
On Matrix Rigidity and the Complexity of Linear Forms

Mahdi Cheraghchi∗

February 2005

Abstract

The rigidity function of a matrix is defined as the minimum number of its entries

that need to be changed in order to reduce the rank of the matrix to below a given

parameter. Proving a strong enough lower bound on the rigidity of a matrix implies

a nontrivial lower bound on the complexity of any linear circuit computing the set of

linear forms associated with it. However, although it is shown that most matrices are

rigid enough, no explicit construction of a rigid family of matrices is known.

In this survey report we review the concept of rigidity and some of its interesting

variations as well as several notable results related to that. We also show the existence

of highly rigid matrices constructed by evaluation of bivariate polynomials over finite

fields.

Key words: Matrix Rigidity; Low Level Complexity; Circuit Complexity; Linear Forms.

1 Introduction

One of the major and the most fundamental open problems in theoretical computer science
is proving nontrivial lower bounds on the size of algebraic circuits (circuits whose gates can
perform algebraic operations such as addition, multiplication, etc.) computing an explicit
function. Still there is nothing much to say even for interesting special cases.

Viewed as a directed acyclic graph, the size of a circuit is defined as the sum of the
number of nodes and the number of edges in the graph. Moreover, the depth of the circuit is
defined as the length of the longest path in the graph. Roughly speaking, there is a tradeoff
between the size and the depth of any circuit computing a specific function, namely, as one
decreases, the other one grows. A special case of interest is when the depth is restricted to
be logarithmic in terms of the number of inputs. In fact, many natural algorithms (e.g., the
FFT algorithm for computing Discrete Fourier Transform) achieve this depth.

Linear circuits can be regarded as an interesting restriction of the algebraic circuits. In
a linear circuit, only two operations are allowed, namely, binary addition and multiplication
by a constant (scalar). In fact, the function that a linear circuit computes can be expressed
as a set of linear forms, i.e., the multiplication of a matrix by the input vector. The problem
of proving lower bounds on the size of linear circuits deals with the problem of efficiently
computing the corresponding matrix by vector multiplication. Unfortunately, proving a
nontrivial lower bound on the size of the circuits computing an explicit (and natural) set of
linear forms is a difficult task, even for the binary field where the circuit is only consisted of
binary xor gates.

∗Email: 〈mahdi.cheraghchi@epfl.ch〉. This report is on a term project the author has been working on as a

Masters student of computer science in Laboratoire d’algorithmique (ALGO), École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, Switzerland.

1

Electronic Colloquium on Computational Complexity, Report No. 70 (2005)

ISSN 1433-8092

Much effort has been made to relate the complexity of a set of linear forms (i.e., the size
and depth of the linear circuit computing it) to other problems that seem to be more tractable.
In particular, translating such a computational problem to a combinatorial property (of, say,
the corresponding matrix that defines the linear forms) has been of special interest. In 1977,
Valiant introduced a combinatorial property of matrices, namely, the rigidity function of the
matrix, and showed that proving a strong enough lower bound on this property translates to
a nontrivial complexity bound.

The rigidity function of a matrix A, RA(r) is defined as the minimum number of entries
of A that must be changed to reduce the rank of A to r or less. Therefore, the concept of
rigidity carefully combines two combinatorial properties, namely, rank and sparsity, none of
which has a complexity implication (e.g., consider the identity matrix which has a full rank,
and the all-one matrix that has no zero entries.). Valiant showed that if for any n×n matrix
A, RA(εn) = Ω(n1+δ), for some positive constants ε, δ, ε < 1, then the set of linear forms
defined by A cannot be computed by a linear circuit of linear size and logarithmic depth. He
also showed that over any arbitrary field, most matrices satisfy a much stronger condition.

As most matrices are highly rigid, it seems that finding explicit families of rigid enough
matrices is much easier than directly dealing with the linear circuits. Ironically, after nearly
three decades, all efforts to find an explicit family of rigid matrices have failed. The best
known lower bound for rigidity of explicit families of matrices is Ω((n2/r) log(n/r)), due to
several authors [2, 6, 10], that gives a trivial result for r = Θ(n).

2 Algebraic computation and highly connected graphs

2.1 Straight-line programs

First, we need to formalize our measure of complexity by defining a certain model of com-
putation. Throughout this report we shall focus on an algebraic model called straight-line
programs, as is the usual case for the arguments on low-level complexity. Informally, in a
straight-line program we have a set of variables {X1, . . . , Xn} taking values in a certain field
F, and a sequence of instructions. Two disjoint subsets of the variables are identified as
inputs and outputs of the program, and the rest are considered as intermediate variables.
Any instruction is an assignment in one of the following forms:

1. Xi ← F(Xj1, . . . , Xjk), where F is one of the four basic operations, namely, addition,
substraction, multiplication, or division.

2. Xi ← k ·Xj , i.e., multiplication by a scalar k ∈ F.

3. Xi ← k, for some constant k ∈ F.

Indeed, input (output) variables can only appear on the right (left) hand side of any
instruction. Furthermore, the sequence of the instructions must satisfy the property that no
variable on the left-hand side of some assignment can occur earlier in the sequence. In other
words, multiple assignments and feedbacks are not allowed. The following [1] is a formal
definition of straight-line programs:

Definition 1. Let A be a K-algebra, and Ω = kc∪k∪{+,−,×,÷} be the set of operations,
where the operations denoted by k and kc stand for scalar multiplication and constant as-
signment, respectively. Let a ∈ An be an input of length n, for some integer n. A straight-line
program Γ (over K, expecting inputs of length n) is a sequence (Γ1, . . . , Γr) of instructions

Γi = (ωi; ui1, . . . , uiar(ωi)),

2

where ωi ∈ Ω, the arity (also called fan-in) of ωi is denoted by ar(ωi), and ui` are integers
satisfying −n < ui1, . . . , uiar(ωi) < i.

A straight-line program can be thought of as a combinational circuit consisting of a num-
ber of gates and wires. The connections between inputs and outputs of different instructions
can thus be represented by a directed acyclic multigraph1, where each vertex of the graph
corresponds to a specific instruction, or equivalently, a combinational gate. We will focus
our arguments on two major complexity measures of a straight-line program, namely, its size
and its depth. The size of a program is defined as sum of the number of vertices and edges
in the corresponding multigraph, and its depth denotes the length of the longest path in the
multigraph. Observe that the depth of a program is always finite (as is the size), since there
are no cycles in its multigraph.

In general, straight-line programs are able to compute any multivariate rational function,
and thus may seem to be too strong for our concerns. Here we restrict ourselves to special
cases of straight-line programs that seem to be easier to deal with, namely, the ones that
compute linear forms over (finite or infinite) fields. A linear form in indeterminates x1, . . . , xn

over a field F is any expression of the form
∑n

i=1 λixi, where each λi is in F. Any linear form
can be computed by a linear program, which is defined as follows:

Definition 2. A linear program over a field F is a straight-line program with the function
set only consisted of scalar multiplication and binary addition over F.

