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Abstract

We design a polynomial time 8/7-approximation algorithm for the
Traveling Salesman Problem in which all distances are either one or
two. This improves over the best known approximation factor for
that problem. As a direct application we get a 7/6-approximation
algorithm for the Maximum Path Cover Problem, similarly improving
upon the best known approximation factor for that problem. The re-
sult depends on a new method of consecutive path cover improvements
and on a new analysis of certain related color alternating paths. This
method could be of independent interest.

1 Introduction

The metric Traveling Salesman Problem (TSP) belongs to the central and
one of the oldest NP-hard combinatorial optimization problems. It has been
a major open problem for almost three decades to improve upon the best up
to now approximation factor 3/2 ([C76]) for that problem. A special case of
TSP which played an important role in establishing its NP-hardness is the
Traveling Salesman Problem problem with the distances one or two ( (1,2)-
TSP for short ). This special case of the metric TSP can be viewed as a
generalization of the Hamiltonian Cycle Problem with nonedges represented
by edges of length 2. It was also that restriction of TSP which was proven
originally to be NP-hard in exact setting by Karp [K72]. The currently best
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known explicit inapproximability bound for (1,2)-TSP is 741/740 [EK01].
Some inapproximability issues for special cases of (1,2)-TSP were also studied
in [FK99]. In a breakthrough result, Arora [A96] developed a PTAS for
the TSP in R

2 under any lp metric. Trevisan [T97] used in that context a
reduction from the restricted (1,2)-TSP to prove approximation hardness of
TSP in R

log n under any lp metric.
The best up to now approximation factor of 7/6 for (1,2)-TSP was achieved

in 1989 by Papadimitriou and Yannakakis [PY93], and very recently it was
improved slightly by Bläser and Ram [BR05] to 65/56 ∼= 1.1607.

In this paper we improve the approximation factor for (1,2)-TSP to 8/7 ∼=
1.1429. The underlying method yields also the best up to now approximation
factor 7/6 for the Maximum Path Cover Problem of constructing for a given
graph, a set of node disjoint paths such that the number of edges in all the
paths is maximal (isolated nodes are treated as paths with zero edges), as
well as for the related Maximum Traveling Salesman Problem with distances
zero and one, cf. [V92], [BS01]. The problem of Maximum Path Cover
arises in a number of applications, among others, in parallel programs and
distributed systems mappings and the code optimization problems, see [V92]
for the references.

We formulate now our main theorem.

Theorem 1. There exists a polynomial time approximation algorithm for
the (1,2)-TSP with approximation ratio 8/7.

The same approximation algorithm with slightly modified analysis (the
modifications are given in Section 5) yields polynomial time 7/6-approximation
algorithms for the Maximum Path Cover Problem, and the Maximum Trav-
eling Salesman Problem with distances zero and one, cf. [V92].

Theorem 2. There exists polynomial time approximation algorithms for the
Maximum Path Cover Problem and the Maximum Traveling Salesman Prob-
lem with distances zero and one with approximation ratio 7/6.

The formulation of the main algorithm of Theorem 1 is contained in
Section 3, and its analysis in Section 4. Proof of Theorem 2 is given in
Section 5.

We introduce in this paper a new method of so-called small step improve-
ments on the sets of path covers, and the auxiliary notions of justifications,
consistency and color alternating paths. This could be of independent inter-
est and we feel that might have also other algorithmic applications. Unlike
the previous approximation algorithms for the above problems, we do not
use a classical Hardvigsen’s algorithm [H84] for computing a minimum cost
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cover with cycles of length 4 or more. We believe that an extension of our
method could possibly result in even better approximation factors for the
above problems.

2 The Equivalent Statement

We can represent an instance of (1,2)-TSP as a graph G in which nodes are
points of the metric and edges are pairs of points in distance 1. Suppose that
G has n nodes and we can find a path cover with k paths (these paths have to
be simple and node-disjoint). Then these paths have n− k edges and we can
connect them into a tour, with steps from a path end to a path beginning
having cost 2; thus the cost of this tour is n + k. Thus our problem is to
minimize k. Moreover, if an optimum solution has cost n + k∗, and our goal
is to approximate it within factor 8

7
, it suffices to find a path cover with no

more than 1
7
n + 8

7
k∗ paths.

