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Abstract

The width of a resolution proof is the maximal number of literals in
any clause of the proof. The space of a proof is the maximal number of
memory cells used if the proof is only allowed to resolve on clauses kept in
memory. Both of these measures have previously been studied and related
to the refutation size of unsatisfiable CNF formulas. Also, the resolution
refutation space of a formula has been proven to be at least as large as
the refutation width, but it has remained unknown whether space can be
separated from width or the two measures coincide asymptotically. We
prove that there is a family of k-CNF formulas for which the refutation
width in resolution is constant but the refutation space is non-constant,
thus solving an open problem mentioned in several previous papers.

1 Introduction

A proof system for a language L is a polynomial-time algorithm V such that for
all x ∈ L there is a string π (a proof ) for which V (x, π) = 1. For x 6∈ L, it should
hold for all strings π that V (x, π) = 0. The complexity of a proof system V is
the smallest bounding function g : N 7→ N such that x ∈ L if and only if there
is a proof π of size |π| ≤ g

(

|x|
)

for which V
(

x, π
)

= 1. If a proof system is of
polynomial complexity, it is said to be polynomially bounded. A propositional
proof system is a proof system for tautologies in propositional logic.

The central task of proof complexity is to construct and investigate the power
of different propositional proof systems. This is done for at least two reasons.

The first reason is the connection to the question of P versus NP, which
is recognized as a major open problem in computational complexity theory
and mathematics. Since NP is exactly the set of languages with polynomially
bounded proof systems, and since Tautology can be seen to be the dual prob-
lem of Satisfiability, we have the famous theorem of Cook and Reckhow [19]
that NP = co-NP if and only if there exists a polynomially bounded propo-
sitional proof system. Thus, if it could be shown that there are no polynomially
bounded proof systems for propositional tautologies, P 6= NP would follow as
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a corollary since P is closed under complement. One way of approaching this
distant goal is to study stronger and stronger proof systems and try to prove
superpolynomial lower bounds on proof size. However, despite the fact that
the last decade has seen some impressive successes for a variety of propositional
proof systems, it seems that we are still very far from fully understanding the
reasoning power of even quite simple ones.

The second reason is that designing efficient algorithms for proving tautolo-
gies is a very important problem not only in theoretical computer science but
also in applied research and in industry, for instance in the context of formal
methods. All automated theorem provers, regardless of whether they actually
produce a written proof or not, explicitly or implicitly define a system in which
proofs are searched for and rules which determine what proofs in this system
look like. Lower bounds on proofs in such proof systems give lower bounds on
the running time of corresponding automated theorem provers. In the other
direction, theoretical upper bounds on proof size in a system can give upper
bounds on the running time of a proof search algorithm, provided that the al-
gorithm can be shown to search for proofs in the system in an efficient manner.

Also, the field of proof complexity has rich connections to cryptography,
artificial intelligence and mathematical logic. Some good surveys of proof com-
plexity are [6, 8, 17, 42].

Any propositional logic formula can be converted to a formula in conjunctive
normal form that is only linearly larger and is unsatisfiable if and only if the
original formula is a tautology. Therefore, any sound and complete system which
produces refutations of unsatisfiable formulas in conjunctive normal form can
be considered as a general propositional proof system.

One such proof system, which is the focus of this paper, is resolution. The
resolution proof system appeared in [13], and began to be studied in connection
with automated theorem proving in [21, 22, 37]. Because of the simplicity of
resolution—there is only one derivation rule—and because all lines in a proof are
clauses, this system is well adapted to proof search algorithms. Many real-world
automated theorem provers are based on resolution.

Being so simple and fundamental, resolution was a natural target to attack
when trying to prove lower bounds in proof complexity. In this context, it is
most straightforward to prove bounds on the length of proofs, i.e., the number
of clauses, which is easily seen to be polynomially related to the proof size.
In 1968, Tseitin [40] presented a superpolynomial lower bound on refutation
length in resolution, but it was not until almost 20 years later that Haken [28]
proved the first exponential lower bound, which has later been followed by many
similar results, for instance in [7, 12, 18, 36, 41].

A second complexity measure for resolution refutations other than length is
the minimal width, measured as the maximal size of a clause in the refutation.
This measure was first made explicit by Galil [26]. Ben-Sasson and Wigder-
son [12] showed that it was strongly correlated to proof length by proving that
the width W

(

F ` 0
)

of refuting a k-CNF formula F over n variables is bounded

by the refutation length L
(

F ` 0
)

by W
(

F ` 0
)

= O
(√

n logL(F ` 0)
)

, thus
providing a new method for proving lower bounds on proof length by proving
lower bounds on width.

The results on width lead to the question of whether other complexity mea-
sures could yield interesting insights as well. In [24, 38], Esteban and Torán
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introduced the concept of space in resolution, transforming a previous defini-
tion from [30]. Intuitively, the space of a resolution proof is the maximal number
of clauses one needs to keep in memory while verifying the proof. A number
of upper and lower bounds for proof space in resolution and other proof sys-
tems were subsequently presented in for instance [2, 10, 23, 25]. In several of
these papers it was noted that the lower bounds on resolution refutation space
for different formula families matched known lower bounds on refutation width.
Atserias and Dalmau [4] showed that this was not a coincidence, but that the
minimal refutation space Sp

(

F ` 0
)

of any unsatisfiable k-CNF formula F is at

least as large as the minimal refutation width W
(

F ` 0
)

minus a constant.

An immediate follow-up question to this is whether the lower bound on
space in terms of width is asymptotically strict. That is, does there exist a
family

{

Fn

}∞

n=1
of k-CNF formulas such that Sp

(

Fn ` 0
)

= ω
(

W
(

Fn ` 0
))

or

does it always hold that Sp
(

Fn ` 0
)

= O
(

W
(

Fn ` 0
))

?

Another natural question concerns the relation between space and length.
It is not too hard to see that upper bounds on width imply upper bounds on
length, and as a consequence of the result in [4] this must be true for space with
respect to length as well. In the other direction, we have the result from [12]
stated above that upper bounds on length imply upper bounds on width. Is
there a similar Ben-Sasson-Wigderson-style upper bound on space in terms of
length, or can short resolution proofs be arbitrarily complex with respect to
space?

A third, intimately connected question is determining the refutation clause
space of pebbling contradictions defined in terms of pebble games on directed
acyclic graphs. Non-constant lower bounds on the space of refuting pebbling
contradictions would separate space and width, and possibly also clarify the
relation between space and length if the bounds were good enough. On the
other hand, a constant upper bound on the refutation space would improve the
trade-off results for different measures in resolution in [9].

The above three questions have been mentioned as interesting open problems
in [9, 23, 25, 39].

In this paper, we answer the first question by separating space and width.
This is done by proving an asymptotically tight bound on space for pebbling
contradictions over binary trees, thus at least partially solving the open problem
about the space complexity of pebbling contradictions as well. More precisely,
our results are as follows (formal definitions are given in Sections 2 and 5).

Theorem 1.1. Let Th denote the complete binary tree of height h and Pebd
Th

the
pebbling contradiction of degree d ≥ 2 defined over Th. Then the space of refuting
Pebd

Th
by resolution is Sp

(

Pebd
Th

` 0
)

= Θ(h).

Corollary 1.2. For all k ≥ 4, there is a family
{

Fn

}∞

n=1
of k-CNF formulas

of size O(n) such that W(Fn ` 0) = O(1) but Sp (Fn ` 0) = Θ(log n).

The organization of this paper is as follows. We start by presenting the
resolution proof system in Section 2. In Section 3, we gather some structural
results for CNF formulas which might be of independent interest. Section 4
gives a short introduction to pebble games, and in Section 5 we review some
previous results connecting resolution and pebbling. The bound on refutation
space which separates space and width is then proven in three steps.
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• First, we define a modified pebble game and establish a lower bound for
this game in terms of the standard black-white pebble game (Sections 6
and 7).

• Next, we show that a resolution refutation of a pebbling contradiction
induces a pebbling of the underlying graph in our modified pebble game
(Section 8).

• Finally, we prove that if a set of clauses induces many pebbles, the set must
contain at least as many clauses. Since a resolution refutation induces a
pebbling, and such a pebbling must contain many pebbles at some point,
we deduce that the clause space of the resolution derivation must be large
(Section 9).

We conclude in Section 10 by giving suggestions for further research.

2 The Resolution Proof System

A literal is either a propositional logic variable or its negation, denoted x and x
respectively (or x1 and x0). We define x = x. Two literals a and b are strictly
distinct if a 6= b and a 6= b.

A clause C = a1 ∨ . . . ∨ ak is a set of literals. We say that C is a subclause
of D if C ⊆ D. A clause containing at most k literals is called a k-clause.

A CNF formula F = C1 ∧ . . . ∧ Cm is a set of clauses. A k-CNF formula is
a CNF formula consisting of k-clauses.

In the following, we let A, B, C, D denote clauses, C, D sets of clauses, x, y
propositional variables, a, b, c literals, α, β truth value assignments and ν a truth
value 0 or 1. We define

αx=ν
(

y
)

=

{

α
(

y
)

if y 6= x,

ν if y = x.

We let Vars(C) denote the set of variables and Lit(C) the set of literals in
a clause C. (Although the notation Lit(C) is slightly redundant given the
definition of a clause as a set of literals, we include it for clarity.) This notation
is extended to sets of clauses by taking unions.

A resolution derivation π : F → A of a clause A from a CNF formula F is
a sequence of clauses π = {D1, . . . , Dτ} such that Dτ = A and each line Di,
1 ≤ i ≤ τ , is either one of the clauses in F (axioms) or is derived from clauses
Dj , Dk in π with j, k < i by the resolution rule

B ∨ x C ∨ x

B ∨ C
. (1)

We refer to (1) as resolution on the variable x and B ∨ C as the resolvent of
B∨x and C∨x on x. A resolution refutation of a CNF formula F is a resolution
derivation of the empty clause 0 (the clause with no literals) from F .

For F a formula and G = {G1, . . . , Gn} a set of formulas, we say that G
implies F , denoted G � F , if every truth value assignment satisfying all formulas
G ∈ G satisfies F as well.

Resolution is sound and implicationally complete. That is, if there is a reso-
lution derivation π : F → A then F � A, and if F � A then there is a resolution
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derivation π : F → A′ for some A′ ⊆ A. In particular, F is unsatisfiable if and
only if there is a resolution refutation of F .

We can associate with every resolution derivation π : F → A a directed
acyclic graph (DAG) Gπ, with the clauses in π labelling the vertices and with
edges from the assumption clauses to the resolvent for each application of the
resolution rule. There might be several different derivations of a clause C in π,
but if so we can label each occurrence of C with a timestamp when it was de-
rived and keep track of which copy of C is used where. A resolution derivation π
is tree-like if any clause in the derivation is used at most once as a premise in an
application of the resolution rule, i.e., if Gπ is a tree. (We may make different
“time-stamped” vertex copies of the axiom clauses in order to make Gπ into a
tree).

The length L(F ) of a CNF formula F is the number of clauses in it, and
for π a resolution derivation L(π) is the number of clauses in π. The length
of deriving a clause A from a formula F is L(F ` A) = minπ:F→A {L(π)},
where the minimum is taken over all resolution derivations of A, and the length
of refuting F by resolution is L(F ` 0). The length of refuting F by tree-
like resolution LT(F ` 0) is defined by taking the minimum over all tree-like
resolution refutations πT of F .

The width W(C) of a clause C is |C|. The width of a set of clauses C is
W(C) = maxC∈C

{

W(C)
}

. The width of deriving A from F by resolution is

W(F ` A) = minπ:F→A

{

W(π)
}

, and the width of refuting F is W(F ` 0).
If a resolution refutation has constant width, it must be of size polynomial

in the number of variables. Conversely, if all refutations of a formula are very
wide, it seems reasonable that any refutation of this formula must be very long
as well. This intuition is made precise in the following theorem.

Theorem 2.1 ([12]). The width of refuting a CNF formula F is bounded from
above by

W(F ` 0) ≤ W(F ) + O
(

√

n logL(F ` 0)
)

,

where n is the number of variables in F .

In [15], it was shown that this bound on width in terms of length is essentially
optimal.

We next define the measure of space. Following the exposition in [24], a
proof can be seen as a Turing machine computation, with a special read-only
input tape from which the axioms can be downloaded and a working memory
where all derivation steps are made. The clause space of a resolution proof is
the maximal number of clauses that need to be kept in memory simultaneously
during a verification of the proof. The variable space is the maximal “total”
space needed, where also the width of the clauses is taken into account.

For the formal definition, it is convenient to use the following alternative
definition of resolution introduced by [2]. We employ the standard notation
[n] = {1, 2, . . . , n}.

Definition 2.2 (Resolution). A clause configuration C is a set of clauses. A
sequence of clause configurations {C0, . . . , Cτ} is a resolution derivation from a
CNF formula F if C0 = ∅ and for all t ∈ [τ ], Ct is obtained from Ct−1 by one
of the following rules:

Axiom Download Ct = Ct−1∪{C} for some C ∈ F .
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Erasure Ct = Ct−1 \ {C} for some C ∈ Ct−1.

Inference Ct = Ct−1∪{D} for some D 6∈ Ct−1 inferred by resolution from
C1, C2 ∈ Ct−1.

A resolution derivation π : F → A of a clause A from a formula F is a derivation
{C0, . . . , Cτ} such that Cτ = {A}. A resolution refutation of F is a derivation
of 0 from F .

Definition 2.3 (Clause space [2, 9]). The clause space of a resolution deriva-
tion {C0, . . . , Cτ} is maxt∈[τ ]

{

|Ct|
}

. The clause space of deriving A from F is

Sp(F ` A) = minπ:F→A

{

Sp(π)
}

. Sp(F ` 0) is the minimal clause space of any
resolution refutation of F .

Definition 2.4 (Variable space [2]). The variable space of a configuration C
is VarSp(C) =

∑

C∈C
W(C). The variable space of a resolution derivation

{C0, . . . , Cτ} is max0≤i≤s

{

VarSp(Ci)
}

, and VarSp(F ` 0) is the minimal vari-
able space of any resolution refutation of F .

Restricting the resolution derivations to tree-like resolution, we get the mea-
sures SpT(F ` 0) and VarSpT(F ` 0) in analogy with LT(F ` 0) defined above.

All contradictory CNF formulas can be refuted in clause space linear in the
formula size. More precisely:

Theorem 2.5 ([24]). Any unsatisfiable CNF formula F on n variables can be
refuted in clause space n + 2.

Theorem 2.6 ([24]). Any unsatisfiable CNF formula F with m clauses can be
refuted in clause space m + 1, i.e., Sp(F ` 0) ≤ L(F ) + 1.

Thus the interesting question is which formulas demand this much space,
and which formulas can be refuted in for instance logarithmic or even constant
space. It has been shown that there are polynomial-size formulas that meet the
upper bounds of Theorems 2.5 and 2.6 up to a multiplicative constant.

Theorem 2.7 ([2, 38]). There is a polynomial-size family {Fn}
∞
n=1 of unsat-

isfiable 3-CNF formulas such that Sp (F ` 0) = Ω
(

L
(

F
))

= Ω
(

|Vars(F )|
)

.

Lower bounds on clause space have been presented for a number of different
CNF formula families [2, 10, 38]. As was mentioned above, in these papers
it was observed that the lower bounds on refutation space coincided with the
lower bounds on refutation width. This lead to the conjecture that the width
measure is a lower bound for the clause space measure, a conjecture that was
proven true in [4].

Theorem 2.8 ([4]). Let F be an arbitrary unsatisfiable CNF formula. Then it
holds that Sp(F ` 0) − 3 ≥ W(F ` 0) − W(F ).1

In other words, the extra clause space exceeding the minimum 3 needed for
any resolution derivation is bounded from below by the extra width exceeding
the width of the formula. An immediate corollary of this theorem is that for

1The statement of the theorem in [4] is Sp (F ` 0) ≥ W(F ` 0) − W(F ), but this can be
sharpened by a constant if one does the calculations carefully.
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polynomial-size k-CNF formulas, constant clause space implies polynomial proof
length.

A very natural question, which has remained open, is what holds in the other
direction. Do the space and width measures coincide asymptotically or is there
a formula family separating space from width? We remark that in order for
this question to be interesting, we should restrict our attention to families of
k-CNF formulas. Any resolution refutation of an unsatisfiable CNF formula F
with minimum clause width k can be shown to require clause space at least k + 2
(see [24]), so it is easy to find CNF formulas {Fn}

∞
n=1 of growing width such

that W(Fn ` 0) − W(Fn) = O(1) but Sp(Fn ` 0) = Ω(n).
In this paper, we settle the open question of the relationship between space

and width by proving that there is a family of k-CNF formulas {Fn}
∞
n=1 such

that W(Fn ` 0) = O(1) but Sp (Fn ` 0) = Θ(logL(Fn)).

3 On the Structure of Unsatisfiable CNF Formulas

In this section, we show some easy technical results about CNF formulas that
will be needed later on in the paper. We also prove two theorems about the
structure of unsatisfiable CNF formulas that might be interesting in their own
right (Theorems 3.6 and 3.10).

Definition 3.1. A restriction ρ is a partial truth value assignment. We repre-
sent a restriction as the set of literals ρ = {a1, . . . , am} set to true by ρ. For a
clause C, the ρ-restriction of C is

C|ρ =

{

1 if ρ∩Lit(C) 6= ∅,

C \ {a | a ∈ ρ} otherwise,

where 1 denotes the trivially true clause, and the ρ-restriction C|ρ of a set of
clauses C is the union of the ρ-restrictions C|ρ 6= 1 for C ∈ C.

We write ρ(¬C) = {a | a ∈ Lit(C)} to denote the unique minimal restriction
that falsifies C.

Definition 3.2. We say that a set of clauses C implies a clause D minimally
if C � D but for all C′ $ C it holds that C′ 2 D. If C � 0 minimally, C is said
to be minimally unsatisfiable.

Lemma 3.3. Suppose for C a set of clauses and D a clause that C � D min-
imally, and let ρ = ρ(¬D). Then C|ρ is minimally unsatisfiable. Also, it holds

that
∣

∣C|ρ
∣

∣ =
∣

∣C
∣

∣, i.e., no literal a ∈ Lit(D) occurs negated in C.

Proof. If C � D, then clearly C|ρ � D|ρ for any restriction ρ. In particular, for
ρ = ρ(¬D) the set of clauses C|ρ is unsatisfiable. Pick any C′ ⊆ C such that
C′|ρ is minimally unsatisfiable. If there was a truth value assignment α such

that α
(

C′
)

= 1 and α
(

D
)

= 0, this α would satisfy C′|ρ , which is contrary to
assumption. Hence C′

� D, and again by assumption we must have C′ = C.
This also shows that

∣

∣C|ρ
∣

∣ =
∣

∣C
∣

∣, for if ρ satisfied some clause C ∈ C this would

imply that (C \ {C})|ρ was minimally unsatisfiable for C \ {C} = C′ $ C.

Lemma 3.4. Suppose for a set of clauses C and clauses D1 and D2 with
Vars(D1) ∩Vars(D2) = ∅ that C � D1 ∨ D2 but C 2 D2. Then there is a
literal a ∈ Lit(C) ∩Lit(D1).
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Proof. Pick a truth value assignment α such that α
(

C
)

= 1 but α
(

D2

)

= 0. By

assumption α
(

D1

)

= 1. Let α′ be the same assignment except that all satisfied

literals in D1 are flipped to false. Then α′
(

D1 ∨ D2

)

= 0 forces α′
(

C
)

= 0, so
the flip must have falsified some previously satisfied clause in C.

Lemma 3.5. Let C be a set of clauses and D a clause such that C � D mini-
mally and a ∈ Lit(C) but a 6∈ Lit(C). Then a ∈ Lit(D).

Proof. Suppose not. Let C1 =
{

C ∈ C | a ∈ Lit(C)
}

and C2 = C \ C1. Since
C2 2 D there is an α such that α(C2) = 1 and α(D) = 0. Note that
α(a) = 0, since otherwise α(C1) = 1. It follows that a 6∈ Lit(D). Flip a to
true. By construction αa=1

(

C1

)

= 1, and C2 and D are not affected since

{a, a}∩
(

Lit(C2) ∪Lit(D)
)

= ∅, so αa=1
(

C
)

= 1 and αa=1
(

D
)

= 0. Contradic-
tion.

The fact that a minimally unsatisfiable CNF formula F must have more
clauses than variables seems to have been proven independently a number of
times (see e.g. [1, 5, 32]). We extend this result to subsets of variables in a
minimally implicating CNF formula and the clauses containing variables from
these subsets.

