ-restrictions C|ρ 6= 1 for C ∈ C.

We write ρ(¬C) = {a | a ∈ Lit(C)} to denote the unique minimal restriction
that falsifies C.

Definition 1.4. We say that a set of clauses C implies a clause D minimally if
C � D but for all C′ $ C it holds that C′ 2 D. If C � 0 minimally, we say that
C is minimally unsatisfiable.

We prove a pair of technical lemmas about minimally implicating clause sets.

2

Lemma 1.5. Suppose for C a set of clauses and D a clause that C � D min-
imally, and let ρ = ρ(¬D). Then C|ρ is minimally unsatisfiable. Also, it holds

that
∣

∣C|ρ
∣

∣ =
∣

∣C
∣

∣, i.e., no literal a ∈ Lit(D) occurs negated in C.

Proof. Pick any C′ ⊆ C such that C′|ρ is minimally unsatisfiable. If there was

a truth value assignment α such that α
(

C′
)

= 1 and α
(

D
)

= 0, this α would
satisfy C′|ρ , which is contrary to assumption. Hence C′

� D, and again by

assumption we must have C′ = C. This also shows that
∣

∣C|ρ
∣

∣ =
∣

∣C
∣

∣, for if ρ

satisfied some clause C ∈ C this would imply that (C \ {C})|ρ was minimally

unsatisfiable for C \ {C} = C′ $ C.

Lemma 1.6. Suppose for C a set of clauses and D a clause that C � D mini-
mally and that a ∈ Lit(C) but a 6∈ Lit(C). Then a ∈ Lit(D).

Proof. Suppose not. Let C1 =
{

C ∈ C | a ∈ Lit(C)
}

and C2 = C \ C1. Since
C2 2 D there is an α such that α(C2) = 1 and α(D) = 0. Note that
α(a) = 0, since otherwise α(C1) = 1. It follows that a 6∈ Lit(D). Flip a to
true. By construction αa=1

(

C1

)

= 1, but C2 and D are not affected since

{a, a}∩
(

Lit(C2) ∪Lit(D)
)

= ∅, so αa=1
(

C2

)

= 1 and αa=1
(

D
)

= 0. Contra-
diction.

The fact that a minimally unsatisfiable CNF formula F must have more
clauses than variables seems to have been proven independently a number of
times (see e.g. [1, 2, 4]). We generalize this result to subsets of variables and
the clauses containing variables in these subsets.

Lemma 1.7. For F a minimally unsatisfiable CNF formula and V ⊆ Vars(F)
any subset of variables, let FV = {C ∈ F | Vars(C) ∩V 6= ∅}. Then |FV | > |V |.

Proof. By induction over V ⊆ Vars(F).
If |V | = 1, then |FV | ≥ 2, since any x ∈ V must occur both positively and

negatively in F . For suppose x occurs only positively or only negatively. Then
because of the minimality of F we can satisfy F ′ = F \ {C ∈ F | x ∈ Vars(C)}
with a partial truth value assignment ρ to Vars(F) \ {x} since x does not occur
in F ′, and then extend ρ to a satisfying assignment for all of F by setting x to
the right value. (This is basically the proof of Lemma 1.6.)

The inductive step generalizes this idea. Suppose that |FV ′ | > |V ′| for all
strict subsets V ′ $ V and consider V . Since FV ′ ⊆ FV if V ′ ⊆ V , choosing any
V ′ of size |V | − 1, we see that |FV | ≥ |FV ′ | ≥ |V ′| + 1 = |V |.

If |FV | > |V | there is nothing to prove, so assume that |FV | = |V |. Consider
the bipartite graph with the variables V and the clauses in FV as vertices, and
edges between variables and clauses for all variable occurrences. Since for all
V ′ ⊆ V the set of neighbours N(V ′) = FV ′ ⊆ FV satisfies |N(V ′)| ≥ |V ′|, by
Hall’s Marriage Theorem there is a perfect matching between V and FV . Use
this matching to satisfy FV assigning values to variables in V only.

The clauses in F ′ = F \FV are not affected by this partial truth value assign-
ment, since they do not contain any occurrences of variables in V . Furthermore,
by the minimality of F it must hold that F ′ can be satisfied by assigning values
to variables in Vars(F ′) \ V .

