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Abstract. Trevisan has shown that constructions of pseudo-random generators from hard functions
(the Nisan-Wigderson approach) also produce extractors. We show that constructions of pseudo-random
generators from one-way permutations (the Blum-Micali-Yao approach) can be used for building extrac-
tors as well. Using this new technique we build extractors that do not use designs or polynomial-based
error-correcting codes and that are very simple and efficient. For example, one extractor produces each
output bit separately in O(log2 n) time. These extractors work for weak sources with min entropy λn,
for arbitrary constant λ > 0, have seed length O(log2 n), and their output length is ≈ nλ/3.

1 Introduction

Extractors are procedures that remedy an imperfect source of random strings. They have been the object
of intense research in the last years and several relevant techniques have been developed. This paper
puts forward a new framework for constructing extractors based on a new connection between extractors
and pseudo-random generators. Surely, in some regards, there are obvious similarities between the two
concepts. A pseudo-random generator takes as input a short random string called the seed and outputs
a long string that cannot be distinguished from a truly random string by any test that is computable by
circuits of bounded size. An extractor has two inputs: (a) The first one comes from an imperfect (i.e.,
with biased bits and correlations among bits) distribution on binary strings of some length and it is
called the weakly-random string; (b) the second one is a short random seed. The output is a long string
that cannot be distinguished from a truly random string by any test. One difference between pseudo-
random generators and extractors is the number of inputs (one versus two). From a technical point of
view this difference is minor because the known constructions of pseudo-random generators implicitly
do use an extra input which is a function that in some sense is computationally hard. The fundamental
difference is in the randomness requirement for the output. Thus, while the output of a pseudo-random
generator looks random in a complexity-theoretic way, the output of an extractor is random (or very
close to random) in an absolute information-theoretic way. Consequently pseudo-random generators
and extractors appear to belong to two very different worlds, and, for many years, the developments in
the construction of pseudo-random generators and extractors went along distinct research lines.

Trevisan [Tre01] has made a breakthrough contribution in this area by observing that the (apparently
superficial) similarity between extractors and pseudo-random generators extends to some of the methods
to build the two kind of objects. For the reasons mentioned above, Trevisan’s result has been extremely
surprising. It has also been an isolated example of a transfer from the complexity theory standard arsenal
of techniques to the information theoretical area. In this paper we extend Trevisan’s observation and
establish that, as far as construction methods are concerned, there is a truly close relationship between
pseudo-random generators and extractors. Specifically, we show that the other major route (than the
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one followed by Trevisan) that leads to pseudo-random generators (of a somewhat different kind) can
also be used to construct extractors. Some explanations are in order at this point.

There are two known approaches for constructing pseudo-random generators. One approach uses
as a building block a hard function f and, in one typical setting of parameters, for any given k ∈ N,
builds a pseudo-random generator g with outputs of length n that is secure against adversary tests
computable in time nk. The running time to compute g(x) is nk′

, for some k′ > k. This kind of
pseudo-random generators can be used for derandomizing BPP computations. They cannot be used in
cryptography, because in this setting, it is unwise to assume that the adversary is endowed with less
computational power (nk) than the legitimate users (nk′

). Henceforth we will call this type of pseudo-
random generator a “derandomization pseudo-random generator” (also known as a Nisan-Wigderson
pseudo-random generator).

The second approach uses as a building block a hard object of a more sophisticated type, namely
a one-way function (the hardness of such a function f consists in the difficulty to invert it, but f
must satisfy an additional property, namely, it should be easy to calculate f(x) given x). It is known
that given a one-way function, one can construct a pseudo-random generator [HILL99]. An easier
construction produces a pseudo-random generator from any one-way length-preserving permutation.
This second approach has the disadvantage that is using as a building block a more demanding type of
object. The advantage of the method is that a pseudo-random generator g constructed in this way can
be used in cryptography because g(x) can be calculated in time significantly shorter than the time an
adversary must spend to distinguish g(x) from a truly random string. Henceforth we will call this type
of pseudo-random generator a “crypto pseudo-random generator” (also known as a Blum-Micali-Yao
pseudo-random generator).

Trevisan has shown that the known methods for constructing derandomization pseudo-random gen-
erators also produce extractors. More precisely, he has shown that the constructions of pseudo-random
generators from hard functions given by Nisan and Wigderson [NW94] and Impagliazzo and Wigder-
son [IW97] can be used almost directly to produce extractors. His method has been extended in a
number of papers to build extractors with increasingly better parameters (see the survey paper by
Shaltiel [Sha02]). In the paper [Tre99], the conference version of [Tre01], Trevisan has suggested that
the methods to construct crypto pseudo-random generator cannot be used to build extractors. We show
that in fact they can, at least for a combination of parameters that, even though not optimal, is not
trivial. Moreover, we show that the extractors constructed in this way are very simple and efficient.

An extractor can be viewed as a bipartite graph and is therefore a static finite object that can be
constructed trivially by exhaustive search. We are looking however for efficient constructions. Typi-
cally “efficient” means “polynomial time,” but one can envision different levels of efficiency and one
remarkable such level would certainly be “linear time.” The first extractor built in this paper follows
almost directly the classical construction of a pseudo-random generator from a one-way permutation,
and comes very close to this level of efficiency: Viewed as a procedure, it runs in O(n log n) time (in the
standard RAM model). In addition it is very simple. The following is a complete description of it. The
input consists of the weakly-random string X, of length n = ñ2ñ for some integer ñ, and of the seed
((x1, . . . , x`), r), with |xi| = ñ, ` = O(ñ), and |r| = `ñ. We view X as a function X : {0, 1}ñ → {0, 1}ñ,
and, using the standard procedure, we transform X into a circular permutation R : {0, 1} ñ → {0, 1}ñ.
For i = 0 to m − 1 = nΩ(1), we calculate bi as the inner product modulo 2 of r and (Ri(x1) . . . Ri(x`)).
The output is b0 . . . bm−1.

Another remarkable level of efficiency which has received a lot of attention recently is that of sublinear
time. It may be the case that in some applications we only need the i-th bit from the sequence of
random bits that are extracted from the weakly-random string. We would like to obtain this bit in
time polynomial in the length of the index i, which typically means polylog time in the input length
(under the assumption that each input bit can be accessed in one time unit). By analogy with the case
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of list-decodable codes, we call an extractor with this property, a bitwise locally computable extractor.1

The second extractor that we build is of this type. The algorithm deviates from the direct construction
of a pseudo-random generator from a one-way function. However it relies on a basic idea used in the
construction of the first extractor, combined with the idea of taking consecutive inputs of the hard
function as in the extractor of Ta-Shma, Zuckerman and Safra [TSZS01]. This second extractor is even
simpler and its complete description is as follows. The input consists of the weakly-random string X of
length n = ñ · 2ñ, for some natural number ñ, and of the seed ((x1, . . . , x`), r), with |xi| = ñ, for all i,
` = O(ñ), and |r| = `ñ. We view X as the truth-table of a function X : {0, 1}ñ → {0, 1}ñ. For i = 0 to
m− 1 = nΩ(1), we calculate bi as the inner product modulo 2 of r and (X(x1 + i), . . . , X(x` + i)), where
the addition is done modulo 2ñ. The output is b0 . . . bm−1.

The parameters of the extractors constructed in this paper are not optimal. Both extractors that
have been described above work for weak sources having min-entropy λn, for arbitrary constant λ > 0,
use a random seed of length O(log2 n), and the output length is approximately nλ/3. A variant of the
second extractor has seed length O(log n) (here, for simplicity, we assume that the extractor’s error
parameter ε is a constant), but the output length reduces to 2O(

√
log n).

Lu’s extractor [Lu04] coupled with the constructions of designs from the paper of Hartman and
Raz [HR03] can be seen to be also a bitwise locally computable extractor with parameters similar to
those of our second extractor (note that the designs in [HR03] appear to imply extractors with seed
length Ω(log2 n)). Lu’s extractor is using expander graphs and the designs from [HR03] need somewhat
unwieldy algebraic objects. It seems to us that the extractors presented in this paper are simpler than
all the extractors from the literature.2 At the highest level of abstraction, our extractors follow the
“reconstruction paradigm” (see [Sha02]) typical to Trevisan’s extractor and to its improvements [RRV99,
TSZS01, SU01]. The major differences are that our extractors avoid (1) the use of designs (in this respect
they are similar to the extractors in [TSZS01] and [SU01]), and, perhaps more strikingly, (2) the encoding
of the weakly-random string with an error-correcting code having a good list-decoding property. Our
extractors can be implemented very easily and are thus suitable for practical applications. For example,
they can be utilized to generate one-time pad keys in cryptosystems based on the bounded-storage
model (see the papers of Lu [Lu04] and Vadhan [Vad04]), or for constructions of error-correcting codes
using the scheme in [TSZ01] (the second extractor built in this paper is actually a strong extractor—
for definition see, for example [Sha02]—as required by this scheme). They may also have theoretical
applications in situations where the kind of efficiency achieved by our extractors is essential.