Observe that because of the bounded fan-in, the size of a linear program and the number
of vertices and edges of its multigraph representation are of the same order, and thus, can
be used interchangeably in asymptotic arguments. With some abuse of notation, we shall
assume that any instruction in a linear program L is of the form Xi ← λXj + µXk, where λ
and µ are constants in F, and the multigraph G that corresponds to L is a labeled directed
acyclic graph. That is to say, any vertex in G is a binary addition gate. Scalar multiplications
appear as labels of the edges of G, as if they are carried out by the wires of the circuit. By
another convention, we remove any edge in G that corresponds to a multiplication by zero.
Note that for the case of a binary field, edge labels of G carry no information, as they are
all one. Thus in that case, a linear program defines a combinational circuit consisting of
exclusive-or gates only.

It is immediate from the above definition that any linear program with n input and m
output variables computes a set of m linear forms, and can be represented by an m × n
generator matrix. Therefore, all that a linear program is capable to perform is nothing but a
matrix by vector multiplication, namely, multiplication of its generator matrix by the input
vector, which yields the vector of m linear forms at the output. Conversely, any m × n
matrix can be represented by a linear program with n inputs and m outputs. Conveniently
yet ambiguously, from now on we might use the term linear form when we actually mean a
set of linear forms.

For a given depth d, the complexity of a set of linear forms L is measured by the smallest
size of a linear program of depth d that computes L. Thus, resolving the complexity of an
explicit linear form answers the question on how efficiently one can compute the correspond-
ing matrix by vector multiplication. Interestingly enough, it does not seem to be a weak
assumption to restrict ourselves to linear programs when we try to resolve complexity of
linear forms. This comes from the fact that for computing a linear form over certain fields
(including real and complex numbers), linear programs are optimal within a constant fac-
tor as compared with straight-line programs with unrestricted use of all the four operations
{+,−,×,÷}. This is a special case of the result by Strassen [11].

1A multigraph is a graph in which more than one edge is allowed between a pair of vertices.

3

Typically, the number of input and output variables are the same, given as a parameter,
and we wish to analyze the complexity of the linear form for infinite possibilities of n. To
that end we will consider families of linear forms which are usually defined by a family of
n × n generator matrices, for infinitely many n ∈ N. This enables us to derive asymptotic
lower bounds on the complexity of particular linear transformations.

The problem of proving nontrivial (superlinear) lower bound on the complexity of an
explicit family of linear forms seems to be easier to deal with for a restricted model of linear
programs where the scalar multipliers have bounded values. In fact, in a seminal work,
Morgenstern [7] proved nontrivial lower bounds in such a model. He showed that any linear
program for computing linear forms associated with a complex matrix A has size at least
logc |det(A)|, where c is defined as the maximum of the sum of the absolute values of the two
coefficients that appear in any instruction of the program. If we restrict the coefficients to
have an absolute value bounded by a constant δ, a lower bound log2δ |det(A)| is obtained for
the size of the corresponding restricted linear program. For the case of the Discrete Fourier
Transform, this translates to a lower bound of 1

2n log n on the size of any linear circuit
computing DFT in which the absolute values of the scalars are restricted to be at most 1 (a
condition which is satisfied by the Fast Fourier Transform algorithm.). This follows from the
fact that for an n× n DFT matrix F , |det(F)| = nn/2. Unfortunately, Morgenstern’s result
can not be easily generalized to the unrestricted model, since we also get the same bound for
certain trivial families of linear forms, say, nIn, where In is the n× n identity matrix.

2.2 Examples of graphs with high connectivity

Intuitively, graphs with large sizes are highly connected. Thus, it seems natural to look for a
formalized notion of high connectivity, inducing a lower bound on the size of the graph. Such
a lower bound would immediately imply a lower bound on the complexity of the corresponding
straight-line program. In other words, we wish to discover a graph connectivity property that
is valid for any linear program computing a certain family of linear forms and subsequently
obtain a lower bound on any graph satisfying such a property. To that end, we consider
various families of graphs with high connectivity, based on [12].

Definition 3. Let G be a directed acyclic graph with n input nodes a0, . . . , an−1 and n output
nodes b0, . . . , bn−1, and σ be a permutation of the integers 1, . . . , n. Then G implements σ
iff there are n mutually node disjoint paths joining the n pairs {ai, bσ(i) | 0 6 i < n}.

Such families are known as connection networks. Clearly, there are n! possibilities for the
permutation vector σ and thus, any graph that implements all possible permutations has to
realize n! sets of paths and is of size at least log n! = Ω(n log n). In fact, this order of size
can be achieved. A weaker requirement would be to implement only n distinct circular shifts
{σi | σi(j) = j + 1 mod j, 0 6 i 6 n− 1}. In fact, such a graph would also need a size of at
least 3n logn, as the following theorem suggests:

Theorem 4. [8] If σ1, . . . , σs are any permutations such that σi(k) 6= σj(k) (for all i 6= j, k),
then any graph that implements all the s permutations has to have size at least 3n log3 s.

However, a size of 3n logn + O(n) turns out to be sufficient to construct such shifting
graphs [8]. Another similar but important family of highly connected graphs are so-called
superconcentrators, which are defined as follows:

Definition 5. A directed acyclic graph G with two disjoint sets of n nodes distinguished as
input and output nodes, respectively, is an n-superconcentrator iff for all 1 6 r < n and all
sets A of r distinct input nodes and all sets B of r distinct output nodes, there are r mutually
node-disjoint paths connecting nodes of A to nodes of B.

4

The above definition is similar to that of connection networks, except it is now immaterial
which particular input-output pairs of nodes are connected. It has been shown that for any
algorithm solving certain problems (notably computing convolutions) a superconcentrator is
necessary. Surprisingly and unfortunately for our purpose, superconcentrators do not account
for superlinear complexity in general:

Theorem 6. [13] For all n, there exists a superconcentrator of size Θ(n).

The above theorem has been used to disprove the plausible conjecture that the set of linear
forms generated by any totally non regular square matrix cannot be computed in linear time:

Theorem 7. [12] For all n ∈ N, there exists an n × n integer matrix A with no singular
minors of any size, but such that the n linear forms generated by A can be computed in O(n)
time.

Thus an interesting problem would be to investigate minimal restrictions needed to be
imposed on superconcentrators to ensure that they are of superlinear size.

The properties we have considered so far have been based on the existence of sufficient
node disjoint paths in the graph. Now we examine a few properties which are based on
removal of edges in the graph and may account for the complexity of algorithms.

Definition 8. A directed acyclic graph G is said to have the property R(n, m) iff whichever
set of n edges are removed from G, some directed path of m edges remains in G. We also
define S(n, m, d) to be the size of the smallest graph of depth at most d with the R(n, m)
property.