The two partial truth value assignments for FV and F ′ can be combined
to a satisfying assignment for all of F , which contradicts the fact that F is
unsatisfiable. Thus |FV | > |V |. The lemma follows.

3

The next lemma is needed to show that if a clause set C implies black pebbles
on a set of vertices V , then these vertices must be represented positively in C.

Lemma 1.8. Suppose for a set of clauses C and clauses D1 and D2 with
Vars(D1) ∩Vars(D2) = ∅ that C � D1 ∨ D2 but C 2 D2. Then there is a
literal a ∈ Lit(C) ∩Lit(D1).

Proof. Pick a truth value assignment α such that α
(

C
)

= 1 but α
(

D2

)

= 0. By

assumption α
(

D1

)

= 1. Let α′ be the same assignment except that all satisfied

literals in D1 are flipped to false. Then α′
(

D1 ∨ D2

)

= 0 forces α′
(

C
)

= 0, so
the flip must have falsified some previously satisfied clause in C.

We also need to show that white-pebbled vertices are represented in C. Now
if C induces a white pebble on a vertex w, it follows immediately by Lemma 1.6
that all literals wi, i ∈ [d], are represented in Lit(C). But we can say something
stronger.

Lemma 1.9. Suppose for a clause set C and a vertex w that there is a v ∈ P w
∗

and a V ⊆ T \ P w
∗

such that C∪B(V) � AP v but C∪B(V \ {w}) 2 AP v . Then
there is a subset

{

wi ∨ Ci | i ∈ [d]
}

⊆ C for which wj 6∈ Lit(Ci) if j 6= i.

Proof. Pick α such that α
(

C
)

= α
(

B(V \ {w})
)

= 1 but α
(

AP v

)

= 0. Then it

must be the case that α
(
∨d

i=1
wi

)

= 0. For all i ∈ [d] we have αwi=1
(

B(V)
)

= 1

but αwi=1
(

AP v

)

= 0, so flipping wi while keeping wj false for j 6= i must falsify
some clause in C. This establishes that there are clauses wi ∨ Ci ∈ C for all
i ∈ [d] such that wj 6∈ Lit(Ci) for j 6= i.

Lemma 1.9 tells us that one white pebble costs d clauses. We are convinced
that the correct bound for N white pebbles should be dN clauses if d ≥ 2.

We next prove a couple of lemmas to try to argue why the intuition for a
bound dN , or at least (d−1)N , is strong. At the same time, the proofs of these
lemmas indicate why such a bound appears hard to get. Loosely speaking, the
problem seems to be that Lemma 1.7 does not really use any structural infor-
mation about the CNF formula in question. Since very different formulas can
yield the same clauses-variable occurrences bipartite graph, perhaps it should
not be not very surprising if the lemma does not always yield optimal bounds.

For N white pebbles in one common subconfiguration, the cost is at least
(d − 1)N clauses.

Lemma 1.10. If a clause set C derived from *Pebd
T induces a subconfiguration

v〈W 〉 then |C| > (d − 1)|W |.

Proof. Pick Cv ⊆ C and V ⊆ T \ P v minimal such that W = swp(v, V) and
Cv ∪B(V) � AP v . Note that swp(v, V) ⊆ V by definition. For ρ = ρ(¬AP v),
Lemma 1.5 says that (Cv ∪B(V))|ρ = Cv|ρ ∪B(V) is a minimally unsatisfiable
clause set. Since B(V) contains d|V | variables but only |V | clauses, Lemma 1.7
yields that |C| ≥

∣

∣Cv|ρ
∣

∣ > (d − 1)|V | ≥ (d − 1)|W |.

Also, two white pebbles always cost at least 2d − 1 clauses, although here
the argument starts to become pretty involved. . .

Lemma 1.11. If a clause set C derived from *Pebd
T induces two white pebbles

on T , then |C| ≥ 2d − 1.

4

Proof. Suppose that C induces white pebbles on w1 and w2.

