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Abstract

Mergers are functions that transform k (possibly dependent) random sources into a single
random source, in a way that ensures that if one of the input sources has min-entropy rate δ
then the output has min-entropy rate close to δ. Mergers have proven to be a very useful tool
in explicit constructions of extractors and condensers, and are also interesting objects in their
own right. In this work we present a new analysis of the merger construction of [LRVW03]. Our
analysis shows that the min-entropy rate of this merger’s output is actually 0.52 · δ instead of
0.5 · δ, where δ is the min-entropy rate of one of the inputs. To obtain this result we deviate from
the usual linear algebra methods that were used by [LRVW03] and introduce a new technique
that involves results from additive number theory.

1 Introduction

Mergers are functions that take as input k samples, taken from k (possibly dependent) random
sources, each of length n-bits. It is assumed that one of these random sources, who’s index is
unknown, is sufficiently random, in the sense that it has min-entropy ≥ δn (A source has min-
entropy ≥ b if none of its values is obtained with probability larger than 2−b). We want the merger
to output an n′-bit string (n′ could be smaller than n) that will be close to having min-entropy at
least δ′n′, where δ′ is not considerably smaller than δ. To achieve this, the merger is allowed to use
an additional small number of truly random bits called a seed. The goals in merger constructions are
a) to minimize the seed length, b) to maximize the min-entropy of the output and c) to minimize
the error (that is, the statistical distance between the merger’s output and some high min-entropy
source).

The notion of merger was first introduced by Ta-Shma [TS96], in the context of explicit con-
structions of extractors. An extractor is a function that transforms a source with min-entropy b into
a source which is close to uniform, with the aid of an additional random seed. Extractors are a
very important tool in derandomization. For a more detailed discussion of extractors see [Sha02].
Recently, Lu, Reingold, Vadhan and Wigderson [LRVW03] gave a very simple and beautiful con-
struction of mergers based on Locally-Decodable-Codes. This construction was used in [LRVW03]
as a building block in an explicit construction of extractors with nearly optimal parameters. More
recently, [Raz05] generalized the construction of [LRVW03], and showed how this construction (when
combined with other techniques) can be used to construct condensers (a condenser is a function that
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transforms a source with min-entropy rate δ into a source which is close to having min-entropy rate
δ′ > δ, with the aid of an additional random seed) with constant seed length. The analysis of the
merger constructed in [Raz05] was subsequently refined in [DR05].

The merger constructed by [LRVW03] takes as input k strings of length n, one of which has min-
entropy b, and outputs a string of length n that is close to having min-entropy at least 0.5 ·b. Loosely
speaking, the output of the merger is computed as follows: treat each input block as a vector in the
vector space Fm, where F is some small finite field, and output a uniformly chosen linear combination
of these k vectors. The analysis of this construction is based on the following simple idea: In every
set of linear combinations, who’s density is at least γ (where γ is determined by the size of F ),
there exist two linear combinations that, when put together, determine the ’good’ source (that is,
the ’good’ source can be computed from both of them deterministically). Therefore, one of these
linear combinations must have at least half the entropy of the ’good’ source (this reasoning extends
also to min-entropy). As a results we get that for most seed values (linear combinations) the output
has high min-entropy, and the result follows. This is of course an over-simplified explanation, but it
gives the general idea behind the proof.

In this paper we present an alternative analysis to the one just described. Our analysis re-
lies on two results from the field of additive-number theory. The first is Szemeredi’s theorem
([Sze75],[Gow01]) on arithmetic progressions of length three (also known as Roth’s theorem [Rot53]).
This theorem states that in every subset of {1, . . . , N}, who’s density is at least δ(N), there exits
an arithmetic progression of length three. For our purposes we use a quantitative version of this
theorem as proven by Bourgain [Bou99b]. The second result that we rely on is a lemma of Bourgain
[Bou99a] that deals with sum-sets and difference-sets of integers. Roughly speaking, the lemma says
that if the sum-set of two sets of integers is very small, then their difference-set cannot be very
large (for a precise formulation see Section 3). It is interesting to note that this is not the first
time that results from additive number-theory are used in the context of randomness extraction. A
recent result of Barak, Imagliazzo and Wigderson [BIW04] uses results from this field to construct
multi-source extractors.