The following theorem states a lower bound on the size of graphs defined as above:

Theorem 9. [12] The quantity S(n, m, d) defined as above is bounded by S(n, m, d) >
n log2 d

log2(d/m) .

This immediately implies the following two corollaries:

Corollary 10. For any k > 0, the depth d of any graph with q edges, q 6 (n log2 d)/k, can
be reduced to d/2k by removing some set of n edges.

Corollary 11. The depth of any graph with d = c(log2 n)c′ and q < (n log log n)/ log log log n
can be reduced to d/ log log n by removing some set of n edges.

The special case of d = log n is of particular interest in complexity arguments, as most
efficient algorithms known for certain interesting problem (e.g., discrete Fourier transform)
achieve this depth.

The lower bound obtained in Theorem 9 can be improved by imposing an additional
restriction on the structure of the graph, namely, restricting the graph to have a series-parallel
structure. Roughly, series-parallel graphs can be constructed recursively from subgraphs
placed in series or in parallel. The following formalizes this intuition.

Definition 12. For a directed acyclic graph G = (V, E) a labeling is a mapping L: V → N,
such that for any directed edge (u, v) ∈ E, L(v) > L(u).

Definition 13. A directed acyclic graph G with designated sets of input and output nodes
is called a series-parallel graph (or an sp-graph) iff there is a labeling L for G such that for
all pairs of edges (u, v) and (x, y) in G we have (L(u)− L(x))(L(y)− L(v)) > 0.

The properties R(n, m) and S(n, m, d) are redefined for sp-graphs as follows:

5

Definition 14. An sp-graph G has R′(n, m) property iff whichever set of n edges are removed
from G, some directed path of length at least m remains from an input to an output. The
quantity Ssp(n, m) is defined as the size of the smallest sp-graph with the R′(n, m) property.

According to the definitions above, the following lower bound holds in sp-graphs:

Theorem 15. [12] For some constnt c > 0, Ssp(n, m) > c · n · log log2 m.

Finally, we consider a family of highly connected graphs, namely, grates. It turns out
later that this family relates the complexity of linear forms to a combinatorial property of
matrices.

Definition 16. Let G be a directed acyclic graph with and f be a mapping over nonnegative
integers, f : Z>0 → Z>0. Then G is called an f -grate iff there exists two disjoint subsets
A = {a1 . . . , as} and B = {b1 . . . , bt} of the nodes in G such that the following holds: “If any
r nodes (and adjacent edges) are removed from G then for at least f(r) of the s · t distinct
pairs (ai, bj) there remains a directed path from ai to bj .”

If we choose specific values for s and t in the above definition, the restriction will be called
(f, s, t)-grate. The following theorem shows a tradeoff between the size and the depth of any
grate:

Theorem 17. [12] For all positive constants ε, c, k and all sufficiently large n, any f -grate
of indegree two and depth k log2 n with f(n) > cn1+ε has size at least n log log n

log log log n .

Proof. Assume the contrary. By Corollary 11, a set of n nodes can be removed from any graph
of size n log log n

log log log n and depth k log2 n such that no path of length more than k log n
log log n remains.

Therefore, after deletion, each output will be connected to at most nk/ log log n = o(nε) inputs.
This implies that for sufficiently large n the graph is not an f -grate, a contradiction.

In the next section we consider the application of such graphs in proving complexity lower
bounds.

3 Rigid matrices

3.1 Rigidity and grates

The concept of grates introduced in [12] is followed by an interesting combinatorial property
of the corresponding generator matrix that seems to be more tractable than the direct analysis
of straight-line programs, namely, rigidity.

Definition 18. The rigidity of an n × n matrix A with entries in a field F is the function
RA(r): {0, 1, . . . , n} → {0, 1, . . . , n2} defined by:

RA(r) = min{i | ∃B ∈ Fn×n with wt(B) = i and rank(A + B) 6 r},

where wt(B) is the number of nonzero entries in B, i.e., wt(B)
def
=#{(i, j) | bij 6= 0}.

In other words, the rigidity of a matrix A is defined as the minimum number of changes
that need to occur in entries of A to reduce its rank to at most a certain value r. The
following theorem relates rigidity of matrices to the grates:

Theorem 19. [12] The graph of any linear program for computing a set of linear forms Ax
is an (RA, n, n)-grate.

6

Proof. Let G be the graph of a linear program, and let A and B be the set of input and
output nodes of G, respectively. We wish to show that the two subsets A and B satisfy
the conditions of Definition 16 and thus G is an (RA, n, n)-grate. Assume for the sake of
contradiction that if a certain set of r nodes (1 6 r 6 n) are removed from G, then fewer
than RA(r) input-output pairs remain connected. Define the weight of a directed path π in
G be the product of scalar multipliers (labels) that appear on the edges of π. Observe that
an entry aij of the generator matrix A is equal to the sum of the weights of all directed paths
in G connecting the input node i to the output node j. Thus the above assumptions imply
that if the multipliers at the r removed nodes are changed to zero then the matrix B of the
linear form computed by the modified program has a weight less than RA(r). On the other
hands, it is easy to see that the rows of B differ from the corresponding ones of A only by
linear combinations of the forms computed by the original program at the removed nodes.
Thus, A−B = X , where X is an n× n matrix of rank at most r. This immediately implies
that wt(B) > RA(r), a contradiction. It follows that G is an (RA, n, n)-grate.

Moreover, the assertion in Theorem 3.1 is tight, as the following theorem implies:

Theorem 20. [12] Let A be any n×n matrix and a f be any function defined as f : {0, . . . , n} →
{0, . . . , n2}. If for some r, f(r) > RA(r), then there exists a linear program P for computing
Ax whose graph is not an f -grate.

Proof. Fix a value r for which f(r) > RA(r). Let A + B = C, where wt(B) = RA(r), and
rank(C) = r. Let X be a set of r linearly independent forms defined by C. Construct P such
that it first computes n + r linear forms defined by B and X in a naive manner, by forming
n + r independent trees. Finally, P computes Ax using these n + r linear forms. Clearly,
if the r nodes corresponding to X are removed, n disjoint trees remain in the graph, with
the outputs as roots, and wt(B) input-output connections. Since wt(B) = RA(r) < f(r), it
follows that the graph corresponding to P is not an f -grate.

In fact, the two theorems above can be used to relate a computational property of linear
programs to a noncomputational problem on matrices.

Theorem 21. [12] Let A1, A2, . . . be an infinite family of square matrices, where An is an
n × n matrix, and for some c, ε > 0, RA(n

2) > cn1+ε. Then there does not exist a family
of linear programs for the corresponding sets of linear forms that (i) achieve linear size and
logarithmic depth simultaneously, or (ii) are series-parallel and of size linear in n.

Proof. The first part is immediate from Theorem 19, Theorem 17 and the second part from
Theorem 15.