Theorem 3.6. Suppose that F is CNF formula that implies a clause D min-
imally. For V any subset of variables, let FV = {C ∈ F | Vars(C) ∩V 6= ∅}.
Then if V ⊆ Vars(F ) \Vars(D), it holds that |FV | > |V |. In particular, if F is
minimally unsatisfiable we have |FV | > |V | for all V ⊆ Vars(F ).

Proof. By induction over V ⊆ Vars(F ) \ Vars(D).
If |V | = 1, then |FV | ≥ 2, since any x ∈ V must occur both positively and

negatively in F by Lemma 3.5.
The inductive step just generalizes the proof of this lemma. Suppose that

|FV ′ | > |V ′| for all strict subsets V ′ $ V ⊆ Vars(F ) \Vars(D) and consider V .
Since FV ′ ⊆ FV if V ′ ⊆ V , choosing any V ′ of size |V | − 1 we see that |FV | ≥
|FV ′ | ≥ |V ′| + 1 = |V |.

If |FV | > |V | there is nothing to prove, so assume that |FV | = |V |. Consider
the bipartite graph with the variables V and the clauses in FV as vertices, and
edges between variables and clauses for all variable occurrences. Since for all
V ′ ⊆ V the set of neighbours N(V ′) = FV ′ ⊆ FV satisfies |N(V ′)| ≥ |V ′|, by
Hall’s Marriage Theorem there is a perfect matching between V and FV . Use
this matching to satisfy FV assigning values to variables in V only.

The clauses in F ′ = F \ FV are not affected by this partial truth value
assignment, since they do not contain any occurrences of variables in V . Fur-
thermore, by the minimality of F it must hold that F ′ can be satisfied and D
falsified simultaneously by assigning values to variables in Vars(F ′) \ V .

The two partial truth value assignments above can be combined to an as-
signment that satisfies all of F but falsifies D, which is a contradiction. Thus
|FV | > |V |. The theorem follows.

It is easy to see that Theorem 3.6 does not hold if we drop the condition that
F should imply D minimally. However, if D is derivable from F by a resolution
derivation that uses all clauses in F , we can obtain a completely analogous
bound. We conclude the section by proving this result, which is an extension of
a theorem in [5].
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For a resolution derivation π = {C0, . . . , Cτ} of D from F in the sense of
Definition 2.2, the derivation graph Gπ is uniquely determined. The clause
C ∈ Ct is said to be superfluous if there is no path in Gπ from the vertex for
C ∈ Ct to the vertex for D. A derivation is non-superfluous if it contains no
superfluous clauses. For every derivation π : F → D we can get a corresponding
non-superfluous derivation π′ : F → D in at most the same length, width and
space by only considering the vertices in Gπ from which D is reachable. In the
following, we therefore assume without loss of generality that all derivations are
non-superfluous.

Definition 3.7. The clause C ∈ F is used in a resolution derivation π if C
occurs in π. The derivation π : F → D uses exactly F ′ ⊆ F if π uses all clauses
C ′ ∈ F ′ but no clauses C ∈ F \ F ′.

We say that a CNF formula F syntactically precisely yields the clause D if
there is a non-superfluous resolution derivation π : F → D that uses exactly F ,
and denote this by F ∀̀ D. If F ∀̀ 0, we say that F is syntactically precisely
contradictory .

The intuition behind Theorem 3.6 is that if a set of clauses is strictly smaller
than the number of distinct variables in the set, there simply are not enough
clauses to eliminate all variables from the right-hand side of the implication.
The intuition is the same when we move over to resolution derivations, but here
we have to express this fact syntactically.

Definition 3.8. A set of strictly distinct literal representatives for a set of
CNF clauses C = {C1, . . . , Cm} is a set of literals {xν1

1 , . . . , xνm
m } such that

xνi

i ∈ Lit(Ci) and xi 6= xj if i 6= j.

Lemma 3.9. Suppose that C = {C1, . . . , Cm} is a set of CNF clauses with
strictly distinct literal representatives {xν1

1 , . . . , xνm
m } and that D is another set

of CNF clauses such that Vars(D) ∩{xi | i ∈ [m]} = ∅. Then for every resolu-
tion derivation π : C∪D → A that uses some clause from C, the clause A must
contain at least one of the literal representatives xνi

i .

Proof. By induction over π. Case analysis:

1. If a clause D is derived from D only, clearly it cannot contain any repre-
sentative variable xi.

2. If B is derived by resolution from C and D where C is obtained from C∪D
and D is obtained from D only, by induction C contains a literal repre-
sentative xνi

i and xi 6∈ Vars(D). Hence the literal xνi

i is not eliminated in
the resolution step.

3. If B is derived by resolution from C and D where both clauses have
been obtained from C∪D, by induction there are literal representatives
xνi

i ∈ Lit(C) and x
νj

j ∈ Lit(D). We know by assumption that xνi

i and x
νj

j

are not complementary, i.e., xνi

i 6= x
1−νj

j . If the variable resolved over is

one of xi and xj , say xi, then the other literal x
νj

j stays in B. Otherwise,

both xνi

i and x
νj

j are present in B.

Since by assumption π uses some clause from C, the final clause A must contain
some literal representative. The lemma follows.
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Theorem 3.10. Suppose for F a CNF formula and D a clause that F ∀̀ D, and
let FV = {C ∈ F | Vars(C) ∩V 6= ∅}. Then if V ⊆ Vars(F ) \Vars(D), it holds
that |FV | > |V |. In particular, if F ∀̀ 0 then |FV | > |V | for all V ⊆ Vars(F ).

Proof. The proof is by pattern matching on the proof of Theorem 3.6.
Suppose by induction that |FV ′ | > |V ′| for all non-empty strict subsets

V ′ $ V ⊆ Vars(F ) \ Vars(D) and consider V . As before, we observe that
|FV | ≥ |V |.

If |FV | > |V | we are done, so assume that |FV | = |V | = m. Considering the
bipartite graph with the variables V and the clauses in FV as vertices and edges
between variables and clauses for all variable occurrences, we again get a perfect
matching. This perfect matching yields a set of distinct literal representatives
{xνi

i | i ∈ [m]} for FV . By construction, Vars(F \ FV ) ∩{xi | i ∈ [m]} = ∅. Ap-
pealing to Lemma 3.9, we see that D must contain some variable xi ∈ V ⊆
Vars(F ) \ Vars(D). Contradiction. Consequently, |FV | > |V | and the theorem
follows by induction.

Of course, Theorem 3.6 above follows as a corollary of Theorem 3.10, but we
felt that the simpler direct proof of the former theorem was also of independent
interest.

4 Pebble Games

Pebble games were devised for studying programming languages and compiler
construction, but have found a variety of applications in computational com-
plexity theory. In connection with resolution, pebble games have been employed
both to analyze resolution derivations with respect to how much memory they
consume (using the original definition of space in [24]) and to construct CNF for-
mulas which are hard for different variants of resolution in various respects (see
for example [3, 11, 14, 16]). An excellent survey of pebbling up to 1980 is [35].

The black pebbling price of a DAG G captures the memory space, i.e.,
the number of registers, required to perform the deterministic computation de-
scribed by G. The space of a non-deterministic computation is measured by the
black-white pebbling price of G. We say that vertices of G with indegree 0 are
sources and vertices with outdegree 0 targets .

Definition 4.1 (Pebble game). Suppose that G is a DAG with sources S and
a unique target z. The black-white pebble game on G is the following 1-player
game. At any point in the game, there are black and white pebbles placed on
some vertices of G, at most one pebble per vertex. A pebble configuration is a
pair of subsets P = (B, W ) of V

(

G
)

, comprising the black- and white-pebbled
vertices. The rules of the game are as follows:

1. If all immediate predecessors of an empty vertex v have pebbles on them,
a black pebble may be placed on v. In particular, a black pebble can
always be placed on any vertex in S.

2. A black pebble may be removed from any vertex at any time.

3. A white pebble may be placed on any empty vertex at any time.

10



4. If all immediate predecessors of a white-pebbled vertex v have pebbles on
them, the white pebble on v may be removed.

A legal black-white pebbling reaching (B, W ) in G is a sequence of configura-
tions P =

{

P0, . . . , Pτ

}

such that P0 = (∅, ∅), Pτ = (B, W ), and for all t ∈ [τ ],
Pt follows from Pt−1 by one of the rules above.

The cost of a pebbling configuration P = (B, W ) is cost(P) = |B ∪W | and
the cost of a of a legal pebbling P =

{

P0, . . . , Pτ

}

is maxt∈[τ ]

{

cost
(

Pt

)}

. The
black-white pebbling price of (B, W ), denoted BW-Peb(B, W ), is the minimal
cost of any legal pebbling reaching (B, W ).

A legal black-white pebbling of G is a pebbling reaching ({z}, ∅), and the
black-white pebbling price of G, denoted BW-Peb(G), is the minimal cost of any
legal pebbling of G.

A legal black pebbling of G is a pebbling reaching ({z}, ∅) using black pebbles
only, i.e., Wt = ∅ for all t, and the (black) pebbling price of G, denoted Peb(G),
is the minimal cost of any legal black pebbling of G.

A black-white pebbling visiting z is a pebbling such that P0 = Pτ = (∅, ∅)
and there exists a t ∈ [τ ] such that z ∈ Bt ∪Wt. The minimum cost of such a

pebbling is denoted BW-Peb
∅(G).

It is easy to see that BW-Peb
∅(G) ≤ BW-Peb(G) ≤ BW-Peb

∅(G) + 1.
We think of the moves in a pebbling as occurring at integral time intervals

t = 1, 2, . . . and talk about the pebbling move “at time t” (which is the move
resulting in configuration Pt) or the moves “during the time interval

[

t1, t2
]

”.
In this paper we will consider pebblings of complete binary trees. We let T

denote a complete binary tree considered as a DAG with edges directed towards
the root. We write Th when we want to specify that the height of the tree is h.
We use z to denote the unique target vertex of T , i.e., the root.

The black pebbling price of Th can be established by induction over the tree
height. We omit the easy proof.

Theorem 4.2. Peb(Th) = h + 2.

General bounds for the black-white pebbling price of trees of any arity were
presented in [34]. We give a simplified proof with tight bounds for the case of
complete binary trees.

Theorem 4.3. BW-Peb(Th) =
⌊

h
2

⌋

+ 3 and BW-Peb
∅(Th) =

⌊

h−1
2

⌋

+ 3.

The proof is facilitated by the following proposition, which is an immediate
consequence of Definition 4.1.

Proposition 4.4 ([20]). If P is a black-white pebbling of a DAG G visiting
the target, then one can get a dual pebbling P of G by reversing the sequence of
moves and switching the colours of the pebbles.

Proof of Theorem 4.3. In all of this proof, we let z1, z2 denote the immediate
predecessors of the root z of the tree.

We first show that BW-Peb
∅(Th+2) ≥ BW-Peb

∅(Th) + 1. Suppose not, and

let P be a pebbling in cost K = BW-Peb
∅(Th) for Th+2 making the minimum

number of pebbling moves. Let T i
h, i ∈ [4], be the four disjoint subtrees of

height h in Th+2. It is easy to see that P restricted to V
(

T i
h

)

yields a legal

11



pebbling of T i
h visiting its root. It follows that there must exist distinct times

ti, i ∈ [4], when T i
h contains K pebbles and the rest of Th+2 is empty. Number

the subtrees so that t1 < t2 < t3 < t4.

Suppose that the root z of Th+2 has been pebbled before time t3. Then we
can get a shorter pebbling of Th+2 by completing the subpebbling of T 3

h but
ignoring pebbles moves outside T 3

h after time t3.

Consequently, z must be pebbled for the first time after t3. But at time t3
the rest of the tree is empty, so in that case we can get a shorter legal pebbling
by ignoring all moves outside T 3

h before time t3 and performing all moves in P

after time t3. Contradiction. Thus BW-Peb
∅(Th+2) ≥ BW-Peb

∅(Th) + 1.

Next, it is easy to see that BW-Peb
∅(Th+1) ≤ BW-Peb(Th). First black-

pebble z1 with using a pebbling P in cost BW-Peb(Th). Place white pebbles
on z and z2, and then remove the pebbles from z1 and z. Finally, use the dual
pebbling P to get the white pebble off z2 in the same cost BW-Peb(Th).

Since BW-Peb(T1) = BW-Peb
∅(T1) = 3, it follows that BW-Peb

∅(Th) ≥
⌊

h−1
2

⌋

+ 3 and BW-Peb(Th) ≥
⌊ (h+1)−1

2

⌋

+ 3 =
⌊

h
2

⌋

+ 3. It remains to demon-
strate that there are pebblings meeting these lower bounds. We construct such
pebblings inductively.

Suppose for h odd that BW-Peb(Th) = BW-Peb
∅(Th) =

⌊

h−1
2

⌋

+ 3 =
⌊

h
2

⌋

+ 3. Using the same pebbling as above for Th+1, it is easy to see that

BW-Peb
∅(Th+1) =

⌊

h
2

⌋

+3, and since the pebbling cost cannot increase by more

than one when the height is increased by one we get BW-Peb
∅(Th+2) =

⌊

h
2

⌋

+4 =
⌊

h+1
2

⌋

+ 3. In the same way we get BW-Peb(Th+1) =
⌊

h+1
2

⌋

+ 3.

To pebble Th+2 in cost
⌊

h+1
2

⌋

+ 3 leaving a pebble on z, first black-pebble

the root z1 of the subtree T 1
h+1 in cost

⌊

h+1
2

⌋

+ 3. Leaving the pebble on z1,

make a pebbling visiting the root z2 of T 2
h+1 in cost

⌊

h
2

⌋

+ 3 =
⌊

h+1
2

⌋

+ 2 using
the pebbling for T 2

h+1 constructed inductively. In this pebbling there is a time t

when z2 is pebbled and T 2
h+1 contains at most

⌊

h+1
2

⌋

+1 pebbles. At this time t,
place a black pebble on z and remove the black pebble on z1 without exceeding
the total limit of

⌊

h+1
2

⌋

+ 3 pebbles on Th+2. Then finish the pebbling of T 2
h+1.

The theorem follows.

5 Resolution and Pebbling Contradictions

A pebbling contradiction defined on a DAG G encodes the pebble game on G by
defining the sources to be true and the targets false, and specifying that truth
propagates through the graph according to the pebbling rules.

Definition 5.1 (Pebbling contradiction [12]). Let G be a DAG with sources
S and a unique target z and with all vertices of G having indegree 0 or 2, and
let d ∈ N+. Associate d distinct variables x(v)1, . . . , x(v)d with every vertex
v ∈ V

(

G
)

. The dth degree pebbling contradiction on G, denoted Pebd
G, is the

conjunction of the following clauses:

•
∨d

i=1 x(s)i for all s ∈ S (source axioms),

• x(z)i for all i ∈ [d] (target axioms),
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(x(r)1 ∨ x(r)2)

∧ (x(s)1 ∨ x(s)2)

∧ (x(t)1 ∨ x(t)2)

∧ (x(r)1 ∨ x(s)1 ∨ x(u)1 ∨ x(u)2)

∧ (x(r)1 ∨ x(s)2 ∨ x(u)1 ∨ x(u)2)

∧ (x(r)2 ∨ x(s)1 ∨ x(u)1 ∨ x(u)2)

∧ (x(r)2 ∨ x(s)2 ∨ x(u)1 ∨ x(u)2)

∧ (x(s)1 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2)

∧ (x(s)1 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2)

∧ (x(s)2 ∨ x(t)1 ∨ x(v)1 ∨ x(v)2)

∧ (x(s)2 ∨ x(t)2 ∨ x(v)1 ∨ x(v)2)

∧ (x(u)1 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2)

∧ (x(u)1 ∨ x(v)2 ∨ x(z)1 ∨ x(z)2)

∧ (x(u)2 ∨ x(v)1 ∨ x(z)1 ∨ x(z)2)

∧ (x(u)2 ∨ x(v)2 ∨ x(z)1 ∨ x(z)2)

∧ x(z)1

∧ x(z)2 z

u v

r s t

Figure 1: The pebbling contradiction Peb
2
Π2

for the pyramid graph Π2 of height 2.

• x(u)i ∨ x(v)j ∨
∨d

l=1 x(w)l for all i, j ∈ [d] and all w ∈ V
(

G
)

\ S, where
u, v are the two predecessors of w (pebbling axioms).

The formula Pebd
G is a (2+d)-CNF formula with O

(

d2 ·
∣

∣V
(

G
)∣

∣

)

clauses over

d · |V
(

G
)

| variables. See Figure 1 for an example pebbling contradiction.

It is easy to see that pebbling contradictions are unsatisfiable. Pebd
G can

be refuted in resolution by deriving
∨d

i=1 x(v)i for all v ∈ V
(

G
)

inductively in

topological order and then resolving with the target axioms x(z)i, i ∈ [d]. This
proves the next theorem.

Theorem 5.2 ([11]). For any DAG G with all vertices having indegree 0 or 2,
there is a resolution refutation π : Pebd

G → 0 with L
(

π
)

= O
(

d2 ·
∣

∣V
(

G
)∣

∣

)

and

W
(

π
)

≤ 2d.

Tree-like resolution is good at refuting pebbling contradictions Peb1
G but is

bad at refuting Pebd
G for d ≥ 2.

Theorem 5.3 ([9]). For any DAG G with all vertices having indegree 0 or 2,
there is a tree-like resolution refutation π of Peb1

G such that L
(

π
)

= O
(
∣

∣V
(

G
)
∣

∣

)

and Sp
(

π
)

= O(1).

Theorem 5.4 ([11]). For any DAG G with all vertices having indegree 0 or 2,
LT

(

Peb2
G ` 0

)

= 2Ω(Peb(G)).

For refutation clause space, the upper bound Sp
(

Pebd
G ` 0

)

= Peb(G) + C ,
where C is a constant independent of d, is fairly obvious: Just take an optimal
black pebbling and derive

∨d
i=1 x(v)i when vertex v is pebbled. This is not quite

an optimal strategy with respect to clause space, however. We can do at least
a little bit better.

Theorem 5.5 ([25]). Sp
(

Peb2
Th

` 0
)

≤
⌈

2h+1
3

⌉

+ 3 = 2
3Peb(G) + O(1).
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It is not known if this bound is tight, since no corresponding lower bound
on Sp

(

Pebd
G ` 0

)

has been shown for pebbling degree d ≥ 2 in unrestricted
resolution (in terms of the pebbling price or otherwise). The only previously
known lower bound on the refutation clause space of pebbling contradictions is a
bound SpT

(

Pebd
Th

` 0
)

= h+O(1) for the special case of tree-like resolution [25].
Unfortunately, this does not tell us anything about unrestricted resolution. For
tree-like resolution, if the only way of deriving D is from clauses C1, C2 such
that SpT

(

F ` Ci

)

≥ s, then SpT

(

F ` D
)

≥ s + 1 since one of the clauses Ci

must be kept in memory while deriving the other clause. This seems to be very
different from how unrestricted resolution works with respect to space.

However, the resolution refutation of Peb2
Th

in the proof of Theorem 5.5
in [25] is structurally quite similar to the optimal black-white pebbling of Th pre-
sented in [34], and it is hard to see how any resolution refutation could do better.
This raises the suspicion that the black-white pebbling price BW-Peb(Th) ≈ h/2
might be a lower bound for Sp

(

Pebd
Th

` 0
)

, and in general that Sp
(

Pebd
G ` 0

)

≥
BW-Peb(G) for any DAG G and d ≥ 2.

This suspicion is somewhat strengthened by the fact that for variable space,
we do have a lower bound for unrestricted resolution.2

Theorem 5.6 ([9]). For any d ∈ N+, VarSp
(

Pebd
G ` 0

)

≥ BW-Peb(G).

If the refutation clause space of pebbling contradictions would be constant,
Theorem 5.6 would imply that as BW-Peb(G) grows larger, the clauses in mem-
ory get wider, and thus weaker. Still it would somehow be possible to derive
a contradiction from a constant number of these clauses of unbounded width.
This appears counterintuitive.

On the other hand, for d = 1 refutations of Peb1
G in constant space have

exactly these “counterintuitive” properties. The resolution refutation of Peb1
G

in [9] is constructed by first downloading the pebbling axiom for the target z
and then propagating falsity downwards by resolving with pebbling axioms for
vertices v ∈ V

(

G
)

\ S in reverse topological order. This finally yields a clause
∨

v∈S x(v)1 ∨ x(z)1 of width |S| + 1, which can be eliminated by resolving one
by one with the source axioms x(v)1 for all v ∈ S and then with the target
axiom x(z)1 to yield the empty clause 0.