2 Definitions

Notations: x � y denotes the concatenation of the strings x and y, |x| denotes the length of the string
x, and ‖A‖ denotes the cardinality of the set A. We remind the standard definition of an extractor. Let
n ∈ N. Let Xn, Yn be two distributions on Σn. The statistical distance between Xn and Yn is denoted
∆stat(Xn, Yn) and is defined by ∆stat(Xn, Yn) = maxA⊆{0,1}n |Prob(Xn ∈ A) − Prob(Yn ∈ A)|.

If we view the sets A ⊆ {0, 1}n as statistical tests, then, by the above expression, ∆stat(Xn, Yn) ≤ ε
signifies that no test can distinguish between the distributions Xn and Yn except with a small
bias ε. If we restrict to tests that can be calculated by bounded circuits, we obtain the notion
of computational distance between distributions. Namely, the computational distance between
Xn and Yn relative to size S is denoted ∆comp,S(Xn, Yn) and is defined by ∆comp,S(Xn, Yn) =

1The simpler name locally computable extractor is already taken by a different kind of efficient extractors, namely by
extractors whose outputs depend only on a small number of the bits of the weakly random string, see [Vad04], [Lu04].

2We note that Dziembowski and Maurer [DM04] give a similarly simple construction of an object that is related to
extractors.
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max |Prob(C(Xn) = 1) − Prob(C(Yn) = 1)|, where the maximum is taken over all circuits C of size
≤ S. Abusing notation, we identify a circuit C with the set of strings x for which C(x) = 1. Thus,
x ∈ C is equivalent to C(x) = 1.

The min-entropy of a distribution is a good indicator of the degree of randomness of the distribution.

The min-entropy of a random variable taking values in {0, 1}n is given by min
{

log 1
Prob(X=a)

∣

∣

∣
a ∈

{0, 1}n,Prob(X = a) 6= 0
}

.

Thus if X has min-entropy ≥ k, then for all a in the range of X, Prob(X = a) ≤ 1/2k. For each
n ∈ N, let Un denote the uniform distribution over {0, 1}n. We are now ready to define an extractor
formally.

Definition 2.1 (Extractor) The values n, k, d,m are integer parameters, and ε > 0 is a real number
parameter. A function E : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor if for every distribution X
on {0, 1}n with min-entropy at least k, the distribution E(X,Ud) is ε-close to the uniform distribution
Um in the statistical sense, i.e., ∆stat(E(X,Ud), Um) ≤ ε.

Thus, an extractor has as input (a) a string x produced by an imperfect source with distribution X,
where the defect of the distribution is measured by k = min-entropy(X), and (b) a random seed y
of length d. The output is E(x, y), a string of length m. The key property is that, for every subset
W ⊆ Σm,

|Probx∈X{0,1}n,y∈{0,1}d(E(x, y) ∈ W ) − Probz∈Σm(z ∈ W )| ≤ ε. (1)

If we consider n and k as given (these are the parameters of the source), it is desirable that d is
small, m is large, and ε is small. It can be shown nonconstructively that for every k ≤ n and ε > 0,
there exist extractors with d = log(n− k) + 2 log(1/ε) + O(1) and m = k + d− 2 log(1/ε)−O(1). It has
been shown [RTS00] that these parameters are optimal. Furthermore, we want the family of extractors
to be efficiently computable. For simplicity, we have defined individual extractors. However, implicitely
we think of a family of extractors indexed by n and with the other parameters being uniform functions
of n. In this way we can talk about efficient constructions of extractors by looking at the time and
space required to calculate E(x, y) as functions of n.

An extractor E : {0, 1}n × {0, 1}d → {0, 1}m can also be viewed as a regular bipartite graph where
the set of “left” nodes is Vleft = {0, 1}n and the set of “right” nodes is Vright = {0, 1}m. The degree of
each node in Vleft is 2d, and two nodes x ∈ Vleft and z ∈ Vright are connected if there is y ∈ {0, 1}d such
that E(x, y) = z. We can imagine that each x ∈ Vleft = {0, 1}n is throwing 2d arrows at Vright = {0, 1}m.

To understand better Equation (1), let us look deeper into the structure of an extractor. We fix
parameters n, d,m and ε and a function E : {0, 1}n × {0, 1}d → {0, 1}m. Let us consider an arbitrary
set W ⊆ {0, 1}m and a string x ∈ {0, 1}n. We say that x hits W ε-correctly via E if the fraction of
outgoing edges from x that land in W is ε-close to the fraction ‖W‖/‖{0, 1}m‖, i.e.,

∣

∣

∣

∣

‖{E(x, y) | y ∈ {0, 1}d} ∩ W‖
‖{0, 1}d‖ − ‖W‖

‖{0, 1}m‖

∣

∣

∣

∣

≤ ε.

If we look at a fixed x, it cannot hold that for every W ⊆ {0, 1}m, x hits W ε-correctly (for example,
take W = {E(x, y) | y ∈ {0, 1}d}). Fortunately, for E to be an extractor, all we need is that any
W ⊆ {0, 1}m is hit ε-correctly by most x ∈ {0, 1}n. The folowing lemma has appeared more or less
explicitly in the literature (see, for example, [Sha02]).

Lemma 2.2 Let E : {0, 1}n × {0, 1}d → {0, 1}m and ε > 0. Suppose that for every W ⊆ {0, 1}m, the
number of x ∈ {0, 1}n that do not hit W ε-correctly via E is at most 2t, for some t. Then E is a
(t + log(1/ε), 2ε)-extractor.
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Proof Let X be a distribution on {0, 1}n with min-entropy at least t + log(1/ε) and let W be a subset
of {0, 1}m. There are at most 2t x’s that do not hit W ε-correctly and the distribution X allocates to
these x’s a mass probability of at most 2t · 2−(t+log(1/ε)) = ε. We have,

Probx∈X{0,1}n,y∈{0,1}d(E(x, y) ∈ W )

= Probx∈X{0,1}n,y∈{0,1}d(E(x, y) ∈ W and x hits W ε-correctly)

+ Probx∈X{0,1}n,y∈{0,1}d(E(x, y) ∈ W and x does not hit W ε-correctly).

The first term in the right hand side is between ‖W‖
‖{0,1}m‖ − ε and ‖W‖

‖{0,1}m‖ + ε, because for each x that
hits W ε-correctly,

Proby∈{0,1}d(E(x, y) ∈ W ) ∈
[ ‖W‖
‖{0, 1}m‖ − ε,

‖W‖
‖{0, 1}m‖ + ε

]

.

The second term is bounded by

Probx∈X{0,1}n,y∈{0,1}d(x does not hit W ε-correctly),

which is, as we have seen, between 0 and ε. Plugging these estimates in the above equation, we obtain
that

∣

∣

∣

∣

Probx∈X{0,1}n ,y∈{0,1}d(E(x, y) ∈ W ) − ‖W‖
‖{0, 1}m‖

∣

∣

∣

∣

≤ 2ε.

Thus, E is a (t + log 1
ε , 2ε)-extractor.

We recall the definition of a pseudo-random generator.

Definition 2.3 (Pseudo-random generator) Let `, L, S ∈ N and ε > 0 be parameters. A function
g : Σl → ΣL is a pseudo-random generator with security (ε, S) if ∆comp,S(g(U`), UL) ≤ ε.

3 Overview and comparison with Trevisan’s approach

Trevisan’s method is based on the constructions of pseudo-random generators from hard functions given
in [NW94] and in [IW97]. These constructions use a function f as a block-box and construct from it
a function gf that stretches the input (i.e., |gf (x)| >> |x|) and which has the following property. If
there exists a circuit D that distinguishes gf (x), when x is randomly chosen in the domain of gf , from
the uniform distribution, then there is a small circuit A, which uses D as a subroutine, such that A
calculates f (or an approximation of f , depending on whether we are using the method in [IW97] or the
one in [NW94]). Therefore if f is a hard function, there can be no circuit D as above of small size and
thus gf is a pseudo-random generator. Trevisan has observed that (1) the truth-table of f can be viewed
as a string produced by a weak source that can serve as an extra input of the pseudo-random generator,
and (2) the circuit A invoking D can be considered as a special type of a circuit that is endowed with
D-gates. By a standard counting argument, it can be shown that, for any circuit D, regardless of its
size, the set of functions that can be calculated by small circuits with D-gates is small. A circuit D can
be viewed statically as a statistical test (more exactly, the statistical test associated to the circuit D is
the set of strings accepted by D). In the new terminology, the fact that D distinguishes the distribution
of gf (x) from the uniform distribution with ε bias can be restated as “f does not hit D ε-correctly
via g.” The main property mentioned above can be restated as saying that the set of functions f that
do not hit D ε-correctly is included in the set of functions computable by small circuits with D-gates.
Since the latter set is small, the former set is small as well, and thus, by Lemma 2.2, the construction
yields an extractor. In a nutshell, Trevisan’s method replaces hard functions (a complexity-theoretic
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concept) with random functions (an information-theoretic concept) and takes advantage of the fact that
a random function is hard and thus the construction carries over in the new setting.