If the family of matrices is defined over special fields (e.g., real or complex numbers)
where the translation from straight-line programs to linear programs changes the size and
depth by a constant factor only, the above theorem immediately generalizes to unrestricted
straight-line programs.

Definition 22. An infinite family A1, A2, . . . of square matrices (where An is an n×n matrix
over some field F) is called rigid iff for some constants ε and δ such that 0 < ε < 1 and δ > 0
and for sufficiently large n, RAn

(εn) = Ω(n1+δ).

3.2 Existence of rigid matrices

3.2.1 Generic rigidity

It is immediate from Theorem 21 that computation of any rigid family of matrices by linear
programs of logarithmic depth needs a superlinear size. Thus proving superlinear rigidity for

7

any family of matrices immediately translates to a nontrivial lower bound on the complexity
of any family of programs computing the corresponding set of linear forms. At this stage, an
important question is whether rigid matrices really exist or not. It can be easily shown that
for any n × n matrix A, RA(r) 6 (n − r)2, but we are specifically interested to know how
close we can get to this upper bound. The following result by Valiant [12] shows that in fact
most matrices are highly rigid:

Theorem 23. For any n ∈ N and any field F, there exists an n× n matrix A over F such
that:

1. For F infinite, RA(r) = (n− r)2.

2. For F finite with q elements,

RA(r) >
(n− r)2 − 2n logq 2− log2 n

2 logq n + 1
, for all r < n−

√

2n logq 2 + log2 n.

Proof. First, consider a few definitions. A mask σ is defined as any subset of s pairs from
the set {(i, j) | 1 6 i, j 6 n}. In other words, a mask defines an n × n matrix with the
entries chosen from the binary set {0, 1}. A minor τ is any pair of nonempty subsets of
{i | 1 6 i 6 n}. In fact, a minor of a matrix A is obtained by removing any combination
of the rows and the columns of A. The quantity M(σ, τ) is also defined to be the set of all
n × n matrices A for which there exists an n × n matrix B such that all nonzero entries of
B are indexed by σ, rank(A + B) = t, and, τ specifies a t× t minor of maximal rank in C,
where C = A + B.

Assume without loss of generality that the minor specified by τ is at the top left corner.
For any n× n matrix X , consider writing it in the following block form:

X =

(

X11 X12

X21 X22

)

,

where X11 is a t× t minor.
It is easy to see that for any matrix X of rank t where X11 is nonsingular, the entries of

X22 can be expressed as rational functions in the entries of X11, X12, and X21. Therefore,
any possibility of C is uniquely determined by having (n2 − (n − t)2) of its entries known.
It follows that the entries of any A ∈ M(σ, τ) are given by a set of n2 rational functions in
terms of (n2− (n− t)2) arguments, i.e., the entries of C11, C12, C21, and the nonzero entries

of B. Hence, M(σ, τ) is the image of F2nt−t2+s into Fn2

under some rational mapping. For
the case of t = (n − r)2 − 1, this implies that all matrices whose rank can be reduced to r
by changing (n− r)2− 1 of their entries belong to the union of the images of a finite number

of rational mappings from Fn2−1 to Fn2

. It is known that for an infinite field F and any
parameter u, the finite union of the images of Fu under rational mappings into Fu+1 cannot
fill Fu+1. Thus for an infinite field F matrices of maximal rigidity (n − r)2 exist, and the
result follows.

For the case of a finite field F with q elements we devise a simple counting argument
to show the assertion. Observe that the number of possible choices of the mask σ for fixed

values of s and t is
(

n2

s

)

, which is upper bounded by 22s log2 n. Moreover, the number of

choices of the minor τ is
(

n
t

)2
, which is upper bounded by 22n. Therefore, for fixed s and t,

the number of matrices in the union of M(σ, τ) over all choices of σ and τ is upper bounded

by q2nt−t2+s+2s logq n+2n logq 2. Now picking t = r within the range of our assumption, i.e.,

t < n−
√

2n logq 2 + log2 n,

8

and for any s satisfying the desired bound on the rigidity of A, that is,

0 6 s <
(n− r)2 − 2n logq 2− log2 n

2 logq n + 1
,

it is clearly seen that the number of possible matrices is upper bounded by

qn2−logq n =
qn2

n
,

that does not fill up the entire space Fn2

. Therefore, highly rigid matrices exist over any
finite field.

For the case of finite fields, the above theorem can be generalized as follows:

Theorem 24. Let Sn be any set of n × n matrices defined over a finite field Fq (q might

depend on n) such that |Sn| > qpn2

, for some constant 0 < p 6 1. Then Sn contains
highly rigid matrices. More precisely, for large enough n, there exists A ∈ Sn and a constant
0 < ε < 1 such that RA(εn) = ω(n1+δ), for any positive constant δ such that 0 6 δ < 1.

Proof. The number of n× n matrices with weight at most w, W (w), is equal to

W (w) =

(

n2

w

)

(q − 1)w
6

(

eqn2

w

)w

, (1)

where the inequality follows from the fact that
(

n
k

)

6
(

ne
k

)k
. Similarly, let R(r) be the

number of n × n matrices with rank at most r. Note that any matrix of rank one can be
written as the product of a column vector by a row vector, and conversely, such a product
produces a rank one matrix. Therefore, for r = 1, the following holds:

R(1) 6 q2n. (2)

Moreover, any matrix of rank r > 0 can be expressed as the summation of r matrices of
rank one. It follows that:

R(r) 6

(

q2n

r

)

6

(

q2ne

r

)r

. (3)

For some positive constants ε, c, δ where ε, δ < 1, let N(ε, c, δ) be the number of n × n
matrices whose rank can be reduced to r = εn by w = cn1+δ number of changes. Replacing
these values of r and w in (1) and (3) it follows that,

N(ε, c, δ) 6

(

eqn2

w

)w (
q2ne

r

)r

=

(

eqn1−δ

c

)cn1+δ
(

q2ne

εn

)εn

= q
cn1+δ

�
1+logq

en1−δ

c � +εn(2n+logq
e

εn)

= q2εn2+o(n2). (4)

Now let ε be any constant less than p
2 . It follows from (4) that for large enough n and arbitrary

positive constants c, δ, N(ε, c, δ) < qpn2

if δ < 1. Thus, there exists a matrix A ∈ Sn which
needs arbitrarily close to a quadratic number of changes to have its rank reduced to below
εn, i.e., RA(εn) = ω(n1+δ) for any 0 6 δ < 1.

9

An immediate application of Theorem 24 is to matrices defined over a large number of
indeterminates. Consider a set of indeterminates X = {x1, x2, . . . , xm} over a finite field Fq ,
and a set of bijections F = {f1, f2, . . . , fn2}, where m = Ω(n2), and each fi is defined as
fi: F

m
q → Fq. Then the n× n matrix A constructed as aij = fij(x1, . . . , xm) is highly rigid,

i.e., RA(εn) = ω(n1+δ), for some constant 0 6 ε 6 1 and any 0 6 δ < 1. For the special case

that for all i, fi(x1, . . . , xm)
def
=xj , this implies that we can obtain a rigid matrix simply by

arranging Ω(n2) indeterminates in an n× n matrix.