If we want to establish a non-constant lower bound on Sp
(

Pebd
G ` 0

)

for
d ≥ 2, we have to pin down why this case is different. Intuitively, the difference is
that with only one variable per vertex, a single CNF clause x(v1)1∨ . . .∨x(vm)1
can express the disjunction of the falsity of an arbitrary number of vertices
v1, . . . , vm, but for d = 2, the straightforward way of expressing that both
variables x(vi)1 and x(vi)2 are false for at least one out of m vertices requires
2m CNF clauses.

A resolution proof refutes a pebbling contradiction by deriving x(v)i and
x(v)i for some variable x(v)i and then resolving to get 0, or, in other words,
by proving that some vertex v is both true and false. Arguing very informally,
if we let black pebbles in a DAG G correspond to the conjunction of truth
∨d

i=1 x(v)i for all black-pebbled vertices v, and white pebbles in G correspond

to the disjunction of falsity
∧d

i=1 x(w)i for all white-pebbled vertices w, the
clauses in a pebbling contradiction encode that truth propagates “upwards”
and falsity “downwards” in Pebd

G exactly in accordance with the rules of the

2To be precise, the result in [9] is for d = 1, but the proof generalizes easily to any d ∈ N+.
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black-white pebble game on G. In view of this, is does not seem too far-fetched
that a resolution refutation should somehow have to mimic a pebbling of the
DAG on which the formula is based.

If we could make the connection between resolution and pebbling by asso-
ciating truth with black pebbles and falsity with white pebbles, for d ≥ 2 we
would expect that such a connection should yield a lower bound on the refu-
tation space of a pebbling contradiction in terms of the pebbling price of the
underlying graph. This is the guiding intuition behind the result in this paper.

6 Modifying the Black-White Pebble Game

To prove a lower bound on the refutation clause space of pebbling contradictions,
we want to interpret resolution derivations in terms of pebble placements on the
corresponding graph. The translation from sets of clauses to sets of pebbles,
which is presented in Section 8, follows the ideas sketched at the end of the
previous section, but the problem is that the pebble configurations induced
by a resolution derivation using this translation do not obey the rules of the
black-white pebble game. Therefore, we need to alter the pebbling rules.

In this section, we present the modified pebble game used for analyzing
resolution derivations. Assuming a technical lemma, we then show that for
binary trees we get essentially the same bound on pebbling price in this new
pebble game as in the black-white pebble game of Definition 4.1. The rather
lengthy proof of the key lemma is given in the next section.

We define our adapted pebble game in two steps. Our first modification is
that in the context of resolution, it appears that a more natural rule for white
pebble removal is that a white pebble can be removed from a vertex when a black
pebble is placed on that same vertex. This does not really change anything.

Definition 6.1 (S-pebble game). Suppose that G is a DAG with sources S
and a single target z. The superpositioned black-white pebble game, or S-pebble
game, is as in Definition 4.1, except that a vertex may have both a black and a
white pebble on it, and the pebbling rules are (1)–(3) in Definition 4.1 and (4’)
below instead of rule (4) in Definition 4.1.

4’. A white pebble on v can be removed only if there is a black pebble on v.

Lemma 6.2. Suppose that S =
{

S0, . . . , Sτ

}

is an S-pebbling of a DAG G. Then

there is an ordinary black-white pebbling P =
{

P0, . . . , Pτ

}

such that Wt ⊆ W ′
t

and Bt ⊆ B′
t for Pt =

(

Bt, Wt

)

and St =
(

B′
t, W

′
t

)

. In particular, cost(P) ≤
cost(S).

Proof sketch. The construction is by forward induction over S. The only prob-
lem is rule (4’), but it is easy to eliminate white pebbles in P before they are
removed by a move (4’) in S. If there was a black pebble on v in S when the
white pebble was placed there, we ignore this white pebble placement in P . If
the white pebble was there before the black pebble, remove the white pebble in
P when the black pebble is placed there in S. The rest is technical details.

Note that to avoid being overly formalistic, we ignore the fact there there
might be “idle moves” Pt = Pt+1 and moves simultaneously removing a white
pebble and placing a black one in P . It is clear that this is not a problem.
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P v
∗

v

T v
∗

T \
(

T v ∪ P v
)

Figure 2: Referencing sets of vertices of a tree T relative to a vertex v ∈ V
`

T
´

.

Our second, and far more substantial, modification of the pebble game is
motivated by the fact that when analyzing resolution derivations, we are forced
to deal with “backward” pebbling moves and even “illegal erasures” of white
pebbles. In order to prove lower bounds for a pebble game allowing for such
moves, we have to keep track of exactly which white pebbles have been used to
get a black pebble on a vertex. Loosely put, removing a white pebble from a
vertex v without placing a black pebble on the same vertex should be in order,
provided that all black pebbles placed on vertices above v in the DAG with the
help of the white pebble on v are removed as well.

We need some notation and terminology to define and analyze our new
pebble game. Recall that T denotes a complete binary tree with root z. We
use p, q, r, u, v, w to denote arbitrary vertices in V

(

T
)

and U, V, W to denote

arbitrary subsets of vertices in V
(

T
)

.

For v a vertex of T , we let T v denote the vertices in the complete binary
subtree of T rooted at v, and T v

∗ = T v \{v} the vertices in T v without its root v.
We let P v denote the vertices in the unique path from v to the root z of T and
P v
∗ = P v \

{

v
}

the path without v (see Figure 2).

We say that the vertex v is below u if v ∈ T u
∗ and above u if v ∈ P u

∗ . We say
that u and v are unrelated if v 6∈ T u ∪P u. We let succ(v) denote the immediate
successor of v and pred(v) the immediate predecessors. For a leaf v we have
pred(v) = ∅ and for the root z we have succ(z) = ∅. If succ(u) = succ(v) for
u 6= v, u and v are siblings , and we write v = sibl(u). We blur the distinction
somewhat between a tree T and the vertices in V

(

T
)

and write for instance

T \
(

T v ∪P v
)

instead of V
(

T
)

\
(

T v ∪P v
)

to denote all vertices in the tree
unrelated to v.

The following definition extends the concepts of below and above from ver-
tices to sets of vertices.

Definition 6.3. For sets of vertices V, W in a binary tree, we say that W is a
roof over V if there is no w ∈ W such that P w

∗ ∩V 6= ∅ and for each v ∈ V there
is a w ∈ P v ∩W . The set W is below the vertex u if W ⊆ T u

∗ . If P w
∗ ∩W = ∅

for all w ∈ W , the vertex set W is simple.

Next, we present the concept used to “label” each black pebble with the
set of white pebbles (if any) this black pebble is dependent on. It might be
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v1

v4 v7

v2

v6

v8 v9

v3

v5

v10 v11 v12 v13 v14 v15

Figure 3: The pebble subconfigurations v1〈v2, v6〉, v4〈v8, v9〉 and v7〈∅〉.

easier to parse this rather technical definition by first studying Figure 3 and the
explanations in Example 6.5.

Definition 6.4 (Subconfiguration). If v is a vertex of T and W ⊆ T v
∗ is a

simple set below v, we say that v〈W 〉 is a pebble subconfiguration with a black
pebble on v supported by white pebbles on w ∈ W . The black pebble on v in
v〈W 〉 is said to be dependent on the white pebbles in W . We refer to v〈∅〉 as
an independent black pebble.

We define the cover of v〈W 〉 to be cover (v〈W 〉) = T v \
⋃

w∈W T w. The
boundary of v〈W 〉 is ∂v〈W 〉 = {v}∪W . The interior of v〈W 〉 is int(v〈W 〉) =
cover (v〈W 〉) \ ∂v〈W 〉 and the closure is cl(v〈W 〉) = cover (v〈W 〉)∪ ∂v〈W 〉.

If cover (v〈V 〉) ⊆ cover(u〈U〉), we say that v〈V 〉 is covered by u〈U〉 and
write v〈V 〉 � u〈U〉. If v〈V 〉 � u〈U〉 and v〈V 〉 6= u〈U〉, we write v〈V 〉 ≺ u〈U〉. If
cover (v〈V 〉)∩ cover (u〈U〉) = ∅, the subconfigurations v〈V 〉 and u〈U〉 are non-
overlapping . If cl(v〈V 〉)∩ cl(u〈U〉) = ∅, v〈V 〉 and u〈U〉 are non-touching .

When we specify the set W of white-pebbled vertices in v〈W 〉 by enumerating
the members of W , we will abuse notation somewhat by omitting the curly
brackets inside 〈 and 〉 around this set.

Example 6.5. Consider the subconfigurations in Figure 3. For v1〈v2, v6〉 we have

cover(v1〈v2, v6〉) = {v1, v3, v7, v14, v15},

∂v1〈v2, v6〉 = {v1, v2, v6},

int(v1〈v2, v6〉) = {v3, v7, v14, v15},

cl(v1〈v2, v6〉) = {v1, v2, v3, v6, v7, v14, v15}.

Since cl(v4〈v8, v9〉) = {v4, v8, v9}, the subconfigurations v1〈v2, v6〉 and v4〈v8, v9〉
are non-touching. For v7〈∅〉 we have cover (v7〈∅〉) = {v7, v14, v15}, so v7〈∅〉 and
v1〈v2, v6〉 are overlapping, or more precisely it holds that v7〈∅〉 ≺ v1〈v2, v6〉.

Note that � is an order relation and that the minimal elements are pebble
subconfigurations v〈pred (v)〉. We will use the following characterization of �
repeatedly.

Observation 6.6. v〈V 〉 � u〈U〉 if and only if v ∈ T u, P v ∩U = ∅ and V is a
simple roof below v over U ∩T v.

Proof. By Definition 6.4, U and V are simple sets below u and v, respectively,
and v〈V 〉 � u〈U〉 if and only if cover (v〈V 〉) = T v\

⋃

w∈V T w ⊆ T u\
⋃

w∈U T u =
cover (u〈U〉).
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(⇒) Suppose that cover (v〈V 〉) ⊆ cover(u〈U〉). Since v ∈ cover(v〈V 〉) ⊆
cover (u〈U〉), we have v ∈ T u but v 6∈

⋃

w∈U T w, and this second condition is
equivalent to P v ∩U = ∅. If V is not a roof over U ∩T v, there is a w ∈ U ∩ T v

such that P w ∩V = ∅. For such a w we would have w ∈ cover (v〈V 〉) but
w 6∈ cover (u〈U〉), which contradicts cover(v〈V 〉) ⊆ cover (u〈U〉).

(⇐) Suppose that v ∈ T u and P v ∩U = ∅ for V a simple roof below v over
U ∩ T v, but that cover (v〈V 〉) 6⊆ cover(u〈U〉). By assumption T v ⊆ T u and
v 6∈

⋃

w∈U T w, so v ∈ cover (u〈U〉). Hence, there must exist a v′ ∈ T v
∗ such that

v′ ∈ cover (v〈V 〉) \ cover(u〈U〉) and succ(v′) ∈ cover (u〈U〉). This implies that
v′ ∈ U ∩T v, but the fact that v′ ∈ cover (v〈V 〉) shows that P v′

∩V = ∅. That
is, V is not a roof over U ∩T v. Contradiction.

Our modified black-white pebble game is defined in terms of subconfigu-
rations of black- and white-pebbled vertices.

Definition 6.7 (Labelled black-white pebble game). For T a binary tree
with root z, a labelled black-white pebbling , or L-pebbling , on T is a sequence
L =

{

L0 = {∅}, L1, . . . , Lτ

}

of sets of subconfigurations Lt such that Lt+1 is
obtained from Lt by one of the following rules:

Introduction Lt+1 = Lt ∪
{

v〈pred (v)〉
}

for v〈pred(v)〉 6∈ Lt.

Merger Lt+1 = Lt ∪
{

u〈(U ∪V ) \ {v}〉
}

for u〈U〉, v〈V 〉 ∈ Lt such that v ∈ U .

Reversal Lt+1 = Lt ∪
{

v〈V 〉
}

if v〈V 〉 ≺ u〈U〉 for some u〈U〉 ∈ Lt.

Erasure Lt+1 = Lt \
{

v〈V 〉
}

for v〈V 〉 ∈ Lt.

A legal L-pebbling of T is an L-pebbling L such that Lτ =
{

z〈∅〉
}

. We write
u〈U〉 = merge(v〈V 〉, w〈W 〉) if u〈U〉 = v〈(V ∪W ) \ {w}〉 for w ∈ V , and refer to
this as a merger on w.

Let Bl
(

Lt

)

=
{

v ∈ V
(

T
)

| ∃ v〈W 〉 ∈ Lt

}

denote the black pebbles in Lt and

Wh
(

Lt

)

=
{

w ∈ V
(

T
)

| ∃v〈W 〉 ∈ Lt s.t. w ∈ W
}

the white pebbles. The cost

of a set of subconfigurations L is cost(L) =
∣

∣Bl
(

L
)

∪Wh
(

L
)∣

∣. The cost of

an L-pebbling L =
{

L0, . . . , Lτ

}

is maxt∈[τ ]

{

cost(Lt)
}

. The L-pebbling price
L-Peb(v〈W 〉) of a subconfiguration v〈W 〉 is the minimum cost of any L-peb-
bling such that Lτ = {v〈W 〉}, and the L-pebbling price of the binary tree T is
L-Peb(T ) = L-Peb(z〈∅〉).

In the L-pebble game, one can remove a white pebble without placing a
black pebble on the same vertex, but if so the rule for erasure makes sure that
any black pebble dependent on the removed white pebble is removed as well. A
normal removal of a white pebble from w according to rule (4’) of the S-peb-
ble game corresponds to merging v〈V 〉 and w〈W 〉 into v〈(V ∪W ) \ {w}〉 and
then erasing v〈V 〉 and w〈W 〉. Note that if u〈U〉 = merge(v〈V 〉, w〈W 〉), then
cover (u〈U〉) = cover(v〈V 〉)

.
∪ cover (w〈W 〉), where

.
∪ denotes disjoint union.

The “backward” pebbling moves mentioned in the beginning of this section
are moves according to the reversal rule. For an ordinary black-white pebbling
of a binary tree, cover(v〈V 〉) is the set of vertices already taken care of by v〈V 〉
in the sense that if the rest of the pebbling is performed optimally no black
pebbles will be placed on cover(v〈V 〉). Consequently, in an optimal black-white
pebbling we will never move from a subconfiguration u〈U〉 to some v〈V 〉 ≺ u〈U〉.
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Arguing very informally, it seems plausible that making reversals in an L-peb-
bling should only “weaken” the pebble configurations (for example, reversing
from v1〈v2, v6〉 to v7〈∅〉 in Figure 3), and so adding the rule for reversal should
not decrease the pebbling cost.

For our purposes, it is sufficient to prove that the L-pebbling price of a binary
tree T is asymptotically at least as large as the ordinary black-white pebbling
price BW-Peb(T ). The main obstacle in the proof is how to handle the reversal
moves. In view of the informal argument above, it might seem intuitively clear
that an optimal L-pebbling strategy does not need any reversal moves. Unfor-
tunately, proving that reversal moves do not affect the asymptotical pebbling
price turns out to be rather involved. And in fact, if we generalize the L-peb-
ble game from trees to arbitrary DAGs in the natural way, the statement is
even false. For instance, it fails for pyramid graphs Πh (Figure 1 on page 13).
Klawe [29] showed that BW-Peb(Πh) = h/2+O(1), but it is not too hard to see
that Πh can be L-pebbled with O(1) pebbles if we allow moving black pebbles
downwards.

What we need to get rid of reversal moves is Lemma 6.8 stated below.
We spend the rest of this section demonstrating how the desired lower bound
L-Peb(T ) = Ω

(

BW-Peb(T )
)

follows from this assumption, postponing a proof
of Lemma 6.8 until the next section.

Lemma 6.8. Suppose that L is an L-pebbling of a complete binary tree T . Then
there is an L-pebbling L′ of T without reversals such that cost(L′) = O

(

cost(L)
)

.

It is not too hard to see that taking a legal reversal-free L-pebbling L =
{

L0, . . . , Lτ

}

of T and looking at
{

Bl
(

Lt

)

,Wh
(

Lt

)}

for 1 ≤ t ≤ τ , we get a
legal S-pebbling of T in at most the same cost. We prove this formally in the
next two lemmas.

Lemma 6.9. Suppose that L is a reversal-free L-pebbling of T . Then there is
a reversal-free L-pebbling L′ of T with cost(L′) ≤ cost(L) such that every v〈V 〉
in L′ occurs during one contiguous time interval, and every v〈V 〉 in L′ except
z〈∅〉 is used in exactly one merger, after which it is erased.

Proof. We construct L′ by backward induction over L =
{

L0, . . . , Lτ

}

. Let

L′
τ = Lτ =

{

z〈∅〉
}

. Our induction hypothesis is that L′
t ⊆ Lt for L′

t consisting
of non-overlapping subconfigurations. The backward induction step from t + 1
to t is a case analysis over the moves Lt  Lt+1 in L.

Introduction Lt+1 = Lt ∪
{

v〈pred (v)〉
}

: Set L′
t = L′

t+1 \
{

v〈pred (v)〉
}

. Note
that we might have L′

t = L′
t+1 if v〈pred (v)〉 6∈ L′

t+1. In any case, the
induction hypothesis holds for L′

t.

Merger Lt+1 = Lt ∪
{

v〈(V ∪W ) \ {w}〉
}

: If v〈(V ∪W ) \ {w}〉 6∈ L′
t+1, set

L′
t = L′

t+1. The induction hypothesis trivially remains true. Otherwise,
set L′

t =
(

L′
t+1 ∪

{

v〈V 〉, w〈W 〉
})

\
{

v〈(V ∪W ) \ {w}〉
}

. By the induction
hypothesis we have v〈V 〉, w〈W 〉 6∈ L′

t+1, since L′
t+1 is non-overlapping

and v〈V 〉 and w〈W 〉 are covered by merge(v〈V 〉, w〈W 〉) by Definitions 6.4
and 6.7. For the same reason L′

t must be non-overlapping. We can get from
L′

t to L′
t+1 in three steps L′

t+1/3 = L′
t ∪

{

v〈(V ∪W ) \ {w}〉
}

, L′
t+2/3 =

L′
t+1/3 \

{

v〈V 〉
}

, L′
t+1 = L′

t+2/3 \
{

w〈W 〉
}

by first merging v〈V 〉 and

w〈W 〉, then erasing v〈V 〉 and finally erasing w〈W 〉.
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Erasure Lt+1 = Lt \
{

v〈V 〉
}

: All erasure moves in L′ are taken care of in
connection with mergers, so set L′

t = L′
t+1.

We claim that all moves in L′ constructed in this way are legal. If u〈U〉 ∈ L′
t,

then u〈U〉 ∈ Lt and for u〈U〉 6= u〈pred(u)〉 we know that this subconfiguration
must have been derived at a time t′ ≤ t in L by a merger of v〈V 〉, w〈W 〉 ≺ u〈U〉.
Thus the backward construction of L′ will yield a correct derivation of u〈U〉.

Also, any subconfiguration v〈V 〉 occurs only in one merger, after which it
is immediately erased. At all times t′ > t after which v〈V 〉 was erased from L′

directly after the first merger move, there is a u〈U〉 � v〈V 〉 in L′
t′ . Since all L′

t′

are non-overlapping, the subconfiguration v〈V 〉 never appears again (this can
easily be formalized by a forward induction argument).

Finally, by construction L′
t ⊆ Lt, and for the merger moves in L′ we have

L′
t+1/3, L

′
t+2/3 ⊆ Lt+1. This shows that for all L′ ∈ L′, there is a corresponding

L ∈ L such that cost(L′) ≤ cost(L), and it follows that cost(L′) ≤ cost(L).

Lemma 6.10. Suppose that L is a reversal-free L-pebbling of a complete binary
tree T . Then there is an S-pebbling S of T such that cost(S) ≤ cost(L).

Proof. By Lemma 6.9, without loss of generality we can assume that each v〈V 〉
is erased from L precisely after it has been used in a merger, and that v〈V 〉 is
erased before w〈W 〉 when both subconfigurations are eliminated after a move
v〈(V ∪W ) \ {w}〉 = merge(v〈V 〉, w〈W 〉), so that the white pebble on w is re-
moved before the black pebble on w.

It is clear that we are done if we can construct an S-pebbling S with moves
matching the moves in L exactly. Let S0 = (∅, ∅) and construct St+1 inductively
by looking at the moves in Lt  Lt+1.