If w1 and w2 are contained in the same subconfiguration we have |C| ≥ 2d−1
by Lemma 1.10. Assume for i = 1, 2 that the induced subconfigurations are
vi〈W i〉, where wi ∈ W i, and let Ci ⊆ C and V i ⊆ T \P vi

be minimal such that
W i = swp(vi, V i) and Ci ∪B

(

V i
)

� A
P vi . If

∣

∣V 1
∣

∣ > 1 or
∣

∣V 2
∣

∣ > 1 we again

have |C| ≥ 2d−1 by the proof of Lemma 1.10, so suppose that V i = W i =
{

wi
}

.
Let ρi = ρ(¬A

P vi) for i = 1, 2. By the proof of Lemma 1.9 we know that
Ci|ρi

contains d clauses
{

Di
j = wi

j ∨ Ci
j | j ∈ [d]

}

for which wi
k 6∈ Lit

(

Ci
j

)

if

k 6= j. Let us refer to the literals wi
j ∈ Lit

(

Di
j

)

for i = 1, 2 and j = 1, . . . , d as

critical occurrences . If w1 ∈ P v2

we are done since ρ2 kills all d clauses w1

j ∨ C1

j

and there are still d clauses w2

j ∨ C2

j left in C2|ρ2
, and the same holds for w2

and P v1

by symmetry. Assume therefore that w1 6∈ P v2

and w2 6∈ P v1

.
Now if

∣

∣C1 ∪C2

∣

∣ < 2d, Lemma 1.9 combined with the pigeonhole principle
tells us that there is some negative literal, say w1

1
, which occurs critically in a

clause containing a literal w2

j . Consider the subset C1

[{

w1, w2
}]

of clauses in

C1 mentioning w1 or w2, and let m = Vars
(

C1

[{

w1, w2
}])

∩Vars
(

w2
)

. We
know that w1

1
occurs critically in C1 together with some w2

j , and that all literals

from w2 in C1 are present in C1|ρ1
as well, since w2 6∈ P v1

by assumption and ρ1

does not satisfy any clauses in C1 by Lemma 1.5. Thus m ≥ 1. By Lemma 1.7
we get

∣

∣C1

[{

w1, w2
}]

|
ρ1

∪B
(

w1
)∣

∣ > d + m, that is,
∣

∣C1

[{

w1, w2
}]∣

∣ ≥ d + m.

Since C1

[{

w1, w2
}]

⊆ C1 ∪C2 and
∣

∣C1 ∪C2

∣

∣ < 2d we must have m < d.
Consequently, there are d − m ≥ 1 variables from w2, say w2

1
, . . . , w2

d−m, that

are not mentioned in C1

[{

w1, w2
}]

. But all negative literals wi
j for i = 1, 2 and

j = 1, . . . , d occur in C1 ∪C2, so the literals w2

1
, . . . , w2

d−m can all be found in
(

C1 ∪C2

)

\ C1

[{

w1, w2
}]

. However,

∣

∣

(

C1 ∪C2

)

\ C1

[{

w1, w2
}]∣

∣ =
∣

∣C1 ∪C2

∣

∣ −
∣

∣C1

[{

w1, w2
}]∣

∣

≤ (2d − 1) − (d + m)

= d − (m + 1),

which contradicts the existence of d−m distinct clauses
{

w2

j ∨ C2

j | j ∈ [d − m]
}

guaranteed by Lemma 1.9. Hence
∣

∣C1 ∪C2

∣

∣ ≥ 2d and the lemma follows.

We believe that the ideas in the proof of Lemma 1.11 could be pushed further
to yield a bound |C| ≥ (d−1)N for N white pebbles. However, to get a simpler
proof, and to get a common bound for N simultaneous black or white pebbles,
we instead opt for the bound |C| ≥ N .

Theorem 1.12. Suppose that C is a set of clauses derived from *Pebd
T for

d ≥ 2, and that V ⊆ V
(

T
)

is a set of vertices such that C induces a black or

white pebble on each v ∈ V , i.e., V ⊆ Bl
(

L(C)
)

∪Wh
(

L(C)
)

. Then |C| ≥ |V |.