3 Small Step Improvement Algorithm

We will investigate the following approach. We maintain a tentative solution
that is represented as edge set A (A stands for algorithm’s solution), A is
a 2-matching (i.e. no more than two edges of A are incident to any given
node) that defines, say, kA paths and cycles with mA nodes in the cycles. We
can alter this solution using an edge set C (C stands for change) into a new
solution A⊕C (here ⊕ is the symmetric difference). We say that C improves
A if

① A ⊕ C is a 2-matching;

② either kA⊕C < kA or

③ kA⊕C = kA and mA⊕C > mA.

Suppose that for a certain constant K the following holds true:

(✷) either kA ≤ 1
7
n+ 8

7
k∗, or there exists a C that improves A and |C| ≤ K.

Then we can use the following algorithm K-IMPROV

start with A = ∅;
while you can find C of size at most K that improves A

replace A with A ⊕ C.
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Clearly, we cannot perform n improvements of kind ① because we would
get zero as the number of paths and cycles. We also cannot perform n
improvements of kind ② without an improvement of kind ① because we
would get more than n in the cycles. Similarly we cannot perform n + 1
consecutive improvements of kind ③ because we would get less than 0 A-
singletons. Hence we cannot perform n3 improvements. Each search for an
improvement takes a polynomial time (where the polynomial depends on K)
and when it fails, we terminate and A is a satisfactory solution.

Obviously, K-IMPROV runs time is O(nK + 4). In the remaining part
of the paper we will prove (✷) for K = 21.

The above algorithm and the method of its analysis was initially moti-
vated by some constructions and the analysis technique used in [BHK02].

4 Alternating paths

4.1 Definitions.

To analyze the algorithm, we introduce the notions of the auxiliary graph G,
paths, cycles, possible initial edges and nodes, consistency of initial nodes,
APs and justification points.

In the analysis of Small Improvement Algorithm we fix an optimum so-
lution, a 2-Matching B such that kB = k∗ (B stands for the best). Using B
define graph G which has all the same nodes as G. Let D be the set of edges
that have both ends in the same cycle of A. G has edge set A∪B −D which
we divide into three colors, white color A − B − D, black color B − A − D
and gray color A ∩ B − D.

An alternating path, AP for short, is a path that starts and ends with a
black edge and in which black and white edges alternate. At some point we
will relax this notion by allowing to substitute white edges with gray ones.

Paths and cycles in a solution A will be called A-objects. For the A-
objects we define initial nodes A node is initial if we allow it to be the first
or last node of an AP and it is owned by an A-object. For an A-path, the
initial nodes are the endpoints. For an A-cycle C we designate a pair of
initial nodes such that C has a Hamiltonian path with these nodes as the
endpoints, and this path can be extended with two black edges to another
two nodes. We will show that such node pairs can be found in A-cycles with
fewer than 8 nodes.

In this proof we will use the notion of justification points. If B consists
of k∗ paths, the optimum cost is n + k∗ and A is good enough if it has cost
at most 8

7
(n + k∗), i.e. it consists of at most 1

7
n + 8

7
k∗ A-objects. We create
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n+8k∗ justification points and to prove that solution A is good enough each
A-object has to collect 8 points. A node that is incident to 2− a edges of B
has 1 + 4a points (the sum of these a’s equals 2k∗). A path starts with the
justification points of its endpoints and a cycle starts with the justifications
of all its nodes. The remaining points will be collected by APs; an AP gives
the collected points to the A-objects that contain its initial nodes. After we
“break” certain APs, they may contain only one initial node and thus deliver
the collected points to only one A-object.

Typically, an A-path has two endpoints and each of them is an initial
node of an AP that should give it 2 1

2
points. Similarly, a typical cycle has

4 + a nodes, it has two initial nodes of APs that should give it (3 − a)/2
points.

There can be several deviations from the typical case. An A-object can
have fewer than two initial nodes; in such a case it collects more justifications
from the nodes it contains. If an A-object is an A-singleton, than each initial
edge should give it 3 points. If a cycle has more than 6 nodes, it will own
no initial nodes. A node incident to only 1 edge of B has 4 additional points
and we omit easy special cases provided by such nodes.

4.2 Very Small Improvements.

In some situations we have small improvements that insert only one edge.
We will discuss this cases, and in further analysis we may assume that they
do not occur.

A black edge e that connects two initial nodes is one such case. If e
connects initial nodes from two different A-objects, inserting e merges these
two objects into one; when we merge an A-cycle we have to remove one of
its edges. If e connects initial nodes of a single A-object, this must be an
A-path and inserting e converts that path into a cycle.

An edge e that connects an A-singleton with another A-objects is another
such case, except when A connect an A singleton with a midpoint of an A-
path with exactly 3 nodes. Otherwise we have an improvement of kind ④.