Introduction Lt+1 = Lt ∪
{

v〈pred(v)〉
}

: Place white pebbles on pred(v) and
then a black pebble on v in S.

Merger Lt+1 = Lt ∪
{

v〈(V ∪W ) \ {w}〉
}

for v〈V 〉, w〈W 〉 ∈ Lt: No pebbling
moves in S, but note that if v〈V 〉 is now removed, the change in pebbles
on T in L is exactly the same as after an application of rule (4’) on w.

Erasure Lt+1 = Lt \
{

v〈V 〉
}

: This is the only nontrivial case. In general,
an erasure move in an L-pebbling can remove an arbitrary number of
white pebbles without any black pebbles being even close to these white
pebbles, and there is no way we can match such a move in an S-peb-
bling. But since we can assume that L is an L-pebbling as described in
Lemma 6.9, we know that v〈V 〉 has just been used in a merger. It follows
that the only pebble that disappears when going from

{

Bl
(

Lt

)

,Wh
(

Lt

)}

to
{

Bl
(

Lt+1

)

,Wh
(

Lt+1

)}

is either the black pebble on v, which is always
a legal removal, or some white pebble on w ∈ V which has just been
eliminated in the merger move by a black pebble, and this is a legal removal
according to rule (4’).

We see that S generated in this way is a legal S-pebbling, if we modify each
introduction step into three pebble placement moves.

Putting it all together, we get that the L-pebbling price and the black-white
pebbling price of a binary tree coincide asymptotically.
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Theorem 6.11. Let Th denote a complete binary tree of height h. Then it holds
that L-Peb(Th) = Θ

(

BW-Peb(Th)
)

= Θ(h).

Proof. Clearly L-Peb(T ) = O
(

BW-Peb(T )
)

, since an L-pebbling can imitate an

optimal black pebbling in cost Peb(T ) = O
(

BW-Peb(T )
)

.
In the other direction, let L be an arbitrary L-pebbling of T . Assuming

Lemma 6.8, there exists an L-pebbling L′ of T without reversal moves such
that cost(L′) = O

(

cost(L)
)

. By Lemma 6.10, we can construct an S-peb-
bling S of T for which cost(S) ≤ cost(L′). Finally, using Lemma 6.2 we get
a plain old black-white pebbling P of T such that cost(P) ≤ cost(S). Hence
BW-Peb(T ) = O

(

L-Peb(T )
)

, and the theorem follows.

7 Getting Rid of Reversal Pebbling Moves

We now prove Lemma 6.8, i.e., that the reversal rule can be eliminated from the
L-pebble game without increasing the pebbling price by more than a constant
factor. This provides the missing link in the proof of Theorem 6.11.

Although this section is very technical, the structure of the argument is
quite straightforward. Before plunging into the proof, we try to give an informal
overview of where we are going.

1. First we show that without loss of generality we can assume that an opti-
mal L-pebbling L is non-overlapping , by which we mean that all subcon-
figurations in Lt ∈ L are non-overlapping with exception for those involved
in the current merger or reversal move (Definition 7.6 and Lemma 7.9).

2. Then we observe that if we restrict an L-pebbling to a subset of the ver-
tices in T in the natural way, we get a valid L-pebbling on this subset.
We refer to this restriction operation as projection (Definition 7.7 and
Proposition 7.10).

3. This leads to the idea of trying to get rid of reversals in the following way:
When the cover of a set of subconfigurations L shrinks as the result of a
reversal move, we can eliminate this reversal by projecting the L-pebbling
moves made so far on what remains after the reversal move. If we do this
by forward induction for all reversal moves in L, we get a reversal-free
L-pebbling L′.

4. The problem is that these projection operations do not preserve pebbling
cost—the pebbling L may contain reversal moves such that the projected
pebbling L′ becomes more expensive than L. We identify which kind
of reversals in L spoil our construction of a reversal-free and cheap peb-
bling L′ by projection. Allowing some temporary wishful thinking, we
then establish that if such wasteful reversals could somehow be avoided,
the construction sketched above would work (Definition 7.12, Lemma 7.13
and Corollary 7.14).

5. Finally, we prove that wasteful reversals can be eliminated. If a pebbling
L makes a wasteful reversal, we can replace such a move by a stronger,
non-wasteful reversal without increasing the total pebbling cost by more
than a constant factor (Lemma 7.19).
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Summing this up, Lemma 6.8 follows.
The rest of this section contains the formal proof of the lemma. Although the

technical machinery might appear cumbersome, we believe that the argument is
followed more easily if the reader tries to digest what the definitions mean and
what is proven about them simply by drawing a binary tree of suitable height
and working out small examples in this binary tree while reading.

Below,we assume without loss of generality that no obviously redundant
pebbling moves are performed, in the sense that if a subconfiguration v〈V 〉 is
derived at time t, then this subconfiguration is not just thrown away but is used
at some time t′ > t further on in the pebbling before being erased. We state
this formally.

Observation 7.1. Let L =
{

L0, . . . , Lτ

}

be an arbitrary L-pebbling. Then there

is a pebbling L′ =
{

L′
0, . . . , L

′
τ ′

}

such that cost(L′) ≤ cost(L), L′
τ ′ = Lτ and if

v〈V 〉 ∈ L′
t \ L′

t−1, then v〈V 〉 is used in a merger or reversal move before being
erased from L′ at some time t′ > t.

Proof sketch. L′ can be constructed by backward induction over L in the same
manner as in the proof of Lemma 6.9 on page 19.

We start by extending Definition 6.4 to sets of pebble subconfigurations, or
L-configurations .

Definition 7.2 (L-configuration). An L-configuration is a set of pebble sub-
configurations L =

{

vi〈Vi〉 | i ∈ [m]
}

.
We define cover (L) =

⋃

vi〈Vi〉∈L
cover(vi〈Vi〉). We say that L1 is covered by

L2 and write L1 � L2 if cover (L1) ⊆ cover (L2). If cover (L1) = cover (L2), we
say that L1 and L2 coincide and write L1 ∼ L2. L is non-overlapping if all
distinct v〈V 〉, u〈U〉 ∈ L are pairwise non-overlapping and non-touching if all
distinct v〈V 〉, u〈U〉 ∈ L are pairwise non-touching. Two L-configurations L1, L2

are mutually non-overlapping or mutually non-touching if all v〈V 〉 ∈ L1 and
u〈U〉 ∈ L2 are pairwise non-overlapping or non-touching, respectively.

For an arbitrary set of vertices V ⊆ V
(

T
)

, we define the canonical represen-
tation canon(V ) of V to be the unique non-touching L′ such that cover(L′) = V .
For L an arbitrary L-configuration, we define canon(L) to be the canonical rep-
resentation of cover(L). For L with canon(L) = L′, the boundary of L is defined
as ∂L =

⋃

v〈V 〉∈L′ ∂v〈V 〉, the interior is int(L) =
⋃

v〈V 〉∈L′ int(v〈V 〉) and the

closure is cl(L) =
⋃

v〈V 〉∈L′ cl(v〈V 〉).

Example 7.3. Returning to Figure 3 on page 17, if we look at the L-configuration
L =

{

v1〈v2, v6〉, v4〈v8, v9〉, v7〈∅〉
}

we have cover (L) = {v1, v3, v4, v7, v14, v15}.
Since v7〈∅〉 is covered by v1〈v2, v6〉 and the subconfigurations v1〈v2, v6〉 and
v4〈v8, v9〉 are non-touching, we get the canonical representation simply by leav-
ing out v7〈∅〉, i.e., canon(L) =

{

v1〈v2, v6〉, v4〈v8, v9〉
}

. Using this canonical
representation of L, we see that

∂L = {v1, v2, v4, v6, v8, v9},

int(L) = {v3, v7, v14, v15},

cl(L) = {v1, v2, v3, v4, v6, v7, v8, v9, v14, v15}.

The L-configuration L is overlapping because of v7〈∅〉 and v1〈v2, v6〉, but for
instance L1 =

{

v1〈v2, v6〉, v7〈∅〉
}

and L2 =
{

v4〈v8, v9〉
}

are mutually non-
touching.
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We allow a mild abuse of notation by omitting curly brackets around single-
ton L-configurations, writing for instance v〈V 〉 � L, u〈U〉 = L and w〈W 〉 ∪L
instead of

{

v〈V 〉
}

� L,
{

u〈U〉
}

= L and
{

w〈W 〉
}

∪L.
An alternative constructive definition of canonical representation is given

in the following observation. We leave it to the reader to verify that the two
descriptions of canonical representation are indeed equivalent.

Observation 7.4. The canonical representation of V can be constructed as
follows: for each v ∈ V such that succ(v) 6∈ V or v = z, add the subconfigu-
ration v〈W 〉, where W ⊆ T v

∗ is the maximal set such that for all w ∈ W it holds
that P w

∗ \ P v
∗ ⊆ V but w 6∈ V .

As a final preliminary before moving on to part 1 in the proof outline above,
we collect some properties of the L-pebbling cost function of Definition 6.7.

Proposition 7.5. Suppose that L, L1, . . . , Lm are arbitrary L-configurations.

1. If L1 ⊆ L2 then cost(L1) ≤ cost(L2).

2. cost(L1 ∪L2) ≤ cost(L1) + cost(L2).

3. If L is non-touching, cost(L) =
∣

∣Bl
(

L
)∣

∣ +
∣

∣Wh
(

L
)∣

∣ =
∣

∣∂L
∣

∣.

4. If Li and Lj are mutually non-touching for 1 ≤ i < j ≤ m, it holds that
cost

(
⋃m

i=1 Li

)

=
∑m

i=1 cost(Li).

5. If L′
i = canon(Li) for i = 1, . . . , m, then cost

(
⋃m

i=1 L′
i

)

≤ cost
(
⋃m

i=1 Li

)

.

6. If L′ = canon(L), then cost(L∪L′) = cost(L), and there is an L-pebbling
from L to L′ which does not cost more than L.

Proof. According to Definition 6.7, if Bl
(

L1

)

∪Wh
(

L1

)

⊆ Bl
(

L2

)

∪Wh
(

L2

)

then cost(L1) =
∣

∣Bl
(

L1

)

∪Wh
(

L1

)
∣

∣ ≤
∣

∣Bl
(

L2

)

∪Wh
(

L2

)
∣

∣ = cost(L2).
Part 1 follows immediately from this observation. Part 2 also follows easily,

since each pebble on the left-hand side is counted at least once on the right-hand
side.

For part 3, using Definition 7.2 we see that if L is non-touching it holds
that Bl

(

L
)

∩Wh
(

L
)

= ∅. And if Li and Lj are mutually non-touching we have
(

Bl
(

Li

)

∪Wh
(

Li

))

∩
(

Bl
(

Lj

)

∪Wh
(

Lj

))

= ∅, which shows that each pebble on
the left-hand side of part 4 is counted exactly once on the right-hand side.

Part 5 is again immediate since it is easy to show that Bl
(

L′
i

)

⊆ Bl
(

Li

)

and

Wh
(

L′
i

)

⊆ Wh
(

Li

)

for L′
i = canon(Li).

For part 6, Bl
(

L∪L′
)

= Bl
(

L
)

and Wh
(

L∪L′
)

= Wh
(

L
)

, so the cost is
the same. To get the claim about pebbling, note that if v〈V 〉 and u〈U〉 are
touching but non-overlapping, we can derive w〈W 〉 such that cover (w〈W 〉) =
cover (v〈V 〉)∪ cover (u〈U〉) simply by merging v〈V 〉 and u〈U〉. Suppose that
v〈V 〉 and u〈U〉 are overlapping for v ∈ T u but v〈V 〉 6� u〈U〉. Then we can
derive w〈W 〉 with cover(w〈W 〉) = cover (v〈V 〉)∪ cover (u〈U〉) and substitute it
for v〈V 〉 and u〈U〉 at no extra cost by first deriving ui〈V ∩T ui

∗ 〉 for all ui ∈
U ∩ int(v〈V 〉) from v〈V 〉 by reversals, and then merging all ui〈V ∩T ui

∗ 〉 in turn
with u〈U〉. The resulting L-configuration L∪

{

ui〈V ∩ T ui
∗ 〉

}

∪w〈W 〉 costs no
more than L, since the only change is that already white-pebbled vertices are
also black-pebbled. Finally, erase u〈U〉, v〈V 〉 and all ui〈V ∩T ui

∗ 〉. Repeating
this for all mutually touching subconfigurations, the claim follows.
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Parts 5 and 6 of Proposition 7.5 tell us that for any given set of vertices, the
cheapest way of covering these vertices is to use canonical L-configurations, and
if L is not canonical, it does not cost anything extra to make L canonical by
applying reversals and mergers followed by erasures. We define non-overlapping
pebblings as L-pebblings which always keep the L-configurations canonical in this
way. In a non-overlapping pebbling, each introduction is immediately followed
by a merger when possible, each merger is immediately followed by erasures of
the merged subconfigurations, and all reversals from a subconfiguration u〈U〉
are performed in sequence after which u〈U〉 is erased. We refer to these merger-
and-erasures and reversals-and-erasure moves as expansions and implosions ,
respectively.

Definition 7.6 (Non-overlapping pebbling). A non-overlapping L-pebbling
L is a sequence of the following types of moves.

Introduction Lt+1 = Lt ∪ v〈pred(v)〉, for v〈pred (v)〉 6� Lt and Lt non-touching.

Expansion Lt+3 =
(

Lt ∪merge(u〈U〉, v〈V 〉)
)

\
{

u〈U〉, v〈V 〉
}

for u〈U〉, v〈V 〉 ∈
Lt and Lt non-overlapping.

Implosion Lt+m+1 =
(

Lt \ u〈U〉
)

∪M for Lt and M =
{

vi〈Vi〉 | i ∈ [m]
}

non-
touching, and M � u〈U〉 ∈ Lt.

We say that u〈U〉 M is a nontrivial implosion if M ≺ u〈U〉.

Note that after introduction and expansion the resulting L-configuration is
non-overlapping, and after implosion Lt+m+1 is non-touching.

We want to prove that without loss of generality we can assume L-pebblings
to be non-overlapping. The notation in the proof of this fact is simplified by
introducing projections .

Definition 7.7 (Projection). Let u〈U〉, v〈V 〉 be arbitrary subconfigurations,
L an arbitrary L-configuration, and M an arbitrary non-touching L-configura-
tion.

If u〈U〉 and v〈V 〉 are overlapping, the projection of u〈U〉 on v〈V 〉 is defined
as projv〈V 〉(u〈U〉) = canon(cover (u〈U〉)∩ cover(v〈V 〉)), i.e., the unique subcon-
figuration w〈W 〉 such that cover (w〈W 〉) = cover (u〈U〉)∩ cover(v〈V 〉). If u〈U〉
and v〈V 〉 are non-overlapping, we define projv〈V 〉(u〈U〉) = ∅.

The projection of u〈U〉 on M is projM(u〈U〉) =
⋃

v〈V 〉∈M
projv〈V 〉(u〈U〉), and

projM(L) =
⋃

u〈U〉∈L
projM(u〈U〉).

In order to grasp this definition, it might be helpful to study the example in
Figure 4. Note in particular that if u〈U〉 � v〈V 〉, then projv〈V 〉(u〈U〉) = u〈U〉.
Here and in the following, we adopt the convention that projections resulting
in ∅ are implicitly eliminated from all L-configurations.

The next observation says that any L-configuration L can be written as a
disjoint union of the sets of subconfigurations of L covered by each subconfigu-
ration in canon(L), and that the cost of L is the sum of the costs of the sets in
this disjoint union. This statement is obvious once deciphered, and the proof is
immediate from Definition 7.7 and Proposition 7.5, parts 4 and 5.

Observation 7.8. Let L′ = canon(L). Then it holds that L is a disjoint
union of the sets projv〈V 〉(L) =

{

u〈U〉 | v〈V 〉 � u〈U〉 ∈ L
}

for all v〈V 〉 ∈ L′.
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(a) The L-configuration L. (b) The L-configuration M.

(c) The projection projM(L).

Figure 4: Example L-configurations L and M and projected L-configuration projM(L).

Also, cost(L) =
∑

v〈V 〉∈L′ cost(projv〈V 〉(L)), and for all v〈V 〉 ∈ L′ it holds that

cost(v〈V 〉) ≤ cost(projv〈V 〉(L)).

Using Proposition 7.5, Definition 7.7 and Observation 7.8, we can prove that
for every overlapping L-pebbling we can find a non-overlapping pebbling which
is at least as good and at least as cheap.

Lemma 7.9. Suppose that L is an arbitrary legal L-pebbling of T . Then there
is a non-overlapping L-pebbling L′ of T such that cost

(

L′
)

≤ cost
(

L
)

.

Proof. Given L =
{

L0, . . . , Lτ

}

, we create the “backbone” L′ =
{

L′
0, . . . , L

′
τ

}

of a non-overlapping pebbling by setting L′
t = canon(Lt). By Proposition 7.5,

part 5, cost(L′
t) ≤ cost(Lt), so we are done if we can fill in the holes in the

transitions L′
t  L′

t+1 in cost max
{

cost(Lt), cost(Lt+1)
}

using the non-over-
lapping moves of Definition 7.6. This is basically just an exercise in applying
Proposition 7.5. Consider the moves Lt  Lt+1 in L.

Introduction Lt+1 = Lt ∪ v〈pred(v)〉: If v〈pred(v)〉 � L′
t, set L′

t+1 = L′
t.

Otherwise, introduce v〈pred (v)〉 and canonize by expanding (at most three
times) to get L′

t+1 = canon(Lt+1) in cost at most cost(L′
t ∪ v〈pred (v)〉) ≤

cost(Lt+1) by parts 5 and 6 of Proposition 7.5. (Here we use the obvious
fact that canon(v〈pred (v)〉) = v〈pred(v)〉.)

Merger Lt+1 = Lt ∪merge(u〈U〉, v〈V 〉) for u〈U〉, v〈V 〉 ∈ Lt: Lt+1 ∼ Lt, so set
L′

t+1 = L′
t = canon(Lt+1).

Reversal Lt+1 = Lt ∪ v〈V 〉 for v〈V 〉 ≺ u〈U〉 ∈ Lt: Lt+1 ∼ Lt, so set L′
t+1 =L′

t.

Erasure Lt+1 = Lt \ v〈V 〉 for v〈V 〉 ∈ Lt: If v〈V 〉 � Lt+1 we have Lt+1 ∼ Lt

and can set L′
t+1 = L′

t, so assume that v〈V 〉 6� Lt+1. Since L′
t is non-

touching, there is a u〈U〉 ∈ L′
t such that v〈V 〉 � u〈U〉. It follows
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from Observation 7.8 that for w〈W 〉 ∈ L′
t, w〈W 〉 6= u〈U〉, we have

projw〈W 〉(Lt+1) = projw〈W 〉(Lt). Thus, letting Lu
i = proju〈U〉(Li) for

i = t, t + 1, by Proposition 7.5, part 4, it is sufficient to show that we can
implode u〈U〉 = canon(Lu

t ) = canon(Lu
t+1 ∪ v〈V 〉) into M = canon(Lu

t+1)
in cost at most max

{

cost(Lu
t+1 ∪ v〈V 〉), cost(Lu

t+1)
}

= cost(Lu
t+1 ∪ v〈V 〉).

By part 1 of the same proposition, it is enough to check that it holds
that cost(M∪ u〈U〉) ≤ cost(Lu

t+1 ∪ v〈V 〉). But this is just part 5 of the
proposition.

Eliminating “idle moves” L′
t+1 = L′

t, we see that we get a non-overlapping
pebbling in accordance with Definition 7.6.

Lemma 7.9 tells us that as far as pebbling cost is concerned, without loss
of generality we may assume that an L-pebbling L that reaches z〈∅〉 is non-
overlapping. This completes part 1 in the proof of Lemma 6.8 sketched at the
beginning of this section.

If L =
{

L0, . . . , Lτ

}

is a non-overlapping pebbling ending in an implosion
u〈U〉 M, it seems natural to try to replace the moves in L leading to u〈U〉 by
a reversal-free pebbling reaching M � u〈U〉. Since u〈U〉 and Lτ \(u〈U〉 ∪M) are
mutually non-touching by definition, this substitution should not affect the cost
of the pebbling outside cl(u〈U〉). Intuitively, one natural candidate for such a
substitution is the projection of L on M. We next show that projecting any
L-pebbling on any non-touching L-configuration M, we get a legal L-pebbling
inside cl(M), modulo some technical details. This is part 2 in our proof outline.