Using these two results we are able to show that the min-entropy outputted by the aforementioned
merger is 0.52 · b and not 0.5 · b as was previously known. One drawback of our analysis is that the
length of the seed is required to be O(k · γ−2) in order for the output error to be γ, where in the
conventional analysis the seed length can be as short as O(k · log(γ−1)). This however does not
present a problem in many of the current applications of mergers, where the error parameter and the
number of input sources are both constants and the seed length is also required to be a constant. One
place where our analysis can be used in order to simplify an existing construction is in the extractor
construction of [Raz05]. There, the output of the merger is used as an input to an extractor that
requires the min-entropy rate of its input to be larger than one-half. In [Raz05] this problem is
addressed by a more complicated merger construction who’s output length is shorter than n. our
analysis shows that the more simple construction of [LRVW03] could be used instead, since its output
min-entropy rate is larger than one-half.

1.1 Somewhere-Random-Sources

An n-bit random source is a random variableX that takes values in {0, 1}n. We denote by supp(X) ⊂
{0, 1}n the support of X (i.e. the set of values on which X has non-zero probability). For two n-bit
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sources X and Y , we define the statistical distance (or simply distance) between X and Y to be

∆(X,Y ) ,
1

2

∑

a∈{0,1}n

|Pr[X = a]−Pr[Y = a]| .

We say that a random source X (of length n bits) has min-entropy ≥ b if for every x ∈ {0, 1}n

the probability for X = x is at most 2−b.

Definition 1.1 (Min-entropy). Let X be a random variable distributed over {0, 1}n. The min-
entropy of X is defined as 1

H∞ (X) , min
x∈supp(X)

log

(

1

Pr[X = x]

)

.

Definition 1.2 ((n, b)-Source). We say that X is an (n, b)-source, if X is an n-bit random source,
and H∞ (X) ≥ b.

A somewhere-(n, b)-source is a source comprised of several blocks, such that at least one of the
blocks is an (n, b)-source. Note that we allow the other source blocks to depend arbitrarily on the
(n, b)-source, and on each other.

Definition 1.3 ((n, b)1:k-Source)). A k-places-somewhere-(n, b)-source, or shortly, an (n, b)1:k-
source, is a random variable X = (X1, . . . , Xk), such that every Xi is of length n bits, and at least
one Xi is of min-entropy ≥ b. Note that X1, . . . , Xk are not necessarily independent.

Comment: It is possible to define a somewhere-(n, b)-source in a more general way to also include
convex combinations of sources of the type described by Definition 1.3. However, it suffices to
consider sources of this simpler type for the task of merger constructions.

1.2 Mergers

A merger is a function transforming an (n, b)1:k-source into a source which is γ-close (i.e. it has
statistical distance ≤ γ) to an (m, b′)-source. Naturally, we want b′/m to be as large as possible, and
γ to be as small as possible. We allow the merger to use an additional small number of truly random
bits, called a seed. A Merger is strong if for almost all possible assignments to the seed, the output
is close to be an (m, b′)-source. A merger is explicit if it can be computed in polynomial time.

Definition 1.4 (Merger). A functionM : {0, 1}d×{0, 1}n·k → {0, 1}m is a [d, (n, b)1:k 7→ (m, b′) ∼
γ]-merger if for every (n, b)1:k-source X, and for an independent random variable Z uniformly dis-
tributed over {0, 1}d, the distribution M(Z,X) is γ-close to a distribution of an (m, b′)-source. We
say that M is strong if the average over z ∈ {0, 1}d of the minimal distance between the distribution
of M(z,X) and a distribution of an (m, b′)-source is ≤ γ.

We now give a formal definition of the merger we wish to analyze. To simplify the analysis we
will assume in several places that certain quantities are integers. This, however, will not affect our
results in any significant way.