Now suppose that we do not have a very small improvement and we
have an AP , say R, that starts at u, and {u} is an A-singleton. Then for
an A-path (v, w, x) and some y, path R starts with (u, w, v, y). When we
consider R as a possible part of an improvement, we have an option of using
an ”abbreviated” version that starts with (v, y); on one hand we will ”forget”
that R starts at an A-singleton and thus needs to collect an extra 1

2
point;

one the other, we will forget that R collected 1
2

point at node w.
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4.3 Examples with APs.

An alternating path by itself can define an improvement. The AP at the left
of Fig. 1 consists of 4 black edges and 3 white ones.

Figure 1

If we apply its set of edges as
a change, we will get 4 paths
(shown underneath) where before
we had 5. What happened is that
the AP changed the number of
solution edges that are incident
to path ends from 1 to 2, and it did not change this number for interme-
diate nodes. Therefore we decreased the number of path ends by 2, hence
the number of paths by 2. If the ends of the AP belong to cycles, the sit-
uation is similar; in the second example in Fig. 1 the number of path ends
does not change but we have one less cycle, and therefore fewer objects.

An interesting special case (see Fig. 2, right) occurs when AP starts and
ends at the same cycle. Then we obtain an improvement if the first and the
last nodes of this AP are the initial nodes of the cycle; because these nodes
are consistent, we can include the traversal of this cycle in the improved
solution.

Figure 2

Finally, an AP may fail to provide an
improvement if it creates cycles. Even if
the number of path ends decreases by two
the number of paths and cycles may in-
crease if we create two new cycles in the
process. In the example at the left of
Fig. 2 we started with 4 paths and we
changed them into 3 paths and 2 cycles.

4.4 Initial Edges of Cycles.

Let C is a cycle of A with at most 7 nodes with |C| justification points (i.e.
with all nodes adjacent to two edges of B).

Let Ĉ be the set of nodes of C and K̂ ⊂ Ĉ be the set of nodes incident
to black edges. In this subsection we show that certain two nodes of K̂ are
consistent in the sense that they are endpoints of a Hamiltonian path of Ĉ.

If |K̂| = 2, then K̂ is a consistent pair because the set of edges of B that
are contained in C forms a single path. Hence we assume that |K̂| ≥ 3.

Suppose that two nodes of K̂, u and v, are adjacent on the cycle C, then
u and v are consistent because we can form a path by removing edge {u, v}
from C. Therefore we can assume that nodes of K̂ are not adjacent on C,
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hence |K̂| ≤ |Ĉ|/2; this means that |K̂| = 3 and |Ĉ| = 6.
Because K̂ has 3 nodes, B covers Ĉ with two paths, one of these paths

has 1 node and no edges, the other has 5 nodes and 4 edges, hence 2 edges of
B are contained in Ĉ−K̂. W.l.o.g. C is a cycle (u0, . . . , u5), K̂ = {u0, u2, u4}
and {u1, u3} ∈ B; thus we can traverse Ĉ with (u0, u5, u4, u3, u1, u2).

4.5 APs with Deficit—General Method.

According to our rules, an AP , say R, collects 1
2

point for every of its nodes
except endpoints of paths and cycle nodes; the reason we do not a priori
collect more is that each of these nodes may belong to two different APs.

We will use several methods to give R more points. One is to distribute
the points of gray edges. In the second method, we break APs that traverse
through a cycle created by R; if one of the broken APs, say P, is short, we
can merge this cycle with the A-object that owns the initial point of P, if P
is long, it does not need to collect points from its edge in the cycle, and we
can transfer this point to R.

4.6 Avoiding Bad Cases.

4.6.1 S-arcs— Avoiding Them or Finding Extra Points for Them.

Arcs, the black edges contained in paths are potentially troublesome because
they make it possible for a short AP to create more cycles as they allow to
obtain a cycle from a single A-path fragment and one black edge (the arc).
In this case the in the AP this arc is preceded and followed by a white edge
directed away from it — or by a path endpoint. We will call it S-arc, for
Short cycle making arc. The number of nodes on the path fragments that
connects the endpoints of an arc will be called the length of this arc.

We will avoid the creation of S-arcs by making decisions about the de-
composition of black and white edges into a set of APs. When we will not
be able to make such a decision, we will be able to endow such S-arcs with
gray edges that will provide them with extra points.