3.2.2 Evaluation matrices of low degree polynomials

Here we introduce a special case of Reed-Muller codes and consider its relation to the matrix
rigidity.

Definition 25. The flattening operator M is defined as a mapping M: Fn×n
q → Fn2

q such that

for any n× n matrix A = (aij)n×n, M(A)
def
=(a11, a12, . . . , a1n, a21, a22, . . . , a2n, ann).

In other words, M is an operator that flattens a matrix by putting all its elements in
order into a vector. Now, our code C is defined over bivariate polynomial as follows:

Definition 26. Let q be a prime power and Fq be a field of q elements, namely, {e1 . . . , eq}.
For some constant parameter 0 < p 6 1, let d = pq. For any vector u = (u1, . . . , ud2) ∈ Fd2

q ,
define Pu(x, y) ∈ Fq[x, y] to be the bivariate polynomial

Pu(x, y)
def
=

d
∑

i=1

d
∑

j=1

u(i·j)x
i−1yj−1

of degree (d − 1, d − 1). For any vector u, define the matrix Gu = (gij)q×q such that
gij = Pu(ei, ej). Similarly, define the matrix G′

u = (g′ij)q×q , where

g′ij =

{

Pu(ei, ej) if i > d or j > d
uij else.

Then the code C is defined as the mapping C: Fd2

q → Fq2

q such that C(u) = M(Gu). Similarly,

consider the code C′ as the mapping C′: Fd2

q → Fq2

q such that C′(u) = M(G′
u).

The following lemma indicates that the codes C and C ′ defined as above (that are clearly
linear) have the maximal dimension d2:

Lemma 27. For C and C ′ defined as above, dim ker(C) = dim ker(C ′) = 0.

Proof. This is immediate for C ′, as by definition it is a systematic code. Now, consider a
vector u ∈ Fd2

q such that C(u) = 0. Therefore, u defines a bivariate polynomial Pu such that
Pu(x, y) = 0 for all values of x and y. If u 6= 0, Pu must have the factors (x− ei) and (x− ei)
for all i = 1, 2, . . . , q and thus must be of degree at least (q, q). However, this is not possible
since d 6 q and Pu is of degree (d− 1, d− 1). It follows that u = 0. Therefore only the zero
vector is mapped to zero by C and C ′ and their null spaces have zero dimension.

Corollary 28. If for two vectors u and v, C(u) = C(v), then u = v. Similarly, if C ′(u) =
C′(v), then u = v.

Proof. Immediate from Lemma 27 and the fact that C and C ′ are linear codes.

Recall that the codewords of C and C ′ were initially defined as matrices, namely, Gu and
G′

u. It turns out that the codes C and C ′ suggest a way of constructing possibly rigid matrices.

10

Theorem 29. For a finite field Fq with q elements {e1, . . . , eq}, and a fixed constant 0 <
p 6 1, consider the set S of q× q matrices over Fq, where any A = (aij)q×q ∈ S is defined in
such a way that aij = P (ei, ej) for some bivariate polynomial P of degree (d− 1, d− 1) over
Fq, where d = pq. Then S contains highly rigid matrices, i.e., there exists A ∈ S such that
RA(εn) = ω(n1+δ), for some constant 0 6 ε 6 1 and any 0 6 δ < 1.

Proof. Observe that the set S defined here is in fact the set of matrices Gu (over all possible

choices of u) defined in Definition 26, i.e., S = {Gu | u ∈ Fd2

q }. Therefore, Corollary 28

implies that the number of elements in S is equal to the number of elements in Fd2

q , i.e.,

qd2

= qp2q2

. Then the result follows immediately from Theorem 24.

Note that a similar assertion as Theorem 29 can be made by considering the set of
matrices that correspond to the codewords of C ′, i.e., the set S ′ = {G′

u | u ∈ Fd2

q } instead of
the codewords of C.

One may wonder if we can improve the above result by allowing smaller (and even con-
stant) values for d. Unfortunately, this is not the case, as the following lemma suggests:

Lemma 30. For any u = (u1, . . . , ud2) ∈ Fd2

q and any positive integer d 6 q, let the cor-
responding d × d coefficient matrix Cu = (cij)d×d be defined such that cij = uij . Then
rank(Gu) = rank(Cu).

Proof. Let the matrix V be defined as

V =

1 e1 e2
1 . . . ed−1

1

1 e2 e2
2 . . . ed−1

2
...

...
...

. . .
...

1 eq e2
q . . . ed−1

q

q×d

,

where {e1, . . . , eq} is the set of elements in Fq. It is easy to verify that Gu = V · Cu · V T .
Note the following inequality for the product of any n×m matrix A by any m× l matrix B:

rank(A) + rank(B)−m 6 rank(A ·B) 6 min{rank(A), rank(B)}.

Now the result follows by considering this inequality and observing that the columns of V
are linearly independent, i.e., rank(V) = d.

This immediately implies the following corollary:

Corollary 31. The rank of the matrix Gu defined as above can be at most d.

Thus, for any fixed d = o(q), as q gets large, the rigidity of Gu tends to zero. More
precisely, for any 0 < ε 6 1 and large enough q, we have that rank(Gu) 6 d < εq and
therefore, RGu

(εq) = 0. Therefore, there is no hope to find rigid matrices defined over
bivariate polynomials of degree d unless d = Ω(q).

3.3 Variations of rigidity

Unfortunately, obtaining a lower bound on the rigidity of explicit families of matrices that
translates to a nontrivial lower bound on the complexity of the corresponding family of linear
forms turns out to be much more difficult than what it seems to be. Thus many attempts have
been made to define similar but more tractable properties that would also lead to interesting
(but probably weaker) complexity results. In this section we review a few of such alternative
approaches.

In the following problem, we consider the norm of the difference matrix instead of its
weight:

11

Definition 32. Let A be an n× n complex matrix. The norm rigidity ∆A(r) is defined as
the minimum norm of changes needed in entries of A to reduce its rank to at most r. More
precisely,

∆2
A(r)

def
= inf

B

∑

i,j

|bij |2 : rank(A + B) 6 r

.

An interesting restricted version of rigidity is bounded rigidity, where the absolute value
of the changes are bounded by a given parameter θ, i.e.,

Definition 33. The bounded rigidity RA(r, θ) of an n× n matrix A is defined as

RA(r, θ)
def
= min

B
{wt(B) | rank(A + B) 6 r, ∀i, j : |bij | 6 θ} .

For many interesting explicit examples, a maximal lower bound on the rigidity has been
shown when the absolute value of changes is bounded by some constant.