1All logarithms in this paper are taken base 2.
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Construction 1.5 ([LRVW03]). Let n, k be integers, p a prime number, and let l = n
log(p) . We

define a function
M : {0, 1}d × {0, 1}n·k → {0, 1}n,

with
d = log(p) · k,

in the following way: Let F denote the field GF(p). Given z ∈ {0, 1}d, we think of z as a vector
(z1, . . . , zk) ∈ F k. Given x = (x1, . . . , xk) ∈ {0, 1}

n·k, we think of each xi ∈ {0, 1}
n as a vector in

F l. The function M is now defined as

M(z, x) =
k
∑

i=1

zi · xi ∈ F
l,

where the operations are preformed in the vector space F l. Intuitively, one can think of M as

M : F k ×
(

F l
)k
→ F l.

1.3 Our Results

We prove the following theorem:

Theorem 1. Let 0 < γ < 1 be any constant, k > 0 a constant integer, and let p be a prime larger
than2 exp(γ−2). Let

M : {0, 1}d × {0, 1}n·k → {0, 1}n,

be as in Construction 1.5, where d = log(p) · k (and underlying field GF(p)). Then for any constant
α > 0 there exists a constant b0 such that for all n ≥ b ≥ b0, M is a [d, (n, b)1:k 7→ (n, b′) ∼ γ]-strong
merger with

b′ = (0.52− α) · b.

From Theorem 1 we see that in order to get a merger with error γ we need to choose the underlying
field to be of size at least exp(γ−2). It is well known that for every integer n, there is a prime between
n and 2n. Therefore we can take p to be O

(

exp(γ−2)
)

and have that the length of the random seed
is

d = log(p) · k = O
(

k · γ−2
)

bits long. Hence, for constant γ and k the length of the random seed used by the merger is constant.
Notice that finding the prime p that answers our demands can be done by testing all integers in the
range of interest for primality (if γ is constant then this will take a constant amount of time).

1.4 Organization

In Section 2 we give our analysis of Construction 1.5 and prove Theorem 1. The analysis presented
in Section 2 relies on two central claims that we prove in Section 3.

2In writing exp(f) we mean 2O(f).
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2 Analysis of Construction 1.5

In this section we present our improved analysis of Construction 1.5, and prove Theorem 1. The
analysis will go along the same lines as in [DR05] and will differ from it in two claims that we will
prove in Section 3. We begin with some notations that will be used throughout the paper.

Let X = (X1, . . . , Xk) ∈ {0, 1}
n·k be a somewhere (n, b)-source, and let us assume w.l.o.g. that

H∞ (X1) ≥ b. Let 0 < γ < 1 be any constant, and let p ≥ exp(γ−2) be a prime number. Let

M : F k×
(

F l
)k
→ F l, be as in Construction 1.5, where F = GF(p), d = log(p) · k and n = log(p) · l.

Our goal is to analyze the min-entropy ofM(Z,X) where Z will denote a random variable uniformly
distributed over F k. In particular, we would like to show that the random variable M(Z,X) is
γ-close to having min-entropy ≥ (0.52− α) · b for all constant α.

For every z ∈ F k we denote by Yz , M(z,X) the random variable given by the output of M on
the fixed seed value z (recall that, in Construction 1.5, every seed value corresponds to a specific linear
combination of the source blocks). Let u , 2d = pk be the number of different seed values, so we can
treat the set {0, 1}d as the set [u] , {1, 2, . . . , u}. We can now define Y , (Y1, . . . , Yu) ∈ (F

l)u. The
random variable Y is a function of X, and is comprised of u blocks, each one of length n = log(p) · l
bits, representing the output of the merger on all possible seed values. We will first analyze the
distribution of Y as a whole, and then use this analysis to describe the output of M on a uniformly
chosen seed.

Definition 2.1. Let D(Ω) denote the set of all probability distributions over a finite set Ω. Let P ⊂
D(Ω) be some property. We say that µ ∈ D(Ω) is γ-close to a convex combination of distributions
with property P, if there exists constants α1, . . . , αt, γ > 0, and distributions µ1, . . . , µt, µ

′ ∈ D(Ω)
such that the following three conditions hold:

1. µ =
∑t

i=1 αiµi + γµ′.