S-arcs

Figure 3

To apply these techniques we consider a chain of arcs, say
Q, which is a path formed by arcs that are contained in an
A-path, say P. For the sake of uniformity, we extend P in
both direction with a single phony white edge. We will make
decisions how to connect the elements of a chain with the
adjacent white edges when we are forming APs. Connecting
an arc to a phony white edge implicitly designates it to be an
initial edge of its AP .
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The decisions about the decomposition within a chain are dependent: a
node u incident to two arcs of Q, say a0 and a1, is also incident to two white
edges of P, say e0 and e1. The decision at u may connect a0 with e0 and a1

with e1, or, alternatively, it may connect a0 with e1 and a1 with e0.
We first pick an arc a0 of Q as the ”least priority”; next, we assure that

no other arc in Q is an S-arc. We start from any end of Q and proceed
toward a. Initially we we make an arbitrary decision at that endpoint of
Q. Inductively, we consider the endpoint of arc a 6= a0 for which we made
decision at its other end; if the latter decision connected a with a white
edge directed away from it, at the other and we connect a with a white edge
directed inward, otherwise we make an arbitrary choice.
Good case ➊. An arc a in chain Q is directly hit from an endpoint of an
A-path, i.e. a node inside arc a is connected by a black edge with this
endpoint. We give a the least priority and we have no adverse consequences.
If we want to create an improvement using an AP that contains S-arc a, then
we increase the number of objects by creating a cycle, but then we decrease
it back by inserting the edge of the direct hit, and removing an adjacent edge
from the cycle.
Good case ➋. An endpoint of Q, adjacent to its first arc a, is adjacent to
a white edge b directed inward a; we can leave a as the ”least priority” and
the final decision connecting a with b will assure that it is not an S-arc.

e0 e1

a0 a1

Figure 4

b0 b3a

b1 b2

g0 g1e0 e1 e2

Figure 5

b1

b0

e0 e1 e2

Figure 6

Good case ➌. A node u is adjacent to two arcs of Q
and two white edges, positioned as shown in Fig. 4. We
can give a0 the ”least priority”, and the decision at u
will connect a0 with e0 and a1 with e1 which assures that
neither becomes an S-arc.
Good case ➍. Q consists of one arc only, a, of length
4, and a becames an S-arc, i.e. a is adjacent to two
gray edges that are inside it; we must have the configu-
ration as show in Fig. 5. We have two APs, one with
the sequence of edges b0, e0, a, e2, b3 and another with
sequence b1, e1, b2. We can alter the connections to have
sequences b0, e0, a, g1, b2 and b1, g0, a, e2, b3, and each of
these two APs can get 2 1

2
points.

Good case ➎. Q contains two consecutive arcs that
differ in length by exactly 2, so we have a situation from
Fig. 6. We can give b0 the least priority because it is in
a similar situation to a direct hit. In particular, in an
AP we can replace the edge sequence e0, b0, e1 with a ”detour” e0, b1, e2.
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b
ge0 e1

b1 b2

b0

Figure 7

Consequently, if Q consists of only one arc a and
we make it an S-arc then a has length at least 5 and is
adjacent to two gray edges inside it.
Good case ➏. Q contains two consecutive arcs, say b0

and b1, where b1 is is adjacent to an end of path P and
b0 is not — imagine that in Fig. 6 edge e2 is the first
edge of P. Then we can give the lowest priority to b0, because b1 delivers a
direct hit to b0 in case the latter becomes an S-arc.
Good case ➐. Q contains an arc b adjacent to an endpoint of P, as shown in
Fig. 7. If we do not have case ➋, edge g is gray and edge e0 is white. Suppose
that e1, the other edge of P that is adjacent to g, is white. We will use a
similar method to case ➍. We have two APs, one starts with edge sequence
b, e0, b0, the other has a fragment b1, e1, b2. We replace them by connecting b
with b1 (rather than b0), edge sequence b, g, b1, as well as connecting b0 with
b2, edge sequence b0, e0, b, e1, b2. Both of these new APs use edge b, but the
former removes g from P and collects 1 point, and the latter removes e0 and
e1 and collects 2 points.

The chains which do not fall into either of the seven good cases are trou-
blesome. They may form a superchain connected with gray edges. If such
a chain contains an endpoint of P, we say that it is terminal. Note that
a troublesome terminal chain cannot be connected into a superchain with
others, because it provides neighboring chains with direct hits.