Friedman [2] has proposed a modified definition of rigid matrices, namely strong rigidity,
by imposing a restriction on the number of entries that can be changed on each row of the
matrix. According to his definition, a matrix A is (k, t)-rigid if whenever no more than k
entries in each row of A are altered, then A’s rank remains at least t. This definition can be
rephrased in terms of the linear spaces spanned by linear codes, that is,

Definition 34. A subspace C ⊂ Fn of dimension c is called (k, t)-strongly rigid if every
subspace B spanned by any c vectors b1, . . . , bc, each of weight at most k, has dim(B ∩ C) 6

dim(C)− t.

Because of the additional restriction, strong rigidity is a simpler property than the original
notion of rigidity and seems to be easier to use in giving explicit constructions.

Another variation of rigidity is proposed in [9]. They have generalized the notion of
rigidity to a set of matrices of the same size, stacked together as a tensor (three-dimensional
matrix). The precise definition is given by the following definitions:

Definition 35. Let t be an l ×m× n tensor over some fixed field F. For a positive integer
k, let {ek

i }ki=1 denote the standard basis of (Fk)∗, i.e., ek
i (j) = 1 for j = 1, and = 0 for

j 6= i. The symbol ti,∗,∗ denotes the matrix (slice) consisting of all entries of t with the first
coordinate i. Similarly, ti,j,∗ denotes the vector of all entries with the first two coordinates
i and j, i.e., the jth row of the matrix ti,∗,∗. For a triple of vectors u ∈ Fl, v ∈ F m, and
w ∈ F n, the product u⊗ v ⊗ w is the tensor t with ti,j,k = uivjwk for 1 6 i 6 l, 1 6 j 6 m,
1 6 k 6 n. The rank of a tensor is defined to be the minimal number of rank 1 tensors ti

such that t =
∑

i ti and 0 if t is the zero tensor.

There are several ways to define a tensor of rank 1. The standard definition is the
following:

Definition 36. A tensor t has rank 1 iff for some nonzero vectors u, v, w, t = u⊗ v ⊗ w.

However, a modified notion of rank-1 tensors has been proposed in [9], as follows:

Definition 37. A tensor t has the rigidity rank of 1 iff for some nonzero vectors u, v, w and
some i, j, k, either t = el

i ⊗ v ⊗w (i.e., there exists an i such that all nonzero entries of t are
in ti,∗,∗, and matrix rank of ti,∗,∗ is 1.) or t = u⊗ em

j ⊗ en
k (i.e., there exists j, k such that all

nonzero entries of t are in t∗,j,k.).

Now, based on the rigidity rank, define the rigidity of a tensor t as follows:

12

Definition 38. The rigidity of a tensor t is defined as

Rt(r)
def
= min

S ⊆ {1, . . . , m} × {1, . . . , n}, ∃ tensor s such that
|S| : ∀i, rank(ti,∗,∗ + si,∗,∗) 6 r and

∀(i, j, k), si,j,k 6= 0⇒ (j, k) ∈ S.

.

In other words, the rigidity of a tensor is the minimal number of columns in which we
have to change the tensor in order to reduce the rank of each slice to r or less. For the special
case of a single matrix (l = 1) we just get the original notion of matrix rigidity. It seems more
likely to obtain a larger lower bound for tensor rigidity than for the original rigidity, since
Rt(r) may be substantially larger than the individual rigidity of the slices, i.e., maxiRti,∗,∗

.

4 Rigidity of explicit families of matrices

4.1 Highly regular matrices

Roughly speaking, the rigidity of a matrix is a measure that determines how much its rank
resists upon an arbitrary sequence of changes in its entries. So in order to find rigid matrices,
it seems reasonable to look for inherent and useful properties of the minors. In particular, a
plausible conjecture is that any totally regular matrix (i.e., a matrix that contains no singular
square minor) is highly rigid. In fact, this conjecture turns out to be false. It is well known
that any linear program for computing the set of linear forms defined by a totally regular
matrix must be a superconcentrator. The actual reason that makes the conjecture false is
the existence of linear sized superconcentrators. More specifically, we have the following:

Theorem 39. [12] For each n there is an n× n totally regular matrix A such that,

RA

(

n log log log n

log log n

)

6 n1+O(1/ log log n).

One such matrix is the one specified by Theorem 7. In other words, the rank of such a
matrix can be reduced to o(n) by changing o(n1+ε) elements.

Despite the fact that nonrigid totally regular matrices do exist, still there remains hope
to find explicit examples of rigid matrices over the class of totally regular matrices. An
interesting attempt has been made in [10] to find explicit examples of totally regular matrices
with fairly high rigidity. Their bounds are based on the following combinatorial lemma:

Lemma 40. [10] Let log2 n 6 r 6 n/2, and let n be sufficiently large. If in an n× n matrix
fewer than (n2/4r) · log(n/(r − 1)) entries are marked, then there exists an r × r submatrix
that has not been marked.

Therefore we have the following corollary:

Corollary 41. Let A be an n× n matrix for which the rank of all t× t minors is Ω(t) and
n be sufficiently large. Then for all log2 n 6 r 6 n/2,

RA(r) = Ω

(

n2

r
log

n

r

)

.

Here is a few examples of explicit families of matrices for which the conditions of Corol-
lary 41 hold:

1. Cauchy matrices: For any n, Consider a field Kn that contains at least 2n distinct
elements, namely, x1, . . . , xn, y1, . . . , yn such that xi +yj 6= 0, for all 1 6 i, j 6 n. Then

the Cauchy matrix Cn = (cij)n×n is defined as cij
def
=1/(xi + yj). The Cauchy matrix is

known to be totally regular, and hence the Corollary 41 holds for this family.

13

2. The family of matrices obtained from asymptotically good algebraic geometric codes.

3. The family of p× p discrete fourier transform (DFT) matrices, where p is constrained
to be a prime integer and

DFTp =
(

ζ(i−1)(j−1)
p

)

16i,j6n
.

Here, ζp is defined as the primitive pth complex root of unity.

A slightly weaker lower bound can also be obtained for the family of matrices that are
highly regular on average. More precisely, we have the following lemma:

Lemma 42. Consider any n× n matrix A for which there exists a constant ε > 1 such that
for any positive integer t < n, a t× t minor of A picked uniformly at random has the expected

rank of at least t
ε . Then for any r 6

n
2ε , RA(r) = Ω

(

n2

r

)

.

Proof. Let A + B = C, where rank(C) 6 r, and wt(B) = RA(r). Let t = 2rε. Pick a t × t
minor A0 of A uniformly at random. Let B0 and C0 be the the t× t minors of B and C that
correspond to A0, respectively. Clearly, A0 + B0 = C0. Thus we have,

rank(A0) 6 rank(C0) + rank(B0)

6 rank(C) + rank(B0)

6 r + rank(B0)

6 r + wt(B0).

Taking expectations, we get:

E[rank(A0)] 6 r + E[wt(B0)].