Proof. Suppose that C induces a subconfiguration v〈W 〉. By Definition 7.6
in [5], there is a minimal support Vv ⊆ T \ P v such that W = swp(v, Vv) ⊆ Vv

and C∪B(Vv) � AP v but C∪B(Vv) 2 AP v
∗

and C∪B(V ′

v) 2 AP v for all V ′

v $ Vv .
For the black pebble on v, by Lemma 1.8 we see that v must be represented

positively in C∪B(Vv) (write AP v =
∨d

i=1
vi ∨AP v

∗
), and since v 6∈ Vv the posi-

tive literals from v are found in C. For the white pebbles in W , it follows from

5

Lemma 1.9 (or even just from Lemma 1.6) that all literals
{

wi | w ∈ W, i ∈ [d]
}

occur in C.
We prove by induction over U ⊆ V that |C[U]| ≥ |U |, from which the

theorem clearly follows. The base case |U | = 1 is immediate, since we just
proved that all pebbled vertices v ∈ V are represented in C.

For the induction step, suppose that
∣

∣C
[

U ′
]∣

∣ ≥
∣

∣U ′
∣

∣ for all U ′ $ U . Fix a
“topmost” vertex u ∈ U , i.e., such that P u

∗
∩U = ∅. By definition, the vertex u

must be black-pebbled. Choose Cu ⊆ C minimal such that Cu ∪B(Vu) � AP u .
Since Cu ∪B(Vu) 2 AP u

∗
and Vu ∩P u = ∅ by definition, the vertex u is repre-

sented positively in Cu. Using Lemma 1.5 with the restriction ρ = ρ(¬AP u),
we get that (Cu ∪B(Vu))|ρ = Cu|ρ ∪B(Vu) is minimally unsatisfiable. By the
same lemma, all literals over u′ ∈ U \ {u} in Cu are present also in Cu|ρ , since
U ∩P u = {u} and ρ does not eliminate any clauses from Cu.

Let S = U ∩V
(

Cu

)

=
(

U ∩V
(

Cu|ρ
))

∪{u} be the set of all vertices in U

mentioned by Cu. We claim that |Cu[S]| ≥ |S|.
To show this, note first that it was proven above that u ∈ S, and if {u} = S

we trivially have |Cu[S]| ≥ 1 = |S|. Suppose therefore that S % {u}. We want

to apply Lemma 1.7 on F = Cu|ρ ∪B(Vu). Write S = S1

.
∪ S2 for S1 = S ∩Vu

and S2 = S \ S1, and consider FS =
{

C ∈ Cu|ρ ∪B(Vu) ; V
(

C
)

∩S 6= ∅
}

=
Cu[S \ {u}]|ρ ∪B(S1). For each v ∈ S1, the clauses in B(S1) contain d variables
v1, . . . , vd, and these variables must all occur negated in Cu by Lemma 1.6. For
each v ∈ S2 \ {u}, the clauses in Cu[S \ {u}]|ρ contain at least one variable vi.
Appealing to Lemma 1.7 with V = Vars(S \ {u}) ∩Vars(Cu), we get that

∣

∣FS

∣

∣ =
∣

∣Cu[S \ {u}]|ρ ∪B(S1)
∣

∣

>
∣

∣Vars(S \ {u}) ∩Vars(Cu)
∣

∣

≥ d
∣

∣S1

∣

∣ +
∣

∣S2

∣

∣ − 1,

and rewriting this as

∣

∣Cu[S]
∣

∣ ≥
∣

∣Cu[S \ {u}]|ρ
∣

∣ =
∣

∣FS

∣

∣ −
∣

∣B(S1)
∣

∣ ≥ (d − 1)
∣

∣S1

∣

∣ +
∣

∣S2

∣

∣ ≥
∣

∣S
∣

∣

proves the claim.
Note that Cu[S] ⊆ C[U], since Cu ⊆ C and S ⊆ U . Also, by construction

Cu[S] does not mention any vertices in U \ S. In other words, C[U \ S] ⊆
C[U] \ Cu[S], and using the induction hypothesis we get

∣

∣C[U]
∣

∣ ≥
∣

∣Cu[S]
∣

∣ +
∣

∣C[U \ S]
∣

∣ ≥ |S| + |U \ S| = |U |.