We would like to follow a similar approach for the construction of crypto pseudo-random generators
from one-way permutations. Those constructions do use a one-way permutation R as a black box to
construct a pseudo-random generator gR, and thus a truth-table of R can be considered as an extra
input of the pseudo-random generator. Also, the proof is a reduction that shows that if a circuit D
distinguishes gR(x) from the uniform distribution, then there is a small circuit A, invoking the circuit D,
that inverts R on a large fraction of inputs. To close the proof in a similar way to Trevisan’s approach,
we would need to argue that the vast majority of permutations are one-way. It seems that we hit a
major obstacle because, unlike the case of hard functions, it is not currently known if even a single
one-way function exists (and we are seeking an unconditional proof for the extractors that we build).
We go around this obstacle by allowing algorithms to have oracle access to the function they compute.
Thus, in the above analysis, the circuit A, in addition to invoking the circuit D, will also have oracle
access to the permutation R. In this setting all permutations are easy to compute because, obviously,
there is a trivial constant-time algorithm that, for any permutation R : {0, 1}n → {0, 1}n, given the
possibility to query R, calculates R(x). We need to argue that only few permutations R are invertible
by algorithms that can query R in a bounded fashion. More precisely we need to estimate the size of
the set of permutations R : {0, 1}n → {0, 1}n that can be inverted on a set of T elements in {0, 1}n by
circuits that can pose Q queries to R. This problem has been considered by Impagliazzo [Imp96] and
by Gennaro and Trevisan [GT00]. Their techniques seem to work for the case T · Q < 2n and lead to
extractors that work only for sources with high min-entropy.3

We obtain better parameters by restricting the type of one-way permutations and the type of circuits
that attempt to invert them. A second look at the standard construction of Blum-Micali-Yao pseudo-
random generators reveals that the circuit A with D-gates manages to determine x using only the values
R(x), R2(x), . . . , Rm(x) (where m is the generator’s output length). It is thus enough to consider only
circuits that use this pattern of queries to the permutation R. Intuitively, for a random permutation
R, the value of x should be almost independent of the values of R(x), R2(x), . . . , Rm(x), and thus,
a circuit A restricted as above cannot invert but a very small fraction of permutations. If we take
R to be a random circular permutation, the above intuition can be easily turned into a proof based
on a Kolmogorov-complexity counting argument. A circular permutation R : {0, 1}n → {0, 1}n is
fully specified by the sequence (R(1), R2(1), . . . , RN−1(1)), where N = 2n. If a circuit A restricted as
above inverts R(x) for all x, then the permutation R is determined by the last m values in the above
sequence, namely RN−m(1), RN−(m−1)(1), . . . , RN−1(1). Indeed, given the above values, the circuit
A can determine RN−m−1(1), which is R−1(RN−m(1)), and then RN−m−2(1), and so on till R(1) is
determined. Therefore such a permutation R, given the circuit A, can be described concisely using only
m · n bits (for specifying, as discussed, the last m elements in the above sequence). In fact, in our case,
the circuit A does not invert R(x) for all x ∈ {0, 1}n, and, therefore, the values of R at the points where
the inversion fails have to be included in the description. A further complication is that even for the
successful cases, the circuit A only list-inverts R(x), which means that A on input R(x) produces a
relatively short list of elements, one of which is x. Thus, one also has to include in the description of
R the rank of x in the list produced by A. The quantitative analysis of the standard construction of a
crypto pseudo-random generator shows that if the permutation R does not hit D ε-correctly, then the
circuit A with D-gates is only able to produce for an ε/m fraction of R(x), x ∈ {0, 1}n, a list with m2/ε2

elements one of which is x. For interesting values of m (the pseudo generator’s output length), the ε/m
fraction is too small and needs to be amplified to a value of the form (1−δ), for a small constant δ. This

3On the other hand, these extractors have the interesting property that their output looks random even to statistical
tests that have some type of access to the weakly-random string. These results will be reported in a separate paper.
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can be done by employing another technique that is well-known in the context of one-way functions.
Namely, we use Yao’s method of converting a weak one-way function into a strong one-way function by
taking the direct product. In other words, we start with a circular permutation R, define (the direct
product) R(x1, . . . , x`) = R(x1) � . . . � R(x`) (where � denotes concatenation), for some appropriate
value of `, and use R in the definition of the extractor (instead of R in our tentative plan sketched
above). It can be shown that, for ` = O((1/δ) log(1/γ)), if a circuit A list-inverts (y1, . . . , y`), with list
size T = m2/ε2, for a γ = ε/m fraction of `-tuples (y1, . . . , y`) ∈ ({0, 1}n)`, then there is a probabilistic
algorithm A′ that list-inverts R(x) with list size O(n ·T · (1/δ) · (1/γ) · log(1/γ)) for a (1− δ) fraction of
x ∈ {0, 1}n. By fixing the random bits and the queries that depend on these random bits, we can obtain
a brief description of R as in our first tentative plan. It follows that only few permutations R can hit
D ε-incorrectly and, therefore, by Lemma 2.2, we have almost obtained an extractor (we also need to
convert an arbitrary function X : {0, 1}n → {0, 1}n into a circular permutation R : {0, 1}n → {0, 1}n,
which is an easy task).

Briefly, the proof relies on the fact that if a permutation R does not hit D ε-correctly, then there
must be a very strong dependency between the “consecutive” values x,R(x), R2(x), . . . , Rm(x), for many
x ∈ {0, 1}n, and only few permutations R exhibit such dependencies.

The second extractor starts from this idea and the observation that, for the sake of building an
extractor, we can work with a function X (i.e., not necessarily a permutation) and consider consecutive
values X(x), X(x + 1), . . . , X(x + m), as in the extractor of Ta-Shma, Zuckerman, and Safra [TSZS01].
That extractor (as well as all the extractors using the “reconstruction paradigm”) takes X to be the
encoding of an arbitrary function X with a good list-decoding property and some other special algebraic
properties. This is necessary, among other things, for the same type of amplification as in our discussion
above. We use instead a direct-product construction that is much simpler to implement (however, the
cost is a longer seed length).

4 Restricted permutations, restricted circuits

The space from where we randomly choose permutations consists of permutations of a special form.
First we consider the set CIRC of all circular permutations R : {0, 1}n → {0, 1}n. Next, for some
parameter ` ∈ N, we take the `-direct product of CIRC. This means that for any R ∈ CIRC, we define
R` : {0, 1}`n → {0, 1}`n by R`(x1 �x2 � . . .�x`) = R(x1)�R(x2)� . . .�R(x`). We let PERM` be the
set {R` | R ∈ CIRC}. We will drop the subscript ` when its value is clear from the context or when it
is not relevant in the discussion.

We want to argue that no circuit that queries R in a restricted way can invert a “large” fraction of
R(x) except for a “small” fraction of permutations R in PERM. In order to obtain adequate values for
“large” and “small” we will impose the following restriction on the pattern of queries that the circuit
can make.

Definition 4.1 An oracle circuit C on inputs of length at least ` · n is L-restricted if on any input x

and for all oracles R ∈ PERM`, C only queries xfirst, R(xfirst), R
2
(xfirst), . . . , R

L−1
(xfirst), where xfirst is

the string consisting of the first ` · n bits of x.

We will allow the circuits to attempt to invert R in a weaker form: On input R(x), C R outputs a

small list of strings one of which (in case C succeeds) is x. When this event happens, we say that C R

list-inverts x. We are interested in estimating the number of permutations R ∈ PERM so that C R

list-inverts R(x) for a large fraction of x.

Definition 4.2 Let C be an oracle circuit. A permutation R is (γ, T )-good for C if for at least a γ

fraction of x ∈ {0, 1}`n, CR on input R(x) outputs a list of T elements that contains x.
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We will show that a permutation that is (γ, T )-good for a restricted circuit C admits a short description
conditioned by C being given. This leads immediately to an estimation of the number of permutations
R that are (γ, T )-good for a given restricted circuit C.

Lemma 4.3 Let γ > 0, n ∈ N, L ∈ N, and T ∈ N. Let N = 2n. Let δ > 0 and let ` =
⌈

3
δ · log

(

2
γ

)⌉

.

Assume δ ≥ 2e−n and ` < L + 1. Let C be an L-restricted circuit, having inputs of length `n, and let
R ∈ PERM` be a permutation that is (γ, T )-good for C. Then, given C and `, R can be described using
a number of bits that is bounded by 2δNn + Ln + N log n + (log 6)N + N log(1/δ) + N log log(2/γ) +

N log(1/γ) + N log T + 18n2 · L · 1
γ ·

(

1
δ

)2(
log 2

γ

)2
.