But by the assumption, E[rank(A0)] > t/ε = 2r. On the other hand, E[wt(B0)] = (t/n)2wt(B).
Thus,

2r 6 E[rank(A0)] 6 r +
4ε2r2

n2
RA(r).

It follows that:

RA(r) >
n2

4ε2r
,

and the claim follows.

4.2 Generalized Hadamard matrices

Hadamard matrices seem to be good candidates for high rigidity. The usual notion of
Hadamard matrices (also called Sylvester matrices in this case) is recursively defined as
follows:

• H1
def
=
(

1
)

,

• H2n
def
=

(

1 1
1 −1

)

⊗Hn =

(

Hn Hn

Hn −Hn

)

.

A generalized Hadamard matrix is defined as follows:

Definition 43. An n×n matrix H over the field of complex numbers is called a generalized
Hadamard matrix iff:

14

1. |hij | = 1, for all 1 6 i, j 6 n,

2. HH∗ = nIn, where H∗ is the conjugate transpose of H and In denotes the n × n
identity matrix. (i.e., 1√

n
H is unitary.)

In other words, in a generalized Hadamard matrix, all entries have the absolute value of
one, and the rows (columns) of the matrix are pairwise orthogonal. Observe that Sylvester
matrices are special cases of the Generalized Hadamard matrices, namely, when H has only
real entries. Another interesting special case is the Discrete Fourier Transform (DFT) matrix.

An n× n DFT matrix Fn = (fij)n×n is defined as fij
def
= ζ

(i−1)(j−1)
n , where ζn is the primitive

nth root of unity.
By using spectral methods, the following lower bounds have been obtained in [5] for the

rigidity of a generalized Hadamard matrix:

Theorem 44. [5] Let H be an n× n generalized Hadamard matrix. Then,

(i) RH (r) > max{n− r, n2

(r+1)2 }.

(ii) For θ 6
n

r−1 , RH(r, θ) >
n2θ

4(θ+1)2

(iii) ∆H(r) = n(n− r).

Again based on spectral techniques, Kashin and Razborov [3] improved the above result
as follows:

Theorem 45. [3] Let H be an n× n generalized Hadamard matrix. Then,

(i) RH(r) > Ω(n2

r).

(ii) For θ > n
r , RH(r, θ) > Ω(n3

rθ2).

They have also shown the following interesting property of the minors of a generalized
Hadamard matrix:

Proposition 46. [3] Let H be an n× n generalized Hadamard matrix, and H0 be a random
q × q submatrix of H. Then E[rank(H0)] > q/8.

In fact the first part of Theorem 45 immediately follows from the above proposition and
Lemma 42. Moreover, the lower bound obtained in [5] is based on a similar proposition on
minors of the Hadamard matrix:

Proposition 47. [5] For any u× v submatrix B of an n× n generalized Hadamard matrix
H, rank(B) > uv/n.

Now, it is worthy to review several spectral properties of matrices that have been employed
in [5, 3] to obtain lower bounds on the rigidity of Hadamard matrices, as it seems that the
results can still be improved by using a similar technique.

Definition 48. The Frobenious norm ||A||F of a complex matrix A is defined by

||A||F
def
=

√

∑

i,j

|aij |2.

Definition 49. The Spectral norm ||A|| of a matrix A is defined by

||A||def
= max

x6=0

||Ax||
|x| .

15

Definition 50. For any n×n matrix A, The ith singular value, σi(A) is defined by σi(A) =
√

λi(AA∗), 1 6 i 6 n, where λi(AA∗) denotes the ith largest eigenvalue of AA∗.

It is immediate from the definition that for a generalized Hadamard matrix H , σi(H) =√
n for all 1 6 i 6 n.

Proposition 51. [5, 3] For any n× n complex matrix A,

1. There exist unitary matrices U, V ∈ Cn×n such that U∗AV = diag(σ1, . . . , σn).

2. For i = 1, . . . , n,

σi(A) = max
dim(S)=i

min
06=x∈S

||Ax||
|x| ,

where S is an i-dimensional subspace of Cn.

3. rank(A) = r iff σ1(A) > · · · > σr(A) > σr+1(A) = · · · = σn(A) = 0.

4. ||A||2F = σ2
1(A) + · · ·+ σ2

n(A).

5. ||A|| = σ1(A).

6. For any submatrix B of the matrix A, rank(B) > ||B||2F /||A||2.

7. (Hoffman-Wielandt inequality) For any n× n complex matrix B,

n
∑

i=1

(σi(A) − σi(B))2 6 ||A−B||2F .

8. If A is symmetric, then

(a) All eigenvalues of A are real,

(b) Tr(A) = λ1(A) + · · ·+ λn(A),

(c) ||A||2F = λ2
1(A) + · · ·+ λ2

n(A),

(d) rank(A) > Tr(A)2/||A||2F .

The following propositions on the determinant of the Hadamard matrices may also be useful:

Proposition 52. (Hadamard Inequality) For any n× n complex matrix A,

|det(A)| 6
n
∏

j=1

√

√

√

√

n
∑

i=1

|aij |2,

which is sharp for Hadamard marices, i.e., the absolute value of the determinant of any n×n
generalized Hadamard matrix is equal to nn/2.

Proposition 53. Let H be an n×n generalized Hadamard matrix, and H0 be any (n− 1)×
(n− 1) minor of H. Then H0 is nonsingular and |det(H0)| = nn/2−1.

Proof. Assume that H0 is obtained by removing the ith row and the jth column of H ,
1 6 i, j 6 n. For all 1 6 k 6 n, divide the kth row of H by hkj . Subsequently, for all
1 6 ` 6 n, ` 6= j, divide the `th column of the matrix by hi`/hij . Then the resulting matrix

16

H ′ is still a generalized Hadamard matrix for which the ith row and the jth column are all-one
vectors, and det(H ′) = αij det(H), where

αij =

(

n
∏

k=1

hij

)n

n
∏

k=1

(hkjhik)

.

Observe that |αij | = 1. It follows from the orthogonality of the rows (columns) of H ′ and the
fact that the ith row (the jth column) of H0 is the all-one vector that the sum of the entries of
any row (column) of H ′ is zero, except for the ith row and the jth column where the sum is n.
Now, add up all rows of H ′ (except the ith row) with the ith row to get a matrix H ′′. Observe
that h′′

ij = n, h′′
ik = 0 (∀k 6= j), h′′

kj = 0 (∀k 6= i), and the minor H ′′
0 of H ′′ obtained by

removing its ith row and jth column is in fact H0. Therefore, det(H ′′) = (−1)i+jn det(H0).
But det(H ′′) = det(H ′) = αij det(H). Therefore,

|det(H0)| =
∣

∣

∣

(−1)i+jαij det(H)
n

∣

∣

∣

=
∣

∣(−1)i+jαij

∣

∣

nn/2

n
(5)

= nn/2−1,

where (5) follows from Proposition 53.