The theorem follows by induction.

We can now prove a tight bound for the refutation clause space of pebbling
contradictions over binary trees.

Theorem 1.13. Let Th denote the complete binary tree of height h and Pebd
Th

the pebbling contradiction of degree d ≥ 2 defined on Th. Then the space of
refuting Pebd

Th
by resolution is Sp

(

Pebd
Th

` 0
)

= Θ(h).

Proof. The upper bound Sp
(

Pebd
G ` 0

)

= O
(

Peb(G)
)

for any DAG G is fairly

obvious. Given an optimal black pebbling of G, derive
∨d

i=1
vi inductively when

vertex v is pebbled. With a little care, this can be done in constant extra space

6

independent of d. To see this, suppose for pred(r) = {p, q} that a black pebble

is placed on r. Then p and q are already black-pebbled, so we have
∨d

i=1
pi and

∨d

j=1
qj in memory. It is not hard to verify that pi ∨

∨d

l=1
rl can be derived in

additional space 3 by resolving
∨d

j=1
qj with pi∨qj ∨

∨d
l=1

rl for j ∈ [d]. Resolve
∨d

i=1
pi with p

1
∨

∨d

l=1
rl to get

∨d

i=2
pi ∨

∨d

l=1
rl, and then resolve this clause

with pi ∨
∨d

l=1
rl for i = 2, . . . , d to get

∨d
l=1

rl in total extra space 4. Conclude

the resolution proof by resolving
∨d

i=1
zi for the target z with the target axioms

zi, i ∈ [d], in space 3. Consequently, Sp
(

Pebd
Th

` 0
)

= O
(

Peb(Th)
)

= O(h).
For the lower bound, according to Observation 7.2 in [5] it holds that

Sp
(

Pebd
G ` 0

)

= Sp
(

*Pebd
G `

∨d

i=1
zi

)

. Let π =
{

C0, . . . , Cτ

}

be a resolu-

tion derivation of
∨d

i=1
zi from *Pebd

Th
in minimal clause space. Combining

Theorems 3.3, 5.12 and 7.13 in [5], we know that the derivation π induces a le-
gal L-pebbling L of the tree Th such that there is a clause configuration Ct ∈ π

with cost(L(Ct)) = Ω
(

cost(L)
)

= Ω
(

BW-Peb(Th)
)

= Ω
(

h
)

. Fix such a clause

configuration Ct. By Theorem 1.12,
∣

∣Ct

∣

∣ ≥ cost(L(Ct)) = Ω
(

h
)

.

It follows that Sp
(

Pebd
Th

` 0
)

= Θ(h) for d ≥ 2.

Since W
(

Pebd
G ` 0

)

= O(d) for all pebbling contradictions [3], fixing d ≥ 2
in Theorem 1.13 yields a separation of clause space from width. Corollary 1.14
follows if we let Fn = Peb2

Th
for h = blog(n + 1)c.

Corollary 1.14. There is a family
{

Fn

}∞

n=1
of k-CNF formulas of size O(n)

such that W
(

Fn ` 0
)

= O(1) but Sp
(

Fn ` 0
)

= Θ(log n).

References

[1] Ron Aharoni and Nathan Linial. Minimal non-two-colorable hypergraphs
and minimal unsatisfiable formulas. Journal of Combinatorial Theory,
43:196–204, 1986.

[2] Sven Baumer, Juan Luis Esteban, and Jacobo Torán. Minimally unsatis-
fiable CNF formulas. Bulletin of the European Association for Theoretical
Computer Science, 74:190–192, June 2001.

[3] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal
separation of treelike and general resolution. Combinatorica, 24(4):585–603,
September 2004.

[4] Oliver Kullmann. An application of matroid theory to the SAT problem.
In Proceedings 15th Annual IEEE Conference on Computational Complexity
(CCC ’00), pages 116–124, July 2000.

[5] Jakob Nordström. Narrow Proofs May Be Spacious: Separating Space and
Width in Resolution. Technical Report TR05-066, Revision 01, Electronic
Colloquium on Computational Complexity (ECCC), August 2005. Available
at http://www.eccc.uni-trier.de/eccc/.

7

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