A terminal troublesome chain contains only arcs adjacent to the endpoint,
say u, because we cannot apply the methods of cases ➌ and ➏, and because
➋ and ➐ are not applicable, and the other end(s) of its arc(s) are adjacent to
a pair of gray edges. Thus if this chain consists of one arc, the AP starting
at this edge collects 2 1

2
points from 3 gray edges, and this arc has length at

least 5; and if this chains consists of two arcs, it can collect points from 4
gray edges and the longer arc has length at least 7, the AP starting at the
longer arc collects 4 points.

A nonterminal troublesome chain may have one arc only, in this case it is
an arc of length 5 or more and is adjacent to two gray edges, both directed
inward. We can pick any of these gray edges to provide an extra point to
this arc.

A nonterminal troublesome chain with more than one arc has is adjacent
to two gray edges at its endpoints. Let us decide that we will collect an extra
point from one of them. We will give the least priority to an arc of length at
least 6 that contains this gray edge in its interior. Say that the arc adjacent
to this gray edge is the first. If the first arc has length 6 or more, we can
choose it (to give the least priority). If the first arc has length below 6, we
follow the chain until we have the first length increase of more than 1, or
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from 5 to 6. Observe that after length increase of 1 we cannot finish the
chain, and after length increase of 2 we can apply the method of case ➎, so
after the first larger increase we must have length at least 3 + 3 = 6.

As we follow the chain, we visit nodes, starting from the two nodes of
the initial gray edge, and we cannot return to a visited node, as black and
gray edges cannot form a short cycle. If we increase the arc length by 1, we
increase the span of the visited nodes without introducing a new hole, and if
we decrease the arc length, we fill a hole. If we start with an arc of length 3,
we do not have a hole so we cannot decrease arc length before the first large
increase. If we start with an arc of length 4, we have a single hole, so we can
decrease the arc length once, but this cannot be the end of the chain, and we
cannot start with a decrease (this would make an arc of length 2, which is
not an arc), so if we avoid length 6 we have length sequence 4,5,4, and then
only increases. If we start with length 5, the first decrease cannot be 1, that
closes the black/gray cycle, it cannot be 2, case ➎, and it cannot be 3 — no
arcs of length 2, so we start with an increase.

4.6.2 Avoiding Terminal Short Cycles.

Let R be an AP starting at an endpoint of an A-path, say P. We wish to
avoid a situation when the first 4 edges of R— two black and two white —
define a change that creates a cycle, say C. If C consists of one fragment of an
A-path, it contains an S-arc and receives extra point(s), and this we accept.
If C consists of two fragments, they need to be flanked on 4 sides; one flank
can be provided by the beginning node of R, but three flanks would have to
be provided by white edges, so one white edge is used twice, hence R starts
as shown in Fig. 8 with edges b0, e0, b1, e3. In this case we treat the triple
of edges b0, e0, b1 as if it was a single arc, and we apply the methods of the
previous section.

b0
b1b2

e3 e2 e1 e0

b3 b4

Figure 8

If e2 is a white edge, we change R to follow e2

rather than e3; if that conflicts S-arc avoidance at
that node, the other black edge at this node is an
arc that is hit either by b0 or by b0, e0, b1. If e2 is a
gray edge, we give its point to R and we consider
e1 (if e2 connects b1 with b0, we define e1 as the
edge on P adjacent to e0). The reason why e2 and e1 can be considered in this
fashion is that we can “reconfigure” P in such a way that e2 (or e1) becomes
its initial edge; we replace the pair of APs— R and the AP that contains
e1 with: an AP that uses b2 and e3, thus merging some object with one
part of P and creating a cycle from the initial part, and follows with (quite
arbitrarily chosen) black edge that is incident to that cycle; the second AP
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makes reconfiguration that makes e2 the new initial edge and follows with
the black edge incident to the new endnode.

If both e2 and e1 are gray, R gets 2 extra points.

4.7 APs with Deficit—Cycle to Cycle.

An AP , say R, that connects two cycles should collect 1 1
2

+ 11
2

= 3 points.
Consider the cases when R does not form an improvement.

In that case R creates a cycle, so it creates c path fragments and uses b
S-arcs where c+ b ≥ 2. In turn, a path fragments must have 2a flanks where
they are separated from their paths, and these flanks have to be created by
white edges of R; at least two white edges create one flank, and no white
edge creates more than 2, so we need at least c + 1 white edges, hence R
collects at least c + 1 + b ≥ 3 points.

4.8 APs with Deficit—Large Cycle to Path Endpoint.

In this section we consider an AP , say R, that connects an path P and a
cycle C0 of length 6 and which does not define an improvement. It should
collect at least 2 1

2
+ 1

2
= 3 points.