Proposition 7.10. For L =
{

L0, . . . , Lτ

}

an arbitrary L-pebbling and M a

non-touching L-configuration, let projM(L) =
{

L′
0, . . . , L

′
τ

}

for L′
t = projM(Lt).

Then projM(L) is a legal L-pebbling if we eliminate idle moves L′
t+1 = L′

t and
take care of that one reversal or erasure Lt  Lt+1 in L may correspond to a
sequence of reversals or erasures respectively in projM(L). Legalizing projM(L)
by performing these moves one by one does not affect the pebbling cost. Also, if
L does not contain any reversals, then neither does projM(L).

Proof. By induction over the pebbling moves Lt  Lt+1 in L. Case analysis:

Introduction If v〈pred (v)〉 6� M the projection does not change, and otherwise
adding v〈pred(v)〉 = projM(v〈pred (v)〉) is a legal introduction move.

Merger Suppose that Lt+1 = Lt ∪u〈(U ∪V ) \ {v}〉 for u〈U〉, v〈V 〉 ∈ Lt such
that v ∈ U . For all w〈W 〉 ∈ M such that v 6∈ int(w〈W 〉), it is straight-
forward, if tedious, to verify that u〈(U ∪V ) \ {v}〉 projects the same sub-
configurations on w〈W 〉 as do u〈U〉 and v〈V 〉 together. Suppose that
v ∈ int(w〈W 〉). Since M is non-touching there is at most one such
w〈W 〉 ∈ M, and projw〈W 〉(u〈(U ∪V ) \ {v}〉) can be verified to be a le-
gal merger of projw〈W 〉(u〈U〉) and projw〈W 〉(v〈V 〉).

Reversal If v〈V 〉 � u〈U〉 it holds that projM(v〈V 〉) � projM(u〈U〉), so adding
projM(v〈V 〉) is a sequence of legal reversals. As this sequence of rever-
sals is performed, the pebbling cost increases monotonously by part 1 of
Proposition 7.5.

Erasure If Lt+1 = Lt \ v〈V 〉 for v〈V 〉 ∈ Lt, removing projM(v〈V 〉) from L′
t is a

sequence of legal erasures. As this sequence of erasures is performed, the
pebbling cost decreases monotonously by part 1 of Proposition 7.5.
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(a) The subconfiguration u〈U〉. (b) Wastefully lowered black pebble.

(c) Superfluous white pebble. (d) Wasteful “split” of u〈U〉.

Figure 5: A subconfiguration u〈U〉 and three wasteful implosions of u〈U〉.

We see that the cost of this pebbling is maxt∈[τ ]

{

projM(Lt)
}

, and if L is
reversal-free then so is projM(L), since every move in L is matched by the same
kind of moves in projM(L).

In view of Proposition 7.10, the transformation from a non-overlapping peb-
bling L to a reversal-free pebbling L′ seems obvious: by forward induction over
the moves in L, replace each implosion u〈U〉 M at time t by a local projection
of

{

L0, . . . , Lt

}

on M. Since by induction there are no reversals before time t,
the projection must be a reversal-free pebbling inside cl(M). Doing this for all
implosions, we get a globally reversal-free pebbling L′ ending in z〈∅〉. This is the
transformation described in part 3 of our road map for the proof of Lemma 6.8.

There is only one problem. Although projM(L) is a legal L-pebbling, it is not
true in general that cost(projM(L)) ≤ cost(L). For instance, if v〈V 〉 � u〈∅〉 for
V 6= ∅, then projv〈V 〉(u〈∅〉) = v〈V 〉 and hence cost(projv〈V 〉(u〈∅〉)) = 1 + |V | >
cost(u〈∅〉) = 1. Looking at this counterexample, however, it seems clear that
having gotten as far as u〈∅〉, reversing to the weaker and more expensive con-
figuration v〈V 〉 is non-optimal. What we want to do next is to define formally
which reversals are wasteful in this sense, and to prove that for pebblings avoid-
ing such wasteful reversals, projection does not increase the pebbling cost.

Since the definition of wastefulness turns out to be quite technical, we first
try to give some more intuition for which kind of reversals we disapprove of.

Example 7.11. Consider the subconfiguration u〈U〉 in Figure 5(a).

1. If v ∈ T u
∗ , the reversal u〈U〉 v〈T v

∗ ∩U〉 is acceptable only if T v
∗ ∩U 6= U ,

i.e., if we get rid of white pebbles by lowering the black pebble from u to v.
The reversal in Figure 5(b) does not satisfy this.

2. For V a simple roof below u over U , we approve of u〈U〉  u〈V 〉 only
if for all w ∈ V it holds that T w ∩U 6= ∅. Otherwise, unnecessary white
pebbles have been introduced, as in Figure 5(c).
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3. If u〈U〉 is imploded into non-touching {v1〈V1〉, v2〈V2〉} such that, say,
v2 ∈ T v1

∗ , it should not be the case that v1

〈(

V1 \ P v2

)

∪V2

〉

� u〈U〉, for
if so we could have reversed to this stronger subconfiguration instead of
{v1〈V1〉, v2〈V2〉} at no extra cost. The implosion in Figure 5(d) violates
this condition.

The reversals from u〈U〉 in figures 5(b), 5(c) and 5(d) are all examples
of wasteful implosions for which our reversal-free pebbling L′ constructed by
projection may become more expensive than L. Looking at these examples,
it is easy to believe that such moves are non-optimal and that it ought to be
possible to eliminate them. The formal definition of wastefulness is as follows.

Definition 7.12 (Wasteful implosion). For a non-touching L-configuration
M = {vi〈Vi〉 | i ∈ [m]} � u〈U〉, the implosion u〈U〉 M is non-wasteful if

1. for every v ∈ Bl
(

M
)

\ {u} there is a w ∈ U ∩T
succ(v)
∗ such that it holds

for the path pv = P w \ P
succ(v)
∗ that pv ∩

(

Bl
(

M
)

∪Wh
(

M
))

= ∅,

2. for every v ∈ Wh
(

M
)

there is a w ∈ U ∩ T v such that it holds for the path

pv = P w \ P v
∗ that pv ∩Bl

(

M
)

= ∅,

3. the paths above from
(

Bl
(

M
)

∪Wh
(

M
))

\{u} to Wh
(

u〈U〉
)

= U can all
be chosen pairwise disjoint, i.e., such that pv ∩ pv′ = ∅ if v 6= v′.

If u〈U〉 M is not a non-wasteful implosion it is said to be wasteful .

Definition 7.12 identifies the offending reversal moves for which our projec-
tive construction of a reversal-free but cheap pebbling fails. Continuing accord-
ing to part 4 in our proof plan, we show that for pebblings without such wasteful
moves the projective construction works. This is the next lemma.

Lemma 7.13. Suppose that L =
{

L0, . . . , Lτ−2, Lτ−1 = u〈U〉 M
}

is a peb-
bling without reversals except for a final non-wasteful implosion u〈U〉  M.
Then cost(projM(Lt)) ≤ cost(Lt) for all t < τ , and cost(projM(L)) ≤ cost(L).

Proof. Let L′
t = projM(Lt) for all t < τ . By Proposition 7.10, it suffices to

show cost(L′
t) ≤ cost(Lt) to get cost(projM(L)) ≤ cost(L). We observe that by

the proof of Lemma 6.9 on page 19, cover (Lt) grows monotonously with t in a
non-redundant reversal-free pebbling, so in particular Lt � u〈U〉 for all t.

Clearly, to prove cost(L′
t) ≤ cost(Lt) it is enough to find for each ver-

tex v ∈ Bl
(

L′
t

)

∪Wh
(

L′
t

)

an associated vertex vL ∈ Bl
(

Lt

)

∪Wh
(

Lt

)

such

that vL 6= wL if v 6= w. If v ∈
(

Bl
(

L′
t

)

∪Wh
(

L′
t

))

∩
(

Bl
(

Lt

)

∪Wh
(

Lt

))

, an

obvious choice is vL = v. Suppose therefore that v ∈
(

Bl
(

L′
t

)

∪Wh
(

L′
t

))

\
(

Bl
(

Lt

)

∪Wh
(

Lt

))

. Then v ∈ ∂M, since it is easy to check that v ∈ int(M)

implies v ∈ Bl
(

Lt

)

∪Wh
(

Lt

)

. Also, there is a subconfiguration wv

〈

Wv

〉

∈ Lt

such that v ∈ int
(

wv

〈

Wv

〉)

, namely the wv

〈

Wv

〉

projecting the pebble on v.

Lastly, note that if v ∈
(

Bl
(

L′
t

)

∪Wh
(

L′
t

))

∩ ∂M, it is a routine matter to ver-

ify that v has the same colour in L′
t and M, i.e., either v ∈ Bl

(

L′
t

)

∩Bl
(

M
)

or

v ∈ Wh
(

L′
t

)

∩Wh
(

M
)

. We choose vL ∈ Bl
(

Lt

)

∪Wh
(

Lt

)

for such vertices v by

first associating a unique vu ∈ U = Wh
(

u〈U〉
)

to v as follows.
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1. If v ∈ Bl
(

L′
t

)

∩Bl
(

M
)

, pick a vertex vu ∈
(

U ∩T
succ(v)
∗

)

\ T v and a path

pv = P vu \P
succ(v)
∗ to vu such that pv ∩

(

Bl
(

M
)

∪Wh
(

M
))

= ∅ as guaran-
teed by Definition 7.12. For the subconfiguration wv〈Wv〉 ∈ Lt projecting
the black pebble on v, we must have succ(v) ∈ cover

(

wv

〈

Wv

〉)

since

v ∈ int
(

wv

〈

Wv

〉)

, and consequently succ(v) ∈ pv ∩ cover
(

wv

〈

Wv

〉)

6= ∅.

2. If v ∈ Wh
(

L′
t

)

∩Wh
(

M
)

, pick vu ∈ U ∩T v and pv = P vu \ P v
∗ such that

pv ∩Bl
(

M
)

= ∅ as guaranteed by the definition. For wv〈Wv〉 ∈ Lt project-

ing the white pebble on v, we have v ∈ int
(

wv

〈

Wv

〉)

⊆ cover
(

wv

〈

Wv

〉)

,

so v ∈ pv ∩ cover
(

wv

〈

Wv

〉)

6= ∅.

According to Definition 7.12 all the paths pv above can be chosen disjoint.
We now use these paths to choose a distinct vL ∈ Bl

(

Lt

)

∪Wh
(

Lt

)

for

each v ∈
(

Bl
(

L′
t

)

∪Wh
(

L′
t

))

\
(

Bl
(

Lt

)

∪Wh
(

Lt

))

. By construction, L′
t � Lt �

u〈U〉, and in particular wv〈Wv〉 � u〈U〉 for all wv〈Wv〉 found above. Note that
pv ∩ cover

(

wv

〈

Wv

〉)

6= ∅ and that pv 6⊆ cover (u〈U〉) since the lowest vertex
in pv is a white pebble of u〈U〉. This implies that Wv ∩ pv 6= ∅, for otherwise
pv ⊆ cover(wv〈Wv〉) which yields the contradiction wv〈Wv〉 6� u〈U〉. Thus we
can choose vL ∈ Bl

(

Lt

)

∪Wh
(

Lt

)

to be the vertex in Wv ∩ pv.
Since all paths pv are disjoint, all vL chosen as just described are distinct.

They must also be distinct from all v ∈
(

Bl
(

L′
t

)

∪Wh
(

L′
t

))

∩
(

Bl
(

Lt

)

∪Wh
(

Lt

))

.
To see this, first observe that for all paths pv in Definition 7.12 in holds that
(

pv \ {v}
)

∩
(

Bl
(

M
)

∪Wh
(

M
))

= ∅ (for paths from vertices in Wh
(

M
)

this
follows from the fact that M is non-touching). Again, by definition, the topmost
vertex in pv \ {v} (if pv 6= {v}) is outside cl(M), and combining these two
observations we get that

(

pv \ {v}
)

∩ cl(M) = ∅. In particular, for our chosen

vL ∈ pv \{v} it holds that vL 6∈ cl(M), and thus vL 6∈ Bl
(

L′
t

)

∪Wh
(

L′
t

)

for L′
t =

projM(Lt), since all projected pebbles must lie in cl(M)∩ cl(Lt) by definition.
Hence, all associated vertices vL are distinct, so cost(L′

t) ≤ cost(Lt).

We can use Lemma 7.13 to eliminate non-wasteful implosions one by one.
If L =

{

L0, . . . , Lτ  (Lτ \ u〈U〉)∪M
}

is a non-overlapping reversal-free peb-
bling except for a final non-wasteful implosion u〈U〉  M, then by definition
Lτ = {vi〈Vi〉 | i ∈ [n]} is non-touching, and using Observation 7.8 each Lt can
be written as a non-touching union of Lvi

t = projvi〈Vi〉(Lt) such that cost(Lt) =
∑

vi〈Vi〉∈Lτ
cost(Lvi

t ). For all vi〈Vi〉 ∈ Lτ , Lvi =
{

Lvi

0 , . . . , Lvi

τ−1, {vi〈Vi〉}
}

can be seen to be pairwise non-touching pebblings without reversals such that
{

L0, . . . , Lτ

}

is the union of all local pebblings Lvi

t . It follows by Lemma 7.13
(and Proposition 7.5, part 4) that we can locally replace Lu for the imploded
subconfiguration u〈U〉 by projM(Lu) in L without increasing the global peb-
bling cost. Doing this by forward induction for all implosions in turn, we get
the following corollary.

Corollary 7.14. Let L =
{

L0, . . . , Lτ = {z〈∅〉}
}

be a non-overlapping L-peb-
bling of T without wasteful implosions. Then there is an L-pebbling L′ of T
without any reversal moves such that cost(L′) ≤ cost(L).

This concludes part 4 in the proof outline on page 21.
All that remains is to show that in an arbitrary non-overlapping L-peb-

bling we can always replace wasteful implosions by non-wasteful ones without
increasing the pebbling cost by more than a constant factor. It will take a couple
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(a) The subconfiguration. (b) Wasteful implosion L. (c) Non-wasteful M � L.

Figure 6: Illustration of case 1 in the proof of Lemma 7.15.

of technical lemmas before we get there, but the intuition from Example 7.11 is
clear: if Lt  Lt+m+1 is a wasteful implosion, we should be able to match this
move with a non-wasteful implosion L′

t  L′
t+m+1 instead, where L′

i � Li and
cost(L′

i) ≤ cost(Li) for i = t, t + m + 1. The only thing that complicates the
matter is that we may have to pay extra for the transitional L-configurations
during the implosion L′

t  L′
t+m+1 because of overlapping subconfigurations.

The cornerstone of our proof is the fact that for every wasteful implosion
u〈U〉 L, there is a non-wasteful implosion to M � L with cost(M) ≤ cost(L).

Lemma 7.15. If u〈U〉  L is a wasteful implosion, then there is a non-
touching M such that u〈U〉 � M � L, cost(M) ≤ min {cost(u〈U〉), cost(L)}
and u〈U〉 M is a non-wasteful implosion.

Proof. If u〈U〉  M is a non-wasteful implosion, it holds that cost(M) =
∣

∣Bl
(

M
)∣

∣ +
∣

∣Wh
(

M
)∣

∣ ≤ cost(u〈U〉) = 1 + |U |, since by Definition 7.12 every

v ∈
(

Bl
(

M
)

∪Wh
(

M
))

\ {u} can be associated with a distinct w ∈ U .
We demonstrate that if u〈U〉  L is a wasteful implosion, we can find an

M such that u〈U〉 � M � L and cost(M) ≤ cost(L). If u〈U〉  M is also
a wasteful implosion, we repeat this construction. Sooner or later the process
must terminate for some M � u〈U〉 such that u〈U〉  M is non-wasteful—if
nothing else, by definition the trivial implosion u〈U〉 u〈U〉 is.

According to Definition 7.12, the configuration L =
{

vi〈Vi〉
}

can be wasteful
with respect to u〈U〉 in three ways.

1. Some black pebble v ∈ Bl
(

L
)

\ {u} lacks a path. If succ(v) ∈ Wh
(

L
)

we must have succ(v) ∈ cover(u〈U〉), so we can add canon({succ(v)}) =
succ(v)〈v, sibl (v)〉 to L and set M = canon(L∪ succ(v)〈v, sibl (v)〉) � L
with cost(M) ≤ cost(L) + |{sibl(v)}| − |{v, succ(v)}| < cost(L). Oth-
erwise, all paths from succ(v) downwards in T sibl(v) are either blocked
by r1, . . . , rm ∈ Bl

(

L
)

∩T sibl(v) or reach sources in T sibl(v) without pass-
ing pebbled vertices (we can have m = 0). From this we can conclude
that V = T succ(v) \

(

T v ∪
⋃

i∈[m] T
ri

)

⊆ cover(u〈U〉), so we can add

canon(V ) = succ(v)〈v, r1, . . . , rm〉 � u〈U〉 to L, which increases the cost
by 1 for succ(v). Setting M = canon(L∪ succ(v)〈v, r1, . . . , rm〉) � L re-
moves the pebbles from v and r1, . . . , rm and decreases the cost by at
least 1, so cost(M) ≤ cost(L). See Figure 6 for a simple example.

2. There is a white pebble w ∈ Wh
(

L
)

such that all paths downwards in

T w either are blocked by r1, . . . , rm ∈ Bl
(

L
)

∩T w
∗ or reach sources in T w
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(a) The subconfiguration. (b) Wasteful implosion L. (c) Non-wasteful M � L.

Figure 7: Illustration of case 2 in the proof of Lemma 7.15.

without passing pebbled vertices. If so, we have V = T w \
⋃

i∈[m] T
ri ⊆

cover (u〈U〉), and we can add canon(V ) = w〈r1, . . . , rm〉 � u〈U〉 to L at
no extra cost and set M = canon(L∪w〈r1, . . . , rm〉) � L. Here we get a
strict inequality cost(M) < cost(L) since the canonization eliminates at
least the pebbles on w. This case is illustrated in Figure 7.

3. There are paths for all v ∈
(

Bl
(

L
)

∪Wh
(

L
))

\ {u} to w ∈ U , but they
cannot be chosen disjoint. Start picking disjoint paths bottom-up so that
when we choose a path for a white pebble v ∈ Wh

(

L
)

we have already

determined paths for all w ∈
(

Bl
(

L
)

∪Wh
(

L
))

∩T v
∗ , and when we choose

a path for a black pebble v ∈ Bl
(

L
)

we have already determined paths for

all w ∈
(

Bl
(

L
)

∪Wh
(

L
))

∩T
sibl(v)
∗ , i.e., for all of T succ(v) \ {v}. For note

that for black pebbles, the vertex sibl(v) itself cannot be black-pebbled in
L, for if so there would be no path for v and we would have case 1. For the
same reason, succ(v) is not white-pebbled in L, and then sibl (v) cannot
be white-pebbled or succ(v) black-pebbled either since L is non-touching.

At some point we reach a v such that no matter how we choose the paths
below, we cannot choose a disjoint path for v. Consider the colour of v.

(a) v is black. There are white pebbles in U ∩T
sibl(v)
∗ reachable from v,

but they are all blocked by paths already chosen from r1, . . . , rm ∈

Bl
(

L
)

∩T
sibl(v)
∗ . This means that {succ(ri) | i ∈ [m]} ⊆ cover(u〈U〉),

so we can add the subconfigurations canon({succ(ri) | i ∈ [m]}) =
{

succ(ri)〈ri, sibl (ri)〉 | i ∈ [m]
}

to L at an additional cost 2m. Rea-
soning in the same way, we can also include the subconfiguration
succ(v)〈v, succ(r1), . . . , succ(rm)〉 at a further cost of 1 for the un-
pebbled vertex succ(v). When we canonize, the pebbles on the ver-
tices v, r1, . . . , rm, succ(r1), . . . , succ(rm) all disappear and the cost
decreases by 2m + 1, resulting in M � L with cost(M) ≤ cost(L).

(b) v is white. The construction is analogous. Let the blocking black peb-
bles be r1, . . . , rm ∈ Bl

(

L
)

∩T v
∗ . Again succ(ri)〈ri, sibl(ri)〉, i ∈ [m],

can be added at an extra cost 2m. Since succ(ri), i ∈ [m], block
all paths from v we have T v \

⋃

i∈[m] T
succ(ri) ⊆ cover (u〈U〉), so

v〈succ(r1), . . . , succ(rm)〉 can be added as well at no additional cost.
Canonizing decreases the cost by 2m + 1, which yields M � L with
cost(M) < cost(L). The transition from Figure 8(b) to Figure 8(c)
is accomplished by applying this construction twice.
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(a) The subconfiguration u〈U〉. (b) Wasteful implosion L of u〈U〉.