Proof Since R is the `-direct product of R, it is enough to present a short description of R. We will
first show that the assumption that CR list-inverts a γ-fraction of R(x) with x ∈ {0, 1}`n implies that
there exists an oracle circuit B so that BR list-inverts a (1 − δ) fraction of R(x) with x ∈ {0, 1}n. The
circuit B is not L-restricted but it has a similar property. Namely the circuit B makes two categories
of queries to the oracle R. The first category consists of a set of queries that do not depend on the
input. The second category depends on the input y and it consists of the queries y,R(y), . . . , RL−1(y).
The circuit B is helpful in producing the concise description of R that we are seeking. Note that the
permutation R ∈ CIRC is determined by the vector (R(1), R2(1), . . . , R(N−1)(1)). This vector will be
described in the following way. The last L entries are described by themselves. Then we describe each
of the other entries y one at a time going backwards in the vector. Suppose that R(y), R2(y), . . . , RL(y)
are already described. We describe now the preceding term in the sequence, which is y. There are two
cases.

Case 1 : BR list-inverts R(y). In this case y is determined by its rank in the T -list produced by BR

on input R(y). The computation of BR on input R(y) depends on the strings R(y), . . . , RL(y) (which
are already described) and on the value of R on the fixed queries (these values have to be given in the
description, but they are common to all the entries in the vector).

Case 2 : If BR fails to list-invert y (this will happen only for a small fraction δ of y’s), then y is
described by itself.

We will show that this description policy needs the asserted number of bits.
We proceed with the technical details. The amplification of the fraction of inverted inputs from γ

to (1 − δ) is done using the well-known technique of producing strong one-way functions from weak
one-way functions (Yao [Yao82]). Let w = 6 · 1

δ · log
(

2/γ
)

· 1
γ . Recall that ` =

⌈

3
δ · log

(

2
γ

)⌉

. It holds

that, for n ≥ ln(2/δ) and δ < 1/3, `
w < γ − (1− δ + e−n)`. Let INV be the set of strings R(x) on which

CR outputs a T -list that contains x. From the hypothesis, we know that ‖INV‖ ≥ γ · 2`n. We define
the following probabilistic algorithm D.

Input: y = R(x), for some x ∈ Σn. Goal: Find a short list that contains x.
LIST = ∅.
Repeat the following n · w times.

Pick random i ∈ {1, . . . , `}.
Pick ` − 1 random strings in {0, 1}n denoted y1, . . . , yi−1, yi+1, . . . , y`.
Calculate Y = y1 � . . . � yi−1 � R(x) � yi+1 � . . . � y`.

Call the circuit CR to invert Y . CR returns a T -list of `-tuples in ({0, 1}n)`.
(Note: In case of success one of these `-tuples is
(R−1(y1), . . . , R

−1(yi−1), x,R−1(yi−1), . . . , R
−1(y`)).)

Add to LIST the i-th component of every `-tuple in the list produced by CR.
End Repeat
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We say that the above algorithm is successful on input y = R(x) if, at the conclusion of the algorithm,
LIST contains x. We estimate the success probability of the above circuit on input y = R(x).

Let N(y) be the multiset of `-tuples having y as one component where the multiplicity of a tuple is
the number of occurrences of y in the tuple. For a set A ⊆ {0, 1}n, we define N(A) =

⋃

y∈A N(y). It

can be seen that, for all y ∈ {0, 1}n, ‖N(y)‖ = ` · 2n(`−1). We define

Vw =
{

y ∈ {0, 1}n | ‖N(y) ∩ INV‖
‖N(y)‖ ≥ 1

w

}

.

Let Vw be the complement of Vw. We have

‖N(Vw) ∩ INV‖ ≤
∑

y∈Vw

‖N(y) ∩ INV‖

< 2n · 1

w
· (` · 2n(`−1))

=
`

w
· ‖(Σn)`‖.

We show that this is possible only if ‖Vw‖ < (δ− e−n) · ‖Σn‖. Let A ⊆ Σn be a set with ‖A‖ ≥ (δ− en) ·
‖Σn‖. We observe that N(A) covers an overwhelming fraction of (Σn)`. Indeed, note that the probability
that a tuple (y1, . . . , y`) is not in N(A) is equal to the probability of the event “y1 6∈ A ∧ . . . ∧ y` 6∈ A”
which is bounded by (1− δ + e−n)`. Therefore, the complementary set of N(A), denoted N(A), satisfies

‖N(A)‖ < (1 − δ + e−n)` · ‖(Σn)`‖.

Then,

‖N(A) ∩ INV‖ = ‖INV‖ − ‖INV ∩ N(A)‖
≥ ‖INV‖ − ‖N(A)‖
>

[

γ − (1 − δ + e−n)`
]

‖(Σn)`‖.

Recall that `/w <
[

γ − (1 − δ + e−n)`
]

. Thus necessarily ‖Vw‖ < (δ − e−n) · 2n.
On input y = R(x), at each iteration, the algorithm chooses uniformly at random y in N(y). The

circuit C is invoked next to invert R(y). The algorithm succeeds if and only if y ∈ INV. For all y ∈ Vw,
‖N(y)∩INV‖

‖N(y)‖ ≥ 1
w , and thus the probability that one iteration fails conditioned by y ∈ Vw is ≤ (1−(1/w)).

Since the procedure does n · w iterations, the probability over y ∈ {0, 1}n and over the random bits
used by the algorithm D, conditioned by y ∈ Vw, that y is not list-inverted is ≤ (1 − (1/w))n·w < e−n.
Therefore the probability that y is not list-inverted is bounded by the probability that y 6∈ Vw plus the
above conditional probability of failure-to-list-invert. Thus, it is bounded by δ − e−n + e−n = δ.

Note that the algorithm D is using at each iteration the random strings y1, . . . , yi−1, yi+1, . . . , y` and
there are n · w iterations. There is a way to fix these random strings used by D so that the circuit B
that is obtained from D by using the fixed bits instead of random bits list-inverts a fraction of at least
(1 − δ) of the strings x ∈ {0, 1}n. There are n · w · (` − 1) fixed strings.

Assuming that the circuit C and ` are given, the permutation R can be described, using the
previously-discussed procedure, from

• 2δ · N · n bits that encode the δN elements that B fails to list-invert and the value of R at these
points.

• The last L positions in the circular permutation R. This requires L · n bits.
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• For each of the (1−δ)N strings x that are list-inverted by C, the rank of x in the generated LIST.
This requires (1 − δ) · N · (log n + log w + log T ) bits.

• The set of n ·w · (`− 1) fixed strings y and the value of R on y,R(y), . . . , RL−1(y) for every fixed
y. This requires n · w · (` − 1) · n + n · w · (` − 1) · L · n ≤ n2w`L bits (for ` − 1 < L).

The total number of bits needed for the description (given B) is bounded by

2δNn + Ln + (1 − δ)N log n + (1 − δ)N log w + (1 − δ)N log T + n2w`L.

Plugging the values of ` and w, we obtain that the description of R is bounded by 2δNn+Ln+N log n+
(log 6)N + N log(1/δ) + N log log(2/γ) + N log(1/γ) + N log T + 18n2 · L · 1

γ ·
(

1
δ

)2(
log 2

γ

)2
.

We want to estimate the number of permutations that are (γ, T )-good for some L-restricted circuit
C. We state the result for a particular combination of parameters that will be of interest in our
application. The extractor construction will involve the parameters m ∈ N and ε > 0. We will have
γ = ε/m, T = m2 · (1/ε2), and L = m.

Lemma 4.4 Let n ∈ N,m ∈ N, ε > 0, δ > 0. Let N = 2n. Consider γ = ε/m and T = m2 · (1/ε2). Let
` = d(3/δ) log(2/γ)e. Assume that δ = O(1) and m2 · (1/ε) = o(N/n4). Let C be an m-restricted circuit,
with inputs of length `n. Then the number of permutations R in PERM` that are (γ, T )-good for C is
bounded by 2h, where h = 3δ · N · n + 3N log m + 3N log(1/ε).

Proof Under the assumptions in the hypothesis, Lemma 4.3 implies that any permutation that is
(γ, T )-good for C can be described with h bits. The conclusion follows immediately.

5 Analysis of the construction of pseudo-random generators from

one-way permutations

We recall the classic construction (Blum and Micali [BM84] and Yao [Yao82]) of a pseudo-random
generator from a one-way permutation. The construction starts with a one-way permutation
R : {0, 1}`n → {0, 1}`n. In the classical setting, we work under the assumption that no circuit
of some bounded size inverts R(x) except for a small fraction of x in the domain of R.