If R creates two cycles, we can show that R collects at least 4 points.
Two cycles require b S-arcs and c separated path fragments where b + c ≥ 4.
To separate c path fragments we need to create 2c fragment endpoints; only
one fragment end can be created by the endpoint of P, and the rest, 2c − 1
of them, requires a ≥ c white edges, hence R collects a + b ≥ 4 points.

Now we can assume that R creates exactly one cycle, say C. The reasoning
from the cycle-to-cycle case does not apply only if C is created from fragments
of A-paths and one of the endpoints of these fragments is the initial point
of R, say u, that is an endpoint of P. If R does not collect 3 points, it has
at most 2 white edges and C is a terminal cycle as we discussed in case ➐ of
subsection 4.6.1 and in subsection 4.6.2. As we showed there, we can choose
a decomposition of white and black edges into APs so that either a terminal
cycle is avoided, or it receives additional 2 points from a gray edge (both
points are needed if C is created with an S-arc).

4.9 APs with Deficit—Small Cycle to Path Endpoint.

In this section we consider an AP , say R, that connects an path P and a
cycle C0 of length 4 or 5; R should collect 2 1

2
+ 11

2
= 4 points (or 3 1

2
points

if C0 has length 5). If R creates two cycles, we have a situation already
discussed in the previous subsection.
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Suppose that R creates only one cycle C; we would have an improvement
if C contains more than 5 nodes.

Suppose that C is created with a S-arc and that it has exactly 5 nodes;
imagine that (u2, u5) in Fig. 9 is a black arc; note that at both ends of C
we have gray edges. If the left of these edges is adjacent to another possibly
troublesome chain of arcs (besides the arc that defines C), the first arc of this
chain is directly hit by edge (u7, u6) and thus that it does not need an extra
point. If the right of these edges is adjacent to another possibly troublesome
chain of arcs, then the first arc of this chain is hit by (u7, u6, u5, u2). Therefore
R can collect points from both of these gray edges, and thus it has 4 points.

C0 C

u0

u1 u2 u4 u3 u5 u6 v0

v1

u7 v

Figure 9

If R contains three white edges,
we must have a configuration of Fig.
9 or Fig. 10 with R = (u0, . . . , u7).

We will break every AP , say Q,
containing an edge of C; we claim
that there will be enough points for
all these APs plus one point for R.

Suppose that we have broken Q into Q0 and Q1 by removing an edge e
that belongs to C. We consider Qi as a possible improvement for A⊕R.

If Qi starts at an A-cycle and it is not an improvement, Qi must create a
cycle from a fragment(s) of an A-path, and that requires at least two white
edges; in that case Qi collects at least 1

2
point more than needed for that

A-cycle. There is one exception: Qi may start at C0 that in solution A⊕R
is an ending portion of a path and we may have an arc that was not an arc
in solution A; then Qi may have exactly one white edge and it still creates a
cycle. However, this case describes an improvement, as the new cycle must
have more nodes than C0.

If Qi starts at an A path and it is not an improvement, Qi must create
a cycle from a fragment(s) of an A path, and this requires collecting at least
3 points; if Qi creates a cycle with 2 points, it has at most 2 white edges, so
this is a terminal cycle that gets another 2 points. Again, Qi has a surplus
of 1

2
point. An exception occurs if Qi has at most two white edges and it

uses an arc that was not an arc in solution A, i.e. when Qi creates a cycle
from a single fragment of a path that contains edge (u6, u7).

If there exist two such exceptions, such Qi and Qj form an improvement
in conjunction with R. The reason is that both expectional AP fragment
create a cycle from a single path fragment that contains a particular edge; it
follows that one of these fragments must have an endpoint inside the other,
suppose that the cycle created by Qj has an endpoint inside the cycle created
by Qi. Now, applying R as a change creates replaces cycle C0 with C and
creates a “composite” path with edge (u6, u7); applying Qi fuses C with a

12



path but creates a cycle that contains (u6, u7) edge; now the initial portion
of Qj, with at most one white edge, reaches the latter cycle, so it must be
an improvement.

Note that an exception Qi must have at least one white edge.
Now we can perform the balance of points. If we break Q and one of the

paths is an exception, one branch of Q has a surplus of 1
2
, the second branch

has a deficit of 1 1
2
, and we have also the white edge that was removed from

Q; as a result we have neither a deficit nor a surplus. If none of the paths is
an exception, we have a surplus of 2 points. Finally, if we had a gray edge,
we have 1 point to collect. Note that the interior of C has at least two edges,
so at least one of them brings the surplus.