(c) Non-wasteful implosion u〈U〉 M�L.

Figure 8: Illustration of case 3 in the proof of Lemma 7.15.

In all cases we can find a non-touching L-configuration M such that u〈U〉 �
M � L and cost(M) ≤ cost(L). The lemma follows.

The following transitivity property of non-wasteful implosions is immediate
from Definition 7.12.

Observation 7.16. If u〈U〉  {vi〈Vi〉 | i ∈ [m]} and vi〈Vi〉  Mi for i ∈ [m]
are all non-wasteful implosions, then u〈U〉  {Mi | i ∈ [m]} is a non-wasteful
implosion.

Proof. Just concatenate the paths from
(

Bl
(

Mi

)

∪Wh
(

Mi

))

\ {vi} to Vi with

the paths from
(

Bl
(

vi〈Vi〉
)

∪Wh
(

vi〈Vi〉
))

\ {u} = ({vi}∪ Vi) \ {u} to U for all
i ∈ [m].

It follows from Observation 7.16, that if u〈U〉  L is a wasteful implosion
and u〈U〉  M � L is a corresponding non-wasteful implosion for M minimal,
then all nontrivial “local implosions” from subconfigurations in M to sets of
subconfigurations in L are wasteful. We formalize this as a lemma.

Lemma 7.17. Suppose that u〈U〉  L is a wasteful implosion and let M � L
be minimal such that u〈U〉  M is non-wasteful. Then for each v〈V 〉 ∈ M
and each non-touching L′ such that M � L′ � L, either projv〈V 〉(L

′) = v〈V 〉 or
v〈V 〉  projv〈V 〉(L

′) is a wasteful implosion. In particular, for each v〈V 〉 ∈ M
it holds that cost(v〈V 〉) ≤ cost(projv〈V 〉(L

′)).

Proof. Suppose that there are v〈V 〉 ∈ M and L′ such that projv〈V 〉(L
′) ≺ v〈V 〉

and v〈V 〉  projv〈V 〉(L
′) is a non-wasteful implosion. Then by the transitivity

in Observation 7.16 it holds that M′ =
(

M∪ projv〈V 〉(L
′)

)

\ v〈V 〉 ≺ M is a
non-wasteful implosion of u〈U〉. This contradicts the minimality of M.
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If v〈V 〉  projv〈V 〉(L
′) is a wasteful implosion, Lemma 7.15 says that there

is a non-wasteful implosion to an L-configuration M′ � projv〈V 〉(L
′) such that

cost(M′) ≤ cost(projv〈V 〉(L
′)). But we have just proven that this non-wasteful

M′ must be identical with v〈V 〉, so cost(v〈V 〉) ≤ cost(projv〈V 〉(L
′)).

Very roughly, the next lemma says that wasteful implosions are preserved
under mergers.

Lemma 7.18. Suppose for i = 1, 2 that ui〈Ui〉 � Li and cost(ui〈Ui〉) ≤ cost(Li)
for Li non-overlapping, and that u1〈U1〉 and u2〈U2〉 are mutually non-over-
lapping with u2 ∈ U1. Then cost(merge(u1〈U1〉, u2〈U2〉)) ≤ cost(L1 ∪L2).

Proof. The L-configurations L1 and L2 must be mutually non-overlapping since
they are covered by u1〈U1〉 and u2〈U2〉, respectively. Now the only way that
cost(L1 ∪L2) could be less than cost(merge(u1〈U1〉, u2〈U2〉)) = cost(u1〈U1〉) +
cost(u2〈U2〉) − 1 ≤ cost(L1) + cost(L2) − 1 is if there were at least two ver-
tices in

⋂

i=1,2

(

Bl
(

Li

)

∪Wh
(

Li

))

. But Bl
(

Li

)

∪Wh
(

Li

)

⊆ cl(Li) ⊆ cl(ui〈Ui〉)
since Li � ui〈Ui〉 by the assumptions of the lemma, and also by assumption
cl(u1〈U1〉)∩ cl(u1〈U1〉) = {u2}, so this is impossible.

Combining Lemmas 7.17 and 7.18, we can provide the fifth and final com-
ponent in the proof of Lemma 6.8, namely that any non-overlapping L-pebbling
L can be transformed into a pebbling L′ without wasteful implosions such that
L′ has asymptotically the same cost as L.

Lemma 7.19. Suppose that L is a non-overlapping L-pebbling of T . Then
there is a non-overlapping pebbling L′ of T without wasteful implosions such
that cost(L′) ≤ 2 · cost(L).

Proof. Given a non-overlapping L-pebbling L, we build a non-overlapping peb-
bling L′ without wasteful implosions such that if we let Li ∈ L denote the
starting configuration of the ith move according to the rules in Definition 7.6,
there is a corresponding L′

i ∈ L′ such that the following invariants hold:

1. L′
i is non-touching.

2. L′
i � Li.

3. For all u〈U〉 ∈ L′
i, it holds that cost(u〈U〉) ≤ cost(proju〈U〉(Li)).

4. The cost of the L-pebbling transition from L′
i−1 to L′

i in L′ does not exceed
2 · max

{

cost(Li−1), cost(Li)
}

.

To see that the lemma follows from this, note that invariants 1 and 2 imply that
for every v〈V 〉 ∈ Li there is a u〈U〉 ∈ L′

i with u〈U〉 � v〈V 〉. Plugging invariant 3
into Proposition 7.5, part 4, and using that

⋃

u〈U〉∈L′

i
proju〈U〉(Li) = Li, we

get cost(L′
i) =

∑

u〈U〉∈L′

i
cost(u〈U〉) ≤

∑

u〈U〉∈L′

i
cost(proju〈U〉(Li)) = cost(Li).

Using invariant 4 to bound the cost of the pebbling transitions L′
i−1  L′

i, we
get the desired result cost(L′) ≤ 2 · cost(L).

The construction is by forward induction over the moves in L. Assume that
the invariants hold for Lt and L′

t.
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Introduction Lt+1 = Lt ∪ v〈pred (v)〉: If v〈pred (v)〉 � L′
t we set L′

t+1 = L′
t.

For the subconfiguration u〈U〉 ∈ L′
t such that v〈pred (v)〉 � u〈U〉, we have

cost(u〈U〉) ≤ cost(proju〈U〉(Lt)) ≤ cost(proju〈U〉(Lt ∪ v〈pred (v)〉)), and for

u′
〈

U ′
〉

∈ L′
t distinct from u〈U〉 nothing changes. All invariants stay true.

If v〈pred(v)〉 6� L′
t, we introduce v〈pred (v)〉 and expand to get L′

t+1 =
canon(L′

t ∪ v〈pred (v)〉). Invariants 1 and 2 obviously hold. We claim that
invariant 3 holds with respect to Lt+1 for all L-configurations L′ in the
transition L′

t  L′
t+1 upto and including L′

t+1 = canon(L′
t ∪ v〈pred (v)〉).

This claim yields invariants 3 and 4 for L′
t+1.

To prove the claim, observe that invariant 3 holds for L′
t ∪ v〈pred (v)〉 with

respect to Lt+1 = Lt ∪ v〈pred(v)〉 by the induction hypothesis and the
fact that projv〈pred(v)〉(Lt ∪ v〈pred (v)〉) = v〈pred (v)〉. Since L′

t+1 is ob-
tained by repeated merging of non-overlapping subconfigurations from
L′

t ∪ v〈pred (v)〉, and since by induction over each such merger these sub-
configurations meet the conditions in Lemma 7.18, the claim follows.

Expansion Lt+3 =
(

Lt ∪merge(v1〈V1〉, v2〈V2〉)
)

\
{

v1〈V1〉, v2〈V2〉
}

: By induc-
tion L′

t � Lt ∼ Lt+3, so there is a u〈U〉 ∈ L′
t such that v1〈V1〉, v1〈V1〉 �

u〈U〉. For u′
〈

U ′
〉

∈ L′
t distinct from u〈U〉 there are no changes, and if

cost(proju〈U〉(Lt+3)) ≥ cost(u〈U〉) nothing needs to be done and we can
set L′

t+3 = L′
t.

It can be the case, however, that the expansion within proju〈U〉(Lt+3)
decreased the cost so that u〈U〉 is now too expensive. If so, we implode
u〈U〉 to a minimal non-wasteful L-configuration M � proju〈U〉(Lt+3) and

set L′
t+3 =

(

L′
t \ u〈U〉

)

∪M.

Invariants 1 and 2 are immediate. Invariant 3 follows from Lemma 7.17
since M is chosen minimal. Thus, cost(M) ≤ cost(proju〈U〉(Lt+3)), and by
the induction hypothesis we know that cost(u〈U〉) ≤ cost(proju〈U〉(Lt)).
Using parts 1 and 2 of Proposition 7.5, we see that the implosion sequence
L′

t  L′
t+3 causes an extra cost of at most

cost(u〈U〉 ∪M) ≤ cost(u〈U〉) + cost(M)

≤ cost(proju〈U〉(Lt)) + cost(proju〈U〉(Lt+3))

≤ 2 · max
i∈{t,t+3}

{

cost(proju〈U〉(Li))
}

,

which yields invariant 4.

Implosion Lt+m+1 =
(

Lt ∪M
)

\ v〈V 〉 for M =
{

vi〈Vi〉 | i ∈ [m]
}

: This case
is completely analogous to the expansion case. Again v〈V 〉 is covered
by some u〈U〉 ∈ L′

t, and if cost(u〈U〉) > cost(proju〈U〉(Lt+m+1)) we im-
plode u〈U〉 to a minimal non-wasteful M � proju〈U〉(Lt+m+1) and set

L′
t+m+1 =

(

L′
t \ u〈U〉

)

∪M. Using Lemma 7.17 and Proposition 7.5, we
get invariants 1-4.

Going through the moves in L =
{

L0, . . . , Lτ

}

, this construction yields an

L-pebbling L′ =
{

L′
0, . . . , L

′
τ ′

}

without wasteful implosions such that L′
τ ′ � Lτ

and cost(L′) ≤ 2 · cost(L).
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Thereby, the proof of Lemma 6.8 outlined in the beginning of this section is
complete. We repeat the proof in condensed form for completeness.

Proof of Lemma 6.8. Let L be an arbitrary L-pebbling of T . By Observa-
tion 7.1, we can assume L to be non-redundant. Using Lemma 7.9, we get a non-
overlapping pebbling L′ with cost(L′) ≤ cost(L). If L′ contains wasteful implo-
sions, Lemma 7.19 yields a non-wasteful pebbling L′′ in cost(L′′) ≤ 2 · cost(L′).
Finally, Corollary 7.14 transforms L′′ into a reversal-free L-pebbling L′′′ of T
such that cost(L′′′) ≤ cost(L′′) ≤ 2 · cost(L). The lemma follows.

8 Resolution Derivations Induce Labelled Pebblings

In this section, we shift our focus to resolution and show that clause configura-
tions can be interpreted in terms of labelled pebble configurations in such a way
that resolution derivations induce legal L-pebblings. We first give some techni-
cal preliminaries. Then we try to explain the intuition for how sets of clauses
are translated into sets of pebbles. Finally, we state the formal definitions and
prove the correspondence between resolution derivations and L-pebblings.

We start with the technicalities. For simplicity, in the following we will
write v1, . . . , vd instead of x(v)1, . . . , x(v)d for the d variables associated with
the vertex v in a dth degree pebbling contradiction.

Definition 8.1. Assume that G is a DAG with a unique target z and all vertices
having indegree 0 or 2. Then we define *Pebd

G = Pebd
G \

{

z1, . . . , zd

}

to be the
pebbling contradiction with target axioms removed.

Our first observation is that instead of refutations of Pebd
G , we may study

derivations of
∨d

i=1 zi from *Pebd
G .

Observation 8.2. For any DAG G with a unique target z and all vertices
having indegree 0 or 2, it holds that Sp

(

Pebd
G ` 0

)

= Sp
(

*Pebd
G `

∨d
l=1 zl

)

.

Proof. For any resolution derivation π∗ : *Pebd
G →

∨d
l=1 zl, we can get a reso-

lution refutation of Pebd
G from π∗ in the same space by resolving

∨d
l=1 zl with

all zl, l = 1, . . . , d, in space 3. In the other direction, for π : Pebd
G → 0 we can

extract a derivation of
∨d

l=1 zl in at most the same space by simply omitting
all downloads of and resolution steps on zl in π, leaving the literals zl in the
clauses. Instead of the final empty clause 0 we get some clause D ⊆

∨d
l=1 zl, and

since *Pebd
T 2 D $

∨d
l=1 zl and resolution is sound, we have D =

∨d
l=1 zl.

The following easy lemma will be used repeatedly.

Lemma 8.3. Suppose that C, D are clauses and C, D sets of clauses.

1. C∪
{

C
}

� D if and only if C � a ∨ D for all a ∈ Lit(C).

2. C∪D � D for D =
{

D1, . . . , Dm

}

if and only if C �
∨

i∈[m] ai ∨ D for all

choices of literals (a1, . . . , am) ∈ Lit(D1) × · · · × Lit(Dm).
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Proof. For part 1, assume that C∪
{

C
}

� D and consider an assignment α such
that α(C) = 1 and α(D) = 0 (if there is no such α, then C � D ⊆ a∨D). Such
an α sets all a to true. Conversely, if C � a∨D for all a ∈ Lit(C) and α is such
that α(C) = α(C) = 1, it must hold that α(D) = 1.

Part 2 follows from part 1 by induction.

We introduce some space-saving notation. If pred(r) =
{

p, q
}

we say that

the axioms for r in *Pebd
G is the set Axd(r) =

{

pi ∨ qj ∨
∨d

l=1 rl | i, j ∈ [d]
}

.

If r is a source, we define Ax d(r) =
{
∨d

i=1 ri

}

. For V a set of vertices, let

Axd(V ) =
{

Axd(v) | v ∈ V
}

.

For v a vertex in T , we let B
(

v
)

=
∨d

i=1 vi. For V ⊆ V
(

T
)

, we define

B
(

V
)

=
{

B
(

v
)

| v ∈ V
}

and AV =
∨

v∈V

∨d
i=1 vi. B

(

V
)

can be understood as
“truth of all vertices in V ” and AV as “truth of some vertex in V ”.

This concludes the technical preliminaries. We next try to provide some
intuition for how clause configurations are translated into pebble configurations.

Let us associate each vertex v ∈ V
(

T
)

with the clauses Axd(v). In the stan-
dard black-white pebble game, if at some time t there is an independent black
pebble on v, an optimal pebbling will not pebble any vertex in T v after time t.
As an analogy of this, a clause configuration Ct should induce an independent
black pebble on v only if no axioms from Axd(T v) = *Pebd

T v need be used to

derive
∨d

l=1 zl. This holds if and only if

C∪
(

*Pebd
T \ *Pebd

T v

)

�
∨d

l=1 zl (2)

by the implicational completeness of resolution. If (2) holds for v but not for
succ(v), we can interpret this by saying that the resolution derivation “has
reached as far as v but not any farther” and indicate this fact by placing an
independent black pebble on v.

It turns out that (2) is equivalent with the condition that C together with
the truth of all vertices unrelated to v should imply truth of some vertex on the
path from v to the root, or more concisely

C∪B
(

T \
(

T v ∪P v
))

� AP v , (3)

and the condition (3) is more convenient to work with. In the next lemma, we
prove the equivalence of (2) and (3). The lemma is intended only as a way to
strengthen the intuition and motivate the formal definitions below. It will not
be used in the following and is therefore optional reading.

Lemma 8.4. Suppose that the clause configuration C is derived from *Pebd
T for

a complete binary tree T with root z and let r be an arbitrary vertex in V
(

T
)

.

Then C∪B
(

T \
(

T r ∪P r
))

� AP r if and only if C∪
(

*Pebd
T \*Pebd

T r

)

�
∨d

l=1 zl.

Proof. Note first that if r = z, the two implications are exactly the same.
Assume therefore that r is not the root and that it has sibling s and successor u.

(⇒) Suppose that C∪B
(

T \
(

T r ∪P r
))

� AP r . For all v ∈ T \
(

T r ∪P r
)

it holds that *Pebd
T \ *Pebd

T r �
∨d

l=1 vl, since *Pebd
T v ⊆ *Pebd

T \ *Pebd
T r and

*Pebd
T v �

∨d
l=1 vl, and the fact that resolution is implicationally complete means

that these clauses are all derivable. Write AP r = AP r
∗
∨

∨d
i=1 ri. Resolve with

ri ∨ sj ∨
∨d

l=1 ul for all i, j ∈ [d] to get
{

sj ∨ AP r
∗
| j ∈ [d]

}

, derive
∨d

j=1 sj by
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C =
{

ui ∨ vj ∨
∨d

l=1 zl, pi ∨ qj ∨
∨d

l=1 rl,
∨d

l=1 wl | 1 ≤ i, j ≤ d
}

z

r w

u

v

p q

L(C) = {z〈u, v〉, r〈p, q〉, w〈∅〉}

Figure 9: An example clause configuration C and induced L-configuration L(C).

implicational completeness and then resolve the clauses
{

sj ∨ AP r
∗
| j ∈ [d]

}

and
∨d

j=1 sj to get AP r
∗
. In the same way we can eliminate all vertices in P r \ {z}

from AP r
∗

and derive
∨d

l=1 zl using only axioms from *Pebd
T \ *Pebd

T r . Since

resolution is sound this implies that C∪
(

*Pebd
T \ *Pebd

T r

)

�
∨d

l=1 zl.
(⇐) Rewrite the assumption as

C∪Axd
(

T \
(

T r ∪P r
))

∪Axd
(

P u
∗

)

∪
{

ri ∨ sj ∨
∨d

l=1 ul | i, j ∈ [d]
}

�
∨d

l=1 zl.

Repeated use of Lemma 8.3 yields

C∪Axd
(

T \
(

T r ∪P r
))

∪Axd(P u
∗ ) �

∨d
l=1 rl ∨

∨d
l=1 zl

and proceeding in the same way for all w ∈ P u
∗ we get

C∪Axd
(

T \
(

T r ∪P r
))

�
∨

v∈P r

∨d
l=1 vl = AP r .

Any α satisfying B
(

T \
(

T r ∪P r
))

must satisfy Axd
(

T \
(

T r ∪P r
))

and thus

C∪B
(

T \
(

T r ∪P r
))

� AP r .

Continuing our intuitive argument, the simplest case for a black pebble on
a vertex v is when C �

∨d
i=1 vi. Let us restrict our attention to this case and

think of a black pebble on v as derived truth B
(

v
)

=
∨d

i=1 vi of v. One way of
looking at a dependent black pebble on v supported by white pebbles on W , or,
in L-pebbling terminology, a subconfiguration v〈W 〉, is that given independent
black pebbles on all w ∈ W we can eliminate the white pebbles and get v〈∅〉.
By analogy, a clause configuration C should induce a subconfiguration v〈W 〉 if
we would get an induced independent black pebble on v by assuming the truth
of all w ∈ W , i.e., if C∪B

(

W
)

�
∨d

i=1 vi. Figure 9 (which is Figure 3 but with
renamed vertices) gives an example of this intuitive understanding of induced
pebble configurations.

Our formal definitions follow the intuition presented above quite closely,
modulo a few technical details.

Definition 8.5 (Support). Suppose for C a set of clauses, v ∈ V
(

T
)

a vertex

and V ⊆ T \ P v a set of vertices that C∪B
(

V
)

� AP v . Then V is a support
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for v with respect to C, and if there is no V ′ $ V such that C∪B
(

V ′
)

� AP v

the support is minimal . If V is a minimal support for v with respect to C such
that C∪B

(

V
)

2 AP v
∗
, we say that v is maximal with respect to C and V .

For V a support of v, we define the supporting white pebbles of v to be
swp(v, V ) =

{

w ∈ V ∩T v
∗ | P w

∗ ∩ V = ∅
}

.

When it is clear from context, we sometimes omit which support or vertex
is minimal or maximal with respect to what. Note that swp(v, V ) is a simple
roof below v over V ∩ T v

∗ .