2.
∑t

i=1 αi + γ = 1.

3. ∀i ∈ [t] , µi ∈ P.

Note that in condition 1, we require that the convex combination of the µi’s will be strictly smaller
than µ. This is not the most general case, but it will be convenient for us to use this definition.

Let Y be the random variable defined above, and let µ : (F l)u → [0, 1] be the probability
distribution of Y (i.e. µ(y) = Pr[Y = y]). We would like to show that µ is exponentially (in b)
close to a convex combination of distributions, each having a certain property which will be defined
shortly.

Given a probability distribution µ on (F l)u we define for each z ∈ [u] the distribution µz : F
l →

[0, 1] to be the restriction of µ to the z’s block. More formally, we define

µz(y) ,
∑

y1,...,yz−1,yz+1,...,yu∈F l

µ(y1, . . . , yz−1, y, yz+1, . . . , yu).

Next, let α > 0. We say that a distribution µ : (F l)u → [0, 1] is α-good if for at least (1−γ/2) ·u
values of z ∈ [u], µz has min-entropy at least (0.52 − α) · b. The statement that we would like to
prove is that the distribution of Y is close to a convex combination of α-good distributions (see
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Definition 2.1). As we will see later, this is good enough for us to be able to prove Theorem 1. The
following lemma states this claim in a more precise form.

Lemma 2.2 (Main Lemma). Let Y = (Y1, . . . , Yu) be the random variable defined above, and
let µ be its probability distribution. Then, for any constant α > 0, µ is 2−Ω(b)-close to a convex
combination of α-good distributions.

We prove Lemma 2.2 in subsection 2.1. The proof of Theorem 1, which follows quite easily from
Lemma 2.2, is essentially the same as in [DR05] (with modified parameters). For completeness we
include the proof of Theorem 1 in Appendix A.

2.1 Proof of Lemma 2.2

In order to prove Lemma 2.2 we prove the following slightly stronger lemma.

Lemma 2.3. Let X = (X1, . . . , Xk) be an (n, b)
1:k-source, and let Y = (Y1, . . . , Yu) and µ be as in

Lemma 2.2. Then for any constant α > 0 there exists an integer t ≥ 1, and a partition of {0, 1}n·k

into t+ 1 sets W1, . . . ,Wt,W
′, such that:

1. PrX [X ∈W ′] ≤ 2−Ω(b).

2. For every i ∈ [t] the probability distribution of Y |X ∈ Wi (that is - of Y conditioned on the
event X ∈ Wi) is α-good. In other words: for every i ∈ [t] there exist at least (1 − γ/2) · u
values of z ∈ [u] for which

H∞(Yz|X ∈Wi) ≥ (0.52− α) · b.

Before proving Lemma 2.3 we show how this lemma can be used to prove Lemma 2.2.

Proof of Lemma 2.2: The lemma follows immediately from Lemma 2.3 and from the following
equality, which holds for every partition W1, . . . ,Wt,W

′, and for every y.

Pr[Y = y] =
t
∑

i=1

Pr[X ∈Wi] ·Pr[Y = y |X ∈Wi] +Pr[X ∈W ′] ·Pr[Y = y |X ∈W ′].

If the partition W1, . . . ,Wt,W
′ satisfies the two conditions of Lemma 2.3 then from Definition 2.1 it

is clear that Y is exponentially (in b) close to a convex combination of α-good distributions.

Proof of Lemma 2.3: Every random variable Yz is a function of X, and so it partitions {0, 1}
n·k

in the following way:

{0, 1}n·k =
⋃

y∈{0,1}n

(Yz)
−1(y),

where (Yz)
−1(y) ,

{

x ∈ {0, 1}n·k |Yz(x) = y
}

. For each z ∈ [u] we define the set

Bz ,
⋃

{y | Pr[Yz=y]>2−(0.52−α/2)·b }

(Yz)
−1(y)

=
{

x′ ∈ {0, 1}n·k
∣

∣

∣ PrX [Yz(X) = Yz(x
′)] > 2−(0.52−α/2)·b

}

.
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Intuitively, Bz contains all values of x that are ”bad” for Yz, where in ”bad” we mean that Yz(x)
is obtained with relatively high probability in the distribution Yz(X).