Step 1. We consider the predicate b : {0, 1}`n × {0, 1}`n → {0, 1} defined by b(x, r) = x · r (the
inner product modulo 2). By the well-known Goldreich-Levin Theorem [GL89], b(x, r) is a hard-core
predicate for R(x)� r, i.e., no circuit of an appropriate bounded size can calculate b(x, r) from R(x)� r
except with a probability very close to 1/2. More precisely, it holds that if a probabilistic circuit C1 on
input R(x) � r calculates b(x, r) with probability 1/2 + ε (the probability is over x, r, and the random
bits used by C1) then there is a circuit C2 not much larger than C1 which for a 3ε/4 fraction of x
list-inverts x. (In the classical setting this is in conflict with the above assumption, because one can
check the elements from the list one by one till x is determined.) Lemma 5.3 proves this fact adapted
to an information-theoretic context (actually, in our setting, the fact holds with stronger parameters).

Step 2. The function HR : {0, 1}2`n → {0, 1}2`n+1, given by HR(x, r) = R(x) � r � b(x, r), can be
shown to be a pseudo-random generator with extension 1. More precisely, it holds that if C2 is a circuit
that distinguishes HR(x, r) from U2`n+1 with bias ε, one can build a circuit C3, not much larger than
C2, that on input R(x) � r calculates b(x, r) correctly with probability at least 1/2 + ε. Lemma 5.2
proves this fact adapted to an information-theoretic context.

Step 3. We define GR(x, r) by the following algorithm.
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Input: R a permutation of {0, 1}`n, x ∈ {0, 1}`n, r ∈ {0, 1}`n.

For i = 0 to m − 1, bi = r · (Ri
(x)).

Output b0 � b1 � . . . � bm−1.

It can be shown that under the given assumption, GR is a pseudo-random generator. More precisely,
it holds that if a circuit C4 distinguishes GR from Um with bias ε, then there is a circuit C3, not much
larger than C4, so that C3 distinguishes HR(x, r) from U2`n+1 with bias at least ε/m. Lemma 5.1 proves
this fact adapted to an information-theoretic context.

We need to establish the properties of the above transformations (Steps 1, 2, and 3) in an information-
theoretic context because they will be used for the construction of an extractor. In our setting R :
{0, 1}`n → {0, 1}`n is a random permutation and C4 is a statistical test. We will show that there are
some circuits C1,1, . . . , C1,2m+1−4 such that if R does not hit C4 ε-correctly via G, then R is (ε/m,m2/ε2)-

good for some C1,i, and thus, by the results in the previous section, R has a short description. In
our context, the size of the different circuits appearing in Steps 1, 2, and 3 will be considered to be
unbounded. What matters is the number and the pattern of queries, i.e., the fact that C3, C2 and
C1 are restricted circuits. This is an informatic-theoretic feature. The following lemmas follow closely
the standard proofs, only that, in addition, they analyze the pattern of queries made by the circuits
involved.

Lemma 5.1 (Analysis of Step 3.) For any circuit C4 there are 2m−1−1 circuits C3,1, C3,2, . . . , C3,2m−1−1

such that:

(1) If R is a permutation with

|Probx,r(GR(x, r) ∈ C4) − Prob(Um ∈ C4)| > ε,

(i.e., R does not hit C4 ε-correctly via G), then there is i ∈ {1, . . . , 2m−1 − 1} such that

|Prob(HR(U`n, U ′
`n) ∈ CR

3,i) − Prob(U2`n+1 ∈ CR
3,i)| >

ε

m
.

(2) All the circuits C3,i are (m − 2)-restricted.

Proof For k ∈ {0, . . . ,m − 1}, we define the distributions

dk = Uk � (U`n · U ′
`n) � (R(U`n) · U ′

`n) � . . . � (R
m−k−1

(U`n) · U ′
`n),

where Uk, U`n, and U ′
`n are distinct instances of the uniform distributions on {0, 1}k , {0, 1}`n, and

{0, 1}`n, respectively. Suppose that a permutation R satisfies

Probx,r(GR(x, r) ∈ C4) − Prob(Um ∈ C4) > ε. (2)

In the new notation, the above reads Prob(d0 ∈ C4) − Prob(dm−1 ∈ C4) > ε. This implies that there
is some k ∈ {0, . . . ,m − 2} such that Prob(dk ∈ C4) − Prob(dk+1 ∈ C4) > ε/m. For z1 ∈ {0, 1}`n,
z2 ∈ {0, 1}`n, z3 ∈ {0, 1}, we define

f(z1 � z2 � z3) = z3 � (z1 · z2) � (R(z1) · z2) � . . . � (R
m−k−2

(z1) · z2).

Note that
dk = Uk � f(R(U`n) � U ′

`n � (U`n · U ′
`n))
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and
dk+1 = Uk � f(U`n � U ′

`n � U1).

We define the following circuit D that is able to distinguish HR(U`n, U ′
`n) from U2`n+1. The input of D is

a string y ∈ {0, 1}2`n+1, which we break into y = y1�y2�y3, with y1 and y2 in {0, 1}`n, and y3 ∈ {0, 1}.
The circuit D on input y ∈ {0, 1}2`n+1, chooses a k-bits long string u, calculates f(y1, y2, y3) using the
oracle R and simulates C4 on input u�f(y1, y2, y3). Note that the calculation of f(y1, y2, y3) requires at
most the query of the strings y1, R(y1), . . . , R

m−3(y1). Thus, D is an (m− 2)-restricted circuit. Clearly,

Probu,y(y ∈ DR) = Prob(dk+1 ∈ C4) and Probu,x,r(HR(x, r) ∈ DR) = Prob(dk ∈ C4). Therefore,

Probu,x,r(HR(x, r) ∈ DR) − Probu,y(y ∈ DR) > ε/m. By fixing in all possible ways k ∈ {0, . . . ,m − 2}
and then the k-bits long string u, we obtain 2m−1−1 circuits, denoted C3,1, . . . , C3,2m−1−1, that act like D
except that the random bits are replaced by the fixed bits. The argument above shows that if R satisfies
Equation (2), then there is one circuit C3,i in the above set of circuits such that Probx,r(HR(x, r) ∈
CR

3,i) − Proby(y ∈ CR
3,i) > ε/m. The circuits C3,i are (m − 2)-restricted circuits. With a similar proof,

one can see that if
Prob(Um ∈ C4) − Probx,r(GR(x, r) ∈ C4) > ε, (3)

then there is one circuit C3,i such that Proby(y ∈ CR
3,i) − Probx,r(HR(x, r) ∈ CR

3,i) > ε/m.

Lemma 5.2 (Analysis of Step 2.) Let C3 be an oracle circuit that is L-restricted, for some parameter
L. There are four oracle circuits C2,1, C2,2, C2,3, C2,4 such that

(1) If a permutation R satisfies

|Probx,r(HR(x � r) ∈ CR
3 ) − Prob(U2`n+1 ∈ CR

3 )| > ε,

then there is i ∈ {1, 2, 3, 4} such that

Probx,r(C
R
2,i(R(x) � r) = b(x, r)) >

1

2
+ ε.

(2) The four circuits are L-restricted.

Proof We define the oracle circuit B that on input R(x) � r runs as follows. It chooses a random bit

u and then it simulates the circuit CR
3 to determine if R(x)� r� u belongs to CR

3 or not. If the answer
is YES, the output is u, and if the answer is NO, the output is 1 − u. We also define the circuit D in
a similar way, with the only change that the YES/NO branches are permuted. Note that B and D are
both circuits that are L-restricted.

Recall that HR(x, r) = R(x)�r�b(x, r). Let us suppose that for some permutation R, Probx,r(R(x)�
r�b(x, r)) ∈ CR

3 )−Prob(U2`n+1 ∈ CR
3 ) > ε. Note that Probx,r(R(x)�r�b(x, r)) ∈ CR

3 )−Prob(U2`n+1 ∈
CR

3 ) = (Probx,r(R(x)�r�b(x, r)) ∈ CR
3 )−ProbU1,x,r(R(x)�r�U1) ∈ CR

3 ))+(ProbU1,x,r(R(x)�r�U1) ∈
CR

3 ) − Prob(U2`n+1 ∈ CR
3 )). The second term is equal to zero, because R is a permutation and, thus,

U1�R(x)�r is actually the uniform distribution on {0, 1}2`n+1. Therefore, Probx,r(R(x)�r�b(x, r)) ∈
CR

3 ) − ProbU1,x,r(R(x) � r � U1) ∈ CR
3 ) > ε. According to Yao’s lemma that connects predictors to

distinguishers (for a proof see, for example, [Zim04, pp. 162]), it follows that Probu,x,r(B
R(R(x)� r) =

b(x, r)) > 1
2 + ε. Let B0 (B1) be the circuit that is obtained from B by fixing bit u to 0 (respectively, to

1). Then at least one of the events “B0(R(x)�R) = b(x, r)” or “B1(R(x)�R) = b(x, r)” has probability
> 1

2 + ε.