Definition 8.6 (Induced L-configuration). For C a set of clauses derived
from *Pebd

T , the induced L-configuration L(C) consists of all subconfigurations
v〈V 〉 such that

1. there is a minimal support V ′ ⊆ T \ P v for v with respect to C,

2. v is maximal with respect to C and V ′,

3. V = swp(v, V ′).

Remark 8.7. The reason we use V = swp(v, V ′) instead of V ′ ∩T v
∗ is that we

need simple sets (Definition 6.3) to define our induced subconfigurations v〈V 〉,
but the supporting sets V ′ are not necessarily simple. For instance, if we let

C′ =
{

ui ∨ vj ∨ ql ∨
∨d

n=1 zn, pi ∨ qj ∨
∨d

n=1 rn,
∨d

n=1 wn | 1 ≤ i, j, l ≤ d
}

in Figure 9, the root z has the minimal supporting set V ′ = {u, v, q}. For
technical reasons, it is simpler to ignore all but the topmost vertices in V ′,
so by Definition 8.6 we get L(C′) = L(C). Anyway, it seems very plausible
that optimal resolution derivations should never result in clause configurations
like C′, and since the bound we will prove is asymptotically tight we see that we
do not lose anything by restricting the white pebbles to V = swp(v, V ′) instead
of V ′ ∩ T v

∗ .

Note also that a black pebble on v is defined in terms of AP v , not
∨d

i=1 vi.
This means that for instance

C′′ =
{

ui ∨ vj ∨
∨d

n=1 zn, pi ∨ qj ∨
∨d

n=1 rn,
∨d

n=1 wn ∨
∨d

n=1 zn | 1 ≤ i, j ≤ d
}

also induces an independent black pebble w〈∅〉, and L(C′′) = L(C).

Recall that the goal of this section is to show that resolution derivations
induce L-pebblings. Suppose that π = {C0, . . . , Cτ} is a resolution derivation

of
∨d

l=1 zl from *Pebd
T . For C0 = ∅ we obviously get L(C0) = ∅, and it is

not hard to see that at the end of the derivation Cτ =
{
∨d

n=1 zn

}

induces a

single independent black pebble L(Cτ ) =
{

z〈∅〉
}

on the root of T . Hence, we

are done if we can prove that
{

L(C0), . . . L(Cτ )
}

forms the backbone of a legal
L-pebbling L, where the transitions L(Ct)  L(Ct+1) can be accomplished in
accordance with the rules of the L-pebble game.

By the L-pebbling rules in Definition 6.7, any subconfiguration v〈V 〉 may be
erased from L freely at any time. Consequently, we need not worry about sub-
configurations v〈V 〉 ∈ L(Ct) \ L(Ct+1) disappearing during the transition from
Ct to Ct+1. What we do need to check, though, is that no v〈V 〉 suddenly appears
inexplicably in L(Ct+1) as a result of a resolution derivation step Ci  Ci+1,
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but that we can always derive any v〈V 〉 ∈ L(Ct+1) \ L(Ct) from L(Ct) by the
L-pebbling rules.

The rest of this section is devoted to proving this. We first make a pair
of observations. The first observation relates subset containment of supporting
sets and the order relation between corresponding subconfigurations.

Observation 8.8. If v, u ∈ P v and U ′, V ′ ⊆ T \ P v are vertices and sets such
that U ′ ∩T v

∗ ⊆ V ′ ∩ T v
∗ , then u〈swp(u, U ′)〉 � v〈swp(v, V ′)〉.

Proof. Using the characterization of � in Observation 6.6 on page 17, it is
sufficient to prove that v ∈ T u and P v ∩ swp(u, U ′) = ∅ and that swp(v, V ′) is
a simple roof below v over swp(u, U ′)∩T v.

The condition v ∈ T u is equivalent to u ∈ P v , and since U ′ ⊆ T \P v it clearly
holds that P v ∩ swp(u, U ′) ⊆ P v ∩U ′ = ∅. Both swp(v, V ′) and swp(u, U ′)∩T v

are simple sets below v by assumption. The only nontrivial part is to establish
that swp(v, V ′) is a roof over swp(u, U ′)∩T v.

Suppose that w ∈ swp(u, U ′)∩T v. To prove that swp(v, V ′) is a roof, we
need to find a w′ ∈ P w ∩ swp(v, V ′). Since by assumption swp(u, U ′)∩ T v ⊆
U ′ ∩ T v

∗ ⊆ V ′ ∩T v
∗ , it holds that w ∈ V ′ ∩T v

∗ . If w ∈ swp(v, V ′) we are done,
so suppose w 6∈ swp(v, V ′). The reason that w is missing from swp(v, V ′) must
be that P w

∗ ∩V ′ 6= ∅, but if we pick w′ ∈ P w
∗ ∩V ′ of maximal height we get

P w′

∗ ∩ V ′ = ∅ and w′ ∈ swp(v, V ′). This w′ satisfies w ∈ P w ∩ swp(v, V ′), which
shows that swp(v, V ′) is a roof over swp(u, U ′)∩T v.

The second observation says that if a support V ′ is not minimal or a vertex v
is not maximal with respect to a clause configuration C, then this just means
that C induces something stronger than v〈swp(v, V ′)〉.

Observation 8.9. If C∪B
(

V ′
)

� AP v for V ′ ⊆ T \ P v, then there is a sub-
configuration u〈U〉 ∈ L(C) such that v〈swp(v, V ′)〉 � u〈U〉.

Proof. Minimize U ′ ⊆ V ′ and then maximize u ∈ P v so that C∪B
(

U ′
)

� AP u .
Set U = swp(u, U ′) and use Observation 8.8.

With the help of these observations we can analyze how new subconfigu-
rations v〈V 〉 may appear in L(Ct+1) after a resolution derivation step Ci Ci+1.

Observation 8.10 (Inference). If Ct+1 is derived from Ct by inference, then
L(Ct+1) = L(Ct).

Proof. Ct and Ct+1 have the same logical consequences.

Lemma 8.11 (Erasure). Suppose that Ct+1 is derived from Ct by erasure.
Then for each v〈V 〉 ∈ L(Ct+1) there is a u〈U〉 ∈ L(Ct) such that v〈V 〉 � u〈U〉.

Proof. By assumption there is a V ′ ⊆ T \ P v such that V = swp(v, V ′) and
Ct+1 ∪B

(

V ′
)

� AP v . Certainly, the same implication holds for Ct ⊇ Ct+1. The
lemma follows from Observation 8.9.

In particular, all new subconfigurations resulting from an erasure Ct  Ct+1

can be obtained from L(Ct) by reversal. One way of interpreting this is that no
white pebbles can just disappear at an erasure step except if the black pebble
that they support disappear as well. This is exactly the kind of “controlled
removal” of white pebbles that the L-pebble game was designed to capture.
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Lemma 8.12 (Axiom download). If Ct+1 = Ct ∪{C} for an axiom clause
C ∈ Axd(r), then all subconfigurations v〈V 〉 ∈ L(Ct+1) \ L(Ct) can be obtained
from L(Ct)∪ r〈pred (r)〉 by reversals from subconfigurations in L(Ct) followed
by mergers on {r}∪ pred(r).

Proof. By assumption, there is a minimal V ′ ⊆ T \ P v with V = swp(v, V ′)
such that Ct ∪{C}∪B

(

V ′
)

� AP v for C ∈ Axd(r). We will use repeatedly the

fact that B
(

r
)

� C.

It is intuitively clear that axioms C ∈ Ax d(r) should not yield any interesting
new subconfigurations v〈V 〉 if r ∈ T \ T v, and for r ∈ T v we should be able to
explain new subconfigurations with the help of r〈pred (r)〉. We prove this by a
case analysis over r.

r ∈ T \
(

T v ∪P v
)

: We have Ct ∪B
(

V ′ ∪{r}
)

� AP v for V ′ ∪{r} ⊆ T \ P v, so
Observation 8.9 tells us that there is a u〈U〉 ∈ L(Ct) such that v〈V 〉 =
v〈swp(v, V ′)〉 = v〈swp(v, V ′ ∪{r})〉 � u〈U〉.

r ∈ P v
∗ : Write C = pi ∨ qj ∨

∨d
l=1 rl for {p, q} = pred(r) 6= ∅ and let p be the

vertex in P v ∩ pred(r). Using Lemma 8.3 to move pi to the right of the
implication sign yields Ct ∪B

(

V ′
)

� AP v ∨ pi = AP v , and since V ′ is
minimal it follows that v〈V 〉 ∈ L(Ct).

r = v: Note first that we are prepared to accept the introduction of r〈pred (r)〉
without any explanation, so if Ct ∪{C}∪B

(

V ′
)

� AP r for pred(r) ⊆ V ′

no further analysis is needed for r〈swp(r, V ′)〉 = r〈pred (r)〉. In particular,
this is always the case if pred(r) = ∅, i.e., if r is a source.

Suppose that v〈V 〉 = r〈swp(r, V ′)〉 ∈ L(Ct+1) for V 6= pred(r) = {p, q},

and write C = pi ∨ qj ∨
∨d

l=1 rl. We want to derive r〈V 〉 by the pebbling
rules from L(Cr)∪ r〈pred (r)〉. By symmetry, we get two subcases.

1. p ∈ V, q 6∈ V : By Definition 8.5, we have p ∈ V ′ and q 6∈ V ′. Observe
that this implies that V ′ ⊆ T \ P q . Also, we can use Lemma 8.3
to move qj to the right-hand side of the implication sign and get

Ct ∪B
(

V ′
)

� AP r ∨ qj ⊆ AP r ∨
∨d

j=1 qj = AP q . Plugging this
into Observation 8.9 shows that there is a w〈W 〉 ∈ L(Ct) such that
q
〈

V \ {p}
〉

= q
〈

swp(q, V ′)
〉

� w〈W 〉. Thus we can derive q
〈

V \ {p}
〉

from L(Ct) by reversal and then merge r〈pred (r)〉 = r〈p, q〉 with
q
〈

V \ {p}
〉

to obtain r
〈

({p, q}∪ (V \ {p})) \ {q}
〉

= r〈V 〉.

2. p, q 6∈ V : Again by Definition 8.5, we have p, q 6∈ V ′. If we use
Lemma 8.3 twice we get Ct ∪B

(

V ′
)

� AP p ∧ AP q , and noting that

V ′ ⊆ T \
(

P p ∪P p
)

we can apply Observation 8.9 to derive p
〈

V ∩ T p
∗

〉

and q
〈

V ∩T q
∗

〉

from L(Ct) by reversals. Merging these subconfigu-

rations with r〈p, q〉, we get r
〈(

V ∩T p
∗

)

∪
(

V ∩T q
∗

)〉

= r〈V 〉.

r ∈ T v
∗ : By assumption, Ct ∪ {C}∪B

(

V ′
)

� AP v , and since r∈T v
∗ and B

(

r
)

�C

we have Ct ∪B
(

V ′ ∪{r}
)

� AP v for V ′ ∪{r} ⊆ T \ P v . If P r ∩V ′ 6= ∅,
it holds that swp(v, V ′ ∪{r}) = swp(v, V ′) and we can obtain v〈V 〉 from
L(Ct) by reversal according to Observation 8.9, so suppose P r ∩V ′ = ∅.

Pick U ′ ⊆ V ′ ∪ {r} minimal and then u ∈ P v maximal with respect
to U ′ such that Ct ∪B

(

U ′
)

� AP u . By the minimality of V ′ we have
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r ∈ U ′, and since P r
∗ ∩U ′ ⊆ P r

∗ ∩V ′ = ∅ it holds that r ∈ swp(u, U ′).
Consequently, we cannot use u〈U〉 = u

〈

swp(u, U ′)
〉

∈ L(Ct) to derive
v〈V 〉 6� u〈U〉 by reversal. However, since U ′ ⊆ V ′ ∪{r}, Observation 8.8
tells us that v

〈

(V ∪{r}) \ T r
∗

〉

= v
〈

swp(v, V ′ ∪{r})
〉

� u〈U〉 can be de-

rived by reversal from L(Ct). If we could also derive r
〈

V ∩T r
∗

〉

from
L(Ct)∪ r〈pred (r)〉, a merger would produce the desired subconfiguration
v
〈((

(V ∪{r}) \ T r
∗

)

∪
(

V ∩T r
∗

))

\ {r}
〉

= v〈V 〉.

Hence, we are done if we can derive r
〈

V ∩T r
∗

〉

= r
〈

swp(v, V ′)∩ T r
∗

〉

=

r
〈

swp(r, V ′)
〉

from L(Ct)∪ r〈pred (r)〉. But AP r ⊇ AP v , so by assumption

we have Ct ∪ {C}∪B
(

V ′
)

� AP r for V ′ ⊆ T \ P r. This is almost exactly

the case r = v above, where we proved that r
〈

swp(r, V ′)
〉

is derivable from
L(Ct)∪ r〈pred (r)〉. The only difference is that now it is not necessarily
true that V ′ is a minimal support and that r is maximal with respect to V ′.
But these assumptions were not used in the derivation of r

〈

swp(r, V ′)
〉

from L(Ct)∪ r〈pred (r)〉 anyway, so we can reuse exactly the same proof
here to get r

〈

swp(r, V ′)
〉

. This concludes the analysis for r ∈ T v
∗ .

Studying the pebbling moves in the case analysis above, we see that all sub-
configurations v〈V 〉 ∈ L(Ct+1) \L(Ct) can be obtained from L(Ct)∪ r〈pred (r)〉
by a (possibly empty) sequence of reversals from L(Ct), followed by a (possibly
empty) sequence of mergers on {r}∪ pred(r).

Combining the results proven for axiom download, inference and erasure, we
can show that a resolution derivation induces a legal L-pebbling.

Theorem 8.13. Let π = {C0, . . . , Cτ} be a resolution derivation of
∨d

l=1 zl

from *Pebd
T . Then

{

L(C0), . . . , L(Cτ )
}

is the backbone of a legal L-pebbling L

of T such that maxt∈[τ ]

{

cost(L(Ct))
}

= Ω
(

cost(L)
)

.

Proof. The fact that
{

L(C0), . . . , L(Cτ )
}

essentially is a legal L-pebbling was
proven in Observation 8.10, Lemma 8.11 and Lemma 8.12, where it was ex-
plicitly indicated how the “holes” in L(Ct)  L(Ct+1) could be filled in by
L-pebbling moves to get a legal pebbling L.

The bound maxt∈[τ ]

{

cost(L(Ct))
}

= Ω
(

cost(L)
)

does not follow immedi-
ately from this, however. The problem is that a single resolution derivation
step Ct  Ct+1 may induce several L-pebbling moves to get from L(Ct) to
L(Ct+1) in L. Therefore, we have to consider the possibility3 that the maximal
pebbling cost in L is reached in some intermediate L-configuration L′ in between
L(Ct) and L(Ct+1).

Since inference steps in π do not change the set of induced L-configurations,
we get two cases.

1. Ct  Ct+1 is an erasure. The moves to get from L(Ct) to L(Ct+1) are a
series of reversals from L(Ct) followed by a series of erasures from L(Ct).
In view of part 1 of Proposition 7.5, without loss of generality we can
let L′ be the L-configuration after all reversals but before all erasures.
Then L′ = L(Ct)∪L(Ct+1), and by part 2 of Proposition 7.5, we have
cost(L′) ≤ cost(L(Ct)) + cost(L(Ct+1)) ≤ 2 · maxi∈[t,t+1]

{

cost(L(Ci))
}

.

3In fact, this does not happen, but instead of proving this we happily sacrifice a constant 2
here in order to get a simpler (or at least slightly less involved) proof.
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2. Ct  Ct+1 is a download of C ∈ Axd(v). In this case the sequence of
moves to get from L(Ct) to L(Ct+1) is a possible introduction of v〈pred (v)〉
followed by a series of reversals from L(Ct), then a series of mergers on
{v}∪ pred(v) and finally a series of erasures of subconfigurations not de-
rived in the merger moves. Again by part 1 of Proposition 7.5, we may
let L′ be the L-configuration after all mergers but before the erasures.

All pebbles in Bl
(

L′
)

∪Wh
(

L′
)

are present in either L(Ct) or L(Ct+1),
except possibly for the pebbles on {v}∪ pred(v) which may have been
introduced and then merged away. Since by construction all subconfigu-
rations resulting from these mergers must be contained in L(Ct+1), the
pebbles on {v}∪ pred(v) are the only ones that can appear and then dis-
appear during the intermediate pebbling steps. If we remove {v}∪ pred(v)
from Bl

(

L′
)

∪Wh
(

L′
)

the pebbling cost cannot decrease by more than 3.

Since all pebbles Bl
(

L′
)

\
(

{v}∪ pred(v)
)

and Wh
(

L′
)

\
(

{v}∪ pred(v)
)

are

contained in Bl
(

L(Ct)
)

∪Bl
(

L(Ct+1)
)

and Wh
(

L(Ct)
)

∪Wh
(

L(Ct+1)
)

,
respectively, appealing to part 2 of Proposition 7.5 again we get that
maxi∈[t,t+1]

{

cost(L(Ci))
}

≥ 1
2

(

cost(L′) − 3
)

.

This establishes that even if the maximal cost in the L-pebbling L in-
duced by derivation π = {C0, . . . , Cτ} is attained in some intermediate L-con-
figuration L′ 6∈

{

L(Ct) | t ∈ [τ ]
}

, it still holds that maxt∈[τ ]

{

cost(L(Ct))
}

≥
1
2cost(L) + O(1). The theorem follows.

9 A Separation of Space and Width in Resolution

In the last section, we proved that Sp
(

Pebd
Th

` 0
)

= Sp
(

*Pebd
Th

`
∨d

i=1 zi

)

, and

that each resolution derivation π : *Pebd
Th

→
∨d

i=1 zi induces a legal L-pebbling

L of Th such that maxC∈π

{

cost(L(C))
}

= Ω
(

cost(L)
)

. From Sections 6 and 7

we know that cost(L) = Ω
(

BW-Peb(T )
)

. The final component needed to piece
together the proof of our lower bound on the refutation space of pebbling con-
tradictions is to show that the number of pebbles in an induced L-configuration
L(C) and the number of clauses in C are somehow connected.

We cannot expect a proof of this fact to work regardless of the pebbling
degree d. The induced L-pebbling in Section 8 makes no assumptions about d,
but we know that Sp

(

*Peb1
G ` z1

)

= Sp
(

Peb1
G ` 0

)

= O(1). If we look

at the resolution refutation π of Peb1
G in constant space sketched at the end of

Section 5, we see that the induced L-pebbling starts by placing white pebbles on
pred(z) and a black pebble on z, i.e., introducing z〈pred(z)〉, and then pushes
the white pebbles downwards by introducing v〈pred (v)〉 for all v in reverse
topological order and merging until it reaches z〈S〉 for S the source vertices
of G. Finally, the white pebbles s ∈ S are eliminated one by one by introducing
s〈∅〉 and merging. The reason that Peb1

G can be refuted in constant space is
that one single clause z1∨

∨

v∈V v1 can induce an arbitrary number |V | of white
pebbles, or, phrasing it differently, that white pebbles are free for d = 1.

In Theorem 9.6 below, we prove a lower bound
∣

∣C
∣

∣ ≥ N for N induced
pebbles. As we just observed, we will need d ≥ 2 if some of these N pebbles are
white. Black pebbles are not free for d = 1, however, but instead of showing a
separate bound for them we assume d ≥ 2 and give a simple, unified proof for
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N simultaneous black or white pebbles. We conclude the section by combining
the bound in Theorem 9.6 with previous theorems to obtain the tight bound
on the refutation clause space of pebbling contradictions over binary trees in
Theorem 1.1 and the separation of space and width in Corollary 1.2.

In the proofs, we will use material from Section 3 and the following defini-
tions.

Definition 9.1. We say that a vertex v is represented positively in a clause C if
{

v1, . . . , vd

}

∩Lit(C) 6= ∅ and negatively if
{

v1, . . . , vd

}

∩Lit(C) 6= ∅, and that
C mentions v positively or negatively , respectively. This definition is extended
to sets of vertices and clauses by taking unions.

For a set of vertices U , we let Varsd(U) =
{

u1, . . . , ud | u ∈ U
}

denote the
set of all variables representing vertices in U . For a set of clauses C, we use
V
(

C
)

=
{

u ∈ U | Varsd(u) ∩Vars(C) 6= ∅
}

to denote all vertices represented

(positively or negatively) in C, and we write C[U ] =
{

C ∈ C | V
(

C
)

∩U 6= ∅
}

to denote the subset of all clauses in C mentioning vertices in U .

Definition 9.2. For v a vertex in T and α a truth value assignment, v is said
to be true under α if α

(
∨d

i=1 vi

)

= 1 and false under α if α
(
∨d

i=1 vi

)

= 0. We
define

αv=ν
(

ui

)

=

{

α
(

ui

)

if u 6= v,

ν if u = v

and say that αv=0 flips v to false.