Definition 2.4 (good triplets). Let (z1, z2, z3) ∈ [u]
3 be a triplet of seed values. Since each seed

value is actually a vector in F k we can write each zi (i = 1, 2, 3) as a vector (zi1, . . . , zik), where each
zij is an integer in the range 0...(p− 1). We say that the triplet (z1, z2, z3) is good if the following
two conditions hold:

1. For all 2 ≤ j ≤ k, z1j = z2j = z3j.

2. There exists a positive integer 0 < a < p such that z21 = z11 + a and z31 = z11 + 2a, where the
equalities are over F = GF(p).

That is, the vectors z1, z2, z3 are identical in all coordinates different from one, and their first coor-
dinates form an arithmetic progression of length three in F = GF(p).

The next two claims are the place where our analysis differs from that of [LRVW03] and [DR05].
We devote Section 3 to the proofs of these two claims. The first claim shows that the intersection of
the ”bad” sets Bz1 , Bz2 , Bz3 for a good triplet (z1, z2, z3) is small:

Claim 2.5. For every good triplet (z1, z2, z3) it holds that

PrX [X ∈ Bz1 ∩Bz2 ∩Bz3 ] ≤ Cα · 2
−(α/4)·b,

where Cα is a constant depending only on α.

The second claim shows that every set of seed values who’s density is larger than γ/2 contains a
good triplet.

Claim 2.6. Let T ⊂ [u] be such that |T | > (γ/2) · u. Then T contains a good triplet.

The proof of Lemma 2.3 continues along the same lines as in [DR05]. We define for each x ∈
{0, 1}n·k a vector π(x) ∈ {0, 1}u in the following way :

∀z ∈ [u] , π(x)z = 1 ⇐⇒ x ∈ Bz.

For a vector π ∈ {0, 1}u, let w(π) denote the weight of π (i.e. the number of 1’s in π). Since the
weight of π(x) denotes the number of seed values for which x is ”bad”, we would like to somehow
show that for most x’s w(π(x)) is small. This can be proven by combining Claim 2.5 with Claim 2.6,
as shown by the following claim.

Claim 2.7.
PrX [w(π(X)) > (γ/2) · u] ≤ u3 · Cα · 2

−(α/4)·b.

Proof. If x is such that w(π(x)) > (γ/2) · u then, by Claim 2.6, we know that there exists a good
triplet (z1, z2, z3) such that x ∈ Bz1 ∩Bz2 ∩Bz3 . Therefore we have

PrX [w(π(X)) > (γ/2) · u] ≤ PrX [∃ a good triplet (z1, z2, z3) s.t x ∈ Bz1 ∩Bz2 ∩Bz3 ].

Now, using the union bound and Claim 2.5 we can bound this probability by u3 · Cα · 2
−(α/4)·b.
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From Claim 2.7 we see that every x (except for an exponentially small set) is contained in at
most (γ/2) · u sets Bz. The idea is now to partition the space {0, 1}

n·k into sets of x’s that have the
same π(x). If we condition the random variable Y on the event π(X) = π0, where π0 is of small
weight, we will get an α-good distribution. We now explain this idea in more details. We define the
following sets

BAD1 ,
{

π′ ∈ {0, 1}u | w(π′) > (γ/2) · u
}

,

BAD2 ,
{

π′ ∈ {0, 1}u | PrX [π(X) = π′] < 2−(α/2)·b
}

,

BAD , BAD1 ∪BAD2.