If Probz(z ∈ CR
3 ) − Probx,r(R(x) � r � b(x, r)) ∈ CR

3 ) > ε, then the same argument works for the
circuit D, and we obtain two deterministic circuits D0 and D1. The four circuits B0, B1, D0 and D1

satisfy the requirements.
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Lemma 5.3 (Analysis of Step 1.) Let C2 be an oracle circuit that is L-restricted for some parameter
L. Then there is a circuit C1 such that

(1) If R is a permutation such that Probx,r(C
R
2 (R(x)�r) = b(x, r)) > 1

2 +ε, then for at least a fraction

ε of x ∈ {0, 1}`n, CR
1 on input y = R(x) outputs a list of 1/ε2 strings that contains x (i.e., R is

(ε, 1/ε2)-good for C1).

(2) The circuit C1 is L-restricted.

Proof Suppose permutation R : {0, 1}n → {0, 1}`n satisfies Probx,r(C
R
2 (R(x)�r) = b(x, r)) > (1/2)+ε.

Then, by a standard averaging argument, for a fraction ε of x in {0, 1}`n, Probr(C
R
2 (R(x) � r) =

b(x, r)) > (1/2)+(ε/2). Consider such an x and let Had(x) denote the encoding of x via the Hadamard
error-correcting code (see [Tre04]). By the definition of the Hadamard code, b(x, r) is just the r-th bit
of Had(x). Thus the string u = CR

2 (R(x) � (0 . . . 0)) � . . . � CR
2 (R(x) � (1 . . . 1)) agrees with Had(x)

on at least a fraction (1/2) + (ε/2) of positions. Since the circuit C2 is L-restricted, the string u can be

calculated by querying only y, R(y), . . . , R
L−1

(y), where y = R(x). By brute force we can determine
the list of all strings z so that Had(z) agrees with u in at least 1

2 + ε
2 positions. It is known (see, for

example, [Zim04, pp. 218]) that there are at most 1
4 ·

(

2
ε

)2
=

(

1
ε

)2
such strings z and one of them is

x.
By combining Lemma 5.1, Lemma 5.2, and Lemma 5.3, we obtain the following fact.

Lemma 5.4 Let C4 be a circuit. Then there are 2m+1 − 4 circuits C1,1, . . . , C1,2m+1−4 such that

(1) If R is a permutation with

|Probx,r(GR(x, r) ∈ C4) − Prob(Um ∈ C4)| > ε,

(i.e., R does not hit C4 ε-correctly via G), then there is some circuit C1,i such that for at least a

fraction ε
m of x, CR

1,i on input R(x) outputs a list of m2 ·
(

1
ε

)2
strings that contains x (i.e., R is

(ε/m,m2/ε2)-good for C1,i).

(2) All the circuits C1,i are (m − 2)-restricted.

6 An extractor from a crypto pseudo-random generator

We first build a special type of extractor in which the weakly-random string is the truth-table of a
permutation in PERM.

The following parameters will be used throughout this section. Let ε > 0, δ > 0, and n,m ∈ N be
parameters. Let N = 2n. Let ` = d(3/δ) log(2m · (1/ε))e. We consider the set of permutations PERM`.
We assume that δ = O(1) and m2 · (1/ε) = o(N/n4).

Let G : PERM` × ({0, 1}`n ×{0, 1}`n) → {0, 1}m be the function defined by the following algorithm
(the same as the algorithm for GR from the previous section).

Parameters: ` ∈ N,m ∈ N.
Input: R ∈ PERM`, (x, r) ∈ {0, 1}`n × {0, 1}`n.

For i = 0 to m − 1, bi = r · Ri
(x).

Output b0 � b1 � . . . � bm−1.

The following lemma, in view of Lemma 2.2, shows that G is an extractor for the special case of
weakly-random strings that are truth-tables of permutations in PERM`.
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Lemma 6.1 Let C4 be a test for strings of length m (i.e., C4 ⊆ {0, 1}m). Let GOOD(C4) = {R ∈
PERM` | R does not hit C4 ε-correctly via G}. Then ‖GOOD(C4)‖ < 2m+h+1, where h = 3δNn +
3N log m + 3N log(1/ε).

Proof Let C1,1, . . . , C1,2m+1−4 be the 2m+1 − 4 circuits implied by Lemma 5.4 to exist (corresponding

to the test C4). Let R be in GOOD(C4). Then Lemma 5.4 shows that there is a circuit C1,i from
the above list having the following property: For at least a fraction γ = ε/m of strings x ∈ {0, 1}`n,

CR
1,i on input R(x) returns a list having T = m2 · (1/ε2) strings, one of which is x. Thus, R is (γ, T )-

good for C1,i (recall Definition 4.2). It follows that the set of permutations R ∈ PERM` that do not

hit C4 ε-correctly via G is included in
⋃2m+1−4

1 {R ∈ PERM` | R is (γ, T )-good for C1,i}. Lemma 4.4
shows, that, for each i ∈ {1, . . . , 2m+1 − 4}, ‖{R ∈ PERM` | R is (γ, T )-good for C1,i}‖ ≤ 2h, where
h = 3δ · N · n + 3N log m + 3N log(1/ε). The conclusion follows.

In order to obtain a standard extractor (rather than the special type given by Lemma 6.1), the only
thing that remains to be done is to transform a random binary string X into a permutation R ∈ CIRC,
which determines R ∈ PERM` that is used in the function G given above.

Note that a permutation R ∈ CIRC is specified by (R(1), R2(1), . . . , RN−1(1)), which is an arbi-
trary permutation of the set {2, 3, . . . , N}. Consequently, we need to generate permutations of the set
{1, 2, . . . , N − 1} (which can be viewed as permutations of {2, 3, . . . , N} in the obvious way). We can
use the standard procedure that transforms a function mapping [N − 1] to [N − 1] into a permutation
of the same type. To avoid some minor truncation nuisances, we actually use a function X : [N ] → [N ].

Input: X : [N ] → [N ].
for i = 1 to N − 1, R(i) = i (initially R is the identity permutation).
Loop 2:

for i = 1 to N − 1
Y (i) = 1 + (X(i) mod i).

Loop 3:

for i = 1 to N − 1
Swap R(i) with R(Y (i)).

Output: permutation R : [N − 1] → [N − 1].

We want to estimate the number of functions X : [N ] → [N ] that map via the above procedure to
a given permutation R : [N − 1] → [N − 1]. We call a sequence (Y (1), . . . , Y (N)) a *-sequence if, for
all i, Y (i) ∈ {1, . . . , i}. Observe that, using Loop 3, a *-sequence (Y (1), . . . , Y (N − 1)) defines a unique
permutation (R(1), . . . , R(N −1)), and thus it is enough to estimate the maximum number of functions
X : [N ] → [N ] that map via Loop 2 in the above procedure in a given *-sequence (Y (1), . . . , Y (N − 1))
(the maximum is taken over all *-sequences of length N − 1). We denote this number by A(N). A
(rough) upper bound can be established as follows.

A(N) ≤
⌈N

1

⌉

·
⌈N

2

⌉

· . . . ·
⌈ N

N − 1

⌉

≤
(N

1
+ 1

)

·
(N

2
+ 1

)

· . . . ·
( N

N − 1
+ 1

)

=
(N + 1)(N + 2) · . . . · (2N − 1)

1 · 2 · . . . · (N − 1)

=

(

2N − 1

N − 1

)

≤ 22N .
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We can now present the (standard) extractor. We choose the parameters as follows. Fix n ∈ N

and let N = 2n and N = n · 2n. Let λ ∈ (0, 1) be a constant. Let α > 0, β > 0 be constants
such that α < λ/3, β < (λ − 3α)/4. Let ε ≥ N−β and m ≤ Nα. Take δ = (λ − 4β − 3α)/4 and
` = d(3/δ) log(2m · (1/ε))e. The weakly-random string X has length N and is viewed as the truth-
table of a function mapping [N ] to [N ]. The seed is of the form y = (x, r) ∈ {0, 1}`n × {0, 1}`n. We
first transform X into a permutation R(X) ∈ PERM` using the above algorithm and then taking the

`-product. We define the extractor E : {0, 1}N ×{0, 1}2`n → {0, 1}m by E(X, (x, r)) = G(R(X), (x, r)).
More explicitly, the extractor is defined by the following procedure.

Parameters: n ∈ N, N ∈ N, λ > 0, ε > 0, ` ∈ N,m ∈ N, satisfying the above requirements.

Inputs: The weakly-random string X ∈ {0, 1}N , viewed as the truth-table of a function
X : [N ] → [N ]; the seed y = (x, r) ∈ {0, 1}`n × {0, 1}`n.

Step 1. Transform X into a permutation RX ∈ PERM`. The transformation is performed by the
above procedure which yields a permutation R ∈ CIRC, and, next, RX is the `-direct product of R.

Step 2. For i = 0 to m − 1, bi = r · Ri
X(x).

Output b0 � b1 � . . . � bm−1, which is denoted E(X, y).