4.3 Vandermonde matrices

For any vector x = (x1, . . . , xn) over some field F, the Vandermonde matrix V is defined as
an n× n matrix V = (vij)n×n over F such that:

vij
def
=x

(j−1)
i , 1 6 i, j 6 n.

An interesting special case is when F = C and xi = ζ
(i−1)
n , where ζn is the nth primitive

root of unity and thus we get the Discrete Fourier Transform matrix.
To analyze the rigidity of a Vandermonde matrix, one needs to consider two cases sep-

arately, namely, when the xi are algebraically independent and when they are not. The
following is the best known lower bound for the either cases:

Theorem 54. [6] If the xi are restricted to be algebraically independent over Q, then,
RV (r) > n(n − cr2)/2, where c is a positive constant. In particular, for any arbitrary
constant δ < 1, there exists an ε > 0 such that for every r 6 ε

√
n, RV (r) > δn2.

Theorem 55. [6] If the xi are arbitrary but distinct, RV (r) > (n− r)2/(r + 1).

4.4 Constructive approaches

For certain special families of matrices, it is possible to resolve the rigidity by a constructive
argument, i.e., by giving an efficient (polynomial time) algorithm to compute (or bound) the
rigidity function. However, such an approach does not lead to a complexity result. Unless
proven to be optimal, an algorithm can only be useful for showing low rigidity of a certain
family, as it gives an upper bound on the rigidity function.

A constructive method is given in [4] to reduce the rank of the lower triangular all-ones
matrix. Let An be the n×n all 1’s lower triangular matrix defined over an arbitrary field F.
The construction to reduce the rank of An to 1 6 r 6 n is as follows:

17

Block 1
Block 2

Queen Row 1
Block 3
Block 4

Queen Row 2
Block 5
Block 6

Queen Row 3
...

Block 2k − 1
Block 2k

Queen Row k
Block 2k + 1

Figure 1: Partitioning the rows of a lower triangular all-ones matrix into blocks and Queen
rows.

1. Let t = (n − k)/(2k + 1). If t is integral, divide n − k rows of An into 2k + 1 groups
of t consecutive rows, according to the pattern shown in Figure 1. The rows specified
as Queen rows will be left unaltered. If t happens to be fractional, divide the n − k
non-queen rows as evenly as possible into 2k + 1 blocks, so that any block contains
either btc or dte rows.

2. Change all rows in block 1 to zero.

3. For each row v not in block 1, change v so that it is identical to the closest Queen row
(leave the Queen rows unchanged).

For integral t, the above algorithm requires a total of 1
2 t(t + 1)(2k + 1) changes. It has

been shown in [4] that the method is optimal for integral t, and at least close to optimal
otherwise. Thus it follows that,

Corollary 56. Reducing the rank of the n× n lower triangular all-ones matrix to
√

n needs
Ω(n3/2) changes.

Now, it is natural to ask, whether a similar technique can be used to obtain nontrivial
statements on the rigidity of other interesting families of matrices. Another question would
be, if a universal construction exists or not, i.e., whether the problem of computing (or
approximating) the rigidity of an arbitrary matrix (over the field of rational numbers or
some finite field) is NP-complete or not.

5 Conclusion

The following major question, proposed by Valiant [12], regarding the rigidity function re-
mains open:

Question. [12] For some natural n × n matrix A prove that RA(r) is large. A bound of
k(n − r)2 is one aim. A weaker aim would be one on the value of RA(n/2) alone, of kn2,
kn1+ε, or some other superlinear function in n. Natural candidates for A are: (i) For the

18

integers some Vandermonde matrix, (ii) For the complex numbers the discrete Fourier trans-
form matrix, and (iii) For GF(2), the 0-1 matrix associated with a finite projective plane.

We reviewed several explicit candidates for high rigidity. However, one may think of
many other families that seem to be as good for high rigidity. For instance, we can mention
a Toeplitz matrix (where the entries along any negative-sloping diagonal are the same), or a
circulant matrix (where the ith row (i > 1) is obtained by a circular right shift of the (i−1)th

row by one.).
However, a weaker question would be to improve upon the best known lower bound

(n2/r) log(n/r) for the rigidity of explicit matrices. A careful observation reveals that most
current analyses are merely based on a high rank assumption on the minors of the matrix.
However, Theorem 39 says that there exists totally regular matrices with low rigidity. Thus,
having minors with high (or even full) ranks by itself implies nothing useful on the rigidity
function. So to obtain a strong enough bound on the rigidity, one needs to make a sharp
analysis by investigating the special structure of the matrix more carefully and deeply.

Finally, another approach could be to revisit the original problem of proving nontrivial
lower bounds on the complexity of linear forms and to see if it can be related to a combina-
torial property which is potentially more promising and more tractable than matrix rigidity.

Acknowledgement

I am indebted to Amin Shokrollahi for introducing the exciting problem of matrix rigidity
to me and guiding me through my work on this project.

References

[1] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory,
Grundlehren der mathematischen Wissenschaften, Vol. 315, Springer, Berlin, 1997.

[2] J. Friedman. A note on matrix rigidity. Combinatorica, 13(2);235-239, 1993.

[3] B. Kashin and A. A. Razborov. Improved lower bounds on the rigidity of Hadamard
matrices. Mathematical Notes, 63(4):471-475, 1998.

[4] P. Kimmel and A. Settle. Reducing the rank of lower triangular all-ones matrices. Tech-
nical Report, CS 92-21, University of Chicago, 1992.

[5] S. V. Lokam. Spectral methods for matrix rigidity with applications to size-depth trade-
offs and communication complexity. Journal of Computer and System Sciences, 63:449-
473, 2001.

[6] S. V. Lokam. Note on the rigidity of Vandermonde matrices. Theoretical Computer
Science, 237(1-2):477-483, 2000.

[7] J. Morgenstern. The linear complexity of computation. Journal of the ACM, 22(2):184-
194, 1975.

[8] N. Pippenger and L. G. Valiant. Shifting graphs and their applications. Journal of the
ACM, 23:423-432, 1976.

[9] P. Pudlák and V. Rödl. Modified ranks of tensors and the size of circuits. In Proceedings
of the 25th Annual ACM Symposium on Theory of Computing (STOC), pages 523-531,
1993.

19

[10] M. A. Shokrollahi, D. A. Spielman, and V. Stemann. A remark on matrix rigidity.
Information Processing Letters, 64(6):283-285, 1997.

[11] V. Strassen. Vermeidung von Divisionen. J. Reine Angew. Math., 264:184-202, 1973.

[12] L. G. Valiant. Graph theoretic arguments in low-level complexity. Lecture Notes in Com-
puter Science, Springer, Berlin, 53:162-176, 1977.

[13] L. G. Valiant. On nonlinear lower bounds in computational complexity. In Proceedings of
the 7th Annual ACM Symposium on Theory of Computing (STOC), pages 45-53, 1975.

20

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