The set BAD ⊂ {0, 1}u contains values π′ ∈ {0, 1}u that cannot be used in the partitioning
process described in the last paragraph. There are two reasons why a specific value π ′ ∈ {0, 1}u is
included in BAD. The first reason is that the weight of π′ is too large (i.e. larger than (γ/2) · u),
these values of π′ are included in the set BAD1. The second less obvious reason for π

′ to be excluded
from the partitioning is that the set of x’s for which π(x) = π′ is of extremely small probability.
These values of π′ are bad because we can say nothing about the min-entropy of Y when conditioned
on the event π(X) = π′. For example consider the extreme case where there is only one x0 ∈ {0, 1}

n·k

with π(x0) = π′. In this case the min-entropy of Y , when conditioned on the event X ∈ {x0}, is
zero, even if the weight of π(x0) is small.

Having defined the set BAD, we are now ready to define the partition required by Lemma 2.3.
Let {π1, . . . , πt} = {0, 1}u\BAD. We define the sets W1, . . . ,Wt,W

′ ⊂ {0, 1}n·k as follows:

• W ′ = {x |π(x) ∈ BAD}.

• ∀i ∈ [t] , Wi = {x |π(x) = πi}.

Clearly, the setsW1, . . . ,Wt,W
′ form a partition of {0, 1}n·k. We will now show that this partition

satisfies the two conditions required by Lemma 2.3. To prove the first part of the lemma note that
the probability of W ′ can be bounded by (using Claim 2.7 and the union-bound)

PrX [X ∈W ′] ≤ PrX [π(X) ∈ BAD1] +PrX [π(X) ∈ BAD2]

≤ u3 · Cα · 2
−(α/4)·b + 2u · 2−(α/2)·b = 2−Ω(b).

We now prove that W1, . . . ,Wt satisfy the second part of the lemma. Let i ∈ [t], and let z ∈ [u]
be such that (πi)z = 0 (there are at least (1−γ/2) ·u such values of z). Let y ∈ {0, 1}

n be any value.
If Pr[Yz = y] > 2−(0.52−α/2)·b then Pr[Yz = y |X ∈ Wi] = 0 (this follows from the way we defined
the sets Bz and Wi). If on the other hand Pr[Yz = y] ≤ 2−(0.52−α/2)·b then

Pr[Yz = y | X ∈Wi] ≤
Pr[Yz = y]

Pr[X ∈Wi]

≤ 2−(0.52−α/2)·b/2−(α/2)·b

= 2−(0.52−α)·b.

Hence, for all values of y we have Pr[Yz = y | X ∈ Wi] ≤ 2
−(0.52−α)·b. We can therefore conclude

that for all i ∈ [t], H∞(Yz|X ∈Wi) ≥ (0.52− α) · b. This completes the proof of Lemma 2.3.
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3 Proving Claim 2.5 and Claim 2.6 Using Results From Additive

Number Theory

In this section we prove Claim 2.5 and Claim 2.6. These two claims are the only place in which our
analysis differs from that of [LRVW03] and [DR05]. In the proofs we use two results from additive
number theory. The first is a quantitative version of Roth’s theorem [Rot53] given by Bourgain
[Bou99a]. The second is a Lemma of Bourgain that deals with sum-sets and difference-sets.

3.1 Proof of Claim 2.5

The proof of the claim relies on the following result from additive number theory due to Bourgain
[Bou99a]. Bourgain proved this result with respect to subsets of Z

d. However, it is easily seen from
the proof that it holds for subsets of any abelian group.

Lemma 3.1 ([Bou99a]). For every ε > 0 there exists a constant Cε such that the following holds:
Let A,B be subsets of an abelian group G. Let Γ ⊂ A×B, and define

S , {a+ b | (a, b) ∈ Γ},

D , {a− b | (a, b) ∈ Γ}.

Suppose that there exists K > 0 such that |A|, |B|, |S| ≤ K, then

|D| < Cε ·K
(1/0.52)+ε.

Before we can apply Lemma 3.1 we need some notations. Let U , Bz1 ∩ Bz2 ∩ Bz3 . We define
for every i = 1, 2, 3 the set

Vi , {Yzi(x) | x ∈ U} .