We have defined a function E : {0, 1}N × {0, 1}2`n → {0, 1}m. Note that the seed length 2`n is
O(log2 N) and the output length m is N

α
, for an arbitrary α < λ/3.

Theorem 6.2 The function E is a (λN, 2ε)-extractor.

Proof Let C4 be a subset of {0, 1}m. Taking into account Lemma 2.2, it is enough to show that

the number of strings X ∈ {0, 1}N that do not hit C4 ε-correctly via E is at most 2λN−log(1/ε). Let

X ∈ {0, 1}N be a string that does not hit C4 ε-correctly via E. By the definition of E, it follows that RX

does not hit C4 ε-correctly via G. By Lemma 6.1, there are at most 2m+h+1 permutations R ∈ PERM`

that do not hit C4 ε-correctly via G, where h = 3δNn + 3N log m + 3N log(1/ε). Since the number of
functions X : [N ] → [N ] that map into a given permutation R ∈ PERM` is at most A(N) < 22N , it
follows that

‖{X ∈ {0, 1}N | X does not hit C4 ε-correctly}‖ < 22N · 2m+h+1 < 2λN−log(1/ε),

where the last inequality follows from the choice of parameters.

7 A bitwise locally-computable extractor

We present a bitwise locally-computable extractor: Each bit of the output string can be calculated
separately in O(log2 N), where N is the length of the weakly-random string. The proof uses the same
plan as for the extractor in Section 6, except that the weakly-random string X is viewed as the truth-
table of an arbitrary function (not necessarily a permutation) and the “consecutive”’ values that are

used in the extractor are X(x), X(x + 1), . . . , X(x + m − 1) (instead of R(x), R
2
(x), . . . , R

m−1
(x) used

in Section 6).
The parameter n ∈ N will be considered fixed throughout this section. We denote N = 2n and

N = n · N . The parameter m ∈ N will be specified later (it will be a subunitary power of N). For
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two binary strings x and r of the same length, b(x, r) denotes the inner product of x and r viewed as
vectors over the field GF(2).

The weakly-random string X has length N , and is viewed as the truth-table of a function X :
{0, 1}n → {0, 1}n. For some ` ∈ N that will be specified later we define X : {0, 1}`n → {0, 1}`n by
X(x1�. . .�x`) = X(x1)�. . .�X(x`), i.e., X is the `-direct product of X. We also denote x = x1�. . .�x`.
The seed of the extractor will be (x, r) ∈ {0, 1}`n ×{0, 1}`n. We define x + 1 = (x1 + 1)� . . .� (x` + 1)
(where the addition is done modulo 2n) and inductively, for any k ∈ N, x + k + 1 = (x + k) + 1. The
extractor is defined by

E(X, (x, r)) = b(X(x), r) � b(X(x + 1), r) � . . . � b(X(x + m − 1), r). (4)

A set D ⊆ {0, 1}m is called a test. We say that X hits a test D ε-correctly via E if |Probx,r(E(X, (x, r)) ∈
D) − ‖D‖

‖{0,1}m‖ | ≤ ε. We want to show that the number of functions X that do not hit D ε-correctly via
E is small and then use Lemma 2.2. To this aim we investigate the properties of a function X that does
not hit a test D ⊆ {0, 1}m ε-correctly via E.

Lemma 7.1 Let D ⊆ {0, 1}m be a fixed set. Then there are 2m+2 − 4 circuits C1, . . . C2m+2−4 such that
if X does not hit D ε-correctly, then there is some circuit Ci, i ∈ {1, . . . , 2m+2 − 4}, such that

Probx,r(Ci on input b(X(x − m + 1), r) � . . . � b(X(x − 1), r) outputs b(X(x), r)) ≥ 1/2 + ε/m.

Proof The proof is similar to the proofs of lemmas 5.1 and 5.2. Let X : {0, 1}n → {0, 1}n be a function
that does not hit D ε-correctly via E. This means that |Probx,r(E(X, (x, r)) ∈ D)−Prob(Um ∈ D)| > ε.
Let us first suppose that

Probx,r(E(X, (x, r)) ∈ D) − Prob(Um ∈ D) > ε. (5)

For each k ∈ {0, . . . ,m − 1}, we define the hybrid distribution dk given by

dk = b(X(x), r) � b(X(x + 1), r) � . . . � b(X(x + m − k − 1), r) � Uk.

and
dm = Um.

Equation (5) states that Prob(d0 ∈ D) − Prob(dm ∈ D) > ε. Using the standard argument, it follows
that there exists k ∈ {0, . . . ,m − 1} such that Prob(dk ∈ D) − Prob(dk+1 ∈ D) > ε/m. We build a
probabilistic circuit C that on input b(X(x), r)� b(X(x + 1), r)� . . .� b(X(x +m− k − 2), r) attempts
to calculate b(X(x + m − k − 1), r).

Circuit C.
Input: v0 � v1 � . . . � vm−k−2, each vi ∈ {0, 1}. (In case k = m − 1, there is no input.)

Choose randomly u ∈ {0, 1}, t ∈ {0, 1}k .

If v0 � v1 � . . . � vm−k−2 � u � t ∈ D, return u.
Else return 1 − u.

By Yao’s lemma on predictors versus distinguishers, it holds that

Probx,r(C on input b(X(x), r) � . . . � b(X(x + m − k − 2), r) outputs b(X(x + m − k − 1), r)) ≥ 1/2+ε/m,
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where the probability is taken over x ∈ {0, 1}`n, r ∈ {0, 1}`n and the random bits used by C. The
procedure C uses k+1 random bits (for u and t), and k ∈ {0, . . . ,m−1}. By considering all possibilities
for k and by fixing the (k + 1) bits in all possible ways, we obtain 21 + . . . + 2m = 2m+1 − 2 circuits
C1, . . . , C2m+1−2 with the desired property.

In the alternative (to Equation (5)) case

Prob(Um ∈ D) − Prob(E(X, (x, r)) ∈ D) > ε,

we obtain in a similar way another set of 2m+1 − 2 circuits.
The next lemma is an analogue of Lemma 5.3. It states that if there exists a circuit C with the

property indicated in Lemma 7.1, then, from X(x − m + 1), . . . , X(x − 1), one can compute, in a weak
but non-trivial way, X(x).

Lemma 7.2 Let C be a circuit. Then there is a circuit B such that the following holds. Suppose
X : {0, 1}`n → {0, 1}`n is a function such that

Probx,r(C(b(X(x − m + 1), r) � . . . � b(X(x − 1), r)) = b(X(x), r)) ≥ (1/2) + (ε/m).

Then, for at least a fraction ε/m of x in {0, 1}`n, B on input X(x −m + 1) � . . . �X(x − 1) outputs a
list of m2 · (1/ε2) elements, one of which is X(x).

Proof The proof is similar to the proof of Lemma 5.3. Let C and X be as in the hypothesis. By an
averaging argument, it follows that for a fraction (ε/m) of x in {0, 1}`n,

Probr(C(b(X(x − m + 1), r) � . . . � b(X(x − 1), r) = b(X(x), r)) ≥ (1/2) + ε/(2m). (6)

Let Had(x) denote the encoding of a string x via the Hadamard error-correcting code. By the definition

of the Hadamard code, b(x, r) is just the r-th bit of Had(x). Consider the binary string u(x) ∈ {0, 1}2`n

whose r-th bit is C(b(X(x − m + 1), r) � . . . � b(X(x − 1), r) (here r ∈ {0, . . . , 2`n − 1} is written in
base 2 on `n bits for the sake of the definition of b). Clearly, the string u(x) can be calculated from
X(x − m + 1), . . . , X(x − 1). The equation (6) implies that, for a fraction (ε/m) of x ∈ {0, 1}`n, u(x)
agrees with Had(X(x)) on at least 1/2 + ε/(2m) positions. By brute force, we can determine all the
strings z so that Had(z) agrees with u(x) in at least 1

2 + ε/(2m) positions. It is known that there are

at most 1
4 ·

(

2m
ε

)2
=

(

m
ε

)2
such strings z and, by the above discussion, one of them is X(x).

The key property of the circuit B in the above lemma is captured in the following definition (which
is analogous to Definition 4.2).

Definition 7.3 Let B be a circuit. A function X : {0, 1}`n → {0, 1}`n is (γ, T )-good for B if for at
least a γ fraction of x ∈ {0, 1}`n, B on input X(x−m+1)� . . .�X(x− 1) outputs a T - list of strings,
one of which is X(x).

We choose the parameters in the same way as in Section 4. The parameters ε and m will be specified
later. We take δ > 0, γ = ε/m, T = m2/ε2, ` = d(3/δ) log(2/γ)e and w = d6 · (1/δ) · log(2/γ) · (1/γ)e.

The next two lemmas are the analogues of Lemma 4.3. The first lemma shows the amplification
effect obtained by taking the `-direct product.