It is easy to see from Lemma 3.4 and Definition 8.6 that if a set of clauses C
induces black pebbles on a set of vertices V , then these vertices must all be
represented positively in C. If C induces a white pebble on a vertex w, it
follows immediately from Lemma 3.5 that all literals wi, i ∈ [d], are present
in Lit(C). But we can say something stronger for white pebbles.

Lemma 9.3. Suppose for a clause set C and a vertex w that there is a v ∈ P w
∗

and a V ⊆ T \ P w
∗ such that C∪B(V ) � AP v but C∪B(V \ {w}) 2 AP v . Then

there is a subset
{

wi ∨ Ci | i ∈ [d]
}

⊆ C for which wj 6∈ Lit(Ci) if j 6= i.

Proof. Pick α such that α
(

C
)

= α
(

B(V \ {w})
)

= 1 but α
(

AP v

)

= 0. Then it

must be the case that α
(
∨d

i=1 wi

)

= 0. For all i ∈ [d] we have αwi=1
(

B(V )
)

= 1

but αwi=1
(

AP v

)

= 0, so flipping wi while keeping wj false for j 6= i must falsify
some clause in C. This establishes that there are clauses wi ∨ Ci ∈ C for all
i ∈ [d] such that wj 6∈ Lit(Ci) for j 6= i.

Lemma 9.3 tells us that one white pebble costs d clauses. We are convinced
that the correct bound for N white pebbles should be dN clauses if d ≥ 2.

We next prove a couple of lemmas to try to argue why the intuition for a
bound dN , or at least (d−1)N , is strong. At the same time, the proofs of these
lemmas indicate why such a bound appears hard to get. Loosely speaking, the
problem seems to be that Theorem 3.6 does not really use any structural infor-
mation about the CNF formula in question. Since very different formulas can
yield the same clauses-variable occurrences bipartite graph, perhaps it should
not be very surprising if the theorem does not always yield optimal bounds. The
lemmas below are not used in the following, so the impatient reader is invited
to skip ahead to Theorem 9.6 on page 45.
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For N white pebbles in one common subconfiguration, the cost is at least
(d − 1)N clauses.

Lemma 9.4. If a clause set C derived from *Pebd
T induces a subconfiguration

v〈W 〉 then |C| > (d − 1)|W |.

Proof. Pick Cv ⊆ C and V ⊆ T \ P v minimal such that W = swp(v, V ) and
Cv ∪B(V ) � AP v . Note that swp(v, V ) ⊆ V by definition. Since B(V ) con-
tains d|V | variables but only |V | clauses and Vars(B(V )) ∩Vars(AP v ) = ∅,
Theorem 3.6 yields that |C| ≥ |Cv | > (d − 1)|V | ≥ (d − 1)|W |.

Also, two white pebbles always cost at least 2d − 1 clauses, although here
the argument starts to become pretty involved. . .

Lemma 9.5. If a clause set C derived from *Pebd
T induces two white pebbles on

T , then |C| ≥ 2d − 1.

Proof. Suppose that C induces white pebbles on w1 and w2.
If w1 and w2 are contained in the same subconfiguration we have |C| ≥ 2d−1

by Lemma 9.4. Assume for i = 1, 2 that the induced subconfigurations are
vi〈W i〉, where wi ∈ W i, and let Ci ⊆ C and V i ⊆ T \P vi

be minimal such that
W i = swp(vi, V i) and Ci ∪B

(

V i
)

� AP vi . If
∣

∣V 1
∣

∣ > 1 or
∣

∣V 2
∣

∣ > 1 we again

have |C| ≥ 2d−1 by the proof of Lemma 9.4, so suppose that V i = W i =
{

wi
}

.
Recall Definition 3.1 on page 7, and let ρi =ρ(¬AP vi ) for i = 1, 2. Lemma 3.3

says that
(

Ci ∪B
(

V i
))

|ρi
= Ci|ρi

∪B
(

V i
)

is minimally unsatisfiable. Also,
from the proof of Lemma 9.3 we can extract that Ci|ρi

contains d clauses
{

Di
j = wi

j ∨ Ci
j | j ∈ [d]

}

for which wi
k 6∈ Lit

(

Ci
j

)

if k 6= j. Let us refer to

the literals wi
j ∈ Lit

(

Di
j

)

for i = 1, 2 and j = 1, . . . , d as critical occurrences .

If w1 ∈ P v2

we are done since ρ2 kills all d clauses w1
j ∨ C1

j and there are still

d clauses w2
j ∨ C2

j left in C2|ρ2
, and the same holds for w2 and P v1

by symmetry.

Assume therefore that w1 6∈ P v2

and w2 6∈ P v1

.
Now if

∣

∣C1 ∪C2

∣

∣ < 2d, Lemma 9.3 combined with the pigeonhole principle
tells us that there is some negative literal, say w1

1, which occurs critically in a
clause containing a literal w2

j . Consider the subset C1

[{

w1, w2
}]

of clauses in

C1 mentioning w1 or w2, and let m = Vars
(

C1

[{

w1, w2
}])

∩Varsd
(

w2
)

. We
know that w1

1 occurs critically in C1 together with some w2
j , and that all literals

from w2 in C1 are present in C1|ρ1
as well, since w2 6∈ P v1

by assumption and ρ1

does not satisfy any clauses in C1 by Lemma 3.3. Thus m ≥ 1. By Theorem 3.6
we get

∣

∣C1

[{

w1, w2
}]

|
ρ1

∪B
(

w1
)∣

∣ > d + m, that is,
∣

∣C1

[{

w1, w2
}]∣

∣ ≥ d + m.

Since C1

[{

w1, w2
}]

⊆ C1 ∪C2 and
∣

∣C1 ∪C2

∣

∣ < 2d we must have m < d.
Consequently, there are d − m ≥ 1 variables from w2, say w2

1 , . . . , w
2
d−m, that

are not mentioned in C1

[{

w1, w2
}]

. But all negative literals wi
j for i = 1, 2 and

j = 1, . . . , d occur in C1 ∪C2, so the literals w2
1, . . . , w

2
d−m can all be found in

(

C1 ∪C2

)

\ C1

[{

w1, w2
}]

. However,
∣

∣

(

C1 ∪C2

)

\ C1

[{

w1, w2
}]∣

∣ =
∣

∣C1 ∪C2

∣

∣ −
∣

∣C1

[{

w1, w2
}]∣

∣

≤ (2d − 1) − (d + m)

= d − (m + 1),

which contradicts the existence of d−m distinct clauses
{

w2
j ∨ C2

j | j ∈ [d − m]
}

guaranteed by Lemma 9.3. Hence
∣

∣C1 ∪C2

∣

∣ ≥ 2d and the lemma follows.
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We believe that the ideas in the proof of Lemma 9.5 could be pushed further
to yield a bound |C| ≥ (d−1)N for N white pebbles. However, to get a simpler
proof, and to get a common bound for N simultaneous black or white pebbles,
we instead opt for the bound |C| ≥ N .

Theorem 9.6. Suppose that C is a set of clauses derived from *Pebd
T for d ≥ 2,

and that V ⊆ V
(

T
)

is a set of vertices such that C induces a black or white

pebble on each v ∈ V , i.e., V ⊆ Bl
(

L(C)
)

∪Wh
(

L(C)
)

. Then |C| ≥ |V |.

Proof. Suppose that C induces a subconfiguration v〈W 〉. By Definition 8.6,
there is a minimal support Vv ⊆ T \ P v such that W = swp(v, Vv) ⊆ Vv and
C∪B(Vv) � AP v but C∪B(Vv) 2 AP v

∗
and C∪B(V ′

v ) 2 AP v for all V ′
v $ Vv .

Fix for each induced v〈W 〉 a subset Cv ⊆ C such that Cv ∪B(Vv) � AP v

minimally. Since Cv ∪B(Vv) 2 AP v
∗

and Vv ∩P v = ∅, the vertex v must be
represented positively in Cv by Lemma 3.4. For the white pebbles in W ,
it follows from Lemma 9.3 (or even just from Lemma 3.5) that all literals
{

wi | w ∈ W, i ∈ [d]
}

occur in Cv.
We prove by induction over U ⊆ V that |C[U ]| ≥ |U |, from which the

theorem clearly follows. The base case |U | = 1 is immediate, since we just
proved that all pebbled vertices v ∈ V are represented in C.

For the induction step, suppose that
∣

∣C
[

U ′
]
∣

∣ ≥
∣

∣U ′
∣

∣ for all U ′ $ U . Pick
a “topmost” vertex u ∈ U , i.e., such that P u

∗ ∩U = ∅, and look at the subcon-
figuration v〈W 〉 of u (with v = u if u is black) and associated subset Cv ⊆ C.
Note that Varsd(U) ∩Vars(AP v ) ⊆ {u}. Let S = U ∩ V

(

Cv

)

be the set of all
vertices in U mentioned by Cv . We claim that |Cv[S]| ≥ |S|.

To show this, note first that it was proven above that u ∈ S, and if S = {u}
we trivially have |Cv [S]| ≥ 1 = |S|. Suppose therefore that S % {u}. We
want to apply Theorem 3.6 on the formula F = Cv ∪B(Vv). Let S′ = S \ {u},
write S′ = S1

.
∪ S2 for S1 = S′ ∩ Vv and S2 = S′ \ S1, and consider FS′ =

{

C ∈
(

Cv ∪B(Vv)
)

| V
(

C
)

∩S′ 6= ∅
}

= Cv

[

S′
]

∪B(S1). For each w ∈ S1, the
clauses in B(S1) contain d literals w1, . . . , wd, and these literals must all occur
negated in Cv by Lemma 3.5. For each w ∈ S2, the clauses in Cv

[

S′
]

contain
at least one variable wi. Appealing to Theorem 3.6 with the subset of variables
Varsd(S′) ∩Vars(Cv), we get that

∣

∣FS′

∣

∣ =
∣

∣Cv

[

S′
]

∪B(S1)
∣

∣ >
∣

∣Varsd(S′) ∩Vars(Cv)
∣

∣ ≥ d
∣

∣S1

∣

∣ +
∣

∣S2

∣

∣,

and rewriting this as

∣

∣Cv [S]
∣

∣ ≥
∣

∣Cv

[

S′
]
∣

∣ =
∣

∣FS′

∣

∣ −
∣

∣B(S1)
∣

∣ ≥ (d − 1)
∣

∣S1

∣

∣ +
∣

∣S2

∣

∣ + 1 ≥
∣

∣S
∣

∣

proves the claim.
Note that Cv [S] ⊆ C[U ], since Cv ⊆ C and S ⊆ U . Also, by construction

Cv [S] does not mention any vertices in U \ S since S = U ∩V
(

Cv

)

. In other
words, C[U \ S] ⊆ C[U ]\Cv[S], and using the induction hypothesis for U\S $ U
we get

∣

∣C[U ]
∣

∣ ≥
∣

∣Cv[S]
∣

∣ +
∣

∣C[U \ S]
∣

∣ ≥ |S| + |U \ S| = |U |.

The theorem follows by induction.

We can now prove a tight bound for the refutation clause space of pebbling
contradictions over binary trees.
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Theorem 1.1 (restated). Let Th denote the complete binary tree of height h
and Pebd

Th
the pebbling contradiction of degree d ≥ 2 defined over Th. Then the

space of refuting Pebd
Th

by resolution is Sp
(

Pebd
Th

` 0
)

= Θ(h).

Proof. The upper bound Sp
(

Pebd
G ` 0

)

≤ Peb(G)+O(1) for any DAG G is fairly

obvious: given an optimal black pebbling of G, derive
∨d

i=1 vi inductively when
vertex v is pebbled. With a little care, this can be done in constant extra space
independent of d. To see this, suppose for pred(r) = {p, q} that a black pebble

is placed on r. Then p and q are already black-pebbled, so we have
∨d

i=1 pi and
∨d

j=1 qj in memory. It is not hard to verify that pi ∨
∨d

l=1 rl can be derived in

additional space 3 by resolving
∨d

j=1 qj with pi∨qj ∨
∨d

l=1 rl for j ∈ [d]. Resolve
∨d

i=1 pi with p1 ∨
∨d

l=1 rl to get
∨d

i=2 pi ∨
∨d

l=1 rl, and then resolve this clause

with pi ∨
∨d

l=1 rl for i = 2, . . . , d to get
∨d

l=1 rl in total extra space 4. Conclude

the resolution proof by resolving
∨d

i=1 zi for the target z with the target axioms

zi, i ∈ [d], in space 3. Consequently, Sp
(

Pebd
Th

` 0
)

= O
(

Peb(Th)
)

= O(h).

For the lower bound, according to Observation 8.2 we have Sp
(

Pebd
G ` 0

)

=

Sp
(

*Pebd
G `

∨d
i=1 zi

)

. Let π = {C0, . . . , Cτ} be a resolution derivation of
∨d

i=1 zi

from *Pebd
Th

in minimal clause space. Combining Theorems 4.3, 6.11 and 8.13,
we know that the derivation π induces a legal L-pebbling L of the tree Th such
that there is a clause configuration Ct ∈ π with cost(L(Ct)) = Ω

(

cost(L)
)

=
Ω(BW-Peb(Th)) = Ω(h). Fix such a clause configuration Ct. By Theorem 9.6,
∣

∣Ct

∣

∣ ≥
∣

∣Bl
(

L(Ct)
)

∪Wh
(

L(Ct)
)
∣

∣ = cost(L(Ct)) = Ω(h).

It follows that Sp
(

Pebd
Th

` 0
)

= Θ(h) for d ≥ 2.

Since W
(

Pebd
G ` 0

)

= O(d) for all pebbling contradictions by Theorem 5.2,
fixing d ≥ 2 in Theorem 1.1 yields a separation of clause space from width.
Corollary 1.2 follows if we let Fn = Pebd

Th
for h = blog(n + 1)c.

Corollary 1.2 (restated). For all k ≥ 4, there is a family of k-CNF formulas
{

Fn

}∞

n=1
of size O(n) such that W(Fn ` 0) = O(1) but Sp (Fn ` 0) = Θ(log n).

10 Conclusion and Open Problems

We have proven an asymptotically tight bound on the refutation clause space
in resolution of pebbling contradictions over binary trees. Our result is the first
lower bound on refutation space which is not the consequence of a lower bound
on the refutation width for the same formulas, but instead separates the two
measures.

This answers an open question in [9, 23, 25, 39]. However, we believe that
our answer can be strengthened in several ways.

Firstly, we would like to extend the lower bound on the refutation space of
pebbling contradictions over binary trees to the k-DNF resolution proof sys-
tems Res(k) introduced in [31], where the configurations C consist of k-DNF
formulas instead of CNF clauses and one can “resolve” over up to k variables
simultaneously. It is easy to prove the generalization of Theorem 5.3 that
SpRes(k)

(

Pebd
G ` 0

)

= O(1) if d ≤ k. We believe that pebbling contradictions

Pebk+1
Th

separate k-DNF resolution and (k+1)-DNF resolution with respect to
space.
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Conjecture 10.1. For k-DNF resolution refutations of pebbling contradictions
on complete binary trees, fixing k it holds that WRes(k)

(

Pebk+1
Th

` 0
)

= O(1)

and SpRes(k)

(

Pebk+1
Th

` 0
)

= Ω(h) but SpRes(k+1)

(

Pebk+1
Th

` 0
)

= O(1).

Proving this conjecture would establish that the k-DNF resolution proof
systems form a strict hierarchy with respect to space, which would be an im-
provement of the separation result in [23] for the restricted case of tree-like
k-DNF resolution.

Secondly, it would be nice to generalize the bound on refutation space of
pebbling contradictions to DAGs other than trees that have better size-pebbling
price trade-off. For L = L

(

F
)

the number of clauses in a formula F , we want

to find a formula family which improves the the bound Sp
(

F ` 0
)

= Ω
(

log L
)

in Theorem 1.1 to Sp
(

F ` 0
)

= Ω
(

L
)

or at least Sp
(

F ` 0
)

= Ω
(

Lε
)

for some

constant ε > 0, but for which it still holds that W
(

F ` 0
)

= O(1).
We conjecture that the black-white pebbling price is a lower bound for peb-

bling contradictions over any DAG.

Conjecture 10.2. For d ≥ 2 and for G an arbitrary DAG with a unique target
and with all vertices having indegree 0 or 2, Sp

(

Pebd
G ` 0

)

= Ω
(

BW-Peb(G)
)

.

Since there are DAGs Gn of fan-in 2 and size O(n) which have black-white
pebbling price BW-Peb(Gn) = Θ

(

n/ logn
)

(see [27]),4 a proof of Conjecture 10.2
would immediately yield the following corollary.

Corollary 10.3 (assuming Conjecture 10.2). There is a family of unsatis-
fiable k-CNF formulas

{

Fn

}∞

n=1
of size O(n) such that W

(

Fn ` 0
)

= O(1) but

Sp
(

Fn ` 0
)

= Ω
(

n/ logn
)

.

A third and final question is whether refutation space can be separated from
refutation length in the sense that there can be shown to exist a polynomial-size
family of k-CNF formulas such that Sp

(

F ` 0
)

= ω
(
√

n logL(F ` 0)
)

, where
n is the number of variables in F . This would be an interesting contrast to the
relation W

(

F ` 0
)

= O
(
√

n logL(F ` 0)
)

between length and width proven
in [12]. We believe that such a formula family exists.

Conjecture 10.4. There is a family of k-CNF formulas
{

Fn

}∞

n=1
over n vari-

ables such that Sp
(

Fn ` 0
)

= ω
(
√

n logL(Fn ` 0)
)

.

Of course, if we could prove Conjecture 10.2, we would immediately get a
positive answer to Conjecture 10.4 as well, using the same formula family as in
Corollary 10.3.

It is not possible to prove Conjecture 10.2 by using the L-pebble game of
Section 6 on general DAGs G, though. As was observed in Section 6, if we
allow reversal moves of black pebbles downwards it is not true that L-Peb(G) =
Ω

(

BW-Peb(G)
)

.
As a first step, we would therefore have to modify Definition 8.6 so that

a set of clauses C induces a black pebble on v if there is a minimal sub-
set Cv ⊆ C such that Cv ∪B

(

V
)

� AP v but Cv ∪B
(

V
)

2 AP v
∗
. Otherwise

we could move black pebbles downwards through erasures simply by deriving

4Note that in several papers, this result is incorrectly attributed to [33], but [33] itself gives
the correct reference.
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C =
{
∨d

i=1 vi,
∨d

i=1 succ(v)i

}

and then deleting
∨d

i=1 succ(v)i. But if we define
induced pebbles in terms of subsets Cv ⊆ C, as a result black pebbles can slide
downwards after inference steps, since {B ∨ C} is weaker than {B ∨ x, C ∨ x}.
This problem can be solved by defining induced pebbles syntactically instead of
semantically. Recalling Definition 3.7 on page 9, we could say that C induces
a black pebble on v if there is a Cv ⊆ C with v represented positively in Cv

such that Cv ∪B
(

V
)

∀̀ Dv ⊆ AP v . With this definition, nothing bad happens
during inference or erasure steps, resolution derivations yield legal L-pebblings,
and Theorem 3.10 can be used to show the bound in Theorem 1.1. However,
because of the fact that the support B(w) =

∨d
l=1 wl for a non-leaf w is stronger

than Axd(w) =
{

ui ∨ vj ∨
∨d

l=1 wl | i, j ∈ [d]
}

, we can still get black pebbles
moving downwards at axiom download. This can be avoided by defining sup-
port in terms of Axd(w) instead of

∨d
i=1 wi, which leads to a very nice pebble

game, but then unfortunately the counting argument in Theorem 3.10 to get a
bound on |C| in terms of the number of induced pebbles breaks down.

These problems arise because we do not a priori have any restrictions on what
kind of clauses a resolution derivation from a pebbling contradiction might de-
rive. The counterexample derivations we have found for the definitions sketched
in the previous paragraph all seem clearly non-optimal, while all of the defini-
tions yield well-behaved pebblings for “normal” resolution derivations. One way
of solving the problems would be if one could define formally what constitutes
a “non-optimal” derivation from a pebbling contradiction and then show that
each non-optimal derivation can be replaced by an “optimal” one in at most the
same space. Alternatively, one could try to find new ideas for the connection
between the black-white pebble game and resolution derivations from pebbling
contradictions, or use the last definition for induced pebbles outlined above but
devise new methods for proving bounds on |C| in terms of the number of induced
pebbles.
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