Next, we define a subset Γ ⊂ V1 × V3 as follows

Γ , {(v1, v3) | ∃x ∈ U s.t Yz1(x) = v1 and Yz3(x) = v3}.

We now define the sets S and D as in Lemma 3.1, where the roles of A and B are taken by V1 and
V3.

S , {v1 + v3 | (v1, v3) ∈ Γ},

D , {v1 − v3 | (v1, v3) ∈ Γ}.

We also define
K , 2(0.52−α/2)·b,

and
Û , {x1 ∈ {0, 1}

n | ∃x2, . . . , xk ∈ {0, 1}
n s.t (x1, . . . , xk) ∈ U}.

the following claim states several facts that, when combined, will enable us to use Lemma 3.1 on
the sets we have defined.

Claim 3.2. the following is true:

1. |V1|, |V2|, |V3| ≤ K.
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2. |S| ≤ |V2| ≤ K.

3. |Û | ≤ |D|.

Proof. 1. Follows directly from the definition of the sets Bzi and Vi. Each value v ∈ Vi is a
”heavy element” of the random variable Yzi . That is, the probability that Yzi = v is at least
2−(0.52−α/2)·b = K−1, and so there can be at most K such values.

2. What we will show is that the set S is contained in the set 2V2 , {2 · v | v ∈ V2} (these two sets
are actually equal, but we will not need this fact). To see this, recall that from the definition
of a good triplet we have that for every x ∈ {0, 1}n·k

Yz1(x) + Yz3(x) = 2 · Yz2(x). (1)

Let v ∈ S. From the definition of S (and of Γ) we know that there exists x ∈ U and v1 ∈
V1, v3 ∈ V3 such that Yz1(x) = v1, Yz3(x) = v3 and v = v1 + v3. From Eq.1 we now see that
v = 2 ·Yz2(x), and therefore v ∈ 2V2. The inequality now follows from the fact that |V2| = |2V2|.

3. This follows in a similar manner to 2. We will show that the set Û is contained in the set
c ·D , {c · v | v ∈ D}, for some 0 < c < p (again, the two sets are actually equal, but we will
not use this fact). From the definition of a good triplet we know that there exists 0 < c < p
such that for every x = (x1, . . . , xk) ∈ {0, 1}

n·k

c · (Yz1(x)− Yz3(x)) = x1. (2)

Let x1 ∈ Û . From the definition of Û we know that there exist x2, . . . , xk ∈ {0, 1}
n such that

x = (x1, . . . , xk) ∈ U . From Eq.2 it follows that x1 ∈ c · D, since Yz1(x) − Yz3(x) ∈ D by
definition.

Let

ε ,
α

4
·

1

(0.52− α/2)
.

From the first two parts of Claim 3.2 we see that we can apply Lemma 3.1 with A = V1 and B = V3
to get that

|D| < Cε ·K
(1/0.52)+ε,

(where Cε depends only on ε, which in turn depends only on α). Substituting the values of ε and K
we see that (we can write Cα instead of Cε)

|D| < Cα · 2
b·(0.52−α/2)·(1/0.52+ε)

= Cα · 2
b·(1+ε(0.52−α/2)−α

2
· 1
0.52)

= Cα · 2
b·(1+α

4
−α

2
· 1
0.52)

≤ Cα · 2
b·(1−α

4 ), (3)

where Cα depends only on α.

Using the third part of Claim 3.2 and Eq. 3 we conclude that

|Û | ≤ |D| ≤ Cα · 2
b·(1−α

4 ). (4)

10



We can therefore bound the probability of U by

PrX [X ∈ U ] ≤ PrX1
[X1 ∈ Û ] ≤ 2

−b · |Û | ≤ 2−b ·
(

Cα · 2
b·(1−α

4 )
)

= Cα · 2
−(α/4)·b,

(the second inequality follows from the fact that the min-entropy of X1 is at least b). This completes
the proof of Claim 2.5.

3.2 Proof of Claim 2.6

The claim follows from Roth’s theorem [Rot53] on arithmetic progressions of length three. For our
purposes we require the quantitative version of this theorem as proven by Bourgain [Bou99b].