C0

u0

u1 u2

u3u4

u5

u6

u7

Figure 10

The difference between the case of Fig. 9 and the
case of Fig. 10 is the following: one of the nodes of C is
an endpoint of an A-path, so we cannot collect 1

2
point

from that node — this A-path already collected both
halfs; as a result we can be 1

2
point short. This requires

that everything is tight: C0 has 4 nodes only, the interior
of C has only two edges, one is gray, so we break only
one AP , say Q, and one of the created branches, say
Q0, starts at a path endpoint, creates a cycle and has one white edge only.

This means that Q0 starts at an endpoint of a new path joined with edge
(u2, u3), uses a new arc — that surely is not an arc in solution A — and that
its 4-th node is u0, u1, u4 or u5. If it is u0, Q0 forms an AP between two
endpoints of A-path, with one white edge only — surely an improvement. If
it is u5, we extend Q0 with (u5, u6, u7) and we get an AP from an A-path to
an A-cycle with two white edges and no arc — again an improvement. If it
is u4, we extend Q0 with (u4, u3, u2, u1, u0) and we get an AP between two
A-path endpoints with no S-arc, and 3 white edges that are located on two
A-paths, in the next subsection we will see that it has to be an improvement.
The case of u1 is similar: we extend Q0 with (u1, u5, u4, u3, u2, u1, u0).

4.10 APs with Deficit—Path Endpoint to Path End-
point.

An AP that connects two path endpoints should collect 5 points or form a
small improvement. Otherwise, we have an AP , say R, that creates at least
2 cycles and collects at most 4 points.

If R creates c cycles, they must contain 2c− a fragments of A-paths and
a S-arcs. To separate the fragments of A-paths from their paths we need to
create 2(2c− a) flanks, and at most 2 of them can be the path endpoints, so
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at least 2(2c − a − 1) of them is created by white edges, which requires at
least 2c − a − 1 white edges.

Suppose that R creates 3 cycles. Then it collects at least 2 × 3 − 1 = 5
points from white edges and S-arcs.

Figure 11

Suppose that R creates 2 cycles and it col-
lects only 3 points. Then none of the cycles is a
terminal one, and we have a configuration from
Fig. 11, or a similar one, with 2 white edges and
one S-arc. We can collect the extra point using the AP breaking method
from the previous subsection.

Note that R converted an A-path, say P, into a pair of cycles. Suppose
that there exists an AP that starts at another A-path and extends to P, and
that it collects less than 3 points before reaching P. Then this AP fragment
does not create a new cycle but it merges one of the cycles that replaced
P with another A-path; as a result we have the same number of objects as
before the change, but we have more nodes in cycles, an improvement. Now
we can assume that such an AP collects at least 3 points, so it has 1

2
point

surplus before reaching P.
Suppose that there exists an AP that starts at an A-cycle and extends

to P and it collects less than 2 points before reaching P, this AP decreases
the number of objects in solution A⊕R; if there are such APs reaching each
of the two new cycles that cover P, we have an improvement. Now we can
assume that one of the new cycles, say C, is not reached by any such AP .

We can break all APs that contain an edge of C and collect points from
its gray edges. In the worst case, C is the “outer” cycle, and it has only 2
edges on P, one of them gray; we collect surplus of two partial APs, 1 point,
and the points from the edges themselves that were not allocated already to
P, 2-nd point.

The configuration of Fig. 11 was based on an assumption that every white
edge provides two endpoints for the path fragments of the cycles created by
R. In every other case R collect at least 4 points, and we can use the
techniques of the last two subsections to collect another one.

Now suppose that R creates 2 cycles and collects only 4 points. We can
repeat the above arguments and collect points from one of the cycles created
by R, say C, that is not reached by a partial AP with a deficit — that
extends from an A-cycle. However, one R has a “spare” black edge that
merges two fragments of A-paths into a new path, and as a result new arcs
and new terminal cycles may exists. Thus we experience the same problems
as in the previous subsection. As a result, we need a more detailed analysis
for the case when C contains only one white edge, only one gray edge, and it
contains an endpoint of an A-path.
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In a case analysis we can omit the case when R includes an S-arc, because
it is treated identically to the case when R creates a cycle like the inner cycle
in Fig. 11. Therefore we will assume that R contains exactly 4 white edges,
creates 4 path fragments combined into 2 cycles, hence it creates 8 fragment
flanks, and either
there are 3 white edges that create two flanks each, 1 white edge creating
1 flank, and 1 flank is created by a common endpoint of R and an A-path,
hence or 4 path fragments are contiguous as in Fig. 11, or
there are 2 white edges that create two flanks each, 2 white edges creating 1
flank each and 2 flanks are created by endpoints of R.