Lemma 7.4 The parameters are as specified above. Let B be a circuit. Then there is an oracle circuit
A such that:

(1) If X is (γ, T )-good for B, then, for a fraction (1 − δ) of x in {0, 1}n, the circuit A, on input x
and X(x − m + 1) � . . . � X(x − 1) and with access to oracle X restricted as shown in (2), outputs a
list containing n · w · T elements, one of which is X(x).

(2) The oracle circuit A queries a set of n · w · (` − 1) · (m − 1) strings that do not depend on the
input.
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Proof The proof is very similar to the first part of the proof of Lemma 4.3. Let GOOD be the set of
strings x in {0, 1}`n such that the circuit B, on input X(x−m +1)� . . .�X(x− 1), calculates a T -list
that contains X(x). By hypothesis, ‖GOOD‖ ≥ γ · 2`n. We consider the following algorithm A′ that
can query the oracle X : {0, 1}n → {0, 1}n in several random positions.

Input: x ∈ {0, 1}n, and X(x−m+1), . . . , X(x−1) ∈ ({0, 1}n)m−1. The algorithm can pose random
queries to the oracle X : {0, 1}n → {0, 1}n. The goal is to calculate a list of strings that contains X(x).

LIST = ∅.
Repeat the following n · w times.
Pick random i ∈ {1, . . . , `}.
Pick ` − 1 random strings in {0, 1}n denoted x1, . . . , xi−1, xi+1, . . . , x`.
By querying the oracle X, find, for each xj, the strings X(xj −m+1), X(xj −m+2), . . . , X(xj −1).
Let x = (x1, . . . , xi−1, x, xi+1, . . . , x`). Build the string X(x−m+1)�X(x−m+2)� . . .�X(x−1).

Run the circuit B on input X(x − m + 1) � X(x − m + 2) � . . . � X(x − 1).
The circuit B returns a T -list of `-tuples in ({0, 1}n)`.
(Note: In case of success, one of these `-tuples is
X(x) = X(x1), . . . , X(xi−1), X(x), X(xi+1) . . . , X(x`))
Add to LIST the i-th component of every `-tuple in the list produced by B.
End Repeat

We say that the above algorithm is successful on input x if, at the conclusion of the algorithm,
LIST contains X(x). We estimate the success probability of the above circuit on input x. Let N(x)
be the multiset of `-tuples having x as one component where the multiplicity of a tuple is the number
of occurrences of x in the tuple. On input x, at each iteration, the algorithm chooses uniformly at
random x in N(x). The algorithm succeeds at that iteration if and only if x ∈ GOOD. By following
the same arguments and the same calculations as in Lemma 4.3, we conclude that the probability
that algorithm A′ succeeds on x is at least (1 − δ), where the probability is taken over x and the
random strings used by A′. Note that the algorithm A′ is using at each iteration the random strings
x1, . . . , xi−1, xi+1, . . . , x`, and there are n · w iterations. For each such random string xj, A′ needs the
(m − 1) values X(xj − m + 1), X(xj − m + 2), . . . , X(xj − 1). There is a way to fix the above random
strings so that the circuit A, which results from A′ by using the fixed strings instead of the random
strings, succeeds on at least a (1 − δ) fraction of the strings x ∈ {0, 1}n. Therefore, the circuit A has
the desired properties.

Lemma 7.5 The parameters are as specified above. Let A be an oracle circuit and X : {0, 1}n → {0, 1}n

be a function such that A and X satisfy the conditions (1) and (2) in Lemma 7.4. More precisely, we
assume that:

(1) For a fraction (1−δ) of x in {0, 1}n, the circuit A, on input x and X(x−m+1)� . . .�X(x−1)
and with access to oracle X restricted as shown in (2), outputs a list containing n ·w · T elements, one
of which is X(x).

(2) The oracle circuit A queries a set of n · w · (` − 1) · (m − 1) strings that do not depend on the
input.

Then, given A, X can be described using a number of bits bounded by 2δNn + mn + N log n +
(log 6)N + N log(1/δ) + N log log(2/γ) + N log(1/γ) + N log T + 36n2 · m · 1

γ ·
(

1
δ

)2(
log 2

γ

)2
.

Proof The oracle circuit A allows a short description of the strings X(x) for the fraction of (1 − δ) of
the strings x ∈ {0, 1}n given in assumption (1). Namely, such a string X(x) is completely determined
by the circuit A, by the value of X for the fixed set of queries given in assumption (2), by the previous
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m − 1 values X(x − m + 1), . . . , X(x − 1), and by the rank of X(x) in the list returned by A on input
x,X(x − m + 1), . . . , X(x − 1). Thus, the truth-table of the function X : {0, 1}n → {0, 1}n can be
described (given the circuit A) using the following information.

• 2δ · N · n bits that encode the set of δN elements on which A fails and the value of X at these
points.

• The “first” m − 1 values X(0), . . . , X(m − 1). This information requires (m − 1) · n bits. (Here,
X(i) represents the value of X at the i-th string in {0, 1}n, lexicographically ordered.)

• For each of the (1 − δ)N strings y on which A succeeds, the rank of X(x) in the list returned by
A. This requires (1 − δ) · N · (log n + log w + log T ) bits.

• The set of n · w · (` − 1) · (m − 1) fixed strings that are queried by A and the value of X at these
strings. This information requires 2n2 · w · (` − 1) · (m − 1) bits.

The total number of bits needed for the description of X (given A) is bounded by

2δNn + m · n + (1 − δ)N log n + (1 − δ)N log w + (1 − δ)N log T + 2n2 · w · (` − 1) · (m − 1).

Keeping into account that ` = d(3/δ) log(2/γ)e and w = d6 · (1/δ) · log(2/γ) · (1/γ)e, the conclusion
follows.

We make the final choice of parameters. Let n ∈ N and the constant λ ∈ (0, 1). Recall that N = 2n

and N = n ·N . We take the constants α < λ/3, β < (λ− 3α)/4 and δ = (λ− 3α− 4β)/4. We also take
the output length m ≤ Nα and the extractor bias ε ≥ N−β. Note that ` = d(3/δ) log(2m/ε)e = O(n).

Theorem 7.6 Assume that the parameters N,λ,m, ` and ε satisfy the above requirements. Then the
function E : {0, 1}N × {0, 1}2`n → {0, 1}m, given in Equation 4, is a (λN, 2ε)-extractor.

Proof Assume X ∈ {0, 1}N does not hit a test D ⊆ {0, 1}m ε-correctly via E. Then X can be described
by one of the circuits C1, . . . , C2m+2−4, given by Lemma 7.1, and, according to Lemma 7.5, by a string
of length h, where h ≤ 2δNn + mn + N log n + (log 6)N + N log(1/δ) + N log log(2/γ) + N log(1/γ) +

N log T +36n2 ·m · 1
γ ·

(

1
δ

)2(
log 2

γ

)2
. Thus, the number of strings X that do not hit D ε-correctly via E is

bounded by 2m+2+h. For our choice of parameters, it holds that m+2+h ≤ λN − log(1/ε). Therefore,
by Lemma 2.2, E is a (λN, 2ε)-extractor.

The construction scheme of the last extractor (given in Equation (4)) allows some flexibility in
the choice of parameters and, in particular, we can obtain an extractor with seed length logarithmic
in the length of the weakly random string. Namely, we can consider the weakly random string X
to be the truth-table of a function of type X : {0, 1}n → {0, 1}N1 , where N1 >> n. We use the
same value of `, and we take the `-direct product of X and obtain X : {0, 1}`n → {0, 1}`N1 . Clearly,
|X(x)| = `N1. To get a short seed we need to replace the Hadamard code (recall that the function
b(x, r) gives the r-th bit of Had(x)) by an error-correcting code with a good list decoding property
that has a better rate. For example the code given in [GHSZ02], which we denote Code, is of the type
Code : {0, 1}ñ → {0, 1}n, with n = O(ñ · (1/ε)4), is computable in polynomial time, and it has the
property that any ball of radius (1/2) + ε has at most O((1/ε)2) codewords. Similarly to function b,
we define the function c(x, r) = the r-th bit of Code(x), for x ∈ {0, 1}`n and any binary string r with
length |r| = log(Code(x)) = log(` · N1 · (1/ε)4) + O(1). We define the extractor E ′ by

E′(X, (x, r)) = c(X(x), r) � c(X(x + 1), r) � . . . � c(X(x + m − 1), r). (7)

The analysis is very similar to that done for the previous extractor given in Equation (4). For example,
if we assume that ε ≤ 2(1/4)n, take N1 = 2n2

and m = 2(1/3)n, and we denote the length of X by N (i.e.,
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N = 2n2+n), we obtain a quite simple extractor that has seed length O(log(N )), is capable to extract

from sources with min-entropy λN , for arbitrary constant λ > 0, and has output length ≈ 2(1/3)
√

log(N).
This extractor has a good seed length, however the output length is much smaller than the min-entropy
of the source.
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