Theorem 3.3 ([Bou99b]). Let δ > 0, let N ≥ exp(δ−2) and let A ⊂ {1, . . . , N} be a set of size at
least δN . Then A contains an arithmetic progression of length three.

Each element in T is a vector in F k (recall that F = GF(p)). A simple counting argument shows
that T must contain a subset T ′ such that

1. |T ′| > (γ/2) · p.

2. All vectors in T ′ are identical in all coordinates different than one.

Using Theorem 3.3 and using the fact that p was chosen to be greater than exp(γ−2), we conclude
that there exists a triplet in T ′ such that the first coordinates of this triplet form an arithmetic
progression. This is a good triplet, since in T ′ the vectors are identical in all coordinates different
than one.
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A Proof of Theorem 1

let Y = (Y1, . . . , Yu) and µ be as in Lemma 2.2. Using Lemma 2.2 we can write µ as a convex
combination of distributions

µ =
t
∑

i=1

αiµi + γ′µ′, (5)

with γ′ = 2−Ω(b), and such that for every i ∈ [t] the distribution µi is α-good. Denote with (µi)z the
restriction of the distribution µi to the block indexed by z. It follows that for at least (1− γ/2) · u
values of z ∈ [u], the distribution (µi)z has min-entropy at least b

′ = (0.52− α) · b. Next, define for
every z ∈ [u] the set Hz ⊂ [t] as follows:

Hz , {i ∈ [t] : H∞ ( (µi)z ) < b′}.

That is, Hz ⊂ [t] is the set of indices of all distributions among {µ1, . . . , µt}, for which (µi)z has
min-entropy smaller than b′. Additionally, define for every z ∈ [u],

ez ,
∑

i∈Hz

αi.

Claim A.1. Let ∆(Yz, (n, b
′)) denote the minimal (statistical) distance between Yz and an (n, b′)-

source. Then for every z ∈ [u]
∆(Yz, (n, b

′)) ≤ ez + γ′.
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Proof. For every z ∈ [u] let µz(y) = Pr[Yz = y] be the probability distribution of Yz. From Eq.5 we
can write µz as a convex combination

µz =
t
∑

i=1

αi · (µi)z + γ′µ′z

=





∑

i6∈Hz

αi · (µi)z



+

(

∑

i∈Hz

αi · (µi)z + γ′µ′z

)

= (1− ez − γ′) · µ′′ + (ez + γ′) · µ′′′,

where µ′′ is the probability distribution of an (n, b′) source (as a convex combination of (n, b′)-sources
is an (n, b′)-source), and µ′′′ is some other distribution. Clearly, the statistical distance ∆(µz, µ

′′) is
at most ez + γ′, and since µ′′ is an (n, b′) source, we have that ∆(Yz, (n, b

′)) ≤ ez + γ′.

Claim A.2. Let Z be a random variable uniformly distributed over [u]. Then, the expectation of eZ
is at most γ/2:

E[eZ ] ≤ γ/2.

Proof. For each i ∈ [t] define the following indicator random variable

χi =

{

1, i ∈ HZ ;
0, i 6∈ HZ .

We can thus write

eZ =

t
∑

i=1

χi · αi.

By linearity of expectation we have

E[eZ ] =
t
∑

i=1

E[χi] · αi,

and since for each i ∈ [t] we have that

E[χi] = PrZ [i ∈ HZ ] < γ/2

(this follows from the fact that each µi is α-good), we conclude that

E[eZ ] ≤ ε ·

t
∑

i=1

αi ≤ γ/2.

Combining Claim A.1 and Claim A.2, and recalling that γ ′ = 2−Ω(b), we see that

E[∆(YZ , (n, b
′))] ≤ E[eZ ] + γ′ ≤ γ/2 + 2−Ω(b),

where the expectations are taken over Z, which is chosen uniformly in [u]. Now, for values of b larger
than some constant b0, this expression is smaller than γ. This completes the proof of Theorem 1.
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