In the first case, it is as if we added to Fig. 11 a part of Fig. 9 that is to
the left of u5. Suppose that edge incident to the beginning of R is white, then
we are breaking Q that contains that edge. Let Q0 be the branch starting at
the beginning of R, we can show that it should have a surplus of 1 1

2
point.

Observe that Q0 can be used as a complete AP , and suppose that it does not
create an improvement. If Q0 connects to another endpoint of an A-path, it
can collect only 3 points only if it is exactly as in Fig. 11, so it converts an
A-path into two cycles. However, edge (u7, u6) delivers a direct hit to one of
these cycles, so combined with Q0 it does not change the number of objects
but it creates one new cycle. If Q0 connects to an A-cycle and has at most 2
white edges, than it creates a terminal cycle and gets at least 3 points. Thus
we got the extra point that we need.

If that edge is gray, we break Q that contains the rightmost edge of Fig.
11, in the position of (u3, u5) of Fig. 9. Suppose that the exception Q0

comes to u5, we can extend it to u3 and than to the beginning of R, and
this is a complete AP with 2 white edges, an improvement. Suppose that Q0

comes to u3; we view it as a change to solution A⊕R; from the outer cycle
we remove (u3, u5), we add back edge (u5, u6) and we remove (u6, u7). As a
result, we merge C with the cycle created by Q0, and the net change is one
more cycle.

We skip the case analysis for the second case because it involves the same
ideas.

4.11 Largest Improvement.

The largest improvement that this analysis needs occurs when we have an
AP , say R, that connects two ends of A-paths, collects 4 points and creates
5 cycles with “good arcs”, where the arcs are good because they have “direct
hits” from other path ends; using 4 such hits we merge 4 of the resulting
cycles and thus we get an improvement; R has 4 white edges and 5 blacks,
and each “hit” merges two cycles by inserting an edge and removing two, for
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the total of 5 + 4 + 4(2 + 1) = 21 edges.

5 Proof of Theorem 2

We start with a modified analysis for the Maximum Path Cover. We use the
same technique of justification points as in Section 4. However, we need to
define those points slightly differently.

Given n points, suppose that an optimum path cover C∗ covers them with
p paths where isolated nodes are counted as paths. Then these paths contain
n−p edges. To obtain an 7/6-approximation it suffices to find a cover C with
q paths such that

6

7
(n − p) ≤ n − q , i.e. q ≤

1

7
n +

6

7
p .

According to the latter sufficient condition, for each path of C we need to
find 7 points, provided we get 1 point for each node and 6 points for each
path from C∗.

The 6 points of a path from C∗. can be distributed between its two ends
(which may be located at a single node if this is a degenerate path with no
edges), so we place 1 point on every node and 3 points on every endpoint of
a path from C∗.

In turn, in a phase of Small Improvement algorithm we try to collect 7
points for every path of the current solution C, and failing that, we have to
find a small improvement. The only difference with our previous algorithm
and analysis is that there we were giving 4 points to every endpoint of a path
in C∗ rather than 3. However, 3 extra points are still sufficient.

Suppose that we have an isolated point in C∗. Then this point does not
belong to any APs, and it delivers 1+6 points to a path in C where it belongs.

Suppose that we have a path endpoint of C∗. The analysis is similar as
before, except that one AP can terminate at this point — we give the extra
3 points to that AP . Note that “one-ended” AP needs to collect at most 2.5
points (besides the point from its “end”), so these 3 points allways suffice.

A similar modification of a defintion of justification points and an analysis
of a phase of Small Improvement algorithm gives a 7/6-approximation of the
Maximum Traveling Salesman Problem with distances zero and one.

Given an instance of that problem, we disregard first the edges with
profit 0, so a valid solution is either a collection of node disjoint simple paths
or a Hamiltonian Cycle. Thus, in the absence of a Hamiltonian Cycle the
problem is identical to Maximum Path Cover. In the analysis of the case
with a Hamiltonian Cycle, we do not have to consider path endpoints of the
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optimum solution, so we merely give 1 point to each node and the goal is to
find 7 points for each object of the solution.

